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1 Introduction

We are concerned with shock diffraction by a two-dimensional convex cornered
wedge, which is not only a longstanding open problem in fluid mechanics, but also
fundamental in the mathematical theory of multidimensional conservation laws.
When a vertical shock propagates to the right along the convex cornered wedge,
the incident shock interacts with the wedge, and the shock diffraction occurs. The
study of the shock diffraction problem can date back 1950’s by the work of Bargman
[3], Lighthill [21, 22], Fletcher-Weimer-Bleakney [13], and Fletcher-Taub-Bleakney
[12] via asymptotic or experimental analysis. Also Courant-Friedrichs [10] and
Whitham [24].

One of the main challenges of this problem is that the expected elliptic domain of
the solution is concave, since the angle exterior to the wedge at the origin is bigger
than π , besides the other mathematical difficulties including free boundary problems
without unform oblique derivative conditions and optimal regularity estimates along
the degenerate elliptic curves that meets the free boundary. In general, the expected
regularity of solutions at the corner in this domain, even for Laplace’s equation, is
only Cα with α ∈ (0,1); however, the coefficients in (6) depend on the derivatives
of ψ , due to the Bernoulli law (7). To overcome the difficulty, the physical boundary
conditions must be exploited to force the finer regularity of solutions at the corner.

As far as we have known, some efforts have been made mathematically for the
shock diffraction problem via simplified models. For one of these models, the non-
linear wave system, Kim [16] studied this problem for the right-angle wedge with
an additional physical assumption that the transonic shock will not collide with the
sonic circle of the right-state. Recently, in Chen-Deng-Xiang [6], this assumption
was removed, and the existence and optimal regularity of shock diffraction con-
figurations were established for all the angles of the convex wedge via a different
approach, which has been further developed in Chen-Xiang [9] to deal with the
problem for the potential flow equation.

The purpose of this paper is to present the recent results we have obtained in
[9] on the mathematical analysis of this shock diffraction problem for the potential
flow equation, which can be formulated as an initial-boundary value problem. By
employing its self-similar invariance, this initial-boundary value problem is reduced
to a boundary value problem for a first-order nonlinear system of partial differential
equations of mixed elliptic-hyperbolic type in an unbounded domain. It is further
reformulated as a free boundary problem for nonlinear degenerate elliptic systems
of first-order in a bounded domain with a boundary corner whose angle is bigger
than π . A first global theory of existence and regularity has been established for
this shock diffraction problem for the potential flow equation. To achieve this, we
develop several mathematical ideas and techniques, which are also useful for other
related problems involving similar analytical difficulties.

The organisation of this paper is as follows. In Section 2, we first formulate the
shock diffraction problem as an initial-boundary value problem for the potential flow
equation, and then reduce it into the boundary value problem (Problem 1) for a first-
order nonlinear system of partial differential equations of mixed elliptic-hyperbolic
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type, and finally present the main theorem (Theorem 2.1). In Section 3, we first
introduce some notions of admissible solutions and weighted Hölder norms and
then present some a priori estimates of admissible solutions in the Hölder norms. In
Section 4, based on the a priori estimates in Section 2, we then prove the existence of
the shock diffraction configuration by topological argument and establish Theorem
2.1.

Finally, we remark in passing that a closely related problem, shock reflection-
diffraction by a concave cornered wedges for potential flow, has been analyzed
in Chen-Feldman [7, 8] and Bae-Chen-Feldman [1], where the existence of regu-
lar shock reflection-diffraction configurations has been established up to the sonic
wedge-angle. The Prandtl-Meyer reflection for supersonic potential flow impinging
onto a solid wedge has also been analyzed first in Elling-Liu [11] and recently in
Bae-Chen-Feldman [2]. For other related references, we refer the reader to Canic-
Keyfitz-Kim [4, 5] for the unsteady transonic small disturbance equation and the
nonlinear wave system, Zheng [25] for the pressure-gradient system, and the refer-
ences cited therein.

2 The Potential Flow Equation and Shock Diffraction Problem

In this section, we first formulate the shock diffraction problem as an initial-
boundary value problem for the potential flow equation, then reduce it into the
boundary value problem (Problem 1) for a first-order nonlinear system of partial
differential equations of mixed elliptic-hyperbolic type, and finally present the main
theorem (Theorem 2.1).

2.1 The potential flow equation and the Rankine-Hugoniot
conditions

The Euler equations for potential flow consist of the conservation law of mass and
the Bernoulli law for the density ρ and velocity potential Φ with the velocity (u,v)=
∇xΦ :

∂tρ +∇x · (ρ∇Φ) = 0, (1)

∂tΦ +
1
2
|∇xΦ |2 + i(ρ) = B0, (2)

where i(ρ) = ργ−1−1
γ−1 for γ > 1 and i(ρ) = lnρ for γ = 1, and B0 is the Bernoulli

constant determined by the incoming flow and/or boundary conditions.
The shock diffraction can be formulated as an initial-boundary value problem:

Seek a solution of system (1)–(2) with the initial condition at t = 0:
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Fig. 1 Initial-Boundary Value Problem

(ρ,Φ)|t=0 =

{
(ρ0,u0x1) in {x1 < 0,x2 > 0},
(ρ1,0) in {−π +θw ≤ arctan

( x2
x1

)
≤ π

2 },
(3)

and the slip boundary condition along the wedge boundary ∂W :

∇xΦ ·ν |R+×∂W = 0, (4)

where ν is the exterior unit normal to ∂W (see Fig. 1).
Notice that the initial-boundary value problem is invariant under the self-similar

scaling:

(x, t)→ (αx,αt), (ρ,Φ)→ (ρ,
Φ
α
) for α ̸= 0.

