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ON MULTIPLE FREQUENCY POWER DENSITY
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GIOVANNI S. ALBERTI

Abstract. We shall give a priori conditions on the illuminations ϕi such that
the solutions to the Helmholtz equation{

−div(a∇ui)− k q ui = 0 in Ω,
ui = ϕi on ∂Ω,

and their gradients satisfy certain non-zero and linear independence proper-
ties inside the domain Ω, provided that a finite number of frequencies k are
chosen in a fixed range. These conditions are independent of the coefficients,
in contrast to the illuminations classically constructed by means of complex
geometric optics solutions. This theory finds applications in several hybrid
problems, where unknown parameters have to be imaged from internal power
density measurements. As an example, we discuss the microwave imaging
by ultrasound deformation technique, for which we prove new reconstruction
formulae.

1. Introduction

Let d = 2 or d = 3 be the dimension of the ambient space, Ω ⊆ Rd be a smooth
bounded domain and consider the Helmholtz equation

(1)
{
−div(a∇uϕk )− k q uϕk = 0 in Ω,
uϕk = ϕ on ∂Ω,

where a is a real and symmetric tensor satisfying the ellipticity condition and q >
0. Let Kmin < Kmax be the bounds for the possible values of k and set Kad =
[Kmin,Kmax]. Problem (1) is well-posed provided that k /∈ Σ, the set of the Dirichlet
eigenvalues.

We want to find suitable illuminations ϕi such that the corresponding solutions
to (1) and their gradients satisfy certain non-zero properties inside the domain, e.g.

(2) |uϕ1

k (x)| > 0, |∇uϕ2

k (x)| > 0,

and certain linear independence properties, e.g.

(3) det
[
∇uϕ2

k · · · ∇uϕd+1

k

]
(x) > 0, det

[
uϕ1

k · · · u
ϕd+1

k

∇uϕ1

k · · · ∇uϕd+1

k

]
(x) > 0.

The classical way to tackle this problem is by means of the so called complex
geometric optics solutions [24, 10]. These are particular high oscillatory solutions of
the Helmholtz equation and can be used to determine suitable illuminations [9, 8].
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However, they can only be constructed when the parameters are sufficiently smooth.
Furthermore, and most importantly, their construction depends on the coefficients
a and q. Thus, this cannot be considered a completely satisfactory answer to this
issue: in inverse problems these are usually unknown.

The main contribution of this work is a very different approach to this problem
by means of a multi-frequency approach. We shall give a priori, i.e. independent of
a and q, conditions on the illuminations whose corresponding solutions satisfy the
required properties, provided a finite number of frequencies are used in the range
Kad. For example, we shall show that if Ω is convex then the choice {1, x1, x2}
is sufficient in two dimensions, and the same is true for {1, x1, x2, x3} in three
dimensions, provided that a is close to a constant. The main idea behind this
method is simple: if the illuminations are suitably chosen then the zero level sets of
functionals depending on uϕk and ∇uϕk move when the frequency changes. Consider
as a test case the requirement |uϕk (x)| > 0. It is much easier to study the k = 0
case, that is easily achieved by Maximum Principle provided that ϕ > 0. Then by
using the analyticity of the map k 7→ uϕk we shall show that the required property
transfers to any range of frequencies: it is enough to choose a finite number of
k in [Kmin,Kmax]. Note that an infinite number of frequencies and analyticity
properties have been used in similar contexts [1, 13], but here only a finite number
of k is needed. Simplified versions of the main results can be found in Subsection
2.1.

The theory presented in this paper finds its applications in several hybrid imaging
techniques. By combining measurements coming from two different modalities it is
possible to obtain high-resolution and high-contrast images. The reader is referred
to the recent works by Bal [8] and Kuchment [21] for a review of the state of the
art in hybrid techniques. Generally, a hybrid problem involves two steps. First,
internal energies are measured inside the domain and, second, from their knowledge
the unknown parameters have to be reconstructed.

Many hybrid problems are governed by the Helmholtz equation (1) or by one of
its variants (complex coefficients, different type of boundary conditions, for which
a multi-frequency approach can be carried out in the same way), e.g. microwave
imaging by ultrasound deformation [25, 4], thermo-acoustic imaging [10, 6], tran-
sient elastography and magnetic resonance elastography [12]. The internal energies
are always linear or quadratic functionals of uϕk and of ∇uϕk and the parameters a
and q have to be imaged. From the reconstruction procedures discussed in these
papers, it turns out that some or all the conditions (2) and (3) are necessary. Thus,
being able to determine suitable illuminations independently of the unknown pa-
rameters is fundamental, and these can be given by the multi-frequency approach
developed here.

As an example, we apply the theory to one of these hybrid problems, microwave
imaging by ultrasound deformation, which was introduced in [4]. The internal
energies have the form

E = a |∇uϕk |
2
, e = q (uϕk )

2
,

and the electromagnetic parameters a and q have to be reconstructed. We provide
reconstruction formulae for a/q and q, which are applicable if (2) and a weaker
version of (3) are satisfied for a suitable set of illuminations and a finite number of
frequencies in the microwave regime.
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We believe that the multi-frequency approach developed in this work can be used
in other contexts where conditions similar to (2) and (3) naturally arise [12]. In
many situations one looks for solutions of the Helmholtz equation satisfying certain
properties: complex geometric optics is the only tool that has been used so far [8]
and presents the difficulties described above.

This paper is organized as follows. In Section 2 we precisely describe the set-
ting and state the main theoretical results. Then, we apply these to a particular
hybrid problem and provide reconstruction formulae. In Section 3 we consider the
mathematical aspects of the Helmholtz equation with complex k: we review well-
posedness and regularity results and show the analyticity of the map k 7→ uϕk . In
Section 4 the multi-frequency approach is discussed and used to prove the main
theorems. Section 5 is devoted to the study of the example and to the proof of the
reconstruction formulae.

Let us clarify some notation. The space of infinitely differentiable functions
compactly supported in Ω will be denoted by D(Ω). We use the classical notation
for function spaces and, unless otherwise stated, we always consider real-valued
function spaces. Whenever complex-valued functions have to be taken, we add the
letter C, as for instance inH1(Ω;C). Let γ denote the trace operator fromH1(Ω;C)
to H1/2(Ω;C). In a Hilbert space H, the scalar product will be denoted by ( , )H .
We shall use the notation θu,v for the angle between two non-zero vectors u, v in
a Hilbert space, i.e. θu,v = arccos (u,v)

‖u‖‖v‖ .We write B(x, r) for the ball centered in
x ∈ Rd of radius r > 0.

2. Main Results

Let d = 2 or 3 be the dimension of the ambient space, Ω′ ⊆ Ω ⊆ Rd be two C1,α

bounded domains for some α ∈ (0, 1). Let a be a real, symmetric tensor satisfying
the ellipticity condition

(4) λ |ξ|2 ≤ ξ · aξ ≤ Λ |ξ|2 , ξ ∈ Rd,

for some λ,Λ > 0. We also suppose that a is of class C0,α(Ω;Rd×d). Let q ∈ L∞(Ω)
satisfy

(5) β1 ≤ q ≤ β2 almost everywhere in Ω,

for some β1, β2 > 0. Let Σ denote the set of the Dirichlet eigenvalues of the problem

(1)
{
−div(a∇uϕk )− k q uϕk = 0 in Ω,
uϕk = ϕ on ∂Ω,

which is a countable set of positive numbers going to infinity. For any k ∈ C \ Σ
problem (1) is well-posed and uϕk ∈ C1(Ω;C) (see Section 3). Let Kmin < Kmax be
the bounds for the possible wavenumbers k and denote Kad = [Kmin,Kmax]. More
generally, we can assume that Kad is a non-empty continuous curve in C, containing
the admissible values for the frequencies k and depending on the particular problem
under consideration.

In this section we summarize the main results of this paper. In Subsection 2.1,
the theoretical results regarding non-zero properties of solutions of the Helmholtz
are discussed. In Subsection 2.2 we apply the general theory to a particular case.
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2.1. On the Critical Points of the Solutions of the Helmholtz Equation for
Multiple Frequencies. Given finite subsets K ⊆ Kad \ Σ and I ⊆ γ

(
C1,α(Ω)

)
,

the Cartesian product K × I is called a set of measurements.
Given a set of measurements K × {ϕi}, we consider the unique solution uik ∈

C1(Ω) to the problem

(6)
{
−div(a∇uik)− k q uik = 0 in Ω,
uik = ϕi on ∂Ω.

The introduction of the following class of sets of measurements is motivated by
several hybrid techniques [25, 10, 4, 6]. In this work we will not apply the full
generality of this concept (see Definition 2.5).

