
Report no. OxPDE-17/02

STABILITY OF TRANSONIC SHOCKS IN STEADY

SUPERSONIC FLOW PAST MULTIDIMENSIONAL

WEDGES

by

Gui-Qiang G Chen

University of Oxford

Oxford Centre for Nonlinear PDE
Mathematical Institute
University of Oxford
Andrew Wiles Building
ROQ, Woodstock Road
Oxford, UK
OX2 6GG May 2017

and

Beixiang Fang

Shanghai Jiao Tong University



STABILITY OF TRANSONIC SHOCKS IN STEADY SUPERSONIC

FLOW PAST MULTIDIMENSIONAL WEDGES

GUI-QIANG CHEN AND BEIXIANG FANG

Abstract. We are concerned with the stability of multidimensional (M-D) transonic

shocks in steady supersonic flow past multidimensional wedges. One of our motivations

is that the global stability issue for the M-D case is much more sensitive than that for

the 2-D case, which requires more careful rigorous mathematical analysis. In this paper,

we develop a nonlinear approach and employ it to establish the stability of weak shock

solutions containing a transonic shock-front for potential flow with respect to the M-D

perturbation of the wedge boundary in appropriate function spaces. To achieve this, we

first formulate the stability problem as a free boundary problem for nonlinear elliptic

equations. Then we introduce the partial hodograph transformation to reduce the free

boundary problem into a fixed boundary value problem near a background solution with

fully nonlinear boundary conditions for second-order nonlinear elliptic equations in an

unbounded domain. To solve this reduced problem, we linearize the nonlinear problem

on the background shock solution and then, after solving this linearized elliptic problem,

develop a nonlinear iteration scheme that is proved to be contractive.
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1. Introduction

We are concerned with the stability of multidimensional (M-D) transonic shocks in

steady supersonic flow past M-D wedges. In this paper, we focus on the fluid flow governed

by the potential flow equation:

div
(
ρ(|Dϕ|2)Dϕ

)
= 0, (1.1)

where ϕ = ϕ(x) is the potential of the velocity field in x = (x1, · · · , xn) ∈ R
n, ρ is the

density with

ρ(q2) =
(
1− γ − 1

2
q2
) 1

γ−1

from Bernoulli’s law for polytropic gases of adiabatic exponent γ > 1 by scaling, and

D := (∂x1
, · · · , ∂xn) is the gradient in x.

Then the potential flow equation (1.1) can be written as

n∑

i,j=1

aij(Dϕ)∂xixjϕ = 0,

where

aij(Dϕ) =




c2(|Dϕ|2)− |∂xiϕ|2 , i = j,

−∂xiϕ∂xjϕ, i 6= j,

with c(q2) =
(
1− γ−1

2 q2
)1/2

being the sonic speed. Denote A(Dϕ) :=
[
aij(Dϕ)

]
n×n

.

For an upstream supersonic flow past a straight wedge, a flat shock-front is formed in

the flow (see Fig. 1.1). When the wedge angle is less than the critical angle, the shock-

front may be attached to the wedge edge. There exist shock-fronts of two different types

depending on the downstream flow behind them: Transonic (supersonic-subsonic) shock-

fronts and supersonic-supersonic shock-fronts. For a given two-dimensional (2-D) wedge

which produces an attached shock-front, there are two admissible shock solutions that

satisfy both the Rankine-Hugoniot conditions and the entropy condition. The weaker one

may be a supersonic-supersonic shock-front or a transonic shock-front, while the stronger

one is always a transonic shock-front (cf. [11, 19]). It is analogous for the M-D case (see

§2). The non-uniqueness and related stability issues of such M-D steady shock waves have

been longstanding open problems in mathematical fluid mechanics, which have attracted

many mathematical scientists including Busemann [2], Meyer [32], Prandtl [34], Courant-

Friedrichs [11], and von Neumann [38]; also see [1], [4]–[10], [12, 15, 18, 24, 36, 37, 41], and

the references cited therein. In this paper, we are interested in the stability problem of the

M-D transonic shock-fronts, behind which the flow is fully subsonic.
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Figure 1.1. The shock-front in steady supersonic flow past an M-D wedge

For the 2-D case, local solutions involving a supersonic-supersonic shock around the

curved wedge vertex were first constructed by Gu [18], Li [24], Schaeffer [36], and the

references cited therein. Global potential solutions are constructed in [7, 8, 11, 40, 41]

when the wedge has certain convexity, or the wedge is a small perturbation of the straight-

sided wedge with fast decay in the flow direction. In Chen-Zhang-Zhu [6], two-dimensional

steady supersonic flows governed by the full Euler equations past Lipschitz wedges were

systematically analyzed, and the existence and stability of supersonic Euler flows in BV

were established via a modified Glimm difference scheme (cf. [16]), when the total variation

of the tangent angle function along the wedge boundary is suitably small. Furthermore, the

L1–stability and uniqueness of entropy solutions in BV containing the strong supersonic-

supersonic shock were established in Chen-Li [5]. The stability of transonic shocks under a

perturbation of the upstream flow, or a perturbation of wedge boundary, has been studied

in Chen-Fang [10] for the potential flow and in Fang [15] for the Euler flow with a uniform

Bernoulli constant. In particular, the stability of transonic shocks in the steady Euler flows

with a uniform Bernoulli constant was first established in the weighted Sobolev norms in

Fang [15], while the downstream asymptotic decay rate of the shock speed at infinity

for the weak transonic shock solution for the full Euler equations has been achieved in

Chen-Chen-Feldman [4]. Also see Yin-Zhou [39] for the stability of strong transonic shock

solutions.

For the M-D case, local solutions involving a supersonic-supersonic shock past a 3-D

wing were first constructed by Chen [9]. One of our motivations in this paper is that the

global stability issue for the M-D case is much more sensitive than that for the 2-D case,

which requires more careful rigorous mathematical analysis. In this paper, we develop

a nonlinear approach and employ it to establish the stability of weak shock solutions
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containing a transonic shock-front with respect to the M-D perturbation of the wedge

boundary in appropriate function spaces.

To achieve this, we first formulate the stability problem as a free boundary problem for

nonlinear elliptic equations. Then we introduce the partial hodograph transformation to

reduce the free boundary problem into a fixed boundary value problem near a background

solution with fully nonlinear boundary conditions for second-order nonlinear elliptic equa-

tions in an unbounded domain. To solve this reduced problem, we linearize the nonlinear

problem on the background shock solution and then, after solving this linearized elliptic

problem, employ a nonlinear iteration scheme that is proved to be contractive. For this,

the well-posedness theory for the corresponding linearized elliptic problem also plays an

important role in this stability analysis of the transonic shocks.

The linearized problem here is a boundary value problem of elliptic equations in an

unbounded domain of a dihedral angle. The singularities of the solution near the edge

with the dihedral angle and the asymptotic behavior at infinity are two important aspects

for such problems. As far as we have known, there have been plenty of literature for the

elliptic problems in a domain with conical or/and edge singularities; see [3, 13, 14, 17], [20]–

[23], [26]–[31], [33, 35], and the references cited therein. In this paper, the well-posedness

of the linearized problem can be obtained by directly applying the results established by

Maz’ya, Plamenevskij, and others in [23], [26]–[31], and [35]. According to the theory,

the linearized elliptic problem can be well-posed in weighted Sobolev spaces or weighted

Hölder spaces, whose weights describe the singularity of the solution near the edge and the

asymptotic behavior at infinity simultaneously. It is shown that the admissible weights are

essentially associated with the eigenvalues of the deduced elliptic boundary value problem

in an angular domain; see [23, 28, 31] for the rigorous definitions and related details. We

calculate an example of the eigenvalues for oblique derivative boundary value problems of

the Poisson equation in an angular domain in the appendix, which is used in this paper. It

turns out that, for these problems, there are countable many eigenvalues and the admissible

weights are separated into countable many intervals according to these eigenvalues. Then

there arises an interesting and important difference between an M-D (n ≥ 3) dihedral-

angled wedge, whose edge is a straight line or a hyperplane, and a 2-D one whose edge

shrinks to a point. Roughly speaking, only one interval of admissible weights was proved to

be valid in [26, 35] for the M-D edge singularity of the domain for the linear theory, while

there are countable many intervals of admissible weights that are valid for the 2-D corner

singularity; cf. [21, 23, 28]. That is, there are much more admissible weights that are valid

for the 2-D case than for the M-D case. It is this difference that will lead us to different

stability consequences for the M-D case from the 2-D case: The M-D stability result is

established in this paper only for the weak transonic shocks, while the 2-D stability results

can be established for both the weak and strong ones.

For our stability problem, the distribution of eigenvalues for the linearized problem is

closely related to the angle between the velocity vector behind the shock-front and the

outer normal of the shock polar in the (u, v)–plane, whose tangent value, according to the

shock polar, is positive for weak transonic shocks, while negative for strong ones; see §6 and
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§8. This fact will result in different stability consequences for weak transonic shocks and

strong ones for the M-D case. In fact, the only valid admissible interval of weights for the

weak transonic shocks satisfies the property that the solution is physically reasonable, that

is, the velocity should be bounded; while the weights for the strong transonic shocks fail to

satisfy this property. Therefore, for the M-D transonic shocks, the stability of weak ones

can be established in this paper, while the stability of the strong ones cannot be established

via this analysis regime; see §6 for more details. However, for the 2-D transonic shocks,

since there are countable many valid admissible intervals of weights, we can choose one of

them, accordingly for weak and strong ones, such that the solution is physically reasonable;

see §8 for more details.

Therefore, it is also interesting to question whether the stability of the strong transonic

shocks for the M-D case is still valid. For the stability of strong transonic shocks, the

nature of the boundary condition is significantly different from the weak transonic shock

case. Such a difference may affect the regularity of solutions, as well as the asymptotic

behavior, in general. It requires further understanding of some special features of the

problem along the wedge edge to ensure that there exists a smooth solution. A different

approach may be required to handle this case, which is currently under investigation. In

this regard, we notice that an instability result has been observed recently in Li-Xu-Yin

[25].

The organization of this paper is as follows. In §2, we establish the shock polar for the

M-D shock-fronts for the potential flow equation (1.1). In §3, we formulate the stability

problem as a free boundary problem and describe our main theorem. In §4, we introduce

the weighted norms applied in this paper measuring the perturbations and provide the well-

established theory for boundary value problems of the Poisson equation in a dihedral angle.

In §5, we introduce the partial hodograph transformation to reduce the free boundary

problem into a fixed boundary value problem and describe the theorem which will be

proved in §6–7. In §6, we analyze the regularity of solutions near the wedge edge by

linearizing the nonlinear stability problem. In §7, we develop an iteration scheme and

establish its convergence, which completes the proof of our main theorem. In §8, different

from the M-D case, we show that all the weak and strong transonic shock solutions are

conditionally stable in the 2-D case, for which the strong one has even better regularity

near the wedge vertex. For self-containedness, in the appendix, we give a sketch of the

proof of Theorem 4.4.

2. The Shock Polar for Multidimensional Shock-Fronts

Assume that the velocity of the uniform supersonic flow ahead of a shock-front S is

v− = (q0, 0, 0, · · · , 0)⊤, and the velocity of the uniform flow behind S is v = (v1, v2,v
′)⊤

with v′ = (v3, · · · , vn). Then the corresponding potential functions are

ϕ−(x) = q0x1, ϕ+(x) = v1x1 + v2x2 + v′ · x′,

respectively, where x = (x1, x2, · · · , xn)⊤ = (x1, x2,x
′)⊤ with x′ = (x3, · · · , xn)⊤. Let

ϕ(x) = ϕ−(x)− ϕ+(x) = (q0 − v1)x1 − v2x2 − v′ · x′.