Thus we seek self-similar solutions with the form:

(ρ,Φ)(x, t) = (ρ(ξ ,η), t(ψ(ξ ,η)+
1
2
(ξ 2 +η2)) for (ξ ,η) =

x
t
, (5)

where ψ is the pseudo-velocity potential, that is,

(ψξ ,ψη) = (u−ξ ,v−η) =: (U,V ),

which is called a pseudo-velocity. Then the pseudo–potential function ψ is governed
by the following Euler equations:

div(ρDψ)+2ρ = 0, (6)

1
2
|Dψ|2 +ψ +

ργ−1

γ −1
= 0, (7)

where the divergence div and gradient D are with respect to the self–similar vari-

ables (ξ ,η). Here we have replaced ψ by ψ − ργ−1
1

γ−1 to make the right-hand side of
(7) to be zero.



Global solutions of shock diffraction by wedges 5

Then (6) and (7) can be deduced to the following potential flow equation of
second-order for the potential function ψ:

div
(
ρ(|Dψ|2,ψ)Dψ

)
+2ρ(|Dψ|2,ψ) = 0, (8)

with

ρ(|Dψ|2,ψ) =
(
− (γ −1)(ψ +

1
2
|Dψ |2)

) 1
γ−1

. (9)

Equation (8) is a second-order equation of mixed hyperbolic-elliptic type: It is ellip-

tic if and only if |Dψ|< c(|Dψ|2,ψ) :=
√
−(γ −1)(ψ + 1

2 |Dψ|2), which is equiv-
alent to

|Dψ|< c⋆(ψ,γ) :=

√
−2(γ −1)

γ +1
ψ. (10)

Since one of the corners on the boundary of the pseudo-elliptic domain, i.e. the
origin, is bigger than π , it is not clear in general whether we could obtain the C1-
regularity of ψ to ensure the ellipticity of (8)–(9) near the point, in comparison with
[7]. In fact, there is a counterexample even for Laplace’s equation for the general
case so that the solution is only in Cα ,α ∈ (0,1), at the corner. One of the key
new ingredients here is to exploit the physical boundary conditions to ensure some
additional regularity for the ellipticity. To achieve this, instead of studying (8)–(9)
for ψ directly as in [7], we consider the corresponding system for (ρ,U,V )= (ρ,u−
ξ ,v−η) to obtain the Cα –estimates of the solutions by exploiting the boundary
conditions: 

(
ρ(U,V,ψ)U

)
ξ +

(
ρ(U,V,ψ)V

)
η +2ρ(U,V,ψ) = 0,

Uη =Vξ ,

ργ−1(U,V,ψ)
γ−1 + U2+V 2

2 =−ψ ,

(ψξ ,ψη) = (U,V ).

(11)

Since our global solutions involve shock waves in the problem, the solutions of
(11) have to be considered as weak solutions in the distributional sense.

Definition 2.1 The vector function (U,V ) is called a weak solution of (11) if there
exists a function ψ ∈W 1,1

loc (Ω) in a self-similar domain Ω such that

(i) ψξ =U, ψη =V a.e. in Ω ;
(ii) −ψ − 1

2 (U
2 +V 2)≥ 0 a.e. in Ω ;

(iii) (ρ(U,V,ψ),ρ(U,V,ψ)U,ρ(U,V,ψ)V ) ∈ (L1
loc(Ω))3;

(iv) For every ζ ∈C∞
c (Ω),∫

Ω
ρ(U,V,ψ)

(
(U,V ) ·Dζ −2ζ

)
dξ dη = 0,

and
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Ω
(V,−U) ·Dζ dξ dη = 0.

For a piecewise smooth solution separated by a shock wave, it satisfies the con-
ditions in Definition 2.1 if and only if it is a classical solution of (11) in each smooth
subregion and satisfies the following Rankine-Hugoniot conditions across the shock
wave: [

(ρ(U,V,ψ)U,ρ(U,V,ψ)V ) ·ν
]

S = 0, (12)
[ψ ]S = 0. (13)

Condition (12) is from the conservation of mass, while (13) is from irrotationality.

2.2 The shock diffraction problem

If the initial left-state (ρ0,u0,0) is subsonic, i.e. u0 < c0 := c(ρ0), the degenerate
boundary is the sonic circle centered at (u0,0) with radius c0, and the center rar-
efaction wave does not occur near the origin. In this paper, our focus is on this case
to consider system (11) in the pseudo-subsonic region.

A discontinuity of Dψ satisfying the Rankine-Hugoniot conditions (12)–(13) is
called a shock if it satisfies the following physical entropy condition: The density
ρ increase across a shock in the pseudo–flow direction. From (12), the entropy
condition indicates that the normal derivative function ψν on a shock always de-
creases across the shock in the pseudo–flow direction, which implies that ρ0 > ρ1
and u0 > u1 = 0.

On the other hand, (13) equals to

[v−η ]dη =−[u−ξ ]dξ . (14)

Then, as a direct corollary of (14), the Rankine-Hugoniot conditions are equivalent
to:

u
(
ρ(u−ξ )+ρ1ξ

)
+ v

(
ρ(v−η)+ρ1η

)
= 0, (15)

and
ψ = ψ1 (16)

along the incident shock. Let ξ = ξ1 is the location of the incident shock. By a
straightforward calculation, the incident shock position is

ξ1 =

√
2ρ2

0 (c
2
0 − c2

1)

(γ −1)(ρ2
0 −ρ2

1 )
> 0 (17)

with the property:

0 < u0 =
ρ0 −ρ1

ρ0
ξ1 < ξ1. (18)
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Furthermore, we can show that the incident shock hits the sonic circle of the
left-state, i.e. state (0), by the following relation:

0 < ξ1 −u0 < c0. (19)

In the self-similar plane, the domain outside the wedge is

Λ := {(ξ ,η) : −π +θw ≤ arctan
(η

ξ
)
≤ π}.

Then the shock diffraction problem can be formulated as the following boundary
value problem in the self-similar coordinates (ξ ,η).

