Overview of Lattice based Cryptography

from Geometric Intuition to Basic Primitives

Léo Ducas

CWI, Amsterdam, The Netherlands

CWI

Spring School on Lattice-Based Cryptography Oxford, March 2017

Content of the talk

- Geometric intuition behind lattice-based crypto
- The modern formalism (SIS-LWE)
- Basic construction and difficulties

Outline

1 The Geometric point of view

2 The SIS-LWE Framework

3 Encryption is easy

4 Signatures are tricky

Lattices!

Definition

A lattice L is a discrete subgroup of a finite-dimensional Euclidean vector space.

Bases of a Lattice

An important invariant: the Volume

For any two bases \mathbf{G}, B of the same lattice Λ :

$$
\operatorname{det}\left(\mathbf{G} \mathbf{G}^{t}\right)=\operatorname{det}\left(\mathbf{B} \mathbf{B}^{t}\right)
$$

We can therefore define:

$$
\operatorname{vol}(\Lambda)=\sqrt{\operatorname{det}\left(\mathbf{G} \mathbf{G}^{t}\right)}
$$

Geometrically: the volume of any fundamental domain of Λ.

An important invariant: the Volume

For any two bases G, B of the same lattice Λ :

$$
\operatorname{det}\left(\mathbf{G} \mathbf{G}^{t}\right)=\operatorname{det}\left(\mathbf{B} \mathbf{B}^{t}\right)
$$

We can therefore define:

$$
\operatorname{vol}(\Lambda)=\sqrt{\operatorname{det}\left(\mathbf{G} \mathbf{G}^{t}\right)}
$$

Geometrically: the volume of any fundamental domain of Λ.

Let G* be the Gram-Schmidt Orthogonalization of G

\mathbf{G}^{\star} is not a basis of Λ, nevertheless:

$$
\operatorname{vol}(\Lambda)=\sqrt{\operatorname{det}\left(\mathbf{G}^{\star} \mathbf{G}^{\star t}\right)}=\prod\left\|\mathbf{g}_{i}^{\star}\right\|
$$

What is a "Good" basis

Recall that, independently of the basis \mathbf{G} it hold that:

$$
\operatorname{vol}(\Lambda)=\prod\left\|\mathbf{g}_{i}^{\star}\right\|
$$

Therefore, it is somehow equivalent that

- $\max _{i}\left\|\mathbf{g}_{i}^{\star}\right\|$ is small
- $\min _{i}\left\|\mathbf{g}_{i}^{\star}\right\|$ is large

■ $\kappa(\mathbf{G})=\min _{i}\left\|\mathbf{g}_{i}^{\star}\right\| / \max _{i}\left\|\mathbf{g}_{i}^{\star}\right\|$ is small

What is a "Good" basis

Recall that, independently of the basis \mathbf{G} it hold that:

$$
\operatorname{vol}(\Lambda)=\prod\left\|\mathbf{g}_{i}^{\star}\right\|
$$

Therefore, it is somehow equivalent that

- $\max _{i}\left\|\mathbf{g}_{i}^{\star}\right\|$ is small
- $\min _{i}\left\|\mathbf{g}_{i}^{\star}\right\|$ is large

■ $\kappa(\mathbf{G})=\min _{i}\left\|\mathbf{g}_{i}^{\star}\right\| / \max _{i}\left\|\mathbf{g}_{i}^{\star}\right\|$ is small

Good basis (rule of thumb)

$$
\kappa(\mathbf{G})=\operatorname{poly}(d), \quad \forall i,\left\|\mathbf{g}_{i}^{\star}\right\|=\operatorname{poly}(d) \cdot \operatorname{vol}(\Lambda)^{1 / d}
$$

What is a "Good" basis

Recall that, independently of the basis \mathbf{G} it hold that:

$$
\operatorname{vol}(\Lambda)=\prod\left\|\mathbf{g}_{i}^{\star}\right\|
$$

Therefore, it is somehow equivalent that

- $\max _{i}\left\|\mathbf{g}_{i}^{\star}\right\|$ is small
- $\min _{i}\left\|\mathbf{g}_{i}^{\star}\right\|$ is large

