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Abstract
In this paper we characterize the minimizers of integral functionals of the

form
F(v,Ω) =

∫
Ω

F (Dv(x)) dx,

where the integrands F are autonomous and suitably convex but not sub-
jected to any growth conditions from above and defined for mappings v : Ω ⊂
Rn → RN in the Sobolev class W1,1, satisfying a Dirichlet boundary condi-
tion. We establish, under a natural regularity assumption on the boundary da-
tum, that the minimizers of F are precisely the energy solutions to the Euler–
Lagrange system for F. More precisely it is shown that u is minimizing
precisely when F ′(Du) is integrable, row–wise solenoidal and F ′(Du) ·Du
is integrable. As an application, we also deduce a higher differentiability
result for the minimizers in a special case.

AMS Classifications. 49N15; 49N60; 49N99.

1 Introduction and Statement of Results

We consider convex variational integrals of the form

F(v,Ω) =

∫
Ω
F (Dv(x)) dx, (1.1)

that are defined for W1,1 Sobolev maps v : Ω ⊂ Rn → RN . The integrand
F : RN×n → R is continuous and convex, and Ω is an open subset of Rn and
we are mainly interested in the multi–dimensional vectorial case n, N ≥ 2.
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The integral in (1.1) is understood in the usual sense of Lebesgue integration. In
fact, as is well–known, for autonomous convex integrands F the pointwise def-
inition (1.1) coincides with Lebesgue–Serrin type definitions of F(v,Ω) also for
non–smooth maps v, and there is no instance of the Lavrentiev phenomenon to
complicate matters.
The precise meanings of minimizer and energy–extremal are important for us here
and we start by displaying their respective definitions. Let g ∈ W1,1(Ω,RN ) be
the boundary datum (further conditions on g will follow in due course).

Definition 1. A mapping u ∈ W1,1
g (Ω,RN ) is a minimizer if F (Du) ∈ L1(Ω) and∫

Ω
F (Du) ≤

∫
Ω
F (Dv)

for any v ∈ W1,1
g (Ω,RN ).

Definition 2. A mapping u ∈ W1,1
g (Ω,RN ) is an extremal if F ′(Du) ∈ L1(Ω) is

row–wise solenoidal, i.e. ∫
Ω
〈F ′(Du), Dϕ〉 = 0 ,

for any ϕ ∈ C∞
c (Ω,RN ). It is an energy–extremal if in addition F ′(Du) · Du ∈

L1(Ω).

In case the integrand F is a C1 function satisfying the so-called (p, q)-growth con-
ditions

|ξ|p ≤ F (x, ξ) ≤ C(1 + |ξ|q) 1 < p < q,

then a standard argument shows that minimality of a W1,p map u implies its ex-
tremality too provided the growth exponents are related by

p ≤ q < p+ 1. (1.2)

In fact, under the assumption (1.2) the field F ′(Du) is integrable, actually p/(q −
1)–integrable, and is row–wise solenoidal.
In [4] we were able to remove the growth assumption from above. In fact, we
showed that if F is a convex integrand, the minimality implies the extremality of a
W1,p

g map, just imposing a p–convexity condition

F (ξ)− c|ξ|p is convex

where c > 0 and p > 1, and a suitable regularity for the boundary datum.
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The aim of this paper is to extend the result of [4] (i.e. minimality implies the
extremality) to the case of integrands that satisfy a slightly weaker convexity as-
sumption and to show that minimizers are in fact energy–extremals. In turn this
is easily seen to be a characterization of minimality when, as here, the integral
functionals are convex. In order to state our result, we shall briefly introduce and
discuss our hypotheses.
Let φ : RN×n → [0,+∞) be a C1 convex and radial function, that is,

φ(ξ) = θ(|ξ|),

for a convex function θ : [0,+∞) → [0,+∞). Suppose that φ is strictly monotone,
in the sense that

〈φ′(ξ)− φ′(η), ξ − η〉 ≥ |ξ − η| (H0)

holds for all ξ, η ∈ RN×n.
Our main assumption on the integrand is that

ξ 7→ F (ξ)− θ(|ξ|) is convex. (H1)