6 GUI-QIANG CHEN AND BEIXIANG FANG

Then the Rankine-Hugoniot conditions on S can be written as

Dϕ ·
(
ρ(
∣∣Dϕ+

∣∣2)Dϕ+ − ρ(
∣∣Dϕ−

∣∣2)Dϕ−
)
= 0, (2.1)

ϕ(x) = 0. (2.2)

Condition (2.1) indicates the conservation of mass across the shock-front, and condition

(2.2) implies that the tangential components of the velocity are continuous across the

shock-front.

Now we determine the position of the shock-front and velocity v behind it, for the given

wedge and the uniform incoming supersonic flow v−. To this end, the rigidity assumption

is imposed on the flow along the wedge surface:

v · ν = 0, (2.3)

where ν is the unit normal of the wedge.

Condition (2.1) can be rewritten as
(
ρ+ ρ−

)
q0v1 − ρq2 − ρ−q20 = 0, (2.4)

where ρ− = ρ(q20), q = |v|, and ρ = ρ
(
q2
)
. Then the admissible solution v to equation

(2.4) can be described by a shock balloon rotating the 2-D shock polar around the v1–axis;

see Fig. 2.1(a).

Since the shock-front is attached to the wedge edge, which is assumed to be the hyper-

plane spanned by the unit vectors τ j = (τ1, 0, · · · , τj, · · · , 0)⊤, j = 3, · · · , n, with τj the

j–th component, we can differentiate condition (2.2) along the edge to obtain

q0τ1 = v1τ1 + vjτj , j = 3, · · · , n, (2.5)

which implies that v− − v is orthogonal to τ j . Thus, the M-D shock polar determined by

the Rankine-Hugoniot conditions (2.1)–(2.2) is the intersection curve of the shock balloon

determined by (2.4) and the hyperplanes in (2.5), which is similar to the 2-D shock polar,

when such an intersection curve exists; see loop QS∗N in Fig. 2.1(b).

Finally, for a given wedge, the rigidity assumption (2.3) yields that v should also be

tangential to the wedge plane, plane O1O2W , which intersects with the shock balloon at

loop P1P2 when the dihedral wedge angle is less than the critical value; see Fig. 2.1(c).

Therefore, the velocity behind the shock-front must be determined by the intersection

points A and B of loop P1P2 and the shock polar QS∗N ; see Fig. 2.1(d). Each intersection

point represents a shock solution, which is called the background solution, to our problem

for supersonic potential flow past a straight M-D wedge. Notice that, as the wedge angle

increases to the critical value, the intersection points A and B coincide with S∗; and when

it is larger than the critical value, there is no intersection point, which implies that the

shock-front cannot attach the wedge edge.

Both shock solutions determined by A and B satisfy the entropy condition, and the

shock strength of the solution represented by A is stronger than B. In addition, A must

correspond to a transonic shock solution, while B may correspond to a transonic or super-

sonic shock solution. The critical shock solution S∗ must be transonic. We are interested
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(a) The shock balloon for
admissible points satisfying

(2.4)

(b) The shock polar for
admissible points satisfying

(2.4) and (2.5)

(c) The velocity loop for
admissible points satisfying

(2.4) and the rigidity condition
on the wedge.

(d) The admissible shock
solutions for supersonic flow

around an M-D wedge.

Figure 2.1. The shock polar and shock solutions for a given M-D wedge

in the stability of transonic shocks, including the weak and strong transonic shocks on the

shock polar.

3. Formulation of the Stability Problem and Main Theorem

In this section, we formulate the stability problem as a free boundary problem for non-

linear elliptic equations and describe our main theorem for the stability results.

We first reformulate the coordinate system, for simplicity of presentation of the compu-

tation. Fix the x1–axis to be in the surface of the straight wedge and perpendicular to the

wedge edge, the x2–axis to be perpendicular to the wedge surface, and the x3–axis to be

parallel with the component of the velocity vector behind the shock-front on the (n− 2)-D

hyperplane {x1 = 0, x2 = 0}; see Fig. 3.1.

Assume that the wedge angle is αw. Then, for the background shock solution, the

velocity of the incoming flow ahead of the shock-front is

U−
0 = (q−0 cosαw,−q−0 sinαw, U

−
03, 0, · · · , 0)⊤
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Figure 3.1. The flow field under the reformulated coordinate system

with |U−
0 | =

√
(q−0 )

2 + (U−
03)

2, and the velocity behind the shock-front is

U+
0 = q+0 (cosω1, 0, cos ω3, 0, · · · , 0)⊤ ,

where ωj is the angle between U+
0 and the xj–axis for j = 1, 3; see Fig. 3.1.

By the Rankine-Hugoniot conditions, we have

U−
03 = q+0 cosω3,

cos2 ω1 + cos2 ω3 = 1.

Thus, the corresponding potential functions are

ϕ−
0 (x) = x1q

−
0 cosαw − x2q

−
0 sinαw + x3U

−
03, (3.1)

ϕ+
0 (x) = x1q

+
0 cosω1 + x3q

+
0 cosω3, (3.2)

and the location of the shock-front S0 is determined by

ϕ0(x) := ϕ−
0 (x)− ϕ+

0 (x) = 0, (3.3)

that is,

x1
(
q−0 cosαw − q+0 cosω1

)
− x2q

−
0 sinαw = 0.

Now assume that the wedge surface is perturbed by the perturbed surface:

Γw :=
{
x ∈ R

n : x2 = ϕw(x1,x
′), x1 > ϕe

w(x
′), x′ ∈ R

n−2
}
;

see Fig. 3.2. We investigate whether the background transonic shock solution (3.1)–(3.2)

with the position of shock-front determined by (3.3) is stable.

If the shock solution is stable, then Γs is denoted as the shock-front, D− as the supersonic

flow field ahead Γs, and D+ the subsonic flow field between Γs and Γw; see Fig. 3.2. Let

ϕ±(x) be the potential functions of the perturbed steady flow in D±, respectively. Then

we have
n∑

i,j=1

aij(Dϕ±)∂xixjϕ
± = 0 in D±. (3.4)
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Figure 3.2. The perturbed wedge and resulting perturbed shock-front

Let

ϕ(x) := ϕ−(x)− ϕ+(x). (3.5)

Then ϕ(x) in D+ is governed by

n∑

i,j=1

aij(Dϕ−Dϕ−)∂xixjϕ =

n∑

i,j=1

aij(Dϕ−Dϕ−)∂xixjϕ
− in D+. (3.6)

We assume that the fluid satisfies the rigidity condition on the wedge boundary Γw:

Hw(Dϕ;Dϕw) = 0 on Γw, (3.7)

where, with (Dx′ϕw)
⊤ = (∂x3

ϕw, · · · , ∂xnϕw),

Hw(Dϕ;Dϕw) := (−∂x1
ϕw, 1,−(Dx′ϕw)

⊤)⊤ · (Dϕ−Dϕ−).

On the shock front Γs, the Rankine-Hugoniot conditions hold:

ϕ(x) = 0 on Γs, (3.8)

Hs(Dϕ;Dϕ−) = 0 on Γs, (3.9)

where

Hs(Dϕ;Dϕ−) := Dϕ ·
(
ρ(
∣∣Dϕ− −Dϕ

∣∣2)(Dϕ− −Dϕ)− ρ(
∣∣Dϕ−

∣∣2)Dϕ−
)
.

Then the stability problem can be formulated as

Problem 3.1 (Free boundary problem): For the given perturbation of the wedge

surface ϕw (x1,x
′) and the given incoming supersonic flow ϕ−(x) := ϕ−

0 (x), determine ϕ(x)

and the free boundary Γs of domain D+ such that (3.6)–(3.9) hold. Moreover, ϕ−(x)−ϕ(x)

describes a subsonic flow behind the shock-front.
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The main purpose of this paper is to establish the following stability theorem for the

weak transonic shock solutions:

Theorem 3.1. Let
(
ϕ−
0 (x) ;ϕ+

0 (x)
)

be the weak transonic shock solution that is repre-

sented by B on the shock polar; see Fig. 2.1. If the wedge edge is not perturbed, that

is,

ϕe
w(x

′) ≡ 0, ϕw(0,x
′) ≡ 0 for all x′ ∈ R

n−2, (3.10)

and the perturbation ϕw (x1,x
′) of the wedge surface is sufficiently small, then there exists a

unique ϕ+ (x), which is also a small perturbation of ϕ+
0 (x), such that

(
ϕ−
0 (x);ϕ

+(x)
)

solves

Problem 3.1, i.e., the free boundary problem (3.6)–(3.9), with the perturbed shock-front Γs

determined by

ϕ (x) := ϕ−
0 (x)− ϕ+ (x) = 0.

This indicates that the weak transonic shock solution is conditionally stable.

We remark that the same results hold if ϕ−(x) is replaced by any smooth incoming

supersonic flow near the background potential function ϕ−
0 (x). This can be achieved by

the same arguments below without difficulties. For simplicity of presentation, we focus our

proof on Problem 3.1.

4. A Well-Posedness Theorem for Boundary Value Problems of the

Poisson Equation in a Dihedral Angle

We now present here a well-established theory on boundary value problems of the Poisson

equation in a dihedral angle established by Maz’ya, Plamenevskij, Reisman, and others in

[23], [26]–[31], [35], and the references therein, which will be employed for solving the free

boundary problem, Problem 3.1.

4.1. Weighted norms. As before, denote x = (x1, x2,x
′) ∈ R

n with x′ = (x3, · · · , xn) ∈
R
n−2. Let (r, ω) be the polar coordinates for (x1, x2) ∈ R

2 and ω∗ ∈ (0, 2π). Define an

angular domain K in R
2 with its boundaries γ± as in Fig. 4.1:

K =
{
(x1, x2) ∈ R

2 : |ω| < ω∗

2

}
,

γ± =
{
(x1, x2) ∈ R

2 : |ω| = ω± := ±ω∗

2

}
.

Then D = K × R
n−2 is a domain of dihedral angles in R

n, and Γ± = γ± × R
n−2 are its

two faces intersecting at edge E =
{
x : x1 = x2 = 0, x′ ∈ R

n−2
}
.

Definition 4.1. Define the following weighted Hölder norms:

‖u‖
Cℓ,α
β (D)

:= sup
x∈D

ℓ∑

|k|=0

r
β−ℓ−α+|k|
x

∣∣Dku(x)
∣∣

+ sup
x,y∈D

|x− y|−α
ℓ∑

|k|=0

∣∣rβ−ℓ+|k|
x Dku(x)− r

β−ℓ+|k|
y Dku(y)

∣∣, (4.1)
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where 0 < α < 1, ℓ = 0, 1, · · · , β ∈ R, rx =
√

x21 + x22, ry =
√

y21 + y22 , and Dk =

∂k1
x1

· · · ∂kn
xn

for multi-index k = (k1, · · · , kn) ∈ Z
n
+. Denote by Cℓ,α

β (D) the completion of

set C∞
c (D \ E ) under norm (4.1).

Remark. The weight β in (4.1) has simultaneous control for both the regularity of u near

edge E and the asymptotic behavior as rx → ∞. For our later use of the weighted Hölder

norms, we will employ double weights for different control for the regularity of u near edge

E and the asymptotic behavior. Let β0, β∞ ∈ R. Set

Cℓ,α
β0,β∞

(D) := Cℓ,α
β0

(D) ∩ Cℓ,α
β∞

(D)

with the weighted norm as

‖u‖(β0,β∞)
(ℓ,α;D) := ‖u‖

Cℓ,α
β0

(D)
+ ‖u‖

Cℓ,α
β∞

(D)
.