Definition 2.1. Let p, r, s be three positive constants. A set of measurements
K × {ϕi : i = 1, . . . , d+ 1} is complete in Ω′ if for every x ∈ Ω′ there exists k̄ =
k̄(x) ∈ K such that:

(CSM 1)
∣∣u1
k̄(x)

∣∣ ≥ p,
(CSM 2)

∣∣det
[
∇u2

k̄
· · · ∇ud+1

k̄

]
(x)
∣∣ ≥ r,

(CSM 3)
∣∣det

[
u1
k̄
· · · ud+1

k̄

∇u1
k̄
· · · ∇ud+1

k̄

]
(x)
∣∣ ≥ s.

The conditions (CSM 1) and (CSM 2) guarantee that meaningful power density
measurements exist in every point. Further, (CSM 2) and (CSM 3) imply that
there are d and d+ 1 independent measurements everywhere, respectively.

The existence of complete sets of measurements is a non trivial problem for
general a and q. In the references cited above, some or all these conditions are
shown by using complex geometric optics solutions [24]. In view of Proposition
3.3 in [11], suitable illuminations can be constructed with a fixed frequency k0,
provided that a and q are smooth enough. However, their construction depends
on the knowledge of a and q, that in the inverse problems we have in mind are
unknown.

In order to tackle this issue, in Section 4 we discuss a multiple frequency approach
to construct complete sets of measurements. The conditions on the illuminations
are independent of the coefficients. Here we provide a simplified version of the main
results therein discussed.

The next theorem discusses the construction of complete sets of measurements
in dimension d = 2. It is a particular case of Theorem 4.8.

Theorem 2.2. Suppose d = 2, a ∈ C0,1(Ω) and that Ω is convex and C2. Then we
can choose a finite K ⊆ Kad \ Σ such that

K × {1, x1, x2}
is a complete set of measurements in Ω.

The next theorem deals with the construction of complete sets of measurements
in dimension d = 3. It is a particular case of Theorem 4.12.

Theorem 2.3. Suppose d = 3. If a is constant then we can choose a finite K ⊆
Kad \ Σ such that

K × {1, x1, x2, x3}
is a complete set of measurements in Ω.
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The proofs of these statements can be found in Section 4, which also contains
more general versions of the previous results. In particular, we shall see that in two
dimensions the illuminations 1, x1 and x2 represent a simple selection from a much
wider class and the domain does not have to be convex. In the three-dimensional
case, a is in fact required to be close to a constant matrix. Moreover, we describe
how to choose the finite set of frequencies K.

2.2. Applications to Microwave Imaging by Ultrasound Deformation. We
now discuss an example to justify the introduction of complete sets. In fact, for
our purposes, a wider class of sets of measurements is sufficient.

We consider the hybrid problem arising from the combination of microwaves and
ultrasounds which was introduced in [4]. Full details and the proofs of the results
are given in Section 5. In addition to the previous assumptions, we suppose that a is
scalar-valued. In microwave imaging, a is the inverse of the magnetic permeability,
q is the electric permittivity and Kad = [Kmin,Kmax], with Kmin > 0, are the
admissible frequencies in the microwave regime.

Given a set of measurements K×{ϕi} we consider power density measurements
of the form

(7) eijk = q uik u
j
k, Eijk = a∇uik · ∇u

j
k,

where uik is given by (6). For simplicity, we denote ek = (eijk )ij and similarly for E.
These internal energies have to be considered as known functions in Ω′. In contrast
to [4], we do not assume the cross-frequency data to be available: thus the available
data is smaller, and this complicates the reconstruction.

Problem 2.4. Choose a suitable set of measurements K × {ϕi} and find a and q
in Ω′ from the knowledge of eijk and Eijk in Ω′.

Problem 2.4 is solved via two reconstruction formulae for a/q and q, respectively,
which we shall now describe. Their applicability is guaranteed ifK×{ϕi} is a proper
set of measurements in Ω′.

Definition 2.5. Let p and r be two positive constants. A set of measurements
K × {ϕi : i = 1, 2, 3} is proper in Ω′ if for every x ∈ Ω′ there exists k̄ = k̄(x) ∈ K
such that:

(PSM 1)
∣∣u1
k̄(x)

∣∣ ≥ p,
(PSM 2)

∣∣∇u2
k̄(x)

∣∣∣∣∇u3
k̄(x)

∣∣ ∣∣∣sin θ∇u2
k̄
,∇u3

k̄
(x)
∣∣∣ ≥ r.

The collection of all proper sets of measurements in Ω′ with constants p and r will
be denoted by P(Ω′; p, r).

Clearly, the conditions characterizing a proper set are weaker than the conditions
of a complete set: the main difference relies in the requirement of only two inde-
pendent measurements in any dimension. Thus, the construction of proper sets can
be easily achieved by using the Theorems of the previous subsection (in dimension
three the illumination x3 is not needed).

The next statement gives an exact formula for a/q. The formula was first derived
in [4] for the two-dimensional case, and we have extended it to any dimension. We
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use the following notation for a matrix-valued function M of size N

tr(M) =

N∑
i=1

Mii, |∇M |22 =

N∑
i,j=1

|∇Mij |2 .

Theorem 2.6. Take p, r > 0 and K × {ϕi} ∈ P(Ω′; p, r). Suppose that

(8)
∣∣Eiik (x)

∣∣ , ∣∣eiik (x)
∣∣ ≤ b, x ∈ Ω′,

for some b > 0. Take x ∈ Ω′ and k̄ as in Definition 2.5. Then there exists
C = C(λ, β1, b) > 0 such that

(9)
tr(ek̄) tr(Ek̄)− tr(ek̄Ek̄)

tr(ek̄)2
(x) ≥ C p2r4,

and a/q is given in terms of the data by

(10) |∇(ek̄/tr(ek̄))|22
a

q
= 2

tr(ek̄) tr(Ek̄)− tr(ek̄Ek̄)

tr(ek̄)2
in x.

We now give an exact formula for q. If compared to the one described in [4], this
one is valid in any dimension and does not require the set of measurements to be
complete. It only requires that

tr(e) :=
∑
i,k

eiik ≥ c > 0 in Ω′,

which holds provided that the set of measurements satisfies (PSM 1).

Theorem 2.7. Let K×{ϕi} be a proper set of measurements. Suppose q ∈ H1(Ω).
Then log q is the unique solution to the problem{

−div (G tr(e)∇u) = −div (G∇ (tr(e))) + 2
∑
k,i

(
Eiik − keiik

)
in Ω′,

u = log q|∂Ω′ on ∂Ω′.

The previous result allows to reconstruct q from the knowledge of G = a/q. Also,
q is supposed to be known on the boundary of Ω′, which is a reasonable assumption
since we are mainly interested in detecting inclusions inside the domain. At this
point, an obvious formula for a is a = Gq.

The two exact formulae provided by the previous Theorems use the derivatives
of the data. As a consequence, in presence of noise, they may not give good qual-
ity images. Thus, an optimal control approach would be an efficient way to find
better approximations of the coefficients, starting from the good guess given by the
formulae described here. Details can be found in [4].

3. The Helmholtz Equation

In this section the Helmholtz equation (1) is discussed, where a ∈ C0,α(Ω;Rd×d)
and q ∈ L∞(Ω) are as in Section 2 and satisfy (4) and (5). First, we show that
the problem is well-posed in the general situation of complex k. Then, regularity
results are discussed. In order to do this, we use the classical results on elliptic
problems.
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3.1. Well-Posedness and Regularity. First of all, we study existence, unique-
ness and stability with homogeneous Dirichlet boundary conditions. The space
H−1(Ω;C) denotes the continuous antidual of H1

0 (Ω;C).

Proposition 3.1. There exists Σ = {λi : i ∈ N} ⊆ R+ with λi → +∞ such that
for k ∈ C \ Σ and f ∈ H−1(Ω;C) the equation

(11) − div(a∇u)− k q u = f

has a unique solution u ∈ H1
0 (Ω;C) satisfying ‖u‖H1

0
≤ C ‖f‖H−1 for some C > 0

independent of f . Moreover, for fixed f ∈ H−1(Ω;C), the map

k ∈ C \ Σ 7−→ u ∈ H1
0 (Ω;C)

is analytic.