Fig. 2 Boundary Value Problem

Problem 1 (Boundary Value Problem) (See Fig. 2). Seek a solution (U,V ) of
equations (11) in the self–similar domain Λ with the slip boundary condition on the
wedge boundary ∂Λ :

(U,V ) ·ν |∂Λ = 0

and the asymptotic boundary condition at infinity:

(ρ,U,V )→ (ρ̄,Ū ,V̄ ) when ξ 2 +η2 → ∞,

in the sense that

lim
R→∞

∥(ρ,U,V )− (ρ̄,Ū ,V̄ )∥C(Λ\BR(0)) = 0,

where

(ρ̄,Ū ,V̄ )

{
(ρ0,u0 −ξ ,−η) for {ξ < ξ1,η > 0},

(ρ1,−ξ ,−η) for {ξ > ξ1,η > 0}∪{−π +θw ≤ arctan
(η

ξ
)
≤ 0}.

Since (u0 − ξ ,−η) does not satisfy the slip boundary condition for ξ ≥ 0, the
solution must differ from state (0) in {ξ < ξ1}∩Λ near the wedge corner, which
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forces the shock to be diffracted by the wedge. In the domain Ω bounded by the
pseudo-sonic circle of the left-state, i.e. state (0) with center (u0,0) and radius c0 >
0, and the shock wave, the solution is expected to be pseudo-subsonic and smooth,
to satisfy the slip boundary condition along the wedge, and to be at least continuous
across the pseudo-sonic circle to be pseudo-supersonic. The main theorem we have
established is

Theorem 2.1 (Main Theorem) Let θc be the critical angle of the given data such
that the corresponding wedge boundary Γ 2

wedge passes the intersection point of the
two sonic circles of the given Riemann data. Then there exists α = α(ρ0,ρ1,u0,γ)∈
(0, 1

2 ) such that, when θw ∈ (θc,π), there exists a pair of global self–similar solu-
tions:

ρ(x, t) =
(
− (γ −1)(∂tΦ(x, t)+

1
2
|∇xΦ(x, t)|2)

) 1
γ−1

,

(u,v)(x, t) = ∇xΦ(x, t) for
x
t
∈ Λ , t > 0

for the shock diffraction by the wedge, with ψ(x, t) defined by (5) which satisfies

Φ(x, t) = tψ(
x
t
)+

|x|2

t
for

x
t
∈ Λ , t > 0;

Equivalently, (U,V ) with the pseudo-potential velocity ψ solving Problem 1 satisfies
that, for (ξ ,η) = x

t ,
(U,V ) ∈C∞(Ω)∩Cα(Ω),

(ρ,U,V ) =

(ρ0,u0 −ξ ,−η) for ξ < ξ1 and above the sonic circle P̂1P2,

(ρ1,−ξ ,−η) on the right of or below the diffracted shock.
(20)

In addition, the corresponding pseudo–potential velocity ψ is C1,1 across the part
P̂0P1 including the endpoints P0 and P1, the C1,1–regularity is optimal, and the limit
of D2ψ at P1 does not exist; The transonic shock P̂1P2 is C2 at P1 and C∞ except P1.
Furthermore, the solution pair (U,V ) is stable with respect to the wedge-angle θw,
i.e. ψ , as well as (U,V ), converges to the unique incident plane shock solution at
ξ = ξ1 as θw → π .

We remark here that, when the wedge-angle θw ≤ π
2 , it needs a transformation

and other technical arguments in order to prove the existence of the solutions. To
illustrate the key ideas more directly, we will restrict our sketch of the proof to the
case that θw > π

2 , for which such a transformation is not needed.
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3 Admissible Solutions and A Priori Estimates

In this section, we introduce some notions of admissible solutions and weighted
Hölder norms, and present some a priori estimates of admissible solutions in the
Hölder norms.

3.1 Weighted Hölder spaces and norms

Let P denote the corner points of ∂Ω , and Bδ (P) be the union of the balls of
radius δ centered at the corner points in P . We then define the following weighted
Hölder norms and Hölder spaces:

[u](−σ),P
k,Ω = [u](−σ),P

k,0,Ω = supδ>0 sup x ∈ Ω\Bδ (P)

|β |= k

(
δ k−σ |Dβ u(x)|

)
;

[u](−σ),P
k+α,Ω = supδ>0 sup x,y ∈ Ω\Bδ (P)

|β |= k

(
δ k+α−σ |Dβ u(x)−Dβ u(y)|

|x−y|α
)

;

∥u∥(−σ),P
k,Ω = ∑k

j=0[u]
(−σ),P
j,Ω ;

∥u∥(−σ),P
k+α ,Ω = ∥u∥(−σ),P

k,Ω +[u](−σ),P
k+α,Ω ;

C(−σ),P
k+α,Ω := {u : u ∈Ck,α(Ω) and ∥u∥(−σ),P

k+α ,Ω < ∞},

(21)

where k is integer and 0 < α < 1. We remark that the weight near the wedge corner
O will be separately dealt with from the others since the angle is bigger than π here.
It is easy to verify that

∥ f g∥(τ1+τ2),P
0+α ,Ω ≤ ∥ f∥(τ1),P

0+α,Ω∥g∥(τ2),P
0+α ,Ω for τ1 + τ2 ≥ 0. (22)

As in [17], there are two important properties of these norms:

(A) ∥u∥(−σ),P
α ,Ω ≤ C∥u∥(−σ),P

σ ,Ω = C∥u∥σ ,Ω for 0 < α ≤ σ , where ∥u∥σ ,Ω is the
non-weighted Hölder norms for u.

(B) If a ≥ b > 0 and if {um} is a bounded sequence in C(−b),P
a , then there is a

subsequence {um j} which converges in any C(−b′),P
a′ , with 0 < b′ < b, 0 < a′ < a,

and a′ ≥ b′.

Before introducing the parabolic norm near the sonic circle, first we define the
Ω ′ and Ω ′′ for any domain Ω as

Ω ′ := Ω ∩{(ξ ,η) : dist{(ξ ,η),Γsonic}< 2ε0},

Ω ′′ := Ω ∩{(ξ ,η) : dist{(ξ ,η),Γsonic)}> ε0}
(23)
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with the small constant ε0 > 0. Obviously, Ω =Ω ′∪Ω ′′, and it will be seen later that
the equation studied is uniformly elliptic in Ω ′′ and elliptic in Ω ′, in fact degenerate
on Γsonic := Ω ∩{(ξ ,η) :

√
(ξ −u0)2 +η2 = c0}.