■ $\kappa(\mathbf{G})=\min _{i}\left\|\mathbf{g}_{i}^{\star}\right\| / \max _{i}\left\|\mathbf{g}_{i}^{\star}\right\|$ is small

Good basis (rule of thumb)

$$
\kappa(\mathbf{G})=\operatorname{poly}(d), \quad \forall i,\left\|\mathbf{g}_{i}^{\star}\right\|=\operatorname{poly}(d) \cdot \operatorname{vol}(\Lambda)^{1 / d}
$$

LLL-reduced basis (rule of thumb)

$$
\kappa(\mathbf{G}) \approx(1.04)^{d}, \quad \max _{i}\left\|\mathbf{g}_{i}^{\star}\right\| \approx(1.02)^{d} \cdot \operatorname{vol}(\Lambda)^{1 / d}
$$

Bases and Fundamental Domains

Each basis defines a parallelepipedic tiling.

Round'off Algorithm [Lenstra, Babai]:

Bases and Fundamental Domains

Each basis defines a parallelepipedic tiling.

Round'off Algorithm [Lenstra, Babai]:
■ Given a target t

Bases and Fundamental Domains

Each basis defines a parallelepipedic tiling.

Round'off Algorithm [Lenstra, Babai]:

- Given a target t
- Find's $v \in L$ at the center the tile.

Round'off Algorithm

$$
\longrightarrow
$$

RoundOff Algorithm [Lenstra,Babai]:

Round'off Algorithm

RoundOff Algorithm [Lenstra,Babai]:

- Use \mathbf{B} to switch to the lattice $\mathbb{Z}^{n}\left(\times \mathbf{B}^{-1}\right)$

$$
\mathrm{t}^{\prime}=\mathbf{B}^{-1} \cdot \mathrm{t}
$$

Round'off Algorithm

Roundoff Algorithm [Lenstra,Babai]:

- Use \mathbf{B} to switch to the lattice $\mathbb{Z}^{n}\left(\times \mathbf{B}^{-1}\right)$
- round each coordinate (square tiling)

$$
\mathrm{t}^{\prime}=\mathbf{B}^{-1} \cdot \mathrm{t} ; \quad \mathbf{v}^{\prime}=\left\lfloor\mathrm{t}^{\prime}\right\rceil ;
$$

Round'off Algorithm

RoundOff Algorithm [Lenstra,Babai]:

- Use \mathbf{B} to switch to the lattice $\mathbb{Z}^{n}\left(\times \mathbf{B}^{-1}\right)$
- round each coordinate (square tiling)
- switch back to $L(\times \mathbf{B})$

$$
\mathrm{t}^{\prime}=\mathbf{B}^{-1} \cdot \mathrm{t} ; \quad \mathbf{v}^{\prime}=\left\lfloor\mathrm{t}^{\prime}\right\rceil ; \quad \mathbf{v}=\mathbf{B} \cdot \mathbf{v}^{\prime}
$$

Nearest-Plane Algorithm

There is a better algorithm (NearestPlane) based on Gram-Schmidt Orth. B ${ }^{\star}$ of a basis B:

Decoding radius with \mathbf{G}^{\star}

Decoding radius with \mathbf{B}^{\star}

- Worst-case distance: $\frac{1}{2} \sqrt{\sum\left\|\mathbf{b}_{i}^{\star}\right\|^{2}}$
(Approx-CVP)
- Correct decoding of $t=\mathbf{v}+\mathbf{e}$ where $\mathbf{v} \in \Lambda$ if
(BDD)

$$
\|\mathbf{e}\| \leq \min \left\|\mathbf{b}_{i}^{\star}\right\|
$$

Trapdoors from Lattices ?

With a good basis G one can solve Approx-CVP / BDD.
Given only a bad basis B, solving CVP is a hard problem.

Can this somehow be used as a trapdoor ?