Proof. We give a sketch of the proof. Take L = −div(a∇ · ) : H1
0 (Ω;C)→ H−1(Ω;C)

and Mq : L2(Ω;C)→ L2(Ω;C) defined by f 7→ q f . By Lax-Milgram Theorem and
(4) the operator L is invertible and we can consider S := L−1Mq : H1

0 (Ω;C) →
H1

0 (Ω;C), which by Kondrachov Compactness Theorem and (5) is compact, self-
adjoint and positive. Hence S has a countable set of eigenvalues {ηi > 0 : i ∈ N},
with ηi → 0. Define Σ = {λi = 1/ηi : i ∈ N} and take k ∈ C \ Σ. Since (11) is
equivalent to (I − k S)u = L−1f , the first part follows. Finally, the analyticity
of k 7→ u is a consequence of the so called Analytic Fredholm Theorem (see [23,
Theorem 8.92]). �

As a consequence, we immediately get the following result regarding the Dirichlet
boundary value problem for the Helmholtz equation.

Corollary 3.2. Take k ∈ C \Σ. Then there exists C = C(Ω, a, q, k) > 0 such that
for every f ∈ H−1(Ω;C) and ϕ ∈ H1/2(Ω;C) the problem

(12)
{
−div(a∇u)− k q u = f in Ω,
u = ϕ on ∂Ω,

has a unique solution u ∈ H1(Ω;C) satisfying

(13) ‖u‖H1(Ω;C) ≤ C
(
‖ϕ‖H1/2(Ω;C) + ‖f‖H−1(Ω;C)

)
.

Moreover, for fixed f ∈ H−1(Ω;C) and ϕ ∈ H1/2(Ω;C), the map

k ∈ C \ Σ 7−→ u ∈ H1(Ω;C)

is analytic.

Standard elliptic regularity theory allows us to study the regularity of the solu-
tion u ∈ H1(Ω;C) to (12).

Proposition 3.3. Take k ∈ C \ Σ, f ∈ L∞(Ω;C), v ∈ C1,α(Ω;C) and write
ϕ = γ(v). Let u ∈ H1(Ω;C) be the unique solution to (12). Then u ∈ C1(Ω;C) and
there exists C = C(Ω, a, q, k) > 0 such that

(14) ‖u‖C1(Ω;C) ≤ C
(
‖v‖C1,α(Ω;C) + ‖f‖∞

)
.
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Proof. We decompose u, f, ϕ and k into real and imaginary parts by writing u =
uR + i uI , f = fR + i fI , v = vR + i vI and k = kR + i kI . By testing the first
equation of (12) against any w ∈ H1

0 (Ω;R) and by taking real and imaginary parts
we obtain {

−div(a∇uR)− kR q uR = −kI q uI + fR, γ(uR) = ϕR,

−div(a∇uI)− kR q uI = kI q uR + fI , γ(uI) = ϕI .

In the rest of the proof we will consider constants c = c(Ω, a, q, k). From usual
elliptic regularity theory (e.g. (8.38) in [19]) there holds

‖uR‖∞ ≤ c
(
‖u‖2 + ‖v‖C1,α(Ω;C) + ‖f‖∞

)
By arguing in the same way with uI we infer that

‖u‖∞ ≤ c
(
‖u‖2 + ‖v‖C1,α(Ω;C) + ‖f‖∞

)
.

Therefore, by Corollary 8.35 in [19] we get that uR, uI ∈ C1(Ω) and that

‖uR‖C1(Ω) ≤ c
(
‖u‖2 + ‖v‖C1,α(Ω;C) + ‖f‖∞

)
.

A similar inequality holds for uI and so

‖u‖C1(Ω;C) ≤ c
(
‖u‖2 + ‖v‖C1,α(Ω;C) + ‖f‖∞

)
.

Finally, in view of (13) we obtain (14). �

3.2. Analyticity Properties. First, we need the following lemma concerning the
composition of analytic functions.

Lemma 3.4 ([27]). Let D ⊆ C be open, X,Y be Banach spaces, fi : D → X be
analytic maps for i = 1, . . . , b and g : Xb → Y be multilinear and bounded. Then

g ◦ (f1, . . . , fb) : D −→ Y

is analytic.

In this subsection we study the dependence of the solutions uϕk on k. We come
back to the original problem

(1)
{
−div(a∇uϕk )− k q uϕk = 0 in Ω,
uϕk = ϕ on ∂Ω,

for k ∈ C \ Σ and fixed ϕ ∈ γ
(
C1,α(Ω)

)
. By Corollary 3.2 there exists a unique

solution uϕk ∈ H1(Ω;C), that in view of Proposition 3.3 is in C1(Ω;C). We have
already seen that uϕk depends analytically on the wavenumber k with respect to
the norm of H1(Ω;C) . We now want to show this with respect to the C1(Ω;C)
norm. The proof follows the argument used by Calderón to prove that uϕk depends
analytically on a if k = 0 [20].

Proposition 3.5. Take ϕ ∈ γ
(
C1,α(Ω)

)
. Then the map

T : C \ Σ −→ C1(Ω;C), k 7−→ uϕk

is analytic, where uϕk is the unique solution to (1).
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Proof. For simplicity, we do not write the dependence on ϕ. Fix k0 ∈ C \ Σ: we
shall prove that T is analytic in k0.

For h ∈ C define the operator Ch : C1(Ω;C) → L∞(Ω;C), w 7→ h q w with
norm ‖Ch‖ ≤ β2 |h|. In view of Proposition 3.3, there exists a bounded operator
B : L∞(Ω;C) −→ C1(Ω;C), where Bf is the unique solution to{

−div(a∇u)− k q u = f in Ω,
u = 0 on ∂Ω.

As a consequence, BCh : C1(Ω;C) → C1(Ω;C) is a bounded operator with norm
‖BCh‖ ≤ β2 ‖B‖ |h|. Define r = min {1/(β2 ‖B‖), d(k0,Σ)}, where d(k0,Σ) =
inf {d(k0, σ) : σ ∈ Σ} denotes the distance between k0 and Σ. Take k ∈ B(k0, r) ⊆
C \ Σ. The increment h = k − k0 satisfies |h| < r ≤ 1

β2‖B‖ , whence ‖BCh‖ < 1.
Denoting v = uk − uk0

, by definition of T we have

−div (a∇v)− k0q v − h q v = h q uk0
= Chuk0

which, after applying B to both sides, becomes (I −BCh) v = BChuk0
, where I

denotes the identity operator of C1(Ω;C). As a result, since ‖BCh‖ < 1, we obtain

v = (I −BCh)
−1
BChuk0

=

∞∑
n=1

(BCh)
n
uk0

.

It follows that

(15) T (k) =

∞∑
n=0

(BCk−k0
)
n
T (k0), k ∈ B(k0, r).

Namely, the map T is analytic. �

For the sake of completeness, we now show that the dependence on k of the
internal energies (7) is analytic. Consider two different boundary data ϕ1, ϕ2 ∈
H1/2(Ω;C) and the corresponding solutions uik := uϕik to (1). For i, j = 1, 2 we
define the internal energies as

eij : C \ Σ −→ L1(Ω;C), Eij : C \ Σ −→ L1(Ω;C),

k 7−→ q uik u
j
k, k 7−→ a∇uik · ∇u

j
k.

Theorem 3.6. Take ϕ1, ϕ2 ∈ H1/2(Ω;C). Then the internal energies eij and Eij
are analytic functions.

Proof. Note that the maps

g1 : H1(Ω;C)2 −→ L1(Ω;C), g2 : H1(Ω;C)2 −→ L1(Ω;C)

(u, v) 7−→ q u v (u, v) 7−→ a∇u · ∇u

are bilinear and bounded. Therefore the result follows by Corollary 3.2 and Lemma
3.4. �

As a consequence of the unique continuation property for holomorphic functions
we obtain the following

Corollary 3.7. Take ϕ1, ϕ2 ∈ H1/2(Ω;C). Let kl, k ∈ C \Σ such that kl → k and
kl 6= k for every l ∈ N. If eij [resp. Eij] is known in kl for every l ∈ N then eij

[resp. Eij] is known everywhere in C \ Σ.
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Remark 3.8. This result must be seen in view of Problem 2.4. The knowledge of
Eij for infinitely many frequency in a fixed range determines Eij for k = 0, where
the reconstruction process for a has been studied thoroughly [2, 5, 9, 17, 22, 28].
However, this has to be regarded simply as an interesting theoretical result: analytic
continuation is a very ill-posed process.

4. On the Critical Points of the Solutions of the Helmholtz
Equation for Multiple Frequencies

In this section we discuss the multi-frequency approach to the issue of the ex-
istence of complete and proper sets of measurements. The theorems stated in
Subsection 2.1 will be a consequence of the results presented here.

4.1. Preliminaries. Let a ∈ C0,α(Ω;Rd×d) and q ∈ L∞(Ω) be as in Section 2
and satisfying (4) and (5). Recall that Kad is the set for the possible wavenumber,
namely we are allowed to choose values k ∈ Kad\Σ. As in Proposition 3.5, we denote
the unique solution to the boundary value problem (1) by uϕk = Tϕ(k) ∈ C1(Ω;C)

(1)
{
−div(a∇uϕk )− k q uϕk = 0 in Ω,
uϕk = ϕ on ∂Ω.