In Ω ′, the equation is degenerate elliptic, for which the Hölder norms with
parabolic scaling are natural. We define the norm ||ψ||par

2,α,Ω ′ as follows: First in-
troduce new coordinate (x,y) in Ω ′ as

x = c0 −
√
(ξ −u0)2 +η2, y = arctan

( η
ξ −u0

)
.

Denoting z = (x,y) and z̄ = (x̄, ȳ) with x, x̄ ∈ (0,2ε0) and

δ par
α (z, z̄) :=

(
|x− x̄|2 +min{x, x̄}|y− ȳ|2

) α
2 ,

then, for ψ ∈C2(Ω ′) in the (x,y)–coordinates, we define

∥ψ∥par
2,0,Ω ′ := ∑0≤m+l≤2 supz∈Ω ′

(
xm+ l

2−2|∂ m
x ∂ l

yu(z)|
)

[ψ ]
par
2,α ,Ω ′ := ∑m+l=2 supz,z̄∈Ω ′,z ̸=z̄

((
min{x, x̄}

)α− l
2 |∂ m

x ∂ l
yu(z)−∂ m

x ∂ l
yu(z̄)|

δ par
α (z,z̄)

)
∥ψ∥par

2,α,Ω ′ := ∥u∥par
2,0,Ω ′ +[u]par

2,α ,Ω ′

(24)

We refer [7] for more details for the motivation of this definition.

3.2 Notion of admissible solutions

The proof of Theorem 2.1 is based on the local existence and the uniform a priori
estimates of admissible solutions. More precisely, we define the set

I ⊂ [0,π] (25)

satisfies that, for any θw ∈ I, there exists an admissible solution (ρ(θw),U (θw),V (θw))
for the shock diffraction problem. Here, the admissible solutions are defined as fol-
lows:

Definition 3.1 Let γ > 1, ρ0 > ρ1 > 0, and u0 < c0, and let (ρ0,ρ1,u0) satisfy (17)
and (18). For any wedge-angle θw ∈ (θc,π) and function W = (U,V ) ∈ (Cα(Λ))2,
θw ∈ I if and only if

(i) The function W is a weak solution to the shock diffraction problem, i.e. W
satisfies Definition 2.1 and the Rankine-Hugoniot conditions (12)–(13).

(ii) The free boundary Γshock, with endpoints P1 = (ξ1,η1) and P2 = (ξ2,η2), lies be-
tween the two sonic circles of state (0) and state (1), i.e., (ρ0,u0,0) and (ρ1,0,0)
respectively, and meets the wedge at P2 perpendicularly. In addition, Γshock is C∞

everywhere except the point P1.
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(iii) (U,V ) satisfies (20) outside of Ω , and

(U,V ) ∈
(

Cα(Ω)∩C1(Ω\OP0P1)∩C∞(Ω\Γsonic ∪{O})
)2

,

where α ∈ (0,1) depends only on θw and the given data.
(iv) Equation (8) is strictly elliptic in Ω\Γsonic, that is,

|∇ψ|< c⋆(ψ,γ) :=

√
−2(γ −1)

γ +1
ψ.

(v) u > 0 and v < 0 in Ω .

In fact, admissible solutions have the following additional properties. Some of
them need some technical proofs, which can be found in Chen-Xiang [9].

Remark 3.1 (Extension of the background solutions to a smaller wedge-angle)
The property that Γshock meets the wedge at P2 perpendicularly in (ii) of Definition
3.1 and the slip boundary condition yield that, for any θw ∈ I and any Θw < θw,
there are functions W̃ = (Ũ ,Ṽ ) such that they satisfy equations in (11) in Ω (Θw) and
W̃ =W in Ω (θw), where Ω (θw) is the domain corresponding to the wedge-angle θw.
We call W̃ is the extension of the admissible solution W, which will be used as a
background solution in our proof of Theorem 1.1.

Remark 3.2 (Existence of the shock up to the wedge) The property that v < 0 in
(v) of Definition 3.1 and the fact that v = 0 on the right-hand side mean that Γshock
exists up to the wedge boundary due to the jump of the velocity v.

Remark 3.3 (Positivity of the horizontal speed u along Γshock) Properties (v)–(vi)
of Definition 3.1 can deduce that, along Γshock, the horizontal velocity u is positive.

Remark 3.4 (Uniform estimates of the size of domain Ω ) The property that the
shock lies between two sonic circles in (ii) and the fact that Γshock exists up to the
wedge boundary mean that the size of domain Ω is bounded.

Remark 3.5 (The entropy condition) Properties (i) and (iv)–(v) of Definition 3.1
deduce that

∂ν φ1 > ∂ν φ > 0 on Γshock,

where ν is the unit normal to Γshock interior to Ω .

Remark 3.6 (Monotonicity of Γshock) Properties (i) and (v)–(vi) deduce that, if Γshock =
{(ξ ,η) : ξ = ξ (η)}= {(r,θ) : r = r(θ)}, then

ξ ′(η)≥ 0, r′(θ)≥ 0.

Remark 3.7 (I is non-empty) Based on the proof of the existence of the solutions
to the wedge-angle near π , we have θw ∈ I when π − θw small. Thus, I ̸= /0. Then
Theorem 2.1 is established if we can prove that the subset I is both open and closed.
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3.3 A second-order equation for v and the boundary conditions

It is important to deduce first an equation for v from the potential flow equation
for our study. To do so, we first introduce an elliptic cut-off function which will be
given in detail later, take the derivative on the equation of the conservation of mass
with respect to η , and then use the irrotationality to obtain a second-order equation
for v in Ω as

Q(v;u) = ā11vξ ξ +2ā12vξ η + ā22vηη +b11v2
ξ +b12vξ vη +b22v2

η + c1vξ + c2vη

= 0, (26)

where
|b11|+ |b12|+ |b22| ≤

C
a11

with C depending on the C1–bounds of ψ̂ and the cut–off functions ζi and ζM , while

dα
O(|c1|+ |c2|)≤

C
a11

with C depending on the ||ψ̂||(−1−α),{O,P0}
2,α,Ω ′′ , where dO(X) = dist{X ,O}.