Assumption (H1) is a uniform strong convexity condition for the function F . In
fact, since F is a C1 function, the assumption (H1) is easily seen to be equivalent
to the following standard strong monotonicity condition

〈F ′(ξ)− F ′(η), ξ − η〉 ≥ 〈φ′(ξ)− φ′(η), ξ − η〉 (H2)

for all ξ, η ∈ RN×n.
Note that the assumptions (H0) and (H1) are satisfied by a wide class of functionals,
from those with almost linear growth to the ones with exponential growth.
The assumption (H1) clearly entails the following growth condition from below

θ(|ξ|)/c− c ≤ F (ξ) (1.3)

for all ξ ∈ RN×n, and a suitable positive constant c. We remark that, in what
follows, the requirement that minimizers u must satisfy F (Du) ∈ L1(Ω) will be
crucial.
It is a routine matter to check that F(v,Ω) =

∫
Ω F (Dv) , under the assumptions

(H0) and (H1), is a lower semicontinuous and proper functional on W1,1(Ω,RN ).
Hence, for a given g ∈ W1,1(Ω,RN ) with F(g,Ω) < ∞, the existence and unique-
ness of a minimizer u in the Dirichlet class W1,1

g (Ω,RN ) is evident.
The main result of this paper is the following:
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Theorem 1. Let F : RN×n → R be a C1 function satisfying (H0)–(H1), and
let g ∈ W1,1(Ω,RN ) with F (2Dg) ∈ L1(Ω). Then the unique minimizer u in
W1,1

g (Ω,RN ) is characterized by

F ∗(F ′(Du)) ∈ L1(Ω), F ′(Du) ·Du ∈ L1(Ω) and

F ′(Du) is row–wise solenoidal,

where F ∗ denotes the polar of F .

As in our previous paper [4], the main idea in the proof of this theorem is to approx-
imate the integrand F by more regular ones and make substantial use of the dual
problems for the corresponding regularized problems. Namely we shall approxi-
mate F by strictly convex, uniformly elliptic and Lipschitz continuous functions
Fk, whose minimizers uk strongly converge to the minimizer u in W1,1. To ev-
ery minimizer uk of such more regular problems, according to the duality theory
of Ekeland and Temam, we can associate a row-wise solenoidal matrix field de-
noted by σk. For the pair (Duk, σk) we shall establish suitable estimates, that are
preserved in passing to the limit (compare with [4] and also [5], [6] for a related
approach in the case of degenerate convex problems of standard growth).
The study of the regularity properties of minimizers of integral functionals at (1.1)
often comes through their extremality. In particular we recall that the case of in-
tegrands F with (p, q) growth conditions has been widely investigated in the lit-
erature. From very early on it has been clear that little regularity can be expected
if the coercitivity and growth exponents, denoted p and q, respectively, are too far
apart (see [14, 10]). On the other hand, many regularity results are available if the
ratio q/p is bounded above by a suitable constant depending on the dimension n,
and converging to 1 when n tends to infinity (incl. [1, 2, 3, 8, 9, 16, 18]). Note that
here we do not impose any growth condition from above and we only suppose a
very weak condition from below. Nevertheless, having at our disposal Theorem 1,
we are able to establish the following higher differentiability result, in the scale of
Besov spaces, for functionals depending on the modulus of the gradient.

Theorem 2. Let F : RN×n → R be a C1 function and assume (H0)–(H1). Suppose
moreover that there exists a Young function Φ such that

F (ξ) = Φ(|ξ|), (1.4)

for every ξ ∈ RN×n. For g ∈ W1,1(Ω,RN ) with F (2Dg) ∈ L1(Ω), let u ∈
W1,1

g (Ω,RN ) denote the unique minimizer. We then have that

Du ∈ Bα,2
∞ locally ,

for every α ∈ (0, 1/2).
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2 Preliminaries