Definition 4.2. A multiplier in Cℓ,α
β (D) is a function ϕ such that

ϕu ∈ Cℓ,α
β (D) for any u ∈ Cℓ,α

β (D).

We denote the set of all the multipliers in Cℓ,α
β (D) by M Cℓ,α

β (D).

In fact, the multiplier space is independent of the weight power β as shown in Maz’ya–

Plamenevskij [30]:

Proposition 4.3. M Cℓ,α
β (D) = Cℓ,α

ℓ+α(D).

4.2. The well-posedness theorem. Consider the elliptic boundary value problem in the

dihedral angle D :

△xu = f in D , (4.2)

∂P±u = g± on Γ±, (4.3)

where △x := ∂x1x1
+ ∂x2x2

+△x′ with △x′ :=
∑n

j=3 ∂xjxj , and ∂P± := ∂ν± + α±∂τ± +

c± ·Dx′ with α± ∈ R, c± ∈ R
n−2, ν± the inward normal of Γ±, and τ± tangent vector to

Γ±, perpendicular to E and directed from E into D ; see Fig. 4.1.

Directly applying the results in [27, 29, 30, 35], we obtain the following theorem for the

boundary value problem (4.2)–(4.3). For completeness, we will describe the main steps of

the proof in the appendix.

Theorem 4.4. Let Φ = arctanα− + arctanα+. Suppose that

− Φ

ω∗
< σ < 0 or 0 < σ < − Φ

ω∗
, (4.4)

and β = 2 + α− σ. Then the operator of problem (4.2)–(4.3) induces the isomorphism

C2,α
β (D) ≈ C0,α

β (D)×
∏

±

C1,α
β (Γ±).

Moreover, suppose that both σ1 and σ2 satisfy (4.4), and βj = 2 + α− σj. Assume that

f ∈ C0,α
β1,β2

(D), g± ∈ C1,α
β1,β2

(Γ±).
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O

γ+

γ−

x1

x2

ω∗/2
ω∗/2

ν+

ν−

τ+

τ−

Figure 4.1. The angular domain K

Then solution u ∈ C2,α
β1

(D) of problem (4.2)–(4.3) is also in C2,α
β2

(D), that is, u ∈ C2,α
β1,β2

(D)

with the estimate:

‖u‖(β1,β2)
(2,α;D) ≤ C

(
‖f‖(β1,β2)

(0,α;D) +
∑

±

∥∥g±
∥∥(β1,β2)

(1,α;Γj)

)
. (4.5)

5. The Partial Hodograph Transformation

To solve Problem 3.1, the free boundary problem (3.6)–(3.9), our strategy is to fix

first the free boundary Γs. To achieve this, we introduce the following partial hodograph

transformation:

Px = y = (y1,y2,y
′)⊤ := (ϕ(x), x2 − ϕw(x1,x

′), x′)⊤,

which is invertible as ∂x1
ϕ 6= 0, and we denote its inverse by

P−1y = x = (x1,x2,x
′)⊤ := (u(y), y2 + ϕw(u(y),y

′), y′)⊤.

Taking the partial derivatives to the equation:

y1 = ϕ ◦ P−1(y)

with respect to yj, j = 1, · · · , n, we have

∂x1
ϕ =

1

∂y1u

(
1 + ∂x1

ϕw(u,y
′) ∂y2u

)
, ∂x2

ϕ = −∂y2u

∂y1u
,

∂xjϕ = − 1

∂y1u

(
∂yju− ∂xjϕw(u,y

′) ∂y2u
)
, j = 3, · · · , n,

that is,

Dϕ =
1

∂y1u
(1 + ∂x1

ϕw∂y2u,−∂y2u,−∂y3u+ ∂x3
ϕw∂y2u, · · · ,−∂ynu+ ∂xnϕw∂y2u)

⊤ .
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Thus, the Jacobi matrix of transformation P is

∂y

∂x
=




∂x1
ϕ ∂x2

ϕ ∂x3
ϕ · · · ∂xnϕ

−∂x1
ϕw 1 −∂x3

ϕw · · · −∂xnϕw

0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1



:=

1

∂y1u
J⊤,

where

J :=




1 + ∂x1
ϕw∂y2u −∂x1

ϕw∂y1u 0 · · · 0

−∂y2u ∂y1u 0 · · · 0

−∂y3u+ ∂x3
ϕw∂y2u −∂x3

ϕw∂y1u ∂y1u · · · 0
...

...
...

...
...

−∂ynu+ ∂xnϕw∂y2u −∂xnϕw∂y1u 0 · · · ∂y1u



.

After a direct computation, we also obtain

∂ (Dxϕ)

∂ (Dyu, u, y′)
:=




∂(∂x1ϕ)

∂(∂y1u)
· · · ∂(∂x1ϕ)

∂(∂ynu)

∂(∂x1ϕ)
∂u

∂(∂x1ϕ)
∂y3

· · · ∂(∂x1ϕ)
∂yn

∂(∂x2ϕ)

∂(∂y1u)
· · · ∂(∂x2ϕ)

∂(∂ynu)

∂(∂x2ϕ)
∂u

∂(∂x2ϕ)
∂y3

· · · ∂(∂x2ϕ)
∂yn

· · · · · · · · · · · · · · · · · · · · ·
∂(∂xnϕ)
∂(∂y1u)

· · · ∂(∂xnϕ)
∂(∂ynu)

∂(∂xnϕ)
∂u

∂(∂xnϕ)
∂y3

· · · ∂(∂xnϕ)
∂yn



n×(2n−1)

=

[
− 1

(∂y1u)
2J

∂y2u
∂y1u

W1
∂y2u
∂y1u

W3 · · · ∂y2u
∂y1u

Wn

]

n×(2n−1)

,

where Wj := (∂xjx1
ϕw(u,y

′), 0, ∂xjx3
ϕw(u,y

′), · · · , ∂xjxnϕw(u,y
′))⊤, with j = 1, 3, · · · , n.

Notice that

D2
xϕ =

∂(Dxϕ)

∂(Dyu, u, y′)




D2
yu

(Dyu)
⊤

∂y′

∂y




(2n−1)×n

∂y

∂x

= − 1

(∂y1u)
3JD

2
yuJ

⊤ +
∂y2u

(∂y1u)
2
W1(Dyu)

⊤J⊤ +
∂y2u

(∂y1u)
2
W ′∂y

′

∂y
J⊤

:= − 1

(∂y1u)
3JD

2
yuJ

⊤ + Jw,

where
∂y′

∂y
=

[
∂yi
∂yj

]

(n−2)×n

(i = 3, · · · , n and j = 1, · · · , n), W ′ := [W3, · · · ,Wn] and

Jw = Jw(D
2ϕw;Du, Dϕw(u,y

′)) :=
∂y2u

(∂y1u)
2
W1(Dyu)

⊤J⊤ +
∂y2u

(∂y1u)
2
W ′∂y

′

∂y
J⊤.

Then we have
n∑

i,j=1

aij∂xixjϕ = Tr(A⊤D2
xϕ)

= − 1
(
∂y1u

)3 Tr(AJD
2
yuJ

⊤) + Tr(AJw)
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= − 1
(
∂y1u

)3 Tr(J
⊤AJD2

yu) + Tr(AJw)

= − 1
(
∂y1u

)3
n∑

i,j=1

ãij∂yiyju+Φw,

where Ã = Ã⊤ = J⊤AJ :=
[
ãij

]
n×n

with ãij = ãij(Du;Dϕ−(u, y2,y
′);Dϕw(u,y

′)), and

Φw = Φw(D
2ϕw;Du;Dϕw(u,y

′)) := Tr(AJw).

Thus, under the partial hodograph transformation, the potential flow equation (3.6) be-

comes

− 1
(
∂y1u

)3
n∑

i,j=1

ãij∂yiyju+Φw =

n∑

i,j=1

aij∂xixjϕ
−
0 = 0. (5.1)

Under the partial hodograph transformation, Γw becomes

Γ1 =
{
y2 = 0, y1 > 0, y′ ∈ R

n−2
}
,

as shown in Fig. 5.1, and the boundary condition (3.7) on the wedge becomes

G1(Du;Dϕw(u,y
′)) = 0, (5.2)

where

G1(Du;Dϕw) :=
(
∂x1

ϕw∂x1
ϕ− − ∂x2

ϕ− +

n∑

j=3

∂xjϕw∂xjϕ
−
)
∂y1u

−(1 + |Dϕw|2)∂y2u+

n∑

j=3

∂xjϕw∂yju− ∂x1
ϕw.

The shock front Γs becomes a fixed boundary Γ2 = {y1 = 0, y2 > 0}, and the boundary

condition (3.8) becomes

G2(Du;Dϕw) = 0, (5.3)

where

G2(Du;Dϕw) := Hs(Dϕ(Du,Dϕw);Dϕ−
0 ).

Finally, since the wedge edge:
{
x ∈ R

n : x1 = ϕe
w(x

′), x2 = ϕ(x1,x
′), x′ ∈ R

n−2
}

is the intersection of the wedge surface and the shock-front, which yields that ϕ ≡ 0 on

the edge, by condition (3.8). Thus, the tangential derivatives of ϕ on the edge should be

0. Then, under the partial hodograph transformation,

∂yju = ∂xjϕ
e
w(y

′) (5.4)

on edge
{
y ∈ R

n : y1 = y2 = 0, y′ ∈ R
n−2

}
. Therefore, on the edge, u(0, 0,y′) = ϕe

w(y
′).

Remark 5.1. For the background transonic shock solution (ϕ−
0 (x);ϕ

+
0 (x)), we have

ϕ0(x) = ϕ−
0 (x)− ϕ+

0 (x) = x1
(
q−0 cosαw − q+0 cosω1

)
− x2q

−
0 sinαw,
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Figure 5.1. The domain after the partial hodograph transformation

and the corresponding partial hodograph transformation is

P0x = y = (y1,y2,y
′)⊤ := (ϕ0(x), x2, x′)⊤.

It is invertible since ∂x1
ϕ0 = q−0 cosαw − q+0 cosω1 > 0, and its inverse is

P−1
0 y = x = (x1,x2,x

′)⊤ := (u0(y), y2, y′)⊤,

where

u0(y) =
y1 + y2q

−
0 sinαw

q−0 cosαw − q+0 cosω1
.

Then we have

∂y1u0 =
1

q−0 cosαw − q+0 cosω1
> 0.

Therefore, the partial hodograph transformation is still invertible in the case that u(y) is

a small perturbation of u0(y) such that |∂y1u− ∂y1u0| is small enough.

We now solve the deduced fixed boundary value problem (5.1)–(5.4) near u0(y) and

prove the following theorem which implies our main theorem, Theorem 3.1.

Theorem 5.2. Let (ϕ−
0 (x);ϕ

+
0 (x)) be the weak transonic shock solution that is represented

by B on the shock polar in Fig. 2.1. Then there exist constants δ0 > 0 and σs > 0 depending

on the background solution such that, for any −1 < σ∞ ≤ 0 < σ0 < σs, if the wedge edge is

not perturbed, that is, (3.10) holds, and the perturbation of the wedge surface Γw satisfies

‖ϕw‖(β0,β∞)
(2,α;R+×Rn−2)

≤ δ ≤ δ0 (5.5)

for β0 = 1+ α− σ0 and β∞ = 1+α− σ∞, then there exists a unique solution u (y) to the

boundary value problem (5.1)–(5.4) satisfying

‖u− u0‖(β0,β∞)
(2,α;D) ≤ Kδ, (5.6)



16 GUI-QIANG CHEN AND BEIXIANG FANG

where K > 0 depends on the background solution, but is independent of δ0 > 0.