As a consequence of the analyticity of k 7→ uϕk proved in Proposition 3.5 we
obtain the following

Lemma 4.1. Take Ω′ ⊆ Ω, b ∈ N∗ and ζ : C1(Ω;C) → C
(
Ω′;C

)
multilinear and

bounded. Let ϕ1, . . . , ϕb ∈ γ
(
C1,α(Ω)

)
be such that

(16) ζ (uϕ1

kx , . . . , u
ϕb
kx) (x) 6= 0, x ∈ Ω′,

for some kx ∈ C \Σ. Take kl, k ∈ C \Σ with kl → k and kl 6= k. Then there exists
a finite L ⊆ N such that

(17)
∑
l∈L

∣∣ζ (uϕ1

kl
, . . . , uϕbkl

)
(x)
∣∣ > 0, x ∈ Ω′.

In particular, we can choose a finite K ⊆ Kad \ Σ such that

(18)
∑
k∈K

|ζ (uϕ1

k , . . . , uϕbk ) (x)| > 0, x ∈ Ω′.

Remark 4.2. For the sake of completeness, we note that the statement holds true
for ζ analytic, but our current applications do not need this extension. We shall
use this Lemma only with kx = 0. However, this more general version allow other
possible applications. In particular, the case |kx| → ∞ could be studied. This could
be considered in the context of high-frequency approximations of the Helmholtz
equation.

Remark 4.3. If in addition to the assumptions of this lemma we assume that the
set
{
x ∈ Ω′ : ζ (uϕ1

k , . . . , uϕbk ) (x) = 0
}
is finite, then there exists l̄ ∈ N such that

|ζ (uϕ1

k , . . . , uϕbk ) (x)|+
∣∣ζ(uϕ1

kl̄
, . . . , uϕbkl̄

)
(x)
∣∣ > 0, x ∈ Ω′.

Namely, if the zeros of ζ (uϕ1

k , . . . , uϕbk ) are isolated points then only two frequencies
are necessary to obtain a non-zero quantity everywhere. We leave the proof of this
extension to the reader.
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Proof. Take x ∈ Ω′. The map evx : C
(
Ω′;C

)
→ C, u 7→ u(x) is linear and bounded.

Hence, using Proposition 3.5 and Lemma 3.4, the map

zx := evx ◦ ζ ◦ (Tϕ1 , . . . , Tϕb) : C \ Σ −→ C

is analytic. By (16) we have zx(kx) 6= 0, and so the set {k ∈ C \ Σ : zx(k) = 0} has
no accumulation points in C \ Σ. As a consequence, there exists lx ∈ N such that
zx(klx) 6= 0. Since ζ ◦ (Tϕ1 , . . . , Tϕb) (klx) is continuous, we can find rx > 0 such
that

(19) zy(klx) 6= 0, y ∈ B(x, rx) ∩ Ω′.

Since Ω′ =
⋃
x∈Ω′

(
B(x, rx) ∩ Ω′

)
there exist x1, . . . , xN ∈ Ω′ satisfying

(20) Ω′ =

N⋃
i=1

(
B(xi, rxi) ∩ Ω′

)
.

Defining L = {lxi : i = 1 :, . . . , N} , by (19) and (20) we obtain (17). �

Let us now recall the definition of complete sets of measurements.

Definition 2.1. Let p, r, s be three positive constants. A set of measurements
K × {ϕi : i = 1, . . . , d+ 1} is complete in Ω′ if for every x ∈ Ω′ there exists k̄ =
k̄(x) ∈ K such that:

(CSM 1)
∣∣u1
k̄(x)

∣∣ ≥ p,
(CSM 2)

∣∣det
[
∇u2

k̄
· · · ∇ud+1

k̄

]
(x)
∣∣ ≥ r,

(CSM 3)
∣∣det

[
u1
k̄
· · · ud+1

k̄

∇u1
k̄
· · · ∇ud+1

k̄

]
(x)
∣∣ ≥ s.

In order to satisfy these conditions, the main idea is to trace back to the case
k = 0, where things are simpler. For instance, consider condition (CSM 1). With
k = 0, by the Strong Maximum Principle this is trivially satisfied provided that
the boundary condition is strictly positive or negative. It remains to show that
this good property transfers to any range of frequencies, and this is achieved with
Lemma 4.1. In summary, the strategy to study these conditions can be outlined in
the following three steps:

(1) choose a suitable ζ as above such that the condition we want to prove is
equivalent to (18);

(2) prove the assumption (16) for kx = 0, which is in general easier than (18)
since k = 0;

(3) apply Lemma 4.1 to deduce the result.

We will deal with the issue of the construction of complete sets of measurements
in two different situations, depending on the dimension. As we shall see, condition
(CSM 1) will be a consequence of the Maximum Principle, that holds in any di-
mension and for any a. However, the study of conditions (CSM 2) and (CSM 3) in
the case k = 0 depends on the dimension.
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4.2. Complete Sets: Two-Dimensional Case. Throughout this subsection we
assume d = 2. First, we consider conditions (CSM 1), (CSM 2) and (CSM 3) for
k = 0. As far as (CSM 1) is concerned, the Maximum Principle will be the main
tool, and no further investigation is required.

Let us now focus on (CSM 2) for k = 0, which reads

det
[
∇u2

0 ∇u3
0

]
≥ r

for some r > 0. This problem has been studied by Bauman et al. [14] in the context
of univalent mappings. We introduce the following class of boundary conditions.

Definition 4.4. Let ψ = (ψ2, ψ3) ∈ C1,α(Ω;R2) be a C1 diffeomorphism of a
neighborhood of Ω into R2 such that Jψ > 0 in Ω. Denote the restriction of ψ to
the boundary ∂Ω by ϕ = (ϕ2, ϕ3) := ψ|∂Ω. We say that ϕ2, ϕ3 are BMN boundary
conditions if ϕ : ∂Ω → R2 maps ∂Ω onto a convex closed curve. In this case we
write (ϕ2, ϕ3) ∈ BMN(Ω).

Remark 4.5. Note that if Ω is a convex domain then ϕ2 = x1, ϕ3 = x2 are BMN
boundary conditions.

Their main result shows that (CSM 2) is satisfied for k = 0, provided that the
boundary conditions are BMN.

Proposition 4.6 (Theorems 2.4-2.5, [14]). Suppose d = 2. If (ϕ2, ϕ3) ∈ BMN(Ω)
then

det
[
∇u2

0 ∇u3
0

]
> 0 in Ω.

If in addition Ω is a C2 domain and a ∈ C0,1(Ω;Rd×d) then

det
[
∇u2

0 ∇u3
0

]
> 0 in Ω.

Let us now focus on (CSM 3) for k = 0. As far as the author is aware, there is
no result concerning the zeros of

det

[
u1

0 u2
0 u3

0

∇u1
0 ∇u2

0 ∇u3
0

]
.

Therefore we need the following statement, whose proof can be found at the end of
this subsection.

Lemma 4.7. Suppose d = 2. Take ϕ1, ϕ2, ϕ3 ∈ γ
(
C1,α(Ω)

)
such that ϕ1 has a

fixed sign and (ϕ2, ϕ3) ,
(
ϕ2

ϕ1
, ϕ3

ϕ1

)
∈ BMN(Ω). Then

det

[
u1

0 u2
0 u3

0

∇u1
0 ∇u2

0 ∇u3
0

]
6= 0 in Ω.

If in addition Ω is a C2 domain and a ∈ C0,1(Ω;Rd×d) then

det

[
u1

0 u2
0 u3

0

∇u1
0 ∇u2

0 ∇u3
0

]
6= 0 in Ω.

We are now in a position to state the main results of this subsection, concerning
the construction of complete sets of measurements in dimension d = 2.

Theorem 4.8. Suppose d = 2. Take Ω′ b Ω and ϕ1, ϕ2, ϕ3 ∈ γ
(
C1,α(Ω)

)
such

that ϕ1 has a fixed sign and (ϕ2, ϕ3) ,
(
ϕ2

ϕ1
, ϕ3

ϕ1

)
∈ BMN(Ω). We can choose a finite

K ⊆ Kad \ Σ such that
K × {ϕ1, ϕ2, ϕ3}
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is a complete set of measurements in Ω′.
If in addition Ω is a C2 domain and a ∈ C0,1(Ω;Rd×d) then we can choose a

finite K ′ ⊆ Kad \ Σ such that

K ′ × {ϕ1, ϕ2, ϕ3}

is a complete set of measurements in Ω.