Encryption from lattices (simplified)

Using the (second) decoding algorithm, one can recover \mathbf{v}, \mathbf{e} from $\mathbf{w}=\mathbf{v}+\mathbf{e}$ when

$$
\|\mathbf{e}\| \leq \min \left\|\mathbf{b}_{i}^{*}\right\|
$$

Fix a parameter η :

- Private key: good basis \mathbf{G} such that $\left\|\mathbf{g}_{i}^{*}\right\| \geq \eta$
- Public key: bad basis B such that $\left\|\mathbf{b}_{i}^{*}\right\| \ll \eta$
- Message : $\mathbf{m} \in \Lambda=\mathcal{L}(B)=\mathcal{L}(\mathbf{G})$
- Ciphertext : $\mathbf{c}=\mathbf{m}+\mathbf{e}$, for a random error $\mathbf{e},\|\mathbf{e}\| \leq \eta$

■ Decryption : $\left(\mathbf{m}^{\prime}, \mathbf{e}\right)=$ NearestPlane(c)

Encryption from lattices

Decryption: $\left(\mathbf{m}^{\prime}, \mathbf{e}\right)=\operatorname{decode}(\mathbf{c})$

- With the good basis $\mathbf{G}, \mathbf{m}^{\prime}=\mathbf{m}$

■ With the bad basis $\mathbf{B}, \mathbf{m}^{\prime} \neq \mathbf{m}$: decryption fails !

Signatures

Sign

- Hash the message to a random vector \mathbf{m}.
- apply NearestPlane with a good basis G: find $s \in L$ close to m.

Verify

- check that $s \in L$ using the bad basis B
- and that \mathbf{m} is close to s .

Correct signature (close)

Incorrect signature (far)

A statistical attack [NguReg06,DucNgu12]

The difference $\mathbf{s} \mathbf{- m}$ is always inside the parallelepiped spanned by the good basis G (or its GSO G${ }^{\star}$):

Each signatures (\mathbf{s}, \mathbf{m}) leaks a bit of information about \mathbf{G}. Learning a parallepiped from few signatures [Nguyen Regev 2006]:
\Rightarrow Total break of original GGH and NTRUSign schemes.

Gaussian sampling

Randomize the previous algorithms (Gaussian-sampling): the distribution $\mathbf{s}-\mathbf{m}$ can be made independent of \mathbf{G}

- [Klein 2000, Gentry Peikert Vaikuthanathan 2008]: Slow and memory heavy, even in the ring-setting (NTRU, Ring-LWE)
- [Peikert 2010]

Faster and less memory, but worse quality

- [D. Prest 15] (Fast Fourier Orthogonalization)

Fast and good quality for certain rings

Outline

1 The Geometric point of view

2 The SIS-LWE Framework

3 Encryption is easy

4 Signatures are tricky

Construction of q-ary lattice (Primal / Construction A)

Let q be a prime ${ }^{1}$ integer, and $n<m$ two positive integers. The matrix $\mathbf{A} \in \mathbb{Z}_{q}^{m \times n}$ spans the q-ary lattice:

$$
\begin{aligned}
\Lambda_{q}(\mathbf{A}) & :=\left\{\mathbf{x} \in \mathbb{Z}^{m} \mid \exists \mathbf{y} \in \mathbb{Z}_{q}^{n}, \mathbf{x} \equiv \mathbf{A} \mathbf{y} \bmod q\right\} \\
& =\mathbf{A} \cdot \mathbb{Z}_{q}^{n}+q \mathbb{Z}^{m}
\end{aligned}
$$

Lattice parameters

Assuming \mathbf{A} is full-rank:

- $\operatorname{dim}\left(\Lambda_{q}(\mathbf{A})\right)=m$
- $\operatorname{vol}\left(\Lambda_{q}(\mathbf{A})\right)=q^{m-n}$
${ }^{1}$ Not necessarly, but simpler.

Construction of q-ary lattice (Dual / Parity-Check)

Let q be a prime ${ }^{2}$ integer, and $n<m$ two positive integers. The matrix $\mathbf{A}^{t} \in \mathbb{Z}_{q}^{n \times m}$ is the parity-check of the lattice:

$$
\begin{aligned}
\Lambda_{q}^{\perp}\left(\mathbf{A}^{t}\right) & : \\
& =\left\{\mathbf{x} \in \mathbb{Z}^{m} \mid \mathbf{A}^{t} \mathbf{x} \equiv \mathbf{0} \bmod q\right\} \\
& =\operatorname{ker}\left(\mathbf{x} \mapsto \mathbf{A}^{t} \mathbf{x} \bmod q\right)
\end{aligned}
$$

Lattice parameters

Assuming \mathbf{A} is full-rank:

- $\operatorname{dim}(\mathbf{A})=m$
$-\operatorname{vol}(\mathbf{A})=q^{n}$
${ }^{2}$ Not necessarly, but simpler.