Remark 5.3. Theorem 5.2 will be proved via a nonlinear iteration scheme, in which the

linearized problem plays an important role. The linearized problem can be reformulated

as an oblique derivative boundary value problem of the Poisson equation, which can be

solved without conditions (5.4) on the edge, according to Theorem 4.4. Thus, it looks like

that problem (5.1)–(5.4) is over-determined, which is exactly the instability mechanism

for strong transonic solutions shown in [25]. In Theorem 5.2, since σ0 > 0, estimate (5.6)

yields that Du−Du0 ≡ 0 on edge
{
y1 = 0, y2 = 0, y′ ∈ R

n−2
}
, which indicates that, as

the wedge edge is not perturbed such that (3.10) holds, conditions (5.4) hold automatically,

and solution u(y) to problem (5.1)–(5.3) is indeed a solution to problem (5.1)–(5.4). Thus,

the instability mechanism for strong transonic shocks shown in [25] may not happen for

weak transonic shocks.

6. The Linearized Problem on the Background Shock Solution

To prove Theorem 5.2, we first linearize the nonlinear problem (5.1)–(5.3) on the back-

ground shock solution, then solve this corresponding linearized elliptic problem, and finally

develop a nonlinear iteration scheme that is proved to be contractive. Therefore, the well-

posedness theory for the linearized problem also plays an important role in our approach

for the stability analysis of the transonic shocks.

Let

u(y) = u0(y) + u̇(y).

Then the linearized problem for the nonlinear problem (5.1)–(5.3) on the background

solution u0(y) reads

n∑

i,j=1

ã0ij∂yiyj u̇ = −
(
∂y1u0

)3
f(u̇;ϕw) in D ,

∇DuGj(Du0; 0) ·Du̇ = gj(u̇;ϕw) on Γj, j = 1, 2,

where

ã0ij = ãij(Du0;Dϕ−
0 ; 0),

and the iteration terms f(u̇;ϕw) and gj(u̇;ϕw), j = 1, 2, will be specified later in §7. Note

that

∇DuG1(Du;Dϕw) =

(
∂(Dϕ)

∂(Du)

)⊤

∇DϕHw(Dϕ;Dϕw) = − 1
(
∂y1u

)2J
⊤∇DϕHw,

∇DuG2(Du;Dϕw) =

(
∂(Dϕ)

∂(Du)

)⊤

∇DϕHs(Dϕ;Dϕ−
0 ) = − 1

(
∂y1u

)2J
⊤∇DϕHs.

We have

∇DuG1(Du0; 0) = − 1
(
∂y1u0

)2J
⊤
0 ∇DϕHw(Dϕ0; 0),
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∇DuG2(Du0; 0) = − 1
(
∂y1u0

)2J
⊤
0 ∇DϕHs(Dϕ0;Dϕ−

0 ),

where ∇DϕHw(Dϕ0; 0) = (0, 1, 0, · · · , 0)⊤, ∇DϕHs(Dϕ0;Dϕ−
0 ) := ν = (ν1, · · · , νn)⊤

which is exactly the outer unit normal of the shock balloon, and

J0 := J(Du0; 0) =
1

q−0 cosαw − q+0 cosω1




q−0 cosαw − q+0 cosω1 0 0 · · · 0

−q−0 sinαw 1 0 · · · 0

0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1



.

Therefore, in this section, we deal with the linear boundary value problem of elliptic

type (u is still denoted as the unknown function):

n∑

i,j=1

ã0ij∂yiyju = f̂ in D , (6.1)

− q−0 sinαw∂y1u+ ∂y2u = ĝ1 on Γ1, (6.2)

(Du)⊤ · J⊤
0 ν = ĝ2 on Γ2. (6.3)

Then Theorem 4.4 can be employed to establish the following well-posedness theorem for

problem (6.1)–(6.3).

Theorem 6.1. Assume that
ν1
ν2

> 0. (6.4)

Then there exists a constant σs > 0 depending only on the parameters of the unperturbed

background transonic shock solution such that, for any

−1 < σ∞ ≤ 0 < σ0 < σs, (6.5)

if

f̂ ∈ C0,α
β0,β∞

(D), ĝj ∈ C1,α
β0,β∞

(Γj), j = 1, 2,

with β0 = 1 + α− σ0 and β∞ = 1 + α− σ∞, there exists a unique solution u ∈ C2,α
β0,β∞

(D)

to the boundary value problem (6.1)–(6.3) satisfying the following estimate:

‖u‖(β0,β∞)
(2,α;D) ≤ C

(
‖f̂‖(β0,β∞)

(0,α;D) +

2∑

j=1

‖ĝj‖(β0,β∞)
(1,α;Γj)

)
. (6.6)

Remark 6.2. For the weak transonic shock solution represented by point B on the shock

polar, condition (6.4) holds. However,
ν1
ν2

< 0 for the strong transonic shock solution

represented by point A, and
ν1
ν2

= 0 when point A coincides with point B. That is,

condition (6.4) does not hold for these two cases. See Figures 6.2–6.3.

We remark that, for the M-D case, if the incoming supersonic flow is perpendicular to

the edge, the background shock solution is the same as the shock solution for the 2-D flow.

However, there are differences between the M-D flow and 2-D flow, so that it is worth of
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Figure 6.1. The uniform incoming flow is perpendicular to the edge

dealing with the perpendicular case independently, for later comparison between these two

cases.

6.1. The case that the incoming supersonic flow is perpendicular to the edge.

In this case, ω1 = 0 (see Fig. 6.1), and the corresponding potential functions are

ϕ−
0 (x) = x1q

−
0 cosαw − x2q

−
0 sinαw,

ϕ+
0 (x) = x1q

+
0 .

Then we have

ϕ0(x) = ϕ−
0 (x)− ϕ+

0 (x) = x1
(
q−0 cosαw − q+0

)
− x2q

−
0 sinαw,

and the corresponding partial hodograph transformation becomes

P0x = y = (y1,y2,y
′)⊤ := (ϕ0(x), x2, x′)⊤,

with its inverse

P−1
0 y = x = (x1,x2,x

′)⊤ := (u0(y), y2, y′)⊤,

where

u0(y) =
1

q−0 cosαw − q+0

(
y1 + y2q

−
0 sinαw

)
.

Let

A0 = A(Dϕ+
0 ) = [a0ij ]n×n = (c+0 )

2




1− (M+
0 )2 0 · · · 0

0 1 · · · 0
...

...
...

...

0 0 · · · 1



,

and

J0 = J(Du0; 0) =
1

q−0 cosαw − q+0




q−0 cosαw − q+0 0 · · · 0

−q−0 sinαw 1 · · · 0
...

...
...

...

0 0 · · · 1



.
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Then, in equation (6.1),

Ã0 :=
[
ã0ij

]
n×n

= J⊤
0 A0J0.

Moreover, in the boundary condition (6.3), the unit normal ν = (ν1, ν2, 0, · · · , 0)⊤.

Let

Y = Py,

where P = A
− 1

2

0 (J−1
0 )⊤ is a nonsingular matrix, with

A
− 1

2

0 =
1

c+0




1√
1−(M+

0
)2

0 · · · 0

0 1 · · · 0
...

...
...

...

0 0 · · · 1



,

J−1
0 =

(
q−0 cosαw − q+0

)




1
q−
0
cosαw−q+

0

0 0 · · · 0

q−
0
sinαw

q−
0
cosαw−q+

0

1 0 · · · 0

0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1




.

Then
∂Y

∂y
=

[
∂yjYi

]
n×n

= P.

For u(y) = u(Y (y)),

Dyu = [∂yiu]n×1 = P⊤ [∂Yiu]n×1 = P⊤DY u,

and

D2
yu =

[
∂yiyju

]
n×n

= P⊤D2
Y uP.

Thus we have
n∑

i,j=1

ã0ij∂yiyju = Tr(Ã⊤
0 D

2
yu) = Tr(J⊤

0 A0J0 · P⊤D2
Y uP )

= Tr(PJ⊤
0 A0J0P

⊤ ·D2
Y u)

= △Y u.

Then equation (6.1) becomes

△Y u = f̂ . (6.7)

The boundaries Γ1 and Γ2 become

Γ1 =
{
Y2 = 0, Y1 > 0, Y ′ ∈ R

n−2
}
,

Γ2 =
{
Y2 = tanωs Y1, Y1 > 0, Y ′ ∈ R

n−2
}
,

where

tanωs =
q−0 cosαw − q+0

q−0 sinαw

√
1− (M+

0 )2.
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Figure 6.2. Condition (6.11) and the shock polar: Perpendicular cases

The boundary condition (6.2) becomes

∂Y2
u = g1 :=

c+0
q−0 cosαw − q+0

ĝ1, (6.8)

and the boundary condition (6.3) becomes

ν1√
1− (M+

0 )2
∂Y1

u+ ν2∂Y2
u = g2 := c+0 ĝ2, (6.9)

which can be rewritten under the polar coordinates for (Y1, Y2) as

1

r
∂ωu+ tan(ωs +Φs)∂ru =

cosΦs

cos(ωs +Φs)

g2
ν2

,

where

tanΦs =
1√

1− (M+
0 )2

ν1
ν2

.

Remark 6.3. Applying Theorem 4.4, we conclude that problem (6.7)–(6.9) can be well-

posed in the weighted Hölder space C2,α
β (D) for any admissible weight β := 1+α−σ with

σ satisfying

−1 < σ <
Φs

ωs
.
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On the other hand, we also need solution u to be physically reasonable such that the

velocity is bounded. Then Du should be bounded in D . Therefore, there exist valid

admissible weights β which are further applicable to our stability problem, only when

constant σs :=
Φs

ωs
satisfies the condition:

σs > 0, (6.10)

that is,

Φs > 0, or equivalently
ν1
ν2

> 0. (6.11)

Let Ψ = arccot(ν1ν2 ). Then condition (6.11) yields that

0 < Ψ <
π

2
. (6.12)

We remark that Ψ equals the angle between the velocity vector and the outer normal of

the shock polar (see Fig. 6.2). Then we can observe that, for the strong transonic shock

solution represented by point A on the shock polar,

π

2
< ΨA < π;

while, for the weak transonic shock solution represented by point B,

0 < ΨB <
π

2
.

This means that, via this analysis, the following well-posedness theorem, which is a direct

consequence of Theorem 4.4, can be established only for weak transonic shocks, that is,

the shock solution represented by point B.

Theorem 6.4. Suppose that (6.10) holds. Let

−1 < σ∞ ≤ 0 < σ0 < σs. (6.13)

Assume that

f̂ ∈ C0,α
β0,β∞

(D), gj ∈ C1,α
β0,β∞

(Γj), j = 1, 2,

where β0 = 1 + α − σ0 and β∞ = 1 + α − σ∞. Then there exists a unique solution

u ∈ C2,α
β0,β∞

(D) to the boundary value problem (6.7)–(6.9) satisfying the following estimate:

‖u‖(β0,β∞)
(2,α;D) ≤ C

(
‖f̂‖(β0,β∞)

(0,α;D) +

2∑

j=1

‖gj‖(β0,β∞)
(1,α;Γj)

)
. (6.14)

Then Theorem 6.1 is a direct consequence of Theorem 6.4.