Remark 4.9. Note that the hypotheses on the boundary conditions are satisfied if
ϕ1 = 1 and (ϕ2, ϕ3) ∈ BMN(Ω). Therefore, if Ω is convex, by Remark 4.5 an easy
choice for the boundary conditions is ϕ1 = 1, ϕ2 = x1 and ϕ3 = x2.

Proof. By Lemma 4.7, Proposition 4.6 and Strong Maximum Principle we obtain
that

u1
0,det

[
∇u2

0 ∇u3
0

]
,det

[
u1

0 u2
0 u3

0

∇u1
0 ∇u2

0 ∇u3
0

]
6= 0 in Ω,

respectively. Thus we can apply Lemma 4.1 with Ω′ b Ω, b = 6, kx = 0, ϕ4 = ϕ1,

ϕ5 = ϕ2, ϕ6 = ϕ3 and ζ(u, v, w, t, z, y) = udet
[
∇v ∇w

]
det

[
t z y
∇t ∇z ∇y

]
to

obtain the existence of a finite set K ⊆ Kad \ Σ such that

p(x) :=
∑
k∈K

∣∣∣u1
k det

[
∇u2

k ∇u3
k

]
det

[
u1
k u2

k u3
k

∇u1
k ∇u2

k ∇u3
k

]∣∣∣(x) > 0, x ∈ Ω′.

In the sequel, we shall denote several positive constants independent of x ∈ Ω′ by
c. Since uϕik ∈ C1(Ω) (Proposition 3.3), p(x) ≥ c for every x ∈ Ω′. As a result, for
any x ∈ Ω′ there exists k ∈ K such that∣∣∣u1

k det
[
∇u2

k ∇u3
k

]
det

[
u1
k u2

k u3
k

∇u1
k ∇u2

k ∇u3
k

]∣∣∣(x) ≥ c.

As a consequence we have∣∣u1
k(x)

∣∣ ≥ c, ∣∣det
[
∇u2

k ∇u3
k

]
(x)
∣∣ ≥ c, ∣∣∣det

[
u1
k u2

k u3
k

∇u1
k ∇u2

k ∇u3
k

]
(x)
∣∣∣ ≥ c,

whence the first part of the theorem follows.
If in addition we suppose that Ω is a C2 domain and that a ∈ C0,1(Ω;Rd×d), we

can use the second part of Proposition 4.6 and the second part of Lemma 4.7 to
infer that

det

[
u1

0 u2
0 u3

0

∇u1
0 ∇u2

0 ∇u3
0

]
,det

[
∇u2

0 ∇u3
0

]
6= 0 in Ω,

respectively. Therefore, arguing as before, we obtain a complete set in Ω. �

From the proof of Theorem 4.8 it is clear that the assumptions ϕ1 ≷ 0 and
(ϕ2, ϕ3) ∈ BMN(Ω) allow us to deduce (CSM 1) and (CSM 2) of Definition 2.1, re-
spectively. One may wonder if the above Theorem still holds without one of these
two hypotheses. The answer is no, as the following examples show. Therefore,
if the boundary condition ϕi are not chosen properly, in general one cannot ex-
pect to obtain (CSM 1) and (CSM 2) by doing many measurements with different
wavenumbers but with fixed illuminations. First, we provide a counterexample for
condition (CSM 1).
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Example 4.10. Suppose d = 2, Ω = B(0, 1) and a = q = 1. We choose the
boundary condition ϕ1(x1, x2) = x1, that clearly does not have a constant sign. In
this case the Helmholtz equation (1) can be written in polar coordinates (r, θ) and
reads

urr +
ur
r

+
uθθ
r2

+ ku = 0.

It is straightforward to see that

u1
k(r, θ) =

J1(
√
kr)

J1(
√
k)

cos θ

satisfies the above equation, where J1 is the Bessel function of the first kind of
order 1 and k > 0 is not an eigenvalue of the problem. Thus,

{
u1
k

}
represents a

family of solution to the Helmholtz equation with fixed boundary condition and
varying wavenumber. However, condition (CSM 1) cannot hold since u1

k(0, x2) = 0
for every k and for every x2 ∈ (−1, 1).

Next, we study condition (CSM 2). Since it expresses the linear independence of
the gradient of the solutions inside the domain, we shall see that it is not possible
to require ϕ1, ϕ2 to be just linearly independent.

Example 4.11. We consider the situation of Example 4.10. Suppose Ω = B(0, 1)
and a = q = 1. We choose the boundary conditions ϕ2(x1, x2) = x1 and ϕ3 =
1. Clearly, (ϕ2, ϕ3) /∈ BMN(Ω) since ϕ3 is a constant, but ϕ2, ϕ3 are linearly
independent. It is straightforward to see that the corresponding solutions to (1)
are

u2
k(r, θ) =

J1(
√
kr)

J1(
√
k)

cos θ, u3
k(r, θ) =

J0(
√
kr)

J0(
√
k)
,

where Jn is the Bessel function of the first kind of order n and k > 0 is not an
eigenvalue of the problem.

Take a matrix-valued function A : Ω → GL(2), where GL(2) denotes the set of
2× 2 invertible matrices. By viewing A(x) as a change of coordinates in TxΩ, the
tangent space in x to Ω, we get

det
[
A∇u2

kA
−1 A∇u3

kA
−1
]

= det
(
A
[
∇u2

k ∇u3
k

]
A−1

)
= det

[
∇u2

k ∇u3
k

]
.

Therefore, as far as det
[
∇u2

k ∇u3
k

]
is concerned, we can express the gradient in

any system of coordinates.
In this case, writing ∇uik with respect to eθ and er we have ∇uik = 1

r
∂uik
∂θ eθ +

∂uik
∂r er. Hence

det
[
∇u2

k ∇u3
k

]
= det

[
1
r
∂u2

k

∂θ
1
r
∂u3

k

∂θ
· ·

]
= det

[
− 1
r
J1(
√
kr)

J1(
√
k)

sin θ 0

· ·

]
.

Thus, we have det
[
∇u2

k ∇u3
k

]
(x1, 0) = 0 for every k and for every x1 ∈ (−1, 1)

and so (CSM 2) cannot be satisfied by using many measurements with these fixed
illuminations and varying wavenumbers.

We end this subsection with the proof of Lemma 4.7.

Proof. (Lemma 4.7). We shall prove only the first part of the lemma. The second
part can be proved following the same argument.
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For simplicity of notation we write ui := ui0 and suppose ϕ1 > 0. By Proposition
4.6 we have det

[
∇u2 ∇u3

]
> 0 in Ω, and so {∇u2,∇u3} form a basis of R2 in

every point of Ω. Therefore there exist λ, µ : Ω→ R such that

(21) ∇u1 = λ∇u2 + µ∇u3 in Ω,

whence

det

[
u1 u2 u3

∇u1 ∇u2 ∇u3

]
= (u1 − λu2 − µu3) det

[
∇u2 ∇u3

]
in Ω.

By contradiction, suppose that there exists x0 ∈ Ω such that

(22) u1(x0) = λ(x0)u2(x0) + µ(x0)u3(x0).

Denote λ0 = λ(x0), µ0 = µ(x0) and z = λ0u2 + µ0u3. Since ϕ1 > 0, by the Strong
Maximum Principle we get u1 > 0 in Ω. Let h = z/u1 and ψi = ui/u1 for i = 2, 3.
For every v ∈ D(Ω) and i = 2, 3 a straightforward calculation shows that (see
Lemma 5.1) ˆ

Ω

u2
1 a∇ψi · ∇v dx = 0.

Therefore ψi is the unique solution to the problem{
−div(u2

1 a∇ψi) = 0 in Ω,
ψi = ϕi/ϕ1 on ∂Ω,

and by using Proposition 4.6 we infer that

(23) det
[
∇ψ2 ∇ψ3

]
> 0 in Ω,

since
(
ϕ2

ϕ1
, ϕ3

ϕ1

)
∈ BMN(Ω). By (21) and (22) we have ∇u1(x0) = ∇z(x0) and

u1(x0) = z(x0) > 0, whence ∇(log u1)(x0) = ∇(log z)(x0) and so ∇(log h)(x0) = 0.
As a consequence, 0 = ∇h(x0) = λ0∇ψ2(x0) + µ0∇ψ3(x0), which contradicts (23)
since (λ0, µ0) 6= (0, 0). �

4.3. Complete Sets: Three-Dimensional Case. Throughout this subsection
we assume d = 3. First, we need to consider (CSM 2) and (CSM 3) for k = 0.
In contrast to the case d = 2, we cannot use Proposition 4.6, since the equivalent
statement is known not to hold in three dimensions [15].