Modify the Rankine-Hugoniot condition F(u,v,φ ,η) = 0 to be

G := ζsF +(1−ζs)(L1(u− û)+L2(v− v̂)),

where ζs is a special cut-off function such that (ζs)u(u− û)+(ζs)v(v− v̂) is a small
term, and L2 is chosen to be close to Fv(û, v̂, φ̂, η̂) and L1 is appropriately determined
by Fv(û, v̂, φ̂, η̂) and Fu(û,v̂,φ̂,η̂)

Fv(û,v̂,φ̂,η̂) . Then, differentiating it along the shock, we have the
following boundary condition on Γshock:

M(2)v := β s
1vξ +β s

2vη = ā11As,1v+gs(u,v,φ) on Γshock. (27)

One of the points in designing ζs, L1, and L2 is to make sure that ā11As,1 ≥ 0, and
∥gs∥∞ ≤C, independent of s.

On the other hand, taking the derivative on the slip boundary condition along the
boundary, we have the following boundary condition on Γ 2

wedge:

M(1)v = β (1)
1 vξ +β (1)

2 vη = 0 on Γ 2
wedge. (28)

Moreover, v satisfies the Dirichlet boundary condition:

v = 0 on Γsonic ∪Γ 1
wedge, (29)

and the one point boundary condition:

v =−g(ξw,θw) tan(π −θw) (30)
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to guarantee the equivalence of the deduced equations and the original equations.
The one point boundary condition is obtained from the slip boundary condition and
the Rankine-Hugoniot condition.

3.4 Uniform estimates of the obliqueness along Γshock

The crucial proof to guarantee the obliqueness of the operator M(2) is that, if (û, v̂, φ̂)
is the solution in the sense of Definition 3.1, then

Fu(û, v̂, φ̂ ,η)> 0 along Γshock.

With this result, after carefully calculation, we can prove that the operators M(i) are
oblique along Γ 2

wedge and Γshock respectively. Here the fact that û > 0 and v̂ < 0 along
Γshock plays a fundamental role. At the same time, −ā11As,1 ≤ 0 is important for the
maximum principle.

3.5 Uniform estimates of the approximate solutions near the origin

Consider the approximate solutions vε governed by

Q(vε ;uε)+ ε△vε = 0,

and the boundary conditions (27)–(30), where Q is defined in (26). We prove that
there exist σ∗ > 0 and α0 > 0 such that, for each σ ≤ σ∗ and α ≤ α0, and for any
approximate solution vε , near the wedge corner O, we have

∥vε∥(−σ)
2+α,Ω ≤C(λ ,θw,Λ ,Ω)

(
∥g(ξw,θw)∥+∥gs∥∞

)
. (31)

Furthermore, if the solution (uε ,vε ,φε) is sufficiently close to the background solu-
tion (û, v̂, φ̂), then the boundary condition on Γshock will not be involved with inho-
mogeneous term:

M(2)vε = β (2)
1 vε

ξ +β (2)
2 vε

η = 0;

thus the solution vε has a better estimate:

−g(ξw,θw) tan(π −θw)≤ vε ≤ 0. (32)
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3.6 Impossibility of Γshock meeting the sonic circle of state (1) and
the sonic circle of state (0) except P1

We prove that r′(θ)≥ 0 along Γshock, which means that Γshock will not meet the sonic
circle of state (0) again away from P1. Next, we prove that there exists a constant
C > 0 such that

dist{Γshock,Bc1(O)}> 1
C
,

for any solution in the sense of Definition 3.1, where c1 is the sonic speed of state
(1), i.e. the right-state. These estimates are crucial to guarantee the ellipticity in the
domain Ω .

3.7 Uniform Hölder estimates of (uε ,vε) near Γsonic, and uniform
upper and lower estimates of density ρε

In order to pass the limit ε → 0, we need uniform estimates of the approximate
solutions near Γsonic, where the ellipticity may degenerate. In fact, we prove the
uniform estimates near Γsonic by scaling,

|vε | ≤ A(c0 − r)1/4, (33)

|uε −u0|+ |ρε −ρ0| ≤ A(c0 − r)
1
6 for 0 ≤ c0 − r ≤ m. (34)

As in Section 3.5, if the solution (uε ,vε ,φε) is sufficiently close to the background
solution (û, v̂, φ̂), we have

−A(c0 − r)
1
4 ≤ vε ≤ 0 for 0 ≤ c0 − r ≤ m. (35)

From the uniformly estimates away from Γsonic, ∥uε∥0 and ∥vε∥0 are uniformly
bounded, then ∥φε∥C0,1 is also uniformly bounded, and

( 2
γ +1

) 1
γ−1 ρ1 ≤ ρε ≤C in Ω .

3.8 Monotonicity of the solution v along Γshock

From now on, we consider the solutions without the viscosity term ε△v, i.e. after
passing the limit ε → 0. What actually we can prove for the monotonicity of v is
that, if the solution (u,v,φ) is sufficiently close to the background solution (û, v̂, φ̂),
then the solution v is monotonically increasing along Γshock.
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3.9 Uniform estimates of the ellipticity in Ω up to Γshock

Note that the Mach number

M2 =
(u−ξ )2 +(v−η)2

c2 ∈Cα(Ω)∩C∞(Ω\(Γsonic ∪{P1})).

Then we can show that there exists a constant µ > 0 such that, for any θw ∈ (θc,π),
we have

M2(ξ ,η)≤ 1−µd for all (ξ ,η) ∈ Ω ,

where d = dist{(ξ ,η),Γsonic}. It means that, for all ξ = (ξ1,ξ2) ∈ R2, we have

C−1d|ξ |2 ≤
2

∑
i, j=1

ai jξiξ j ≤C|ξ |2.