In this paper we follow the usual convention and denote by c a general constant that
may vary on different occasions, even within the same line of estimates. Relevant
dependencies on parameters and special constants will be suitably emphasized us-
ing parentheses or subscripts. All the norms we use on Rn, RN and RN×n will be
the standard euclidean ones and denoted by | · | in all cases. In particular, for ma-
trices ξ, η ∈ RN×n we write 〈ξ, η〉 := trace(ξT η) for the usual inner product of ξ
and η, and |ξ| := 〈ξ, ξ〉

1
2 for the corresponding euclidean norm. When a ∈ RN and

b ∈ Rn we write a⊗b ∈ RN×n for the tensor product defined as the matrix that has
the element arbs in its r-th row and s-th column. Observe that (a⊗ b)x = (b · x)a
for x ∈ Rn, and |a⊗ b| = |a||b|.
For a C1 function F : RN×n → R we shall write

F ′(ξ)[η] :=
d
dt

∣∣∣
t=0

F (ξ + tη)

for ξ, η ∈ RN×n. Hereby we think of F ′(ξ) both as an N × n matrix and as
the corresponding linear form on RN×n, though |F ′(ξ)| will always denote the
euclidean norm of the matrix F ′(ξ).
We shall require some further elementary notions from convex analysis, all of
which are discussed in the scalar case N = 1 in [7]. However, as we shall briefly
recall below, the relevant parts easily extend to the vectorial case N > 1 too. Given
F : RN×n → R, its polar (or Fenchel conjugate) integrand is defined by

F ∗(ζ) := sup
ξ∈RN×n

(〈ζ, ξ〉 − F (ξ)) , ζ ∈ RN×n, (2.1)

which is convex. One can check that the bipolar integrand F ∗∗ := (F ∗)∗ equals F
at ξ if and only if F is lower semicontinuous and convex at ξ, and more generally,
that it is the convex envelope of F . In particular, F ∗∗ = F precisely when F is
convex and lower semicontinuous (the latter being a consequence of the former
when, as here, F is real–valued).
The definition of polar integrand means that we have the Young–type inequality

〈ζ, ξ〉 ≤ F ∗(ζ) + F ∗∗(ξ), (2.2)

for all ζ, ξ ∈ RN×n. Notice that for a given ξ we have equality in (2.2) precisely
for ζ ∈ ∂F ∗∗(ξ), the subgradient for F ∗∗ at ξ. Furthermore, we record that F is
strictly convex precisely when F ∗ is C1, and that in this case we also have

(F ∗)′(F ′(ξ)) = ξ, (2.3)
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for all ξ ∈ RN×n.
In order to establish the higher differentiability result for the minimizers, we shall
use the difference quotient method. To this aim, we recall the following

Definition 3. For every vector valued function w : Rn → RN the finite difference
operator is defined by

τs,hw(x) = w(x+ hes)− w(x)

where h ∈ R, es is the unit vector in the xs direction and s ∈ {1, . . . , n}.
The difference quotient is defined for h ∈ R \ {0} as

∆s,hw(x) =
τs,hw(x)

h
.

The following proposition describes some elementary properties of the finite dif-
ference operator and can be found, for example, in [11].

Proposition 1. Let f and g be two functions such that f, g ∈ W1,p(Ω), with p ≥ 1,
and let us consider the set

Ω|h| := {x ∈ Ω : dist(x, ∂Ω) > |h|} .

Then

(d1) τs,hf ∈ W1,p(Ω) and

Di(τs,hf) = τs,h(Dif).

(d2) If at least one of the functions f or g has support contained in Ω|h| then∫
Ω
f τs,hg dx = −

∫
Ω
g τs,−hf dx.

(d3) We have

τs,h(fg)(x) = f(x+ hes)τs,hg(x) + g(x)τs,hf(x).

We also recall fundamental embedding properties for fractional Sobolev spaces
(for the proof see, for example, [19]).
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Lemma 1. If w : Rn → RN , w ∈ Lp(BR) with 1 < p < n and for some ρ ∈
(0, R), β ∈ (0, 1], M > 0,

n∑
s=1

∫
Bρ

|τs,hw(x)|p dx ≤ Mp|h|pβ (2.4)

for every h with |h| < R−ρ
2 , then w ∈ Wk,p(Bρ;RN ) ∩ L

np
n−kp (Bρ;RN ) for every

k ∈ (0, β) and
‖w‖

L
np

n−kp (Bρ)
≤ c

(
M + ‖w‖Lp(BR)

)
,

with c ≡ c(n,N,R, ρ, β, k).