Thus, we assume that the parameter a is a small perturbation of a constant,
symmetric and positive definite matrix a0, i.e.

a = a0 + s, ‖s‖C0,α(Ω;Rd×d) ≤ δ,

with δ small enough. The study of this approximation is common in the literature
[25, 10, 3, 6]. Note that we do not make any assumptions on q.

In order to understand why this approximation is useful, let us consider the
constant case, i.e. a = a0. Choose ϕ1 = 1, ϕ2 = x1, ϕ3 = x2 and ϕ4 = x3. Hence
1, x1, x2 and x3 are the solutions to the problems{

−div(a0∇u) = 0 in Ω,
u = ϕi on ∂Ω,

for i = 1, . . . , 4, respectively. Therefore conditions (CSM 1), (CSM 2) and (CSM
3) are trivially satisfied in the case k = 0. Thanks to the multi-frequency approach
we can extend this property to any range of frequencies, and a continuity argu-
ment allows small variations around a constant value. These two steps are carried
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out in the following theorem, which concerns the construction of complete sets of
measurements in dimension d = 3.

Theorem 4.12. Suppose d = 3. Let a0 be a constant, symmetric and positive
definite matrix. There exists δ > 0 such that for any s ∈ C0,α(Ω;Rd×d) with
‖s‖C0,α(Ω;Rd×d) ≤ δ we can choose a finite K ⊆ Kad \ Σ such that

K × {1, x1, x2, x3}

is a complete set of measurements in Ω for a = a0 + s.

Proof. Fix 0 < ε < λ/3, where λ is the smallest eigenvalue of a0. In the following
we will consider positive constants c depending on a0, Ω and ε. Take 0 < δ ≤ ε
and s ∈ C0,α(Ω;Rd×d) with ‖s‖C0,α(Ω;Rd×d) ≤ δ. For as = a0 + s consider ui0(s) the
solution to the problem{

−div(as∇ui0(s)) = 0 in Ω,
ui0(s) = ϕi on ∂Ω,

where ϕ1 = 1 and ϕi = xi−1 for i = 2, 3, 4. Thus,
∥∥ui0(s)

∥∥
2
≤ c for some c > 0.

As a result, from usual elliptic regularity theory (e.g. (8.38) in [19]) we obtain∥∥ui0(s)
∥∥
∞ ≤ c. By Theorem 8.33 in [19] this implies that

(24)
∥∥∇ui0(s)

∥∥
C0,α(Ω;Rd)

≤ c.

The same argument applied to ui0(s)− ui0(0) as a solution to

−div
(
a0∇(ui0(s)− ui0(0))

)
= div(s∇ui0(s)).

gives
∥∥ui0(s)− ui0(0)

∥∥
∞ ≤ c δ for some c > 0. Hence, by (24) and Theorem 8.33 in

[19] applied to ui0(s)− ui0(0) there holds∥∥∇ui0(s)−∇ui0(0)
∥∥
∞ ≤ c

(∥∥ui0(s)− ui0(0)
∥∥
∞ +

∥∥s∇ui0(s)
∥∥
C0,α(Ω;Rd)

)
≤ c δ,

whence ∥∥ui0(s)− ui0(0)
∥∥
C1(Ω)

≤ c δ.

As a consequence, since for s = 0 we have

u1
0(0) = det

[
∇u2

0(0) · · · ∇u4
0(0)

]
= det

[
u1

0(0) · · · u4
0(0)

∇u1
0(0) · · · ∇u4

0(0)

]
= 1 in Ω,

there exists δ ≤ ε such that

u1
0(s),det

[
∇u2

0(s) · · · ∇u4
0(s)

]
,det

[
u1

0(s) · · · u4
0(s)

∇u1
0(s) · · · ∇u4

0(s)

]
6= 0 in Ω,

for all s ∈ C0,α(Ω;Rd×d) with ‖s‖C0,α(Ω;Rd×d) ≤ δ. Finally, arguing as in the proof
of Theorem 4.8, the result follows by using Lemma 4.1. �

4.4. Proper Sets of Measurements. This subsection is devoted to the study of
proper sets of measurements, which were introduced in Subsection 2.2. Since the
conditions characterizing proper sets are weaker than those of complete sets, we are
not going into the details: the reader is referred to the previous parts of this section.
We first recall the definition of proper sets of measurements for a ∈ C0,α(Ω;Rd×d)
and q ∈ L∞(Ω) satisfying (4) and (5).
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Definition 2.5. Let p and r be two positive constants. A set of measurements
K × {ϕi : i = 1, 2, 3} is proper in Ω′ if for every x ∈ Ω′ there exists k̄ = k̄(x) ∈ K
such that:

(PSM 1)
∣∣u1
k̄(x)

∣∣ ≥ p,
(PSM 2)

∣∣∇u2
k̄(x)

∣∣∣∣∇u3
k̄(x)

∣∣ ∣∣∣sin θ∇u2
k̄
,∇u3

k̄
(x)
∣∣∣ ≥ r.

The collection of all proper sets of measurements in Ω′ with constants p and r will
be denoted by P(Ω′; p, r).

The multi-frequency approach discussed in the last section is easily applicable
for the construction of proper sets of measurements. In general, the choice for the
illuminations 1, x1 and x2 gives a proper set in any dimension (in dimension three,
a is required to be close to a constant).

Note that, in general, condition (PSM 2) is weaker than (CSM 2), and they are
equivalent when d = 2 since∣∣det

([
w z

])∣∣ = |w| |z| |sin θw,z| , w, z ∈ R2.(25)

Thus, when d = 2 one can directly use an analogue version of Theorem 4.8, without
the assumption (ϕ2

ϕ1
, ϕ3

ϕ1
) ∈ BMN(Ω), which was needed to satisfy (CSM 3).

Theorem 4.13. Suppose d = 2. Take Ω′ b Ω and ϕ1, ϕ2, ϕ3 ∈ γ
(
C1,α(Ω)

)
such

that ϕ1 has a fixed sign and (ϕ2, ϕ3) ∈ BMN(Ω). We can choose a finite K ⊆
Kad \ Σ such that

K × {ϕ1, ϕ2, ϕ3}
is a proper set of measurements in Ω′.

If in addition Ω is a C2 domain and a ∈ C0,1(Ω;Rd×d) then we can choose a
finite K ′ ⊆ Kad \ Σ such that

K ′ × {ϕ1, ϕ2, ϕ3}

is a proper set of measurements in Ω.

In dimension three, it is straightforward to check that the analogue version of
Theorem 4.12 is applicable, without the illumination z.

Theorem 4.14. Suppose d = 3. Let a0 be a constant, symmetric and positive
definite matrix. There exists δ > 0 such that for any s ∈ C0,α(Ω;Rd×d) with
‖s‖C0,α(Ω;Rd×d) ≤ δ we can choose a finite K ⊆ Kad \ Σ such that

K × {1, x1, x2}

is a proper set of measurements in Ω for a = a0 + s.

4.5. Numerical Experiments on the Number of Needed Frequencies. The
theory developed so far gives conditions on the illuminations to construct complete
and proper sets of measurements, provided a finite number of frequencies are chosen
in a fixed range. However, we do not provide an estimate on the number of the
required frequencies, i.e. the cardinality #K of K. In order to document this
point, we have performed a numerical test in 6561 different cases to see what we
can expect. For simplicity, we have decided to consider the two-dimensional case
and the concept of proper sets of measurements.
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Figure 1. A particular combination of the coefficients.

Take Ω = B(0, 1). We now describe the coefficients we have used. Set c = 0.35,
r = 0.2 and P1 = (−c,−c), P2 = (−c, c), P3 = (c,−c) and P4 = (c, c). Let χi be
the characteristic function of B(Pi, r) (or, more precisely, a smooth approximation
of it). Then we set

a = 1 +

4∑
i=1

αiχi, q = 1 +

4∑
i=1

βiχi,

where αi, βi ∈ {0, 1, 2} (see Figure 1). This construction gives 38 = 6561 different
combinations.

In view of Theorem 4.13, we choose the illuminations ϕ1 = 1, ϕ2 = x1 and
ϕ3 = x2 and the frequencies between the first and the second eigenvalue, in order
to simplify the numerical computation. For any combination of the coefficients, we
compute the number of needed frequencies to obtain a proper set of measurements
in Ω. The results are summarized in Table 1. These figures suggest that in practical
applications the number of needed frequency could be quite small.

Table 1. Number of combinations of coefficients per number of
needed frequencies to obtain a proper set of measurements in Ω.

Needed frequencies (#K) 2 3 ≥ 4
Combinations of coefficients 1609 4952 0

5. Applications to Microwave Imaging by Ultrasound Deformation

This section is devoted to the discussion of the hybrid problem introduced in
Subsection 2.2 and to the proofs of the results therein presented.