3.10 Regularity away and near Γsonic

For the regularity away from Γsonic, we employ the weighted Hölder norms and a
transformation to control the behaviour of the quadratic nonlinear terms to estimate
the solution v near the corners and other points. Next we use the irrotationality to
obtain the regularity of u and then the regularity of ρ .

For the regularity near Γsonic, we use the parabolic norms and a scaling to make
the equation non-degenerate. Introduce new coordinates

(x,y) = (c0 − r,θ −θ1)

to flatten Γsonic, where (r,θ) are the polar coordinates, c0 is the sonic speed of state
(0), and (r1,θ1) is P1. Then, following the procedures in [1] exactly, we can derive
the following property:

Theorem 3.1 (Optimal regularity) Let ψ be a solution obtained as before. Then
we have

(i) ψ cannot be C2 across the pseudo-sonic circle Γsonic;
(ii) φ = ψ −ψ0 is C2+α in Ω up to Γsonic away from the point P1 for any α ∈ (0,1);

(iii) for any (ξ0,η0) ∈ Γsonic\{P1},

lim
(ξ ,η)→ (ξ0 ,η0)
(ξ ,η) ∈ Ω

Drrφ =
1

γ +1
, lim

(ξ ,η)→ (ξ0 ,η0)
(ξ ,η) ∈ Ω

Dθθ φ = 0, lim
(ξ ,η)→ (ξ0 ,η0)
(ξ ,η) ∈ Ω

Drθ φ = 0;

(iv) D2φ has a jump across Γsonic: for any (ξ0,η0) ∈ Γsonic\{P1},

lim
(ξ ,η)→ (ξ0 ,η0)
(ξ ,η) ∈ Ω

Drrφ − lim
(ξ ,η)→ (ξ0 ,η0)
(ξ ,η) ∈ Λ\Ω

Drrφ =
1

γ +1
;
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(v) the limit lim (ξ ,η)→ P1
(ξ ,η) ∈ Ω

D2φ does not exist.

4 Existence of the Shock Diffraction Configuration

Once the a priori estimates are proved, the existence of the shock diffraction config-
uration can be established by topological argument. Thanks to the uniform estimates
in Section 3, the set I is obviously closed. Then the remaining task is to prove that
the set I is open.

The main idea of the existence proof is that, instead of studying the potential
flow equation of φ , we study a system for (ρ,u,v) directly. In order to do that,
we first introduce the degenerate elliptic cut-off, the higher order cut-off near the
pseudo-sonic circle, and the uniform elliptic cut-off away from the pseudo-sonic
circle, and introduce the modified Rankine-Hugoniot condition along Γshock. Then
differentiate them to obtain a second-order equation for v with the oblique bound-
ary conditions on Γshock and Γ 2

wedge. Once the existence of v is obtained, we use the
irrotational equation to recover u by v. Next, passing the limit to obtain a solution
(u,v,φ) which is actually equivalent to the original potential flow equation of φ .
Using this scalar equation, we can obtain a better regularity to remove the cut-off
function introduced and prove that the solution we have obtained is actually suffi-
ciently close to the background solution, if the wedge-angle is sufficiently close to
the background wedge-angle.

For the main part, the existence of the modified free boundary problem for v, we
in fact have the following theorem.

Theorem 4.1 (Modified free boundary problem) Assume that Θw ∈ I. Then there
exist δ0 = δ (ρ0,ρ1,u0,γ,Θw) > 0 small enough, σ∗ > 0, α0 > 0, and ε∗ > 0 such
that, for each θw ∈ [Θw − δ0,Θw), σ < σ∗, α < α0, and ε ∈ (0,ε∗), there exists a
solution (uε ,vε ,ξ ε(η)) ∈

(
C2+α
(−σ)

(Ω ε)
)2 ×C2+α to the regularized free boundary

problem: Qε(v;u) := Q(v;u)+ ε△v = 0,

uη = vξ ,
(36)

with the free boundary position:

ξ ′ =−ζs
v
u
− (1−ζs)

v̂
û

(37)

and the following boundary conditions:
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(u,v,ψ) = (u0,0,ψ0) on Γsonic, (38)
v = 0 on Γ 1

wedge, (39)

M(1)v = 0 on Γ 2
wedge, (40)

M(2)v− ā11As,1v = gs(u,v,φ) on Γshock, (41)
v =−g(ξw,θw) tan(π −θw) at P2. (42)

In addition, the solution satisfies the following estimates:

|ξ (η)− ξ̂ (η)| ≤ δ1, 0 ≤ ξ ′(η)≤ K2 (43)

aε
11uε

ξ +2aε
12vε

ξ +aε
22vε

η =C1(ε)→ 0 when ε → 0, (44)

|vε | ≤ A(c0 − r)
1
4 for 0 ≤ c0 − r ≤ m, (45)

|uε −u0|+ |ρε −ρ0| ≤ A(c0 − r)
1
6 for 0 ≤ c0 − r ≤ m, (46)

∥(uε ,vε)∥(−σ)
2+α,Ω +∥(uε ,vε)∥(−σ−1)

2+α,Ω\Bd0 (O)
≤C2(ε), (47)

∥vε∥(−σ)
2+α ,Ω∩{c0−r≥s}+∥vε∥(−σ−1)

2+α,Ω∩{c0−r≥s}\Bd0 (O)
≤C(s), (48)

and
∥uε∥(−σ)

1+α ,Ω∩{c0−r≥s}+∥uε∥(−σ−1)
1+α,Ω∩{c0−r≥s}\Bd0 (O)

≤C(s) (49)

for some small positive constants δ1 and K2, while C1(ε), C2(ε), and C(s) depend
only on the data, the background solution, as well as ε and s respectively. Mean-
while, A and m are independent of θ , and ε0 is chosen such that ε0 < m.