The Short Integer Solution Problem (SIS)

Definition (SIS assumption)

Given a random matrix \mathbf{A}
Finding a small non-zero $\mathbf{x} \in \mathbb{Z}_{q}^{n}$ such that $\mathbf{A x} \equiv \mathbf{0} \bmod q$ is hard.

The Short Integer Solution Problem (SIS)

Definition (SIS assumption)

Given a random matrix A
Finding a small non-zero $\mathbf{x} \in \mathbb{Z}_{q}^{n}$ such that $\mathbf{A x} \equiv \mathbf{0} \bmod q$ is hard.

Lattice formulation

Solving Approx-SVP in $\Lambda_{q}^{\perp}\left(\mathbf{A}^{t}\right)$ is hard.
Worst-case to average case connection due to [Ajtai 1998].

Simple application of SIS

Set $\mathcal{S}=\{0,1\}^{m}$ and consider the function:

$$
f_{\mathbf{A}}: \mathcal{S} \rightarrow \mathbb{Z}_{q}^{n}, \quad \mathbf{x} \mapsto \mathbf{A}^{t} \mathbf{x} \bmod q
$$

SIS \Rightarrow Collision Resistant Hashing and One-Way Function

- Finding collision ${ }^{3}$ is as hard as SIS

Moreover, if $m \gg n \log q$:

- f_{A} is highly surjective
- Finding pre-images is hard.
${ }^{3}$ Collision must exist whenever $m>n \log _{2} q$
Léo Ducas, CWI, Amsterdam, The Netherlands

The Learning With Error problem (LWE)

Let χ be a distribution of small errors $\ll q$.

Definition (Decisional LWE)

For $\mathbf{A} \leftarrow \mathbb{Z}_{q}^{m \times n}, \mathbf{s} \leftarrow \mathbb{Z}_{q}^{n}, \mathbf{e} \leftarrow \chi^{m}$, distinguishing ($\mathbf{A}, \mathbf{A s}+\mathbf{e}$) from uniform is hard.

Definition (Search LWE)

For $\mathbf{A} \leftarrow \mathbb{Z}_{q}^{m \times n}, \mathbf{s} \leftarrow \mathbb{Z}_{q}^{n}, \mathbf{e} \leftarrow \chi^{m}$, given $(\mathbf{A}, \mathbf{A s}+\mathbf{e})$, finding \mathbf{s} is hard.

Both problems are easily proved equivalent.

The Learning With Error problem (LWE)

Let χ be a distribution of small errors $\ll q$.

Definition (Decisional LWE)

For $\mathbf{A} \leftarrow \mathbb{Z}_{q}^{m \times n}, \mathbf{s} \leftarrow \mathbb{Z}_{q}^{n}, \mathbf{e} \leftarrow \chi^{m}$, distinguishing ($\mathbf{A}, \mathbf{A s}+\mathbf{e}$) from uniform is hard.

Definition (Search LWE)

For $\mathbf{A} \leftarrow \mathbb{Z}_{q}^{m \times n}, \mathbf{s} \leftarrow \mathbb{Z}_{q}^{n}, \mathbf{e} \leftarrow \chi^{m}$,
given $(\mathbf{A}, \mathbf{A s}+\mathbf{e})$, finding \mathbf{s} is hard.
Both problems are easily proved equivalent.

Lattice formulation

Solving BDD in $\Lambda_{q}(\mathbf{A})$ is hard.
Worst-case to average case connection due to [Regev 2005].