The assumption (2.4) in previous Lemma can be given equivalently by using the
notion of Besov space. Therefore, we recall the following

Definition 4. Let A ⊂ Rn be an open set, k ∈ N, α ∈ (0, 1) and q ∈ [1,∞). For a
mapping w ∈ Lq

loc(A,R
k) we say that w is locally in Bα,q

∞ on A provided for each
ball B b A there exist d ∈ (0,dist(B, ∂A)), M > 0 such that∫

B
|τs,hw(x)|q dx ≤ M |h|αq

for every s ∈ {1, . . . , n} and h ∈ R satisfying |h| ≤ d.

The embedding properties of Besov spaces, that are a reformulation of Lemma 1,
are contained in the following

Theorem 3. On any domain Ω ⊂ Rn we have the continuous embeddings:

(i) Bα,q
∞ ↪→ Lr

loc for all r < nq
n−αq provided α ∈ (0, 1), q > 1 and αq < n;

(ii) W1,p
loc ↪→ Bα,q

∞ provided α = 1− n(1p − 1
q ), where 1 < p ≤ q < ∞.

We refer to sections 30–32 in [19] for a proof of this theorem. In fact, the above
statements follow by localizing the corresponding results proved for functions de-
fined on Rn in [19], by simply using a smooth cut–off function.
To simplify the notations, we shall use the following auxiliary function defined for
ξ ∈ Rk

V (ξ) = (1 + |ξ|2)
β−2
4 ξ,

for any exponent β ≥ 1. Next result, proved in [1] ( Lemma 2.2), describes one of
the fundamental properties of the function V .
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Lemma 2. For every γ ∈ (−1/2, 0) and µ ≥ 0 we have

(2γ + 1)|ξ − η| ≤ |(µ2 + |ξ|2)γξ − (µ2 + |η|2)γη|
(µ2 + |ξ|2 + |η|2)γ

≤ c(k)

2γ + 1
|ξ − η|

for every ξ, η ∈ Rk.

3 Proof of Theorem 1

This section is devoted to the proof of our main result. We start by construct-
ing a class of auxiliary problems whose solutions uk, on the one hand approxi-
mate the minimizer u, and on the other can be dealt with by standard means. To
those solutions we associate row–wise solenoidal matrix fields σk and, for the pairs
(Duk, σk) we shall establish suitable estimates. Finally we show that these esti-
mates are preserved in passing to the limit.

Proof of Theorem 1. Recall that the polar of F ,

F ∗(z) := sup
ξ∈RN×n

(
〈ξ, z〉 − F (ξ)

)
is a real–valued convex function.
For each k > 0 define

F
∗∗
k (ξ) := max

|z|≤k
(〈ξ, z〉 − F ∗(z)) .

which is a real–valued convex, globally k–Lipschitz function. Since F is lower
semicontinuous and convex, we have that

F
∗∗
k (ξ) ↗ F ∗∗(ξ) = F (ξ) as k ↗ ∞, (3.1)

pointwise in ξ ∈ RN×n.
Define

F̃k(ξ) := max
{
F

∗∗
k (ξ), θ(|ξ|) − c

}
,

where θ(t) is the function appearing in assumption (H1). In view of (3.1), we still
have that F̃k(ξ) ↗ F (ξ) as k ↗ ∞. Since F

∗∗
k is k–Lipschitz, there exist numbers

rk > 0 such that rk ↗ ∞ as k ↗ ∞ and

F̃k(ξ) = θ(|ξ|) − c,
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for |ξ| ≥ rk − 1. Define

Hk(ξ) :=

{
F̃k(ξ) when |ξ| ≤ rk
θ(rk)
rk

|ξ| − c when |ξ| > rk.