The proof of this theorem is long and technical. Thus, instead of showing that here,
we would like to illustrate the ideas by proving a simpler case that the wedge-angle
is near π . In this case, the background solution is constant, namely, (û, v̂) = (u0,0).
Then the inhomogeneous terms vanish, and the uniform estimate of the smallness
between the solution and the background solution can be easier obtained. In fact,
the constants on the right-hand side of inequalities (47)–(49) are all multiplied with
a small term π −θw. We now illustrate its proof below.

4.1 The degenerate elliptic cut-off near the pseudo-sonic circle

First define the regions Ω ′ and Ω ′′ for any domain Ω as

Ω ′ := Ω ∩{(ξ ,η) : dist{(ξ ,η),Γsonic}< 2ε0},

Ω ′′ := Ω ∩{(ξ ,η) : dist{(ξ ,η),Γsonic}> ε0}
(50)

with a small constant ε0 > 0. Obviously, Ω = Ω ′∪Ω ′′. In this subsection, we will
introduce a degenerate elliptic cut-off function ζ1 and also a cut-off function ζM of
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higher order smallness in Ω ′. Since the equation we study requires more precise
estimates near Γsonic, the elliptic cut-off function introduced in this subsection is
more accuracy in comparison with that in [7]. In addition, the elliptic cut–off func-
tion does not take its values simply on φx, but on φx − a in order to remove the
elliptic cut–off function, where a is some constant which is defined in the following
statement.

The leading term of the second-order elliptic equation for v is of the following
form: (

c2 − (u−ξ )2)vξ ξ −2(u−ξ )(v−η)vξ η +
(
c2 − (v−η)2)vηη . (51)

Thus, in the polar coordinates, introduce the cut–off function ζM for small quantities
of higher order as

ζM =

s for |s| ≤ M,

M+1 for |s| ≥ M+2,

so that
ζM(−s) =−ζM(s), 0 ≤ ζ ′

M(s)≤ 1 on R,

for some constant M to be determined later. Then rewrite the above form by plugging
the cut–off function into the terms involving higher order small quantities as(

(c0 − r)c0 +(γ +1)
(
(u−u0)cosθ + vsinθ + c0−r

γ+1

)
r+O1

)
vrr

+ 2
r O3vrθ +

1
r2 (c2

0 +O2)vθθ +
1
r (c

2
0 +O2)vr − 2

r2 O3vθ ,

with
O1 = (c0 − r)2ζM(

Oφ
1

(c0−r)2 ),

O2 = (c0 − r)ζM(
ĉ2−c2

0−(Oφ
2 )

2

(c0−r) ),

O3 = (c0 − r)
3
2 ζM(

−Oφ
2 r+Oφ

3
(c0−r)3/2 ).

Therefore, the ellipticity of this form equals to

(c0 − r)c0 +(γ +1)
(
(u−u0)cosθ + vsinθ +

c0 − r
γ +1

)
r > 0 and c2 > 0.

Next, for the degenerate elliptic cut–off, let ζ1 ∈C∞(R) satisfy

ζ1(s) =


s if − 1

3(γ+1) < s < 7
6(γ+1) ,

− 2
3(γ+1) if s <− 1

(γ+1) ,

5
4(γ+1) if s > 4

3(γ+1) ,

(52)

so that
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ζ ′
1(s)≥ 0 on R, (53)
±ζ ′′

1 (s)≥ 0 on {±s ≤ 0}. (54)

The value s that the cut–off functions ζ1 takes on is

(u−u0)cosθ + vsinθ
c0 − r

+
1

γ +1
.

Then (51) becomes the following modified form:

A11vξ ξ +2A12vξ η +A22vηη ,

where

A11 = c2
0 − (ξ −u0)

2 +(γ −1)(c0 − r)r
(

ζ
( (u−u0)cosθ+vsinθ

c0−r + 1
γ+1

)
− 1

γ+1

)
+ 2(c0−r)(ξ−u0)

2

r

(
ζ
( (u−u0)cosθ+vsinθ

c0−r + 1
γ+1

)
− 1

γ+1

)
+ 1

r2

(
O1(ξ −u0)

2 −2O3(ξ −u0)η +O2η2
)
,

A12 = −(ξ −u0)η + 2(c0−r)(ξ−u0)η
r

(
ζ
( (u−u0)cosθ+vsinθ

c0−r + 1
γ+1

)
− 1

γ+1

)
+ 1

r2

(
(O1 −O2)(ξ −u0)η +O3(ξ −u0)

2 −O3η2
)
,

A22 = c2
0 −η2 +(γ −1)(c0 − r)r

(
ζ
( (u−u0)cosθ+vsinθ

c0−r + 1
γ+1

)
− 1

γ+1

)
+ 2(c0−r)η2

r

(
ζ
( (u−u0)cosθ+vsinθ

c0−r + 1
γ+1

)
− 1

γ+1

)
+ 1

r2

(
O1η2 +2O3(ξ −u0)η +O2(ξ −u0)

2
)
.

4.2 The uniform elliptic cut-off away from the pseudo-sonic circle

Let ζ2 ∈C∞ be a smooth increasing function such that

ζ2(s) =

 s if s ≥ ε1,

1
2 ε1 if s < 0,

(55)

and |ζ ′
2(s)| ≤ 1. Let ζ2 be evaluated at c2 −U2 −V 2. In Ω ′, consider the following

modified system:
U2ζ2+V 2c2

U2+V 2 uξ +
2UV

U2+V 2 (ζ2 − c2)uη + V 2ζ2+U2c2

U2+V 2 vη = 0,

vξ = uη ,

c2 =− γ−1
2 (U2 +V 2)− (γ −1)ψ.

(56)
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Finally, we combine the coefficients introduced above in D as follows. Let ζ3 ∈
C∞(R) satisfy

ζ3(s) =

0 if s ≤ 2ε0,

1 if s ≥ 4ε0,
0 ≤ ζ ′

3(s)≤
10
ε0

on R.