5.1. Formulation of the Problem. The object under examination is a smooth
bounded domain Ω ⊆ Rd, for d = 2 or d = 3. In the microwave regime, the electric
field uϕk in Ω is assumed to satisfy the Helmholtz equation

(26)
{
−div(a∇uϕk )− k q uϕk = 0 in Ω,
uϕk = ϕ on ∂Ω,
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where a ∈ C0,α(Ω) is the inverse of the magnetic permeability, q ∈ L∞(Ω) is the
electric permittivity and

√
k is the wavenumber (with an abuse of language we shall

sometimes refer to k as the frequency or the wavenumber). We assume (4) and (5).
The use of the Helmholtz equation is a very common scalar approximation of the
Maxwell equations [16, 26, 4, 8]. As we have seen in Section 3, problem (26) is
well-posed provided that k is not a resonant frequency.

Practitioners can choose a frequency k > 0 in a fixed range (not a resonant fre-
quency), a real illumination ϕ on the boundary and measure the generated current
on the boundary a∂u

ϕ
k

∂ν . As described in [4], these measurements are combined with
localized ultrasonic waves focusing in small regions ω inside Ω. We assume that
the electromagnetic parameters are affected linearly with respect to the amplitude
of the ultrasonic perturbation, that is supposed to be small. Moreover, this mod-
ification is localized only in the region ω. Under these assumptions, denoting the
modified coefficients by ā and q̄ we have{

ā = a (1 + caαχω) ,
q̄ = q (1 + cqαχω) ,

where α is the amplitude of the ultrasonic signal and ca and cq are known functions.
The corresponding electric field ūϕk is the solution to{

−div(ā∇ūϕk )− k q̄ ūϕk = 0 in Ω,
ūϕk = ϕ on ∂Ω.

The density current a∂ū
ϕ
k

∂ν on the boundary of the domain is a measurable datum.
We now see how the internal energies can be determined by studying the change

between a∂u
ϕ
k

∂ν and a∂ū
ϕ
k

∂ν . We consider a wavenumber k and two fixed illuminations
ϕ and ψ. Suppose the domain ω to be a small ball inside Ω of centre z. By
asymptotic analysis techniques [7, 4], there holds

(27)
ˆ
∂Ω

a

(
∂ūϕk
∂ν
−
∂uϕk
∂ν

)
ψ dσ

= |ω| d ca(z)α

ca(z)α+ d
a(z)∇uϕk (z) · ∇uψk (z) + |ω| k cq(z)α q(z)uϕk (z)uψk (z) + o(|ω|),

where |ω| denotes the Lebesgue measure of ω and dσ the integration with respect
to the surface area. Since the left hand side is known, by choosing different values
for α the internal power density data

Eϕψk (z) = a(z)∇uϕk (z) · ∇uψk (z), eϕψk (z) = q(z)uϕk (z)uψk (z)

are recovered for every z ∈ Ω′, where Ω′ b Ω is the set of all possible centres where
the ultrasonic beams are focused. Note that the “polarized” data with ϕ 6= ψ is
available for a fixed k, but this argument does not allow the reconstruction of the
cross-frequency data

Eϕψkl (z) = a(z)∇uϕk (z) · ∇uψl (z), eϕψkl (z) = q(z)uϕk (z)uψl (z).

We thus chose not to use cross-frequency data for the reconstruction, in contrast
to [4].
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Let us now represent the formulation of Problem 2.4. Given a set of measurement
K × {ϕi} we consider the unique solution uik ∈ H1(Ω) to the problem

(28)
{
−div(a∇uik)− k q uik = 0 in Ω,
uik = ϕi on ∂Ω.

We define the internal data by

(29) eijkl = q uik u
j
l , Eijkl = a∇uik · ∇u

j
l .

For simplicity, we denote ekl = (eijkl)ij and ek := ekk and similarly for E. The
matrices ek and Ek are to be considered as known matrix-valued functions. We
study the inverse problem of determining the parameters a and q in Ω′ from the
knowledge in Ω′ of ek and Ek with a properly chosen set of measurements. Note
that this reconstruction problem is slightly different to the one studied in [4], where
the full matrices

e =

 ek1k1
· · · ek1kM

...
. . .

...
ekMk1

· · · ekMkM

 , E =

Ek1k1
· · · Ek1kM

...
. . .

...
EkMk1

· · · EkMkM

 .
are supposed to be known, with K = {k1, . . . , kM}. In our case, we suppose that
only the diagonal blocks are measurable.

5.2. Reconstruction Algorithm. This subsection is devoted to the proofs of the
exact formulae given in Subsection 2.2.

5.2.1. Reconstruction Formula for a/q. We restate here Theorem 2.6. The new
contribution of this work is the proof of the bounds (9).

Theorem 2.6. Take p, r > 0 and K × {ϕi} ∈ P(Ω′; p, r). Suppose that

(8)
∣∣Eiik (x)

∣∣ , ∣∣eiik (x)
∣∣ ≤ b, x ∈ Ω′,

for some b > 0. Take x ∈ Ω′ and k̄ as in Definition 2.5. Then there exists
C = C(λ, β1, b) > 0 such that

(9)
tr(ek̄) tr(Ek̄)− tr(ek̄Ek̄)

tr(ek̄)2
(x) ≥ C p2r4,

and a/q is given in terms of the data by

(10) |∇(ek̄/tr(ek̄))|22
a

q
= 2

tr(ek̄) tr(Ek̄)− tr(ek̄Ek̄)

tr(ek̄)2
in x.

Proof. Condition (PSM 1) implies tr(ek̄) > 0 in Ω′, and so we may divide by tr(ek̄).
Following the argument given in the proof of Proposition 3.3 in [4] we obtain

|∇(ek̄/tr(ek̄))|22
a

q
= 2

tr(ek̄) tr(Ek̄)− tr(ek̄Ek̄)

tr(ek̄)2
.

We now prove (9). For cleanliness of notation we shall denote several positive
constants depending onλ and b simply by c = c(λ, b) > 0. Until the end of the
proof, all the functions will be considered evaluated in x. We equip the space
of real symmetric matrices with the Hilbert-Schmidt scalar product defined by
〈A,B〉 = tr(AB). We claim that

(30)
∣∣∣∣(E2,3

k̄

)2

− E2,2

k̄
E3,3

k̄

∣∣∣∣ ≤ c ‖Ek̄‖ (1 +
tr(Ek̄)

tr(ek̄)
)
√

1− cos θek̄,Ek̄ .
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As a consequence of this inequality, which we shall prove later, we get

(31)
√

1− cos θek̄,Ek̄ ‖Ek̄‖ ≥ c
r2,

1 + tr(Ek̄)
tr(ek̄)

,

since by (PSM 2) there holds∣∣∣∣(E2,3

k̄

)2

−E2,2

k̄
E3,3

k̄

∣∣∣∣ = a2
∣∣∣(∇u2

k̄ · ∇u
3
k̄

)2 − ∣∣∇u2
k̄

∣∣2 ∣∣∇u3
k̄

∣∣2∣∣∣ ≥ cr2.

Note that, from the definition of ek and Ek, we have
(
eij
k̄

)2

= eii
k̄
ejj
k̄

and
(
Eij
k̄

)2

≤
Eii
k̄
Ejj
k̄
. In particular,

(32) ‖ek̄‖ =

√∑
i,j

(
eij
k̄

)2

= tr(ek̄), ‖Ek̄‖ =

√∑
i,j

(
Eij
k̄

)2

≤ tr(Ek̄).