It is not hard to check that Hk is convex and globally mk–Lipschitz, we may take
any mk ≥ θ(rk)

rk
. Moreover,

Hk(ξ) ↗ F ∗∗(ξ) = F (ξ) as k ↗ ∞, (3.2)

pointwise in ξ ∈ RN×n. Next we regularize Hk by the use of the following stan-
dard radially symmetric and smooth convolution kernel

Φ(ξ) :=

{
c exp

(
1

|ξ|2−1

)
for |ξ| < 1

0 for |ξ| ≥ 1,

where the constant c = c(n,N) is chosen such that
∫
RN×nΦ = 1. For each ε > 0

we put Φε(ξ) := ε−nNΦ(ε−1ξ). It is routine to check that the mollified function
Φε ∗ Hk (as usual defined by convolution) is convex and C∞, and, since Hk is
convex and mk–Lipschitz, also

Hk(ξ) ≤ (Φε ∗Hk)(ξ) ≤ Hk(ξ) +mkε (3.3)

holds for all ξ ∈ RN×n. For integers k > 1 and sequences (δk), (µk) ⊂ (0,∞)
(specified at (3.5) below), define

Fk(ξ) := (Φδk ∗Hk)(ξ)− µk. (3.4)

Then we have for all ξ ∈ RN×n and k > 1:

Fk(ξ) ≤ Hk(ξ) +mkδk − µk

≤ Hk+1(ξ) +mkδk − µk

≤ (Φδk+1
∗Hk+1)(ξ) +mkδk − µk

= Fk+1(ξ) + µk+1 +mkδk − µk.

≤ Fk+1(ξ)

by taking

δk :=
1

k2mk
and µk :=

1

k − 1
. (3.5)

Hence, we have that Fk(ξ) ↗ F (ξ) as k ↗ ∞ pointwise in ξ. It follows in
particular from Dini’s Lemma that the convergence is locally uniform in ξ. We
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record that Fk is C1 on RN×n, C∞ on RN×n \ {0}. Next we check that also
F ′
k(ξ) → F ′(ξ) locally uniformly in ξ as k → ∞. To that end assume that ξk →

ξ and consider (F ′
k(ξk)). Because difference–quotients of convex functions are

increasing in the increment, we have for all η ∈ RN×n and 0 < |t| ≤ 1:

∣∣〈F ′
k(ξk)− F ′(ξ), η〉

∣∣ ≤
∣∣∣∣Fk(ξk + tη)− Fk(ξk)− 〈F ′(ξ), tη〉

t

∣∣∣∣
≤

∣∣Fk(ξk + η)− Fk(ξk)− 〈F ′(ξ), η〉
∣∣ .

Consequently, we get

lim sup
k→∞

∣∣〈F ′
k(ξk)− F ′(ξ), η〉

∣∣ ≤ ∣∣F (ξ + η)− F (ξ)− 〈F ′(ξ), η〉
∣∣ ,

for all η ∈ RN×n. Hence, for all 0 < s ≤ 1, we have that

lim sup
k→∞

|〈F ′
k(ξk)− F ′(ξ), sη〉|

s
≤ |F (ξ + sη)− F (ξ)− 〈F ′(ξ), sη〉|

s
,

that is

lim sup
k→∞

∣∣〈F ′
k(ξk)− F ′(ξ), η〉

∣∣ ≤ ∣∣∣∣F (ξ + sη)− F (ξ)

s
− 〈F ′(ξ), η〉

∣∣∣∣ .
Since F is differentiable at ξ, we conclude that the left–hand side must vanish, as
s tends to 0. This proves the asserted local uniform convergence of derivatives.