LWE as unique-SVP (The embedding technique)

Given $(\mathbf{A}, \mathbf{b}=\mathbf{A s}+\mathbf{e})$, consider

$$
\Lambda=\Lambda_{q}(\mathbf{A}, \mathbf{b})
$$

Then:

- $\mathbf{e} \in \Lambda$, and $\|\mathbf{e}\| \approx \sigma \sqrt{m}$
- one would expect $\lambda_{1}(\Lambda) \approx \sqrt{\frac{m}{2 \pi e}} \cdot q^{1-n / m}$

Alternative lattice formulation

Solving Unique-SVP in $\Lambda_{q}(\mathbf{A}, \mathbf{b})$ is hard.

Simple application of LWE

Set $\mathcal{S}=\{-\sigma, \ldots \sigma\}^{m}$ and consider the function:

$$
g_{\mathbf{A}}: \mathbb{Z}_{q}^{n} \times \mathcal{S} \rightarrow \mathbb{Z}_{q}^{m}, \quad(\mathbf{s}, \mathbf{e}) \mapsto \mathbf{A s}+\mathbf{e} \bmod q
$$

LWE \Rightarrow Secret-Key Encryption

Idea : Noisy one-time pad
■ $E n c_{\mathbf{s}}(m \in\{0,1\})=\left(\mathbf{a}, \mathbf{a}^{t} \mathbf{s}+e+\left\lfloor\frac{q}{2}\right\rceil m\right)$

- $\operatorname{Dec}_{\mathbf{s}}(\mathbf{a}, b)=\left\lfloor\frac{2}{q}\left(b-\mathbf{a}^{t} \mathbf{s}\right)\right\rfloor \bmod 2$

Outline

1 The Geometric point of view

2 The SIS-LWE Framework

3 Encryption is easy

4 Signatures are tricky

Encryption is easy

Idea:

■ Use one short lattice vector (rather than a full good basis B)

- This short vector is easy to hide: LWE as unique-SVP

Public Key Encryption, [Regev 2005]

$m \gg n \log q$.

- $S K=\mathbf{s} \in \mathbb{Z}_{q}^{m}$
- $P K=(\mathbf{A} ; \mathbf{b}=\mathbf{A s}+\mathbf{e}) \in \mathbb{Z}_{q}^{(n+1) \times m}$
$■ \operatorname{Enc}(m)=\left(\mathbf{t}^{t} \cdot \mathbf{A}, \mathbf{t}^{t} \cdot \mathbf{b}+\left\lfloor\frac{q}{2}\right\rceil m+e\right)$, where $\mathbf{t} \leftarrow\{0,1\}^{n+1}$
- $\operatorname{Dec}\left(\mathbf{x}^{t}, y\right)$ Compute

$$
d=y-\mathbf{x}^{t} \mathbf{s}=\mathbf{t}^{t} \mathbf{e}+e+\left\lfloor\frac{q}{2}\right\rceil m
$$

and return $m=\left\lfloor\frac{2}{q} d\right\rfloor \bmod 2$

Public Key Encryption, [Regev 2005]

$m \gg n \log q$.
■ $S K=\mathbf{s} \in \mathbb{Z}_{q}^{m}$

- $P K=(\mathbf{A} ; \mathbf{b}=\mathbf{A s}+\mathbf{e}) \in \mathbb{Z}_{q}^{(n+1) \times m}$
$■ \operatorname{Enc}(m)=\left(\mathbf{t}^{t} \cdot \mathbf{A}, \mathbf{t}^{t} \cdot \mathbf{b}+\left\lfloor\frac{q}{2}\right\rceil m+e\right)$, where $\mathbf{t} \leftarrow\{0,1\}^{n+1}$
- $\operatorname{Dec}\left(\mathbf{x}^{t}, y\right)$ Compute

$$
d=y-\mathbf{x}^{t} \mathbf{s}=\mathbf{t}^{t} \mathbf{e}+e+\left\lfloor\frac{q}{2}\right\rceil m
$$

and return $m=\left\lfloor\frac{2}{q} d\right\rfloor \bmod 2$

Proof sketch for CPA security

- Replace PK by uniform random (\mathbf{A}, \mathbf{b})
- Apply the left-over hash lemma on \mathbf{t} over (\mathbf{A}, \mathbf{b})
- $\operatorname{Enc}(m)$ is statistically close to uniform.

PKE / Approx. Key-Exchange [Lindner Peikert 2011]

Using a Systematic-Normal form, one can assume that $\mathbf{s} \leftarrow \chi^{n}$ is small as well. Take $m=n$.