6.2. The general case that the incoming supersonic flow may not be perpendic-

ular to the edge. In this case, |ω1| < π
2 (see Fig. 3.1). Taking P =

(
J−1
0

)⊤
, equation

(6.1) becomes
(
1−M2 cos2 ω1

)
∂Y1Y1

u− 2M2 cosω1 cosω3∂Y1Y3
u

+
(
1−M2 cos2 ω3

)
∂Y3Y3

u+ ∂Y2Y2
u+

n∑

i=4

∂YiYiu =
f̂

(c+0 )
2
,

(6.15)
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where M =
q+
0

c+
0

. The boundaries Γ1 and Γ2 become

Γ1 = {Y2 = 0, Y1 > 0, Y3 ∈ R} ,
Γ2 = {Y2 = tanωs Y1, Y1 > 0, Y3 ∈ R} ,

where

tanωs =
q−0 cosαw − q+0 cosω1

q−0 sinαw
.

The boundary condition (6.2) becomes

∂Y2
u = g1 :=

ĝ1

q−0 cosαw − q+0 cosω1
, (6.16)

and the boundary condition (6.3) becomes

ν1∂Y1
u+ ν2∂Y2

u+ ν3∂Y3
u = g2 := ĝ2. (6.17)

Now we rewrite the operator in equation (6.15) into the Laplacian. Let

P0 =




1√
1−M2 cos2 ω1

0 0 0

0 1 0 0

M2 cosω1 cosω3√
(1−M2)(1−M2 cos2 ω1)

0
√

1−M2 cos2 ω1

1−M2 0

0 0 0 In−3




n×n

,

and

X = P0Y.

Then equation (6.15) becomes

△Xu = f̂ , (6.18)

and the boundaries Γ1 and Γ2 become

Γ̃1 =
{
X2 = 0, X1 > 0, X ′ ∈ R

n−2
}
,

Γ̃2 =
{
X2 = tan ω̃sX1, X1 > 0, X ′ ∈ R

n−2
}

with

tan ω̃s =
q−0 cosαw − q+0 cosω1

q−0 sinαw

√
1−M2 cos2 ω1,

the boundary condition (6.16) becomes

∂X2
u = g1, (6.19)

and the boundary condition (6.17) becomes

ν̃1∂X1
u+ ν̃2∂X2

u+ ν̃3∂X3
u = g2, (6.20)
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where

ν̃ =




ν̃1

ν̃2

ν̃3

0

...

0




= P0ν =




ν1√
1−M2 cos2 ω1

ν2√
1−M2 cos2 ω1√

1−M2

(M2 cosω1 cosω3

1−M2 cos2 ω1
ν1 + ν3

)

0

...

0




.

The boundary condition can be rewritten under the polar coordinates for (X1,X2) as

1

r
∂ωu+ tan(ω̃s + Φ̃s)∂ru+

ν̃3
ν̃2

∂X3
u =

Φ̃s

cos(ω̃s + Φ̃s)

g2
ν̃2

, (6.21)

where

tan Φ̃s =
1√

1−M2 cos2 ω1

ν1
ν2

.

Remark 6.5. By Theorem 4.4, we conclude that problem (6.18)–(6.21) can be well-posed

in the weighted Hölder space C2,α
β (D) for any admissible weight β := 1 + α − σ with σ

satisfying

−1 < σ <
Φ̃s

ω̃s
.

On the other hand, we also need solution u to be physically reasonable such that the

velocity is bounded. Then Du should be bounded in D . Therefore, there exist valid

admissible weights β which are further applicable to our stability problem, only when

constant σ̃s :=
Φ̃s

ω̃s
satisfies the condition:

σ̃s > 0, (6.22)

that is,

Φ̃s > 0, or equivalently,
ν1
ν2

> 0. (6.23)

Let

Ψ := arccot(
ν1
ν2

).

Then (6.23) yields that

0 < Ψ <
π

2
. (6.24)

If the shock polar is projected onto the (v1, v2)–plane (see Fig. 6.3), then Ψ is the exact

angle between the projection of the velocity behind the shock-front and the projection

of the outer normal of the shock balloon. Moreover, we can observe that, for the strong

transonic shock solution represented by point A on the shock polar,

π

2
< ΨA < π;

while, for the weak transonic shock solution represented by point B,

0 < ΨB <
π

2
.



24 GUI-QIANG CHEN AND BEIXIANG FANG

Figure 6.3. Condition (6.23) and the shock polar: General cases

This also means that, via this analysis, the following well-posedness theorem, which is a

direct consequence of Theorem 4.4, can only be established for weak transonic shocks, that

is, the shock solution represented by point B. Therefore, we have the following similar

theorem to Theorem 6.4.

Theorem 6.6. Suppose that (6.23) holds. Let

−1 < σ∞ ≤ 0 < σ0 < σ̃s. (6.25)

Assume that

f̂ ∈ C0,α
β0,β∞

(D), gj ∈ C1,α
β0,β∞

(Γj), j = 1, 2,

where β0 = 1 + α − σ0 and β∞ = 1 + α − σ∞. Then there exists a unique solution

u ∈ C2,α
β0,β∞

(D) to the boundary value problem (6.1)–(6.3) satisfying the following estimate:

‖u‖(β0,β∞)
(2,α;D) ≤ C

(
‖f̂‖(β0,β∞)

(0,α;D) +

2∑

j=1

‖gj‖(β0,β∞)
(1,α;Γj)

)
. (6.26)

It can be seen that Theorem 6.1 is a direct consequence of Theorem 6.6.

7. The Iteration Scheme

Now we develop the iteration scheme to solve the nonlinear problem (5.1)–(5.3) to es-

tablish Theorem 5.2.

Let −1 < σ∞ ≤ 0 < σ0 be the constants defined in (6.13) or (6.25). Define

O(σ0,σ∞)
ǫ =

{
u ∈ C2,α

β0,β∞
(D) : ‖u‖(β0,β∞)

(2,α;D) ≤ ǫ
}
,

where β0 = 1 + α− σ0 and β∞ = 1 + α− σ∞.
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Let

D =
{
y = (y1, y2,y

′)⊤ ∈ R
n : y1 > 0, y2 > 0, y′ ∈ R

n−2
}
,

Γ1 =
{
y = (y1, y2,y

′)⊤ ∈ R
n : y1 > 0, y2 = 0, y′ ∈ R

n−2
}
,

Γ2 =
{
y = (y1, y2,y

′)⊤ ∈ R
n : y1 = 0, y2 > 0, y′ ∈ R

n−2
}
.

Let

u(y) = u0(y) + u̇(y),

v(y) = u0(y) + v̇(y).

Assume that v̇(y) ∈ O
(σ0,σ∞)
Kδ with K > 0 and 0 < δ ≪ 1 to be determined later. The

iteration scheme is determined by solving the linearized elliptic boundary value problem:

n∑

i,j=1

ã0ij∂yiyj u̇ = f(v̇;ϕw) in D , (7.1)

∇DuGj(Du0; 0) ·Du̇ = gj(v̇;ϕw) on Γj, j = 1, 2, (7.2)

where

f(v̇;ϕw) =
n∑

i,j=1

ã0ij∂yiyj v̇ −
(∂y1u0)

3

(∂y1v)
3

( n∑

i,j=1

ãij∂yiyjv − (∂y1v)
3Φw(D

2ϕw;Dv;Dϕw(v,y
′))

)
,

gj(v̇;ϕw) = ∇DuGj(Du0; 0) ·Dv̇ −Gj(Dv;Dϕw(v,y
′)), j = 1, 2.

Lemma 7.1. There exist a sufficiently small constant δ1 > 0 and a constant K > 1 that is

independent of δ1 such that, for any 0 < δ ≤ δ1 and v̇(y) ∈ O
(σ0,σ∞)
Kδ , there exists a unique

solution u̇(y) ∈ O
(σ0,σ∞)
Kδ to the boundary value problem (7.1)–(7.2). That is, the mapping

J : v̇ 7→ u̇

is well-defined in O
(σ0,σ∞)
Kδ .

Proof. Notice that

ãij − ã0ij = ãij(Dv;Dϕ−
0 ;Dϕw(v,y

′))− ãij(Du0;Dϕ−
0 ; 0)

=

ˆ 1

0
∇Duãij(t)dt ·Dv̇ +

ˆ 1

0
∇Dϕw

ãij(t)dt ·Dϕw(v,y
′),

where

∇Duãij(t) := ∇Duãij(Du0 + tDv̇;Dϕ−
0 ; tDϕw(v,y

′)),

∇Dϕw
ãij(t) := ∇Dϕw

ãij(Du0 + tDv̇;Dϕ−
0 ; tDϕw(v,y

′)).

Since

‖Dϕw(u0,y
′)‖

C0,α
α (D)

≤ δ,

and ãij is a smooth function with respect to all of its parameters, we have

‖ãij − ã0ij‖C0,α
α (D) ≤ CKδ.
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Since ∥∥∥
(∂y1u0)

3

(∂y1v)
3

− 1
∥∥∥
C0,α
α (D)

≤ CKδ,

we obtain via a direct computation and employing Proposition 4.3 that

∥∥∥
n∑

i,j=1

ã0ij∂yiyj v̇ −
(∂y1u0)

3

(∂y1v)
3

n∑

i,j=1

ãij∂yiyjv
∥∥∥
(β0,β∞)

(0,α;D)
≤ CK2δ2.

We can also analogously verify that

‖Φw‖(β0,β∞)
(0,α;D) ≤ C(1 +Kδ)δ,

since it is easy to check that

Φw =
∑

i,j 6=2

∂xixjϕw(u,y
′)Φij

w(Du;Dϕw),

with Φij
w being some smooth functions of Du and Dϕw.

Thus, we obtain that

‖f(v̇;ϕw)‖(β0,β∞)
(0,α;D) ≤ CK2δ2.

Notice that

∇DuG1(Du0; 0) ·Dv̇ −G1(Dv; 0) = −1

2
(Dv̇)⊤

ˆ 1

0
∇2

DuG1(t)dtDv̇,

G1(Dv;Dϕw(v,y
′))−G1(Dv; 0) =

ˆ 1

0
∇Dϕw

G1(t)dt ·Dϕw(v,y
′),

where

∇2
DuG1(t) := ∇2

DuG1(Du0 + tDv̇; 0),

∇Dϕw
G1(t) := ∇Dϕw

G1(Dv; tDϕw(v,y
′)).

Thus, we also obtain

‖g1(v̇;ϕw)‖(β0,β∞)
(1,α;Γ1)

≤ C
(
1 +K2δ

)
δ.

Similarly, we have

‖g2(v̇;ϕw)‖(β0,β∞)
(1,α;Γ2)

≤ C
(
1 +K2δ

)
δ.

Therefore, there exists a unique solution u̇ ∈ C2,α
β0,β∞

(D) with the following estimate:

‖u̇‖(β0,β∞)
(2,α;D) ≤ C

(
‖f(v̇;ϕw)‖(β0,β∞)

(0,α;D) +
∑

j=1,2

‖gj(v̇;ϕw)‖(β0,β∞)
(1,α;Γj )

)

≤ C
(
1 +K2δ

)
δ ≤ C1δ

for given K and sufficiently small δ.