Let uk ∈ W1,1
g (Ω,RN ) denote the unique Fk–minimizer, and recall from above

that setting σk := F ′
k(Duk) we have that F ∗

k (σk) ∈ L1(Ω,RN×n) is a solution to
the dual problem that consists in maximizing the functional∫

Ω
(〈σ,Dg〉 − F ∗

k (σ)) ,

over row–wise solenoidal matrix fields σ such that F ∗
k (σ) ∈ L1(Ω,RN×n), where

F ∗
k denotes the polar of Fk. It is not difficult to check that F ∗

k (ζ) ↘ F ∗(ζ) as
k ↗ ∞, pointwise in ζ. Furthermore, we record the extremality relation

〈σk, Duk〉 = F ∗
k (σk) + Fk(Duk) a.e. on Ω (3.6)

that holds for all k > 1. Since F ∗
k (σk) ∈ L1(Ω,RN×n), F (Dg) ∈ L1(Ω), σk is

row–wise solenoidal and uk − g ∈ W1,1
0 (Ω,RN ), we have that∫

Ω
〈σk, Duk〉 =

∫
Ω
〈σk, Dg〉. (3.7)
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Our next goal is to show that uk → u strongly in W1,1(Ω,RN ). To that end, we
start by observing that by the definition of Fk at (3.4), the right inequality in (3.3)
and the definition of Hk, we have

Fk(ξ) ≥ θ(|ξ|)− c− µk ≥ θ(|ξ|)− (c+ 1),

with the choice of µk given by (3.5). Therefore, since Fk ↗ F , we have that∫
Ω
(θ(|Duk|)− c̃) ≤

∫
Ω
Fk(Duk) ≤

∫
Ω
F (Dg) < ∞.

Hence Duk are equi–integrable and by the De La Vallée–Poussin and Dunford–
Pettis Theorems there exists a not relabeled subsequence (uk) that converges weakly
to some v in W1,1(Ω,RN ). By Mazur’s Lemma, we get that v ∈ W1,1

g (Ω,RN )
and, for each k > 1, that

lim inf
j→∞

∫
Ω
Fk(Duj) ≥

∫
Ω
Fk(Dv). (3.8)

Since Fk ↗ F , by monotone convergence Theorem, the minimality of u and (3.8)
we find that

lim inf
k→∞

∫
Ω
Fk(Duk) ≥

∫
Ω
F (Dv) ≥

∫
Ω
F (Du). (3.9)

Using first that uk is Fk–minimizing and then the monotone convergence Theorem,
yield

lim sup
k→∞

∫
Ω
Fk(Duk) ≤ lim sup

k→∞

∫
Ω
Fk(Du) =

∫
Ω
F (Du),

and by comparing this with the inequality (3.9), we deduce that∫
Ω
Fk(Duk) →

∫
Ω
F (Du) =

∫
Ω
F (Dv). (3.10)

By the uniqueness of F–minimizers, the equality in (3.10) implies that v = u. To
deduce that the convergence is actually strong we use the uniform convexity of the
Fk, i.e. we use that Fk − θ(| · |) is convex for all k > 1, where θ is the function
appearing in assumption (H1). As Fk is C1 and by virtue of (H0) and (H2), we
have that there exists a constant c > 0 such that

c

∫
Ω
|Du−Duk| ≤

∫
Ω

(
Fk(Du)− Fk(Duk)− 〈F ′

k(Duk), D(u− uk)〉
)

=

∫
Ω
(Fk(Du)− Fk(Duk)) → 0,
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as k → ∞. It follows that Duk → Du in measure on Ω and since |Duk| is equi–
integrable on Ω, by Vitali’s convergence theorem, also that Duk → Du strongly
in L1. Since uk − u ∈ W1,1

0 (Ω,RN ) we have shown that the (relabelled) subse-
quence (uk) converges strongly to u in W1,1(Ω,RN ). By the uniqueness of limit
we conclude by a standard argument that the full sequence (uk) converges strongly
in W1,1 to u. It follows in particular that σk = F ′

k(Duk) → F ′(Du) in measure on
Ω, and so passing to the limit in (3.6) we recover the pointwise extremality relation

〈σ∗, Du〉 = F ∗(σ∗) + F (Du) a.e. on Ω, (3.11)

with

σ∗ := F ′(Du).