- $P K=\mathbf{s} \in \mathbb{Z}_{q}^{n}$
- $S K=(\mathbf{A} ; \mathbf{b}=\mathbf{A s}+\mathbf{e}) \in \mathbb{Z}_{q}^{(n+1) \times n}$

■ $\operatorname{Enc}(m)=\left(\mathbf{A}^{t} \mathbf{s}^{\prime}+\mathbf{e}^{\prime}, \mathbf{b}^{t} \mathbf{s}^{\prime}+\mathbf{e}^{\prime}+e+\left\lfloor\frac{q}{2}\right\rceil m\right)$
■ $\operatorname{Dec}(\mathbf{x}, y)$: Compute

$$
d=y-\mathbf{x}^{t} \mathbf{s}=\mathbf{s}^{t} \mathbf{e}^{\prime}+\mathbf{s}^{\prime t} \mathbf{e}+e+\left\lfloor\frac{q}{2}\right\rceil m
$$

and return $m=\left\lfloor\frac{2}{q} d\right\rfloor \bmod 2$

PKE / Approx. Key-Exchange [Lindner Peikert 2011]

Using a Systematic-Normal form, one can assume that $\mathbf{s} \leftarrow \chi^{n}$ is small as well. Take $m=n$.

- $P K=\mathbf{s} \in \mathbb{Z}_{q}^{n}$
- $S K=(\mathbf{A} ; \mathbf{b}=\mathbf{A} \mathbf{s}+\mathbf{e}) \in \mathbb{Z}_{q}^{(n+1) \times n}$

■ $\operatorname{Enc}(m)=\left(\mathbf{A}^{t} \mathbf{s}^{\prime}+\mathbf{e}^{\prime}, \mathbf{b}^{t} \mathbf{s}^{\prime}+\mathbf{e}^{\prime}+e+\left\lfloor\frac{q}{2}\right\rceil m\right)$
■ $\operatorname{Dec}(\mathbf{x}, y)$: Compute

$$
d=y-\mathbf{x}^{t} \mathbf{s}=\mathbf{s}^{t} \mathbf{e}^{\prime}+\mathbf{s}^{\prime t} \mathbf{e}+e+\left\lfloor\frac{q}{2}\right\rceil m
$$

and return $m=\left\lfloor\frac{2}{q} d\right\rfloor \bmod 2$

Proof sketch for CPA security

- Replace PK by uniform random by LWE assumptuion

■ Replace $\operatorname{Enc}(m)$ by uniform random by LWE assumptuion

Can also be made an approximate key Exchange,

Chosen-Ciphertext Secure?

Are the above CCA-secure ?
NO!
It is Additively Homomorphic therefore can't be CCA2.
CCA1 attacks left as an exercise. ${ }^{4}$
Generic Transform to CCA security in the Random Oracle Model ?
${ }^{4}$ Toy with the error and see if Dec. fails

Chosen-Ciphertext Secure?

Are the above CCA-secure ?

NO!

It is Additively Homomorphic therefore can't be CCA2.
CCA1 attacks left as an exercise. ${ }^{4}$
Generic Transform to CCA security in the Random Oracle Model ?

Yes [Peikert 2013]

Correctness needs to hold with overwhelming probability.

[^0]
Chosen-Ciphertext Secure?

Are the above CCA-secure ?

NO!

It is Additively Homomorphic therefore can't be CCA2.
CCA1 attacks left as an exercise. ${ }^{4}$
Generic Transform to CCA security in the Random Oracle Model ?

Yes [Peikert 2013]

Correctness needs to hold with overwhelming probability.
And in the plain Model ?

Yes

But costly: requires Trapdoors (e.g [Micciancio Peikert 2012])
Open question: Cramer-Shoup for lattices ?
${ }^{4}$ Toy with the error and see if Dec. fails

Outline

1 The Geometric point of view

2 The SIS-LWE Framework

3 Encryption is easy

4 Signatures are tricky

Solution 1: Hash-Then-Sign

Sign

- Hash the message to a random vector m.
- apply GaussianSampling with a good basis G: find $s \in L$ close to m.