Fix K = C1 from now on. Then we find that u̇(y) ∈ O
(σ0,σ∞)
Kδ , and the mapping

J : v̇ 7→ u̇

is well-defined in O
(σ0,σ∞)
Kδ . This completes the proof. �

Lemma 7.2. There exists a sufficiently small constant δ0 > 0 such that, for any 0 < δ ≤ δ0,

J is a contraction mapping in O
(σ0,σ∞)
Kδ .
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Proof. Denote that (u̇1, u̇2) := J (v̇1, v̇2). Then we have

n∑

i,j=1

ã0ij∂yiyj (u̇1 − u̇2) = f(v̇1;ϕw)− f(v̇2;ϕw) in D , (7.3)

∇DuGj(Du0, ; 0) ·D (u̇1 − u̇2) = gj(v̇1;ϕw)− gj(v̇2;ϕw) on Γj . (7.4)

For the right-hand side of equation (7.3),

f(v̇1;ϕw)− f(v̇2;ϕw) =
n∑

i,j=1

(
ã0ij −

(∂y1u0)
3

(∂y1v1)
3
ãij(v̇1)

)
∂yiyj (v̇1 − v̇2)

+

n∑

i,j=1

( (∂y1u0)3
(∂y1v1)

3
ãij(v̇1)−

(∂y1u0)
3

(∂y1v2)
3
ãij(v̇2)

)
∂yiyj v̇2

+
∑

i,j 6=2

(
∂xixjϕw(v1,y

′)− ∂xixjϕw(v2,y
′)
)
Φij
w(Dv1;Dϕw)

+
∑

i,j 6=2

∂xixjϕw(v2,y
′)
(
Φij
w(Dv1;Dϕw)− Φij

w(Dv2;Dϕw)
)
,

which, with analogous computations as in Lemma 7.1, implies

‖f(v̇1;ϕw)− f(v̇2;ϕw)‖(β0,β∞)
(0,α;D) ≤ CKδ‖v̇1 − v̇2‖(β0,β∞)

(2,α;D) .

For the right-hand side of the boundary condition (7.4) on Γj, j = 1, 2,

gj(v̇1;ϕw)− gj(v̇2;ϕw)

= ∇DuGj(Du0; 0) ·D (v̇1 − v̇2)−
(
Gj(Dv1; 0) −Gj(Dv2; 0)

)

+
(
Gj(Dv1; 0)−Gj(Dv2; 0)

)

−
(
Gj(Dv1;Dϕw(v1,y

′))−Gj(Dv2;Dϕw(v1,y
′))

)

−
(
Gj(Dv2;Dϕw(v1,y

′))−Gj(Dv2;Dϕw(v2,y
′))

)

=

ˆ 1

0

(
∇DuGj(Du0; 0)−∇DuGj(Dvt; 0)

)
dt ·D (v̇1 − v̇2)

+

ˆ 1

0

(
∇DuGj(Dvt; 0) −∇DuGj(Dvt;Dϕw(v1,y

′))
)
dt ·D (v̇1 − v̇2)

−
ˆ 1

0
∇Dϕw

Gj(Dv2;Dϕt
w)dt ·D

(
ϕw(v1,y

′)− ϕw(v2,y
′)
)
,

which implies

‖gj(v̇1;ϕw)− gj(v̇2;ϕw)‖(β0,β∞)
(1,α;Γj )

≤ CKδ‖v̇1 − v̇2‖(β0,β∞)
(2,α;D) .

Thus, we have

‖u̇1 − u̇2‖(β0,β∞)
(2,α;D)

≤ C
(
‖f(v̇1;ϕw)− f(v̇2;ϕw)‖(β0,β∞)

(0,α;D) +
∑

j=1,2

‖gj(v̇1;ϕw)− gj(v̇2;ϕw)‖(β0,β∞)
(1,α;Γj )

)

≤ CKδ‖v̇1 − v̇2‖(β0,β∞)
(2,α;D) .
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Then, choosing 0 < δ ≤ δ0 such that CKδ0 =
1
2 , we have

‖u̇1 − u̇2‖(β0,β∞)
(2,α;D) ≤ 1

2
‖v̇1 − v̇2‖(β0,β∞)

(2,α;D) ,

which implies that the mapping J is a contraction mapping in O
(σ0,σ∞)
Kδ . �

Combining Lemma 7.1 with Lemma 7.2, we obtain Theorem 5.2.

8. The Two-Dimensional Case

From Theorem 3.1 and Remarks 6.3 and 6.5, we can see that, for an M-D wedge (n ≥ 3),

the weak transonic shock solution, which is represented by point B on the shock polar

(see Fig. 2.1), is conditionally stable when the wedge edge is not perturbed and the

perturbation of the wedge surface is within some weighted Hölder spaces. However, the

stability of the strong transonic shock solution, represented by point A on the shock polar,

may require a different approach, since condition (4.4) for the admissible weights cannot

be improved. This fact is indeed interesting since, for the 2-D wedge, both the weak and

strong transonic shock solutions are conditionally stable, except the critical point S∗ (see

[10, 15]). Moreover, for the strong case, we can even have better regularity at the wedge

vertex. We now show these facts in this section.

For a 2-D wedge, its edge shrinks to a point. Thus, we can consider the stability problem

as a special situation for the case that the incoming supersonic flow is perpendicular to the

wedge edge with the perturbation of the whole fluid, independent of x′ or y′. Therefore,

the partial hodograph transformation and the nonlinear iteration scheme are still valid. On

the other hand, this yields the differences for the linearized elliptic problem (6.1)–(6.3),

since the singularity of D is a straight line for n = 3 and a hyperplane for n ≥ 4, while it

is only a point for n = 2 for which the better results can be achieved.

For n = 2, equation (6.1) becomes

2∑

i,j=1

ã0ij∂yiyju = f̂ , (8.1)

where

Ã0 :=
[
ã0ij

]
2×2

= J⊤
0 A0J0,

A0 = A(Dϕ+
0 ) =

[
a0ij

]
2×2

=
(
c+0

)2
[
1−

(
M+

0

)2
0

0 1

]
,

J0 = J (Du0; 0) =
1

q−0 cosαw − q+0

[
q−0 cosαw − q+0 0

−q−0 sinαw 1

]
.

The boundary condition (6.2) on Γ1 remains unchanged:

−q−0 sinαw∂y1u+ ∂y2u = ĝ1, (8.2)

and condition (6.3) on Γ2 is

(Du)⊤ · J0ν = ĝ2, (8.3)
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Figure 8.1. The two-dimensional case

where ν = (ν1, ν2)
⊤ = ∇DϕHs(Dϕ0), the unit outer normal of the 2-D shock polar.

Let

Y = Py,

where

P = A
− 1

2

0 (J−1
0 )⊤

with

A
− 1

2

0 =
1

c+0

[
1√

1−(M+
0
)2

0

0 1

]
,

J−1
0 = (q−0 cosαw − q+0 )




1
q−
0
cosαw−q+

0

0

q−
0
sinαw

q−
0
cosαw−q+

0

1


 .

Then equation (8.1) becomes

∂Y1Y1
u+ ∂Y2Y2

u = f̂ . (8.4)

The boundaries Γ1 and Γ2 become

Γ1 = {Y2 = 0, Y1 > 0} ,
Γ2 = {Y2 = tanωs Y1, Y1 > 0} ,
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where

tanωs =
q−0 cosαw − q+0

q−0 sinαw

√
1− (M+

0 )2.

The boundary condition (8.2) becomes

∂Y2
u = g1 :=

c+0
q−0 cosαw − q+0

ĝ1, (8.5)

and the boundary condition (8.3) becomes

ν1√
1− (M+

0 )2
∂Y1

u+ ν2∂Y2
u = g2 := c+0 ĝ2, (8.6)

which can be rewritten as

1

r
∂ωu+ tan(ωs +Φs)∂ru =

cosΦs

cos(ωs +Φs)

g2
ν2

,

under the polar coordinates for (Y1, Y2), where

tanΦs =
1√

1− (M+
0 )2

ν1
ν2

.

In the stability analysis of 2-D transonic shocks, problem (8.4)–(8.6) plays the same role

as problem (6.7)–(6.9) for the M-D case with the incoming supersonic flow orthogonal to

the edge. Notice that both problems have the same formulation with the only difference of

the dimension of the domain between them. Thus, it is Theorem A.2, rather than Theorem

4.4, that will be employed to establish the well-posedness of problem (8.4)–(8.6) so that

the following lemma can be concluded, which is better than Theorem 6.4.

Lemma 8.1. Let Λ be the set of eigenvalues λ satisfying (A.13):

Λ = {0} ∪
{
1 +

mπ +Φs

ωs
: m ∈ Z

}
.

Let σ1 < σ2 and βj = 1 + α− σj. If

[1 + σ1, 1 + σ2] ∩ Λ = ∅,

and

f ∈ C0,α
β1,β2

(D) , gj ∈ C1,α
β1,β2

(Γj) , j = 1, 2,

then there exists a unique solution u ∈ C2,α
β1,β2

(D) to the boundary value problem (8.4)–(8.6)

with the following estimate:

∥∥u
∥∥(β1,β2)

(2,α;D)
≤ C

(∥∥f
∥∥(β1,β2)

(0,α;D)
+

2∑

j=1

∥∥gj
∥∥(β1,β2)

(1,α;Γj)

)
. (8.7)

Remark 8.2. From the definition of the weighted Hölder norms, we can see that the weight

power σ1 describes the asymptotic behavior of solution u with the property that Du =

O(rσ1) as r → ∞, while the weight power σ2 describes the regularity of u at the origin

with the property that Du = O(rσ2) as r → 0. Since, in the stability analysis of the wedge

shocks, Du relates with the velocity field of the flow, we expect that Du should be bounded
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in D . Therefore, we need that

σ1 ≤ 0 ≤ σ2.

Then, in order to decide the applicable admissible weights, we need to calculate the eigen-

values corresponding to m = −1, 0, 1 in set Λ. By definition, −π
2 < Φs <

π
2 and 0 < ωs <

π
2 .

Thus, for m = −1,

λ−1 := 1 +
−π +Φs

ωs
< 0;

for m = 0,

λ0 := 1 +
Φs

ωs
:= 1 + σs;

and for m = 1,

λ1 := 1 +
π +Φs

ωs
> 2.

That is, we obtain the following inequality for the eigenvalues {λ−1, 0, λ0, λ1} ⊂ Λ:

λ−1 < 0, λ0 < λ1, or λ−1 − 1 < −1, σs < λ1 − 1.

Therefore, in order to decide the applicable admissible weights, we need to compare λ0 with

1, or equivalently, to compare σs with 0. Notice that σs is determined by the background

shock solution. One can verify that σs < 0 for the strong transonic shock represented by

A, σs > 0 for the weak transonic shock represented by B, and σs = 0 for the critical shock

solution represented by S∗ (see Fig. 8.1).

For the strong transonic shock solution represented by A on the shock polar, we have

σs =
Φs

ωs
< 0.

Then any σ1 and σ2 satisfying

max(−1, σs) < σ1 ≤ 0 ≤ σ2 < λ1 − 1

can be applicable weights. Since λ1 > 2, the regularity of velocity Du near the origin (the

wedge vertex) can be C1, or even better. Velocity Du decays slower than r−1 as r → ∞,

while Du decays slower than rσs in case σs > −1.

For the weak transonic shock solution represented by B, we have

σs =
Φs

ωs
> 0.

Then any σ1 and σ2 satisfying

−1 < σ1 ≤ 0 ≤ σ2 < σs

can be applicable weights, and solution u can be C1+σ2 near the origin (the wedge vertex),

while Du decays slower than rσ1 as r → ∞.