Now, using (3.6) and (3.7) and Young’s inequality, we have that∫
Ω
F ∗
k (σk) =

∫
Ω
〈σk, Duk〉 −

∫
Ω
Fk(Duk)

=

∫
Ω
〈σk, Dg〉 −

∫
Ω
Fk(Duk)

6 1

2

∫
Ω
F ∗
k (σk) +

∫
Ω
F (2Dg) +

∫
Ω
Fk(Duk) (3.12)

where we also used the convexity of F ∗
k , the fact that Fk(ξ) ≤ F (ξ), for all ξ ∈

RN×n and the Young’s inequality. Reabsorbing the first integral in the right hand
side by the left hand side we get for all k > 1∫

Ω
F ∗
k (σk) ≤ 2

∫
Ω
F (2Dg) + 2

∫
Ω
Fk(Duk)

Since F (2Dg) ∈ L1(Ω) and by virtue of (3.10), from previous relation it follows∫
Ω
F ∗(F ′(Du)) ≤ lim inf

k→∞

∫
Ω
F ∗
k (σk)

≤ c

∫
Ω
F (Du) + c

∫
Ω
F (2Dg), (3.13)

where we used Fatou’s lemma.
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4 Higher differentiability

This section is devoted to the proof of the higher differentiability result stated in
Theorem 2. We apply the difference quotient method to the minimizers of the aux-
iliary problems constructed in the proof of Theorem 1 to deduce that they belong
to a suitable Besov space . Then we conclude by passing to the limit.

Proof of Theorem 2. Define the integrands Fk and corresponding Fk–minimizers
uk of class W1,p

g (Ω,RN ) as in the proof of Theorem 1 (see in particular (3.4)).
We have shown there that uk → u strongly in W1,1 and that σk := F ′

k(Duk) →
F ′(Du) in measure on Ω. Fix B3R = B(x0, 3R) ⊂ Ω, an integer 1 ≤ s ≤ n, a
cut off function η ∈ C∞

0 (B2R), η = 1 on BR and an increment 0 6= h ∈ (−R,R).
Since F ′(Duk) is row-wise solenoidal, it follows that∫

B2R

〈τs,hF ′
k(Duk), D(ητs,huk)〉 = 0 (4.1)

and therefore∫
B2R

〈τs,hF ′
k(Duk), τs,hDuk〉η = −

∫
B2R

〈τs,hF ′
k(Duk), τs,huk ⊗Dη〉

≤
∫
B2R

∣∣〈τs,hF ′
k(Duk), τs,huk ⊗Dη〉

∣∣ . (4.2)

Since Fk is C1, by virtue of (H0) and (H2), we have〈
F ′
k(ξ1)− F ′

k(ξ2), ξ1 − ξ2

〉
≥

〈
θ′(|ξ1|)

ξ1
|ξ1|

− θ′(|ξ2|)
ξ2
|ξ2|

, ξ1 − ξ2

〉
≥ |ξ1 − ξ2| ≥ c

|ξ1 − ξ2|2

(1 + |ξ1|2 + |ξ2|2)
1
2

(4.3)

Estimate (4.3) yields that the left hand side of (4.2) can be controlled from below
as follows∫

B2R

〈τs,hF ′
k(Duk), τs,hDuk〉η ≥ c

∫
BR

|τs,h(Duk)|2

(1 + |Du(x+ hes)|2 + |Du(x)|2)
1
2

.

(4.4)
Therefore, combining (4.2) and (4.4), we get∫

BR

|τs,h(Duk)|2

(1 + |Du(x+ hes)|2 + |Du(x)|2)
1
2

≤
∫
B2R

∣∣∣〈τs,hF ′
k(Duk), τs,huk ⊗Dη〉

∣∣∣.
13



By Lemma 2, applied with γ = −1
4 , we deduce that∫

BR

|τs,hV (Duk)|2 ≤ c

∫
B2R

∣∣〈τs,hF ′
k(Duk), τs,huk ⊗Dη〉

∣∣
≤ c|h|

∫
B2R

|〈∆s,hF
′
k(Duk),∆s,huk ⊗Dη〉|

≤ c|h|
∫
B2R

|〈F ′
k(Duk(x+ hes)),∆s,huk ⊗Dη〉|

+c|h|
∫
B2R

|〈F ′
k(Duk(x)),∆s,huk ⊗Dη〉|

≤ c|h|
∫
B2R

F ∗
k (F

′
k(Duk(x+ hes))) + F ∗

k (F
′
k(Duk(x)))