Combining (31) and (32) we obtain

tr(ek̄) tr(Ek̄)− tr(ek̄Ek̄)

tr(ek̄)2
≥

tr(ek̄)(1− cos θek̄,Ek̄) ‖Ek̄‖
tr(ek̄)2

≥ c λ4r4tr(ek̄)

tr(ek̄)2tr(Ek̄)(1 + tr(Ek̄)
tr(ek̄) )2

,

which gives the desired result since the denominator is bounded by a constant
depending on b, and tr(ek̄) ≥ β1p

2.
Let us now turn to the proof of (30). We use the notation g = Ek̄/ ‖Ek̄‖ −

ek̄/ ‖ek̄‖. By (8) and (32) we have∣∣∣∣(E2,3

k̄

)2

− E2,2

k̄
E3,3

k̄

∣∣∣∣ ≤ ∣∣∣∣(E2,3

k̄

)2

−‖Ek̄‖
2

‖ek̄‖
2

(
e2,3

k̄

)2
∣∣∣∣+

∣∣∣∣‖Ek̄‖2‖ek̄‖
2 e

2,2

k̄
e3,3

k̄
−‖Ek̄‖
‖ek̄‖

e2,2

k̄
E3,3

k̄

∣∣∣∣
+

∣∣∣∣‖Ek̄‖‖ek̄‖
e2,2

k̄
E3,3

k̄
− E2,2

k̄
E3,3

k̄

∣∣∣∣
= ‖Ek̄‖

∣∣∣∣E2,3

k̄
+
‖Ek̄‖
‖ek̄‖

e2,3

k̄

∣∣∣∣ |g2,3|+
‖Ek̄‖ 2

‖ek̄‖
e2,2

k̄
|g3,3|

+ ‖Ek̄‖E
3,3

k̄
|g2,2|

≤ c ‖Ek̄‖ (1 +
tr(Ek̄)

tr(ek̄)
)
√

1− cos θek̄,Ek̄ ,

since |g2,3|+ |g3,3|+ |g2,2| ≤ c ‖g‖ ≤ c
√

1− cos θek̄,Ek̄ . �

5.2.2. Reconstruction Formula for q. In this subsection we derive the reconstruction
formula for q given in Theorem 2.7. It is based on the knowledge of the ratio
G := a/q, that can be computed via the formula (10). Since this reconstruction
involves the derivative of the data, we need a stable way to obtain q from G.

The following lemma reviews the derivatives and the trace of products of func-
tions in Sobolev Spaces.

Lemma 5.1. Take u, v ∈ H1(Ω;C) ∩ L∞(Ω;C). Then uv ∈ H1(Ω;C), ∇(uv) =
u∇v + v∇u and γ(uv) = γ(u)γ(v). If in addition v ≥ c > 0 almost everywhere
then u/v ∈ H1(Ω;C), ∇(u/v) = ∇u/v − u∇v/v2 and γ(u/v) = γ(u)/γ(v).

Proof. It easily follows from [18, Section 5.5, Theorem 1] and [19, Lemma 7.5]. �
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We need the following preliminary result, which follows from a straightforward
calculation by Lemma 5.1 and Proposition 3.3. The proof is left to the reader.

Lemma 5.2. Let K × {ϕi} be a set of measurements. Then uiku
j
k ∈ H1(Ω) is the

unique solution to the problem

(33)
{
−div (a∇(u)) = 2keijk − 2Eijk in Ω,
u = ϕiϕj on ∂Ω,

for every k, i, j.

We are now in a position to prove the reconstruction formula for q given in
Theorem 2.7. Recall that if we consider a proper set of measurements K×{ϕi} we
have that

(34) tr(e) =
∑
k,i

eiik ≥ c > 0 in Ω′,

for some c > 0.

Theorem 2.7. Let K×{ϕi} be a proper set of measurements. Suppose q ∈ H1(Ω).
Then log q is the unique solution to the problem{

−div (G tr(e)∇u) = −div (G∇ (tr(e))) + 2
∑
k,i

(
Eiik − keiik

)
in Ω′,

u = log q|∂Ω′ on ∂Ω′.

Proof. By Proposition 3.3 we infer that uik, u
j
k ∈ H1(Ω) ∩ L∞(Ω). Therefore, by

Lemma 5.1 we get that uiku
j
k ∈ H1(Ω) ∩ L∞(Ω). Since q ∈ H1(Ω) ∩ L∞(Ω) we

obtain that eijk ∈ H1(Ω). Hence by Lemma 7.5 in [19] we have

∇(uiku
j
k) = ∇

(
eijk /q

)
= (∇eijk − e

ij
k ∇(log q))/q,

with log q ∈ H1(Ω). As a result, in view of Lemma 5.2 it is immediate to show that
for every v ∈ D(Ω)(

2keijk − 2Eijk

)
(v) = −div(G∇eijk )(v) + div

(
Geijk ∇(log q)

)
(v),

whence the result follows by summing all these equations with i = j. �

5.3. Numerical Experiments. In this section we shall do some numerical simu-
lations of the reconstruction algorithm discussed in the last section. FreeFem++
has been used. The exact formulae given in Theorem 2.6 and Theorem 2.7 will be
used to image the electromagnetic parameters a and q.

In both cases, the construction of proper sets of measurements by means of the
multi-frequency approach turns out to be effective. Further, in two dimensions, the
reconstruction procedure gives better results than the one described in [4]: with
about one seventh of the available data, the reconstruction errors are about half of
the previous ones.

5.3.1. Two-Dimensional Example. Since the two-dimensional case has been tested
thoroughly in [4], we have decided to study the same example in order to be able
to make a comparison. There are two main differences. First, the formula for the
reconstruction of q is not the same. Second, in our case the available data is smaller
since we do not use the cross-frequency data.
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Figure 2. The reference parameters.

(a) The coefficient a. (b) The coefficient q.

Figure 3. The reconstructed parameters.

(a) The coefficient a∗. (b) The coefficient q∗.

Let Ω = B(0, 1) be the unit disk. We use a uniform mesh of the disk with about
3000 triangles and 1600 vertices. The coefficients are given by

a =


2 in B,
1.2 in C,
2.5 in E,
1 otherwise,

q =


2 in B,
1.8 in C,
1.2 in E,
1 otherwise.

The set B is the rectangle with diagonal (0, 0.4)− (0.3, 0.5). The set C is the area
delimited by the curve t 7→ (0.3 + ρ(t) cos(t),−0.2 + ρ(t) sin(t)), where ρ(t) =
(20 + 3 sin(5t) − 2 sin(15t) + sin(25t))/100. The set E is the ellipse of centre
(−0.3, 0.1), with vertical axis of length 0.3 and horizontal axis of length 0.2. These
parameters represent three inclusions of different contrast in a homogeneous back-
ground medium. This is the typical practical situation, since cancerous tissues have
typically higher values in the parameters [28]. The coefficients a and q are shown
in Figure 2.

Let Ω′ = B(0, 0.8) be the subdomain where the internal energies are constructed
(see Section 5.1). We also suppose that a and q are known in Ω \ Ω′. In view of
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Table 2. A comparison between the numerical experiments car-
ried out in [4] and in this work.

Numerical experiments
in [4]

Numerical experiments
in this work

Illuminations 1, x1, x2 x1 + 2, x2 + 2

Frequencies K 1, 3, 7 1, 3, 7

Number of energies 81 12
‖a− a∗‖2 3.5 · 10−1 1.6 · 10−1

‖q − q∗‖2 1.5 · 10−1 0.8 · 10−1

Theorem 4.13, we choose the illuminations x1+2 and x2+2 andK = {1, 3, 7}. In [4],
the boundary conditions 1, x1, x2 and the same K were chosen: these illuminations
satisfy the hypotheses of Theorem 4.13.

Let a∗ and q∗ denote the approximated coefficients. We first reconstruct G =
a∗/q∗ in x ∈ Ω′ by means of the formula 10

a∗

q∗
(x) = 2

tr(ek) tr(Ek)− tr(ekEk)

|∇(ek/tr(ek))|22 tr(ek)2
(x),

averaging over all the k ∈ K such that the denominator of the right hand side is
bigger than 10−2. Since for every x ∈ Ω′ the set of such k is not empty, the chosen
set of measurements turns out to be proper in Ω′.

Then, we use Theorem 2.7 to image log q∗ ∈ H1
0 (Ω′):

−div (G tr(e)∇(log q∗)) = −div (G∇ (tr(e))) + 2
∑
k∈K

2∑
i=1

(
Eiik − k eiik

)
in Ω′.

Finally, a∗ is given by a∗ = Gq∗, which, in absence of noise, gives a good approxi-
mation. The reconstructed coefficients are shown in Figure 3.

In Table 2 we compare these findings with the numerical experiments performed
in [4]. Even if the non-availability of the cross-frequency data makes the number
of measurable internal energies much smaller (about one seventh), the L2 norms of
the errors a − a∗ and q − q∗ in this work are about half the corresponding norms
obtained in [4].

5.3.2. Three-Dimensional Example. Take Ω = B(0, 1) and Ω′ = B(0, 0.8). We
use a mesh with about 30000 tetrahedra and 6000 vertices. For simplicity, we
choose a = 1 and q = 1 + 0.8χB(0,0.3) and are interested in imaging the elec-
tric permittivity q. In view of Theorem 4.14, we choose the set of measurements
{1, 3, 7}×{x1 +2, x2 +2}, which a posteriori turns out to be proper in Ω′. The same
reconstruction procedure described in the two-dimensional example is used. The
reconstruction error is ‖q − q∗‖2 ≈ 1.3 · 10−1. A comparison between the reference
and the reconstructed parameters is shown in Figure 4.
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Figure 4. A section of the electric permittivity q in Ω′.

(a) The reference parameter. (b) The reconstructed
parameter.
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