Concluding the above argument, we obtain the following theorem for the linearized

problem (8.1)–(8.3).

Theorem 8.3. Let
(
U−
0 ;U+

0

)
be a transonic shock solution on the shock polar (see Fig.

8.1).
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(i). If
(
U−
0 ;U+

0

)
is the strong transonic shock solution represented by A, which implies

that
ν1
ν2

< 0,

then, for any σA
0 and σA

∞ with

max
{
− 1,

Φs

ωs

}
< σA

∞ ≤ 0 ≤ σA
0 <

π +Φs

ωs
,

when

f ∈ C0,α

βA
0
,βA

∞

(D), gj ∈ C1,α

βA
0
,βA

∞

(Γj), j = 1, 2,

with βA
0 = 1 + α − σA

0 and βA
∞ = 1 + α − σA

∞, there exists a unique solution

u ∈ C2,α

βA
0
,βA

∞

(D) to the boundary value problem (8.1)–(8.3) satisfying the following

estimate:

∥∥u
∥∥(βA

0
,βA

∞)

(2,α;D)
≤ C

(∥∥f
∥∥(βA

0
,βA

∞)

(0,α;D)
+

2∑

j=1

∥∥gj
∥∥(βA

0
,βA

∞)

(1,α;Γj)

)
. (8.8)

(ii). If
(
U−
0 ;U+

0

)
is the weak transonic shock solution represented by B, which implies

that
ν1
ν2

> 0,

then, for any σB
0 and σB

∞ with

−1 < σB
∞ ≤ 0 ≤ σB

0 <
Φs

ωs
,

when

f ∈ C0,α

βB
0
,βB

∞

(D), gj ∈ C1,α

βB
0
,βB

∞

(Γj), j = 1, 2,

with βB
0 = 1 + α − σB

0 and βB
∞ = 1 + α − σB

∞, there exists a unique solution

u ∈ C2,α

βB
0
,βB

∞

(D) to the boundary value problem (8.1)–(8.3) satisfying the following

estimate:

∥∥u
∥∥(βB

0
,βB

∞)

(2,α;D)
≤ C

(∥∥f
∥∥(βB

0
,βB

∞)

(0,α;D)
+

2∑

j=1

∥∥gj
∥∥(βB

0
,βB

∞)

(1,α;Γj)

)
. (8.9)

Then, with an analogous nonlinear iteration argument as in §7 for n ≥ 3, we can obtain

the following stability theorem for both the weak transonic shock solution and the strong

one.

Theorem 8.4. Let
(
ϕ−
0 (x) ;ϕ+

0 (x)
)

be a transonic shock solution.

(i). If
(
ϕ−
0 (x) ;ϕ+

0 (x)
)

is the strong transonic shock solution that is represented by A

on the shock polar (see Fig. 8.1), then there exist δA0 > 0 sufficiently small and

σs :=
Φs

ωs
< 0, depending on the background solution, such that, for any

max {−1, σs} < σA
∞ ≤ 0 ≤ σA

0 <
π

ωs
+ σs,

when the perturbation of the wedge surface Γw is small in the sense that

‖ϕw(x1)‖(β
A
0
,βA

∞)

(2,α;R+) ≤ δ ≤ δA0 ,
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with βA
0 = 1+ α− σA

0 and βA
∞ = 1 + α− σA

∞, there exists a unique solution u(y)

to the boundary value problem (5.1)–(5.3) satisfying

‖u− u0‖(β
A
0
,βA

∞)

(2,α;D) ≤ Kδ,

where K > 0 depends on the background solution, but is independent of δA0 .

(ii). If
(
ϕ−
0 (x) ;ϕ+

0 (x)
)

is the weak transonic shock solution, that is, the one repre-

sented by B on the shock polar (see Fig. 8.1), then there exist δB0 > 0 sufficiently

small and σs :=
Φs

ωs
> 0, depending on the background solution, such that, for any

−1 < σB
∞ ≤ 0 ≤ σB

0 < σs,

when the perturbation of the wedge surface Γw is small in the sense that

‖ϕw(x1)‖(β
B
0
,βB

∞)

(2,α;R+) ≤ δ ≤ δB0 ,

with βB
0 = 1+α− σB

0 and βB
∞ = 1+α− σB

∞, there exists a unique solution u (y)

to the boundary value problem (5.1)–(5.3) satisfying

‖u− u0‖(β
B
0
,βB

∞)

(2,α;D) ≤ Kδ,

where K > 0 depends on the background solution, but is independent of δB0 .

Remark 8.5. When n = 2, we have the stability property for both the strong transonic

shock solution represented by A and the weak one represented by B, that is, for all the

transonic shock solutions on the shock polar except the critical one S∗. This result is better

than the result we have obtained for n ≥ 3 in §7, where only the stability property for the

weak transonic shock solution represented by B is obtained.

Appendix A. Proof of Theorem 4.4

For self-containedness, in this appendix, we give a sketch of the proof of Theorem 4.4,

based mainly on the results in Maz’ya, Plamenevskij, Reisman, and others in [23], [26]–[31],

and [35], and the references therein.

A.1. Function spaces and the equipped norms. We first quote the weighted norms

used in Maz’ya-Plamenevskij in [27]–[30].

A.1.1. Weighted Sobolev spaces in the dihedral angle D = K×R
n−2. Let β ∈ R, 1 < p < ∞,

ℓ = 0, 1, 2, · · · , and Dℓ =
{
Dk

xu : |k| = ℓ
}
. Define the weighted Sobolev norms:

‖u‖p
V ℓ
p,β(D)

:=

ℓ∑

|k|=0

ˆ

D
rp(β−ℓ+|k|)

∣∣Dk
xu

∣∣pdx, (A.1)

where r =
√

x21 + x22 and D = (∂x1
, ∂x2

, ∂x3
, · · · , ∂xn).

Denote by V ℓ
p,β(D) the completion of set C∞

c (D \ E ) under norm (A.1). Denote by
◦
V

ℓ

p,β(D ,Γ±) the completion of set C∞
c (D) under norm (A.1).
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Denote by V
ℓ−1/p
p,β (Γ±) the space of traces on Γ± of the functions in V ℓ

p,β(D), that is,

V
ℓ−1/p
p,β (Γ±) = V ℓ

p,β(D)/
◦
V

ℓ

p,β(D ,Γ±).

The corresponding trace norm is defined as

‖u‖
V

ℓ−1/p
p,β (Γ±)

:= inf

{
‖v‖V ℓ

p,β(D) : v − u ∈
◦
V

ℓ

p,β(D ,Γ±)

}
. (A.2)

A.1.2. The first type of weighted Sobolev spaces in the angular domain K. If n = 2, the

dihedral angle D becomes an angular domain K, and the edge R
n−2 shrinks to a point. In

this case, we can also define analogous weighted Sobolev spaces and norms in the angular

domain K, with y = (y1, y2)
⊤ ∈ K.

Define

‖u‖p
V ℓ
p,β(K)

:=

ℓ∑

|k|=0

ˆ

K
rp(β−ℓ+|k|)

∣∣Dk
yu

∣∣pdy, (A.3)

where r2 = y21 + y22 = |y|2 and Dk
y = ∂k1

y1 ∂
k2
y2 . Note that, by applying the blow-up transfor-

mation B : t = ln r, K becomes an infinite strip:

S :=
{
(t, ω) : t ∈ R, −ω∗

2
< ω <

ω∗

2

}
,

and

‖u‖V ℓ
p,β(K) ≈

∥∥e−σtu(et, ω)
∥∥
W ℓ

p(S )
,

where −σ = β − ℓ+ 2
p .

Denote by V ℓ
p,β(K) the completion of set C∞

c (K \ {O}) under norm (A.3). Denote by
◦
V

ℓ

p,β(K, γ±) the completion of set C∞
c (K) under norm (A.3).

Denote by V
ℓ−1/p
p,β (γ±) the space of traces on γ± of the functions in V ℓ

p,β(K), that is,

V
ℓ−1/p
p,β (γ±) = V ℓ

p,β(K)/
◦
V

ℓ

p,β(K, γ±).

The corresponding trace norm is defined as

‖u‖
V

ℓ−1/p
p,β (γ±)

:= inf

{
‖v‖V ℓ

p,β(K) : v − u ∈
◦
V

ℓ

p,β(K, γ±)

}
. (A.4)

A.1.3. The second type of weighted Sobolev spaces in the angular domain K. In the anal-

ysis, we also need the following weighted norms in K:

‖u‖p
Eℓ

p,β(K)
:=

ℓ∑

|k|=0

ˆ

K
rpβ

(
1 + rp(|k|−ℓ)

)∣∣Dk
yu

∣∣pdy. (A.5)

Then we also define the related function spaces and traces. Denote by Eℓ
p,β(K) the com-

pletion of set C∞
c (K \ {O}) under norm (A.5). Denote by

◦
E

ℓ

p,β(K, γ±) the completion of

set C∞
c (K) under norm (A.5).
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Denote by E
ℓ−1/p
p,β (γ±) the space of traces on γ± of the functions in Eℓ

p,β(K), that is,

E
ℓ−1/p
p,β (γ±) = Eℓ

p,β(K)/
◦
E

ℓ

p,β(K, γ±).

The corresponding trace norm is defined as

‖u‖
E

ℓ−1/p
p,β (γ±)

:= inf

{
‖v‖Eℓ

p,β(K) : v − u ∈
◦
E

ℓ

p,β(K, γ±)

}
. (A.6)

A.2. Sketch of the proof of Theorem 4.4. Now we specify the major steps of the proof

of Theorem 4.4 and the main consequences of each step.

A.2.1. Step 1: The well-posed theory for the homogeneous operator (−△Y , P± (DY ; 0)) in

the angular domain K. Consider the boundary value problem of the homogeneous operator

(−△Y , P± (DY ; 0)) in K, with Y = (Y1, Y2)
⊤ ∈ K:

△Y U (Y ) = F (Y ) in K, (A.7)

P± (DY ; 0)U (Y ) = G± (Y ) on γ±, (A.8)

where P± (DY ; 0) = ∂ν± + α±∂τ± .

The L2 well-posedness theory for boundary value problems for elliptic equations in an

angular or conical domain was established in Kondrat’ev [21], and later it was improved

to the Lp and Hölder well-posedness in Maz’ya-Plamenevskij [28]. We now employ their

results to obtain the well-posedness of the solutions to problem (A.7)–(A.8). Here we only

introduce the key conditions and theorems.

Let (r, ω) be the polar coordinates on K. Then we have

△Y :=
1

r2
P (∂ω, r∂r) =

1

r2

{
(r∂r)

2 + (∂ω)
2
}
,

P± (DY ; 0) :=
1

r
P±(∂ω, r∂r) =

1

r

{
∓∂ω + α± (r∂r)

}
.