+c|h|
∫
B2R

Fk (∆s,huk ⊗Dη) . (4.5)

In order to estimate last integral in (4.5), recalling that Fk ↗ F as k → ∞, we can
use the structure assumption (1.4) thus obtaining∫

BR

|τs,hV (Duk)|2

≤ |h|
∫
B2R

F ∗
k (F

′
k(Duk(x+ hes))) + F ∗

k (F
′
k(Duk(x)))

+c|h|
∫
B2R

Φ(|∆s,huk||Dη|)

≤ |h|
∫
B2R

F ∗
k (F

′
k(Duk(x+ hes))) + F ∗

k (F
′
k(Duk(x)))

+c(R)|h|
∫
B2R

Φ(|∆s,huk|) , (4.6)

where we also used the monotonicity of the Young function Φ. Now, by the con-
vexity of Φ and Jensen’s inequality it follows that∫

B2R

Φ(|∆s,huk|) dx =

∫
B2R

Φ

(∣∣∣ ∫ 1

0

d

ds
u(x+ thes) dt

∣∣∣) dx

≤
∫
B2R

∫ 1

0
Φ

(∣∣∣ d
ds

u(x+ thes)
∣∣∣) dt dx

≤
∫
B3R

Φ (|Dsu|) dx ≤
∫
Ω
F (Du). (4.7)
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Moreover, by a simple change of variable and by virtue of the estimate (3.13), we
have that∫

B2R

F ∗
k (F

′
k(Duk(x+ hes))) ≤

∫
B3R

F ∗
k (F

′
k(Duk(x)))

≤ 2

∫
Ω
F (2Dg) + c

∫
Ω
F (Du) (4.8)

Inserting (4.7) and (4.8) in (4.6), we get∫
BR

|τs,hV (Duk)|2 ≤ c|h|
(∫

Ω
F (2Dg) + c

∫
Ω
F (Du)

)
(4.9)

Therefore, by Fatou’s Lemma, taking the limit as k → ∞, we have for every
s ∈ {1, . . . , n}∫

BR

|τs,hV (Du)|2 ≤ c|h|
(∫

Ω
F (2Dg) + c

∫
Ω
F (Du)

)
From previous inequality, by virtue of Lemma 1, we obtain that V (Du) ∈ Wϑ,2

loc (Ω)

for every ϑ ∈ (0, 12) and V (Du) ∈ L
2n

n−α

loc (Ω) for every α < 1. This concludes the
proof.

Let us finally note that the structure assumption that the integrand be radial is
needed only to control last integral in (4.5), which is of the form

Fk(∆s,huk⊗Dη)=Fk

(
∆s,hu

1
kD1η,. . . ,∆s,hu

1
kDnη,. . . ,∆s,hu

N
k D1η,. . . ,∆s,hu

N
k Dnη

)
While it is possible that this can be controlled with a milder structure condition, we
decided to use it anyway in order to simplify the presentation.

Acknowledgments Parts of the research were done while MC and APdN were vis-
iting the Oxford Centre for Nonlinear PDE, and while JK was visiting Dept. Maths.
‘R. Caccioppoli’ in Napoli. We wish to thank both institutions for financial support
and hospitality. The work was supported by the EPSRC Science and Innovation
award to the Oxford Centre for Nonlinear PDE (EP/E035027/1).

References

[1] E. Acerbi and N. Fusco. Partial regularity under anisotropic (p, q) growth
conditions. J. Diff. Eq. 107 (1994), 46–67.

15



[2] M. Bildhauer. Convex variational problems. Linear, nearly linear and
anisotropic growth conditions. Lecture Notes in Mathematics, 1818.
Springer-Verlag, Berlin, 2003.

[3] M. Carozza, J. Kristensen and A. Passarelli di Napoli. Higher differentiabil-
ity of minimizers of convex variational integrals. Ann. Inst. Henri Poincaré,
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