Verify

- check that $s \in L$ using the bad basis B

■ and that \mathbf{m} is close to s .

Ad-hoc construction of lattices with a good basis

Definition (The Matrix-NTRU assumption)

For two small matrices $\mathbf{F}, \mathbf{G} \leftarrow \chi^{n \times n}$, set $\mathbf{H}=\mathbf{F G}^{-1} \bmod q$.
Distinguishing \mathbf{H} from uniform is hard. ${ }^{5}$

[^1]
Ad-hoc construction of lattices with a good basis

Definition (The Matrix-NTRU assumption)

For two small matrices $\mathbf{F}, \mathbf{G} \leftarrow \chi^{n \times n}$, set $\mathbf{H}=\mathbf{F G}^{-1} \bmod q$.
Distinguishing \mathbf{H} from uniform is hard. ${ }^{5}$

Do not overstreched!

Can be much weaker than (Ring) LWE for large q. cf. Thursday : [A. Bai D. 2016, Kirchner Fouque 2016]

[^2]
Ad-hoc construction of lattices with a good basis

Definition (The Matrix-NTRU assumption)

For two small matrices $\mathbf{F}, \mathbf{G} \leftarrow \chi^{n \times n}$, set $\mathbf{H}=\mathbf{F G}^{-1} \bmod q$.
Distinguishing \mathbf{H} from uniform is hard. ${ }^{5}$

Do not overstreched!

Can be much weaker than (Ring) LWE for large q. cf. Thursday : [A. Bai D. 2016, Kirchner Fouque 2016]

■ (\mathbf{F}, \mathbf{G}) is a good partial basis of the lattice.

- It can be completed into a full good basis. optimal parameters studied in [D. Prest Lyubashevski 2013] ${ }^{6}$

[^3]
Provably secure construction of lattices with a good basis

SoA: [Micciancio Peikert 2012] "Simpler, Tighter, Faster, Smaller".

- Define a Gadget matrix $\mathbf{G}=\left[\mathbf{I}, 2 \mathbf{I}, 4 \mathbf{I}, \ldots 2^{k} \mathbf{I}\right]$
- Start from a truly random matrix \mathbf{A}
- Extend \mathbf{A} to $\mathbf{A}^{\prime}=[\mathbf{A} \mid \mathbf{R A}+\mathbf{G}]$ for a small matrix \mathbf{R}
$\square \mathbf{A}^{\prime}$ is statistically uniform (leftover hash lemma)
- \mathbf{R} provides a good basis of $\Lambda^{\perp}(\mathbf{A})$
+ Many extensions (tags, basis delegation)
+ Very convenient for advanced crypto
- Cumbersome for basic crypto

Good Gaussian Sampling in Practice ?

+ Leads to the most compact lattice signature schemes
+ Good asymptotic complexity FFO [D. Prest 2016]
- Requires Floating-Point Arithmetic

Good Gaussian Sampling in Practice ?

+ Leads to the most compact lattice signature schemes
+ Good asymptotic complexity FFO [D. Prest 2016]
- Requires Floating-Point Arithmetic

Not so studied in practice so far ...
Wide impact: signatures, homomorphic signatures, IBE, ABE, ...

Solution 2: Fiat-Shamir transform

Idea: [Lyubashevski, ..., BLISS, TESLA]

- Prove knowledge of a short vector without revealing it
+ No need for a full basis
+ Sampling potentially simpler
- Larger signatures.

Thanks!

Figure: A lattice and two puppies

[^0]: ${ }^{4}$ Toy with the error and see if Dec. fails

[^1]: ${ }^{5} \mathbf{H}$ is provably uniform for midly large F, G [Stehle Steinfeld 2012]
 ${ }^{6}$ IMHO: Precise parameter proposal not conservative enough

[^2]: ${ }^{5} \mathbf{H}$ is provably uniform for midly large F, G [Stehle Steinfeld 2012]
 ${ }^{6}$ IMHO: Precise parameter proposal not conservative enough

[^3]: ${ }^{5} \mathbf{H}$ is provably uniform for midly large F, G [Stehle Steinfeld 2012]
 ${ }^{6}$ IMHO: Precise parameter proposal not conservative enough