Set v = r−σU , and apply transformation B. Then the boundary value problem (A.7)–(A.8)

becomes

∂ωωv + ∂ttv + 2σ∂tvc+ σ2v = e(2−σ)tF := f in S , (A.9)

∓ ∂ωv + α±∂tv + σα±v = e(1−σ)tG± := g± on Bγ±. (A.10)

Applying the Fourier transform with respect to t → ξ to problem (A.9)–(A.10), we obtain

a boundary value problem of an ordinary differential equation with parameter λ = σ + iξ:

∂ωω v̂ + (σ + iξ)2 v̂ = f̂ in ω− < ω < ω+, (A.11)

∓ ∂ωv̂ + (σ + iξ)α±v̂ = ĝ± on ω = ω±, (A.12)

for given σ and any ξ ∈ R. In order to apply the inverse Fourier transform, we need

the existence and uniqueness of solutions to the boundary value problems (A.11)–(A.12)

for any ξ ∈ R. Thus, in the case that the homogeneous problem of (A.11)–(A.12) does

not have nontrivial solutions, we can employ the inverse Fourier transform to obtain a

solution v to problem (A.9)–(A.10). Then U = rσv is the solution to problem (A.7)–(A.8).
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The complex number λ = σ + iξ is called an eigenvalue for problem (A.11)–(A.12) if the

homogeneous problem of (A.11)–(A.12) has nontrivial solutions. It can be checked that a

complex number λ is an eigenvalue for problem (A.11)–(A.12) if and only if

λ = 0, or λm =
mπ − Φ

ω∗
, m ∈ Z,

where Φ = arctanα− + arctanα+. Define the following set Λ to be the collection of the

above eigenvalues:

Λ := {0} ∪
{mπ − Φ

ω∗
: m ∈ Z

}
. (A.13)

Therefore, we can fulfill the above argument for σ satisfying

σ 6∈ Λ. (A.14)

With the above calculations, Theorems 4.1–4.2 in Maz’ya-Plamenevskij [28] directly lead

to the following theorem.

Theorem A.1. Let 1 < p < ∞, σ ∈ R, ℓ = 0, 1, 2, · · · , and β = ℓ + 2 − 2
p − σ. Let

F ∈ V ℓ
p,β(K) and G± ∈ V

ℓ+1−1/p
p,β (γ±). Then the boundary value problem (A.7)–(A.8) has

a unique solution u ∈ V ℓ+2
p,β (K) for all F and G± if and only if the line:

ℜλ = σ

contains no eigenvalues of problem (A.11)–(A.12), that is, σ satisfies (A.14). Moreover,

when (A.14) is satisfied, the following estimate holds:
∥∥e−σtu

∥∥
W ℓ+2

p (S )
≈ ‖u‖V ℓ+2

p,β (K) ≤ C
(
‖F‖V ℓ

p,β (K) +
∑

±

‖G±‖
V

ℓ+1−1/p
p,β (γ±)

)
. (A.15)

That is, operator (−△Y , P± (DY ; 0)) of problem (A.7)–(A.8) induces an isomorphism:

V ℓ+2
p,β (K) ≈ V ℓ

p,β (K)×
∏

±

V
ℓ+1−1/p
p,β

(
γ±

)
.

Theorem A.1 presents the Lp well-posedness for operator (−△Y , P± (DY ; 0)) of prob-

lem (A.7)–(A.8). The Schauder well-posedness for this problem has also been established

in [28, Theorems 5.1–5.2], which leads to the following theorem.

Theorem A.2. Suppose that σ satisfies (A.14). Then operator (−△Y , P± (DY ; 0)) of

problem (A.7)–(A.8) induces an isomorphism Cℓ+2,α
β (K) ≈ Cℓ,α

β (K) ×∏
± Cℓ+1,α

β (γ±) for

β = ℓ+ 2 + α− σ.

Moreover, let σ < σ be two real numbers satisfying that strip σ < ℜλ < σ in the

complex plane C contains no eigenvalues of problem (A.11)–(A.12). Assume σ1,σ2 ∈ (σ, σ),

βj = ℓ+ 2 + α− σj , and

f ∈ Cℓ,α
β1,β2

(K), g± ∈ Cℓ+1,α
β1,β2

(γ±).

Then there exists a unique solution u ∈ Cℓ+2,α
β1,β2

(K) of problem (A.7)–(A.8) with the following

estimate:

‖u‖(β1,β2)
(2,α;K) ≤ C

(
‖f‖(β1,β2)

(0,α;K) +
∑

±

‖g±‖(β1,β2)
(1,α;γ±)

)
.
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A.2.2. Step 2: Fredholm property of the nonhomogeneous operator (−△Y +1, P±(DY ;θ))

in the angular domain K. In this step, we consider the boundary value problem for the

nonhomogeneous operator A (θ) := (−△Y + 1, P±(DY ;θ)):

−△Y U(Y ) + U(Y ) = F (Y ) in K, (A.16)

P±(DY ;θ)U(Y ) = G±(Y ) on γ±, (A.17)

where P± (DY ;θ) := ∂ν± + α±∂τ± + iθ · c± with θ ∈ Sn−3, the unit sphere in R
n−2.

Different from the homogeneous operator (−△Y , P± (DY ; 0)), A (θ) does not induce

an isomorphism in general, unlike in Theorem A.1 or Theorem A.2 under the condition

that σ satisfies (A.14). In fact, operator A (θ) induces an Fredholm operator, as indicated

in the following theorem shown in Maz’ya-Plamenevskij [27]:

Theorem A.3. Suppose that σ satisfies (A.14), that is, the line:

ℜλ = σ

contains no eigenvalues of problem (A.11)–(A.12). Then the operator induced by the bound-

ary value problem (A.16)–(A.17) with β = ℓ+ 2− 2
p − σ:

A (θ) : E2
p,β(K) → E0

p,β(K)×
∏

±

E
1−1/p
p,β (γ±) (A.18)

is a Fredholm operator for all θ ∈ Sn−3.

In fact, a more general theorem has been proved in [27] for elliptic operators with higher

order. In applications, we usually need to verify that the kernel of A (θ) is 0-dimensional,

which is still a difficult problem. Fortunately, for our problem (A.16)–(A.17), we have a

better theorem for ℓ = 0 and p = 2, proved in Reisman [35, Lemma 3.1], by the energy

method. In this theorem, a sufficient condition is presented which ensures that operator

A (θ) is an isomorphism.

Theorem A.4. Suppose that

− Φ

ω∗
< σ < 0, or 0 < σ < − Φ

ω∗
, (A.19)

and β = 1− σ. Then the following holds:

(i). If U ∈ E2
2,β(K) and satisfies problem (A.16)–(A.17), then

‖U‖E2
2,β(K) ≤ C

(
‖F‖E0

2,β(K) +
∑

±

∥∥G±
∥∥
E

1−1/2
2,β (γ±)

)
; (A.20)

(ii). For any (F,G+, G−) ∈ E0
2,β(K) ×∏

±
E

1−1/2
2,β (γ±), there exists U ∈ E2

2,β(K) that

solves problem (A.16)–(A.17).

A.2.3. Step 3: L2 well-posedness for problem (4.2)–(4.3). Now we go back to our problem

(4.2)–(4.3). Applying the Fourier transform with respect to x′, we have

△X û(X;η)− η2û(X;η) = f̂(X;η) in K, for η ∈ R
n−2, (A.21)
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P±(DX ;η)û = ĝ±(X;η) on γ±, for η ∈ R
n−2, (A.22)

where X = (x1, x2)
⊤, and P±(DX ;η) := ∂ν± + α±∂τ± + iη · c±. We hope that, for

all η ∈ R
n−2, problem (A.21)–(A.22) has a unique solution û(X;η), so that the inverse

Fourier transform can be employed to obtain the solution for problem (4.2)–(4.3).

If η = 0, by applying Theorem A.1, problem (A.21)–(A.22) is solvable in space V 2
2,β(K)

for β = 1− σ with σ satisfying (A.14).

If η 6= 0, by introducing the coordinate transform:

(X;η) 7→ (Y,θ) := (|η|X, |η|−1
η),

and defining

U (Y ;η) := |η|2 û(|η|−1 Y ;η),

we find that problem (A.21)–(A.22) becomes a boundary value problem with the form as

problem (A.16)–(A.17) in Step 2:

△Y U(Y ;η)− U(Y ;η) = F (Y ;η) in K, for η ∈ R
n−2, (A.23)

P±(DY ;θ)U(Y ;η) = G±(Y ;η) on γ±, for η ∈ R
n−2, (A.24)

where P±(DY ;θ) := ∂ν± + α±∂τ± + iθ · c± with θ ∈ Sn−3, and

F (Y ;η) := f̂(|η|−1 Y ;η), G±(Y ;η) := |η| ĝ±(|η|−1 Y ;η).

Thus, Theorem A.4, well-prepared in Step 2, can be employed to establish the existence

and uniqueness, as well as the a priori estimates, of a solution to problem (A.23)–(A.24)

for any parameter η 6= 0. Then the inverse Fourier transform with respect to η leads to

a solution u of problem (4.2)–(4.3). We eventually obtain the following L2 well-posedness

theorem for problem (4.2)–(4.3).

Theorem A.5. Suppose that σ satisfies condition (A.19) and β = 1−σ. Then the operator

of the boundary value problem (4.2)–(4.3) induces an isomorphism

V 2
2,β(D) ≈ V 0

2,β(D)×
∏

±

V
1/2
2,β (Γ±).

Proof. It suffices to prove the unique solvability of problem (4.2)–(4.3) and to obtain the

following estimate for homogeneous boundary conditions:

‖u‖V 2
2,β(D) ≤ C ‖f‖V 0

2,β(D) . (A.25)

Under the assumption that σ satisfies condition (A.19), by applying Theorem A.4, there

exists a unique solution U(Y ;η) ∈ E2
2,β(K) for any η 6= 0. Then

u(x) = u(X,x′) = F−1
η→x′

(
|η|−2 U(Y ;η)

)

is the solution to problem (4.2)–(4.3). Noting that

‖u‖V 2
2,β(D) =

ˆ

Rn−2

|η|−2(β+1) ‖U‖2E2
2,β(K) dη,

‖f‖V 0
2,β(D) =

ˆ

Rn−2

|η|−2(β+1) ‖F‖2E0
2,β(K) dη,
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we obtain estimate (A.25), which completes the proof. �

A.2.4. Step 4: Schauder estimates for problem (4.2)–(4.3). In this step, we present the

weighted Hölder estimates, which have been established in [29, 30]. The theorem below in

this step is a direct consequence of these theorems for oblique derivative boundary value

problems of the Poisson equation.

With the L2 well-posedness established in Step 3, the a priori Schauder estimates for

solution u have also been established in [29, 30], by employing Green’s function and its

delicate estimates. The Schauder estimates imply the well-posedness of problem (4.2)–(4.3)

in the weighted Hölder spaces (cf. [29, 30] for detail calculations). As a direct consequence

by using condition (A.19) in Theorem A.4, we have the following theorem:

Theorem A.6. Let α ∈ (0, 1), σ = min(0,− Φ
ω∗

), and σ = max(0,− Φ
ω∗

). Suppose that

σ∗ ∈ (σ, σ), κ = 1 − σ∗, σj ∈ (σ, σ) and βj = 2 + α − σj , j = 1, 2. Then, for any

ℓ = 0, 1, · · · , if

f ∈ Cℓ,α
ℓ+β1,ℓ+β2

(D), g± ∈ Cℓ+1,α
ℓ+β1,ℓ+β2

(
Γ±

)
,

solution u ∈ V 2
2,κ(D) of problem (4.2)–(4.3) is also in Cℓ+2,α

ℓ+β1,ℓ+β2
(D) and satisfies the fol-

lowing estimate:

‖u‖(ℓ+β1,ℓ+β2)
(ℓ+2,α;D) ≤ C

(
‖f‖(ℓ+β1,ℓ+β2)

(ℓ,α;D) +
∑

±

∥∥g±
∥∥(ℓ+β1,ℓ+β2)

(ℓ+1,α;Γj)

)
.

Theorem 4.4 is a special case of Theorem A.6 with ℓ = 0.
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