Then we define that, for (ρ,u,v) ∈ R3 and (ξ ,η) ∈ D ,

ā11 = ζ3(c0 − r)U2ζ2+V 2c2

U2+V 2 +
(
1−ζ3(c0 − r)

)
A11,

ā12 = ζ3(c0 − r) UV
U2+V 2 (ζ2 − c2)+

(
1−ζ3(c0 − r)

)
A12,

ā22 = ζ3(c0 − r)V 2ζ2+U2c2

U2+V 2 +
(
1−ζ3(c0 − r)

)
A22.

(57)

This leads to system (11) to be the following modified system:

ā11uξ +2ā12uη + ā22vη = 0,

vξ = uη ,

D(ψ −ψ0) = (u−u0, v),

ρ =
(
− γ−1

2 (U2 +V 2)− (γ −1)ψ
) 1

γ−1 .

(58)

4.3 A second-order equation for v

In order to study the existence of solutions to system (58), we introduce a second-
order equation from this system for v, Q(v;u), by taking the derivative on the first
equation with respect to η and then using the other equations to replace the unknown
terms. We have

Q(v;u) := ā11vξ ξ +2ā12vξ η + ā22vηη +b11v2
ξ +b12vξ vη +b22v2

η + c1vξ + c2vη

= 0, (59)

where
|b11|+ |b12|+ |b22|<

C
a11

with C depending on the C1–bounds of ψ̂ and the cut–off functions ζi and ζM , while

dα
O(|c1|+ |c2|)<

C
a11

with C depending on ∥ψ̂∥(−1−α),{O,P0}
2,α,Ω ′′ and dO(X) = dist{X ,O}.

Near Γsonic, in the (r,θ)–coordinates, this equation reads
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(c0 − r)

(
1+(γ +1)ζ1

))
vrr +

1
c0

vθθ +brvr

+
(γ+1)c2

0 sinθζ ′
1

a11

(
v2

r +
cosθ

c0
(−(u−u0)sinθ + vcosθ)vr +

(u−u0)cos2 θ+vsinθ cosθ
c0−r vr

)
− (2c2

0+(γ−1)r2)cosθζ ′
1

a11r vrvθ +O1vr +O2vrvθ +O3vθ = 0,
(60)

where

br :=
1

a11

(
(sin2 θ +1)

(
a11 cos2 θ +2a12 sinθ cosθ +a22 sin2 θ

)
−(γ +1)

(
c0 +O(1)(c0 − r)

)
r sin2 θζ1

)
. (61)

Lemma 4.1 If

ζ1 ≥− 2
3(γ +1)

,

then there exists ε0 > 0 such that, for any 0 ≤ c0 − r ≤ ε0, we have

−9
8
(γ +1)max{ζ1,0} ≤ br ≤C, (62)

where C is a uniform constant independent on θ , u, and v.

This lemma is crucial for the proof of the uniform Hölder estimate of v near
Γsonic.

Finally, equation (60) can be rewritten in the divergent form by scaling as fol-
lows: (

(c0 − r)
(
1+(γ +1)ζ1

)
vr

)
r
+(

1
c0

vθ )θ +O1vr +O2(c0 − r)(vr)
2

+O3(c0 − r)vrvθ +O4vθ = 0. (63)

with |Oi| ≤C, provided that sinθ > 0.
On the other hand, away from Γsonic, we notice that the equation is strictly and

uniformly elliptic with the bounded coefficients depending only on δ0 and C.

4.4 The different boundary conditions from those stated in
Theorem 4.1

The difference comes out at the free boundary. First, the condition for the free
boundary position can simply be proposed as

ξ ′ =− v
u
. (64)
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Then take the derivative on the Rankine-Hugoniot condition along Γshock and use
(64) to yield the oblique boundary condition on Γshock:

M(2)v = β (2)
1 vξ +β (2)

2 vη = 0 on Γshock, (65)

with
β (2)

1 = (−ā11 +2ā12ξ ′)Fu − ā11Fvξ ′,

β (2)
2 = −ā11Fv + ā22Fuξ ′,

where, along Γshock, F(u,v,φ ,η) = 0.

4.5 Existence of solutions for the linearized viscous fixed boundary
problem for v

We now linearize the modified problem for v, and first show the local existence of
solutions near the wedge corner O (where Γ 1

wedge and Γ 2
wedge meet) by the method of

continuity. Next we show the local existence near P2, where Γshock and Γ 2
wedge meet.

With this local solvability, we focus on the proof of the global existence of solutions
by the Perron method, as used in [15], [17], and [18].

Before proving the existence of solutions, we introduce some notations which are
important in the Perron method. The linearized problem is called locally solvable if,
for each y ∈ Ω̄ , there is a neighborhood N = O(y)∩Ω such that, for any h ∈C(N̄),
there is a solution v ∈C2(N)∩C(N̄) of the problem:

Lv = 0 in N,

N(1)v
∣∣
N̄∩Γ 2

wedge
= 0,

N(2)v
∣∣
N̄∩Γshock

= 0,

v
∣∣
∂N′ = h,

v
∣∣
P2
=−g(ξw,θw) tan(π −θw),

where ∂N′ = ∂N ∩Ω . For brevity, as in [17], denote this function v by (h)y to em-
phasize its dependence on h and y. Denote S−(S+) the set of all subsolutions (super-
solutions) of the problem. A subsolution or supersolution w ∈ S± of the linearized
problem is a function w ∈C(Ω̄) satisfying

±
(
g(ξw,θw) tan(π −θw)+w

)
≤ 0 at P2

and
±w ≤ 0 on N̄ ∩ (Γsonic ∪Γ 1

wedge),

such that, for any y ∈ Ω̄ , if ±(h−w)≥ 0 on ∂N′, then
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±
(
(h)y −w

)
≥ 0 in N(y).

Then we show properties (i)–(vii) listed below to prove the global existence for
the linearized problem:

(i) If u1, u2 ∈ S−, then max{u1,u2} ∈ S−.
(ii) If u1 ∈ S− and y ∈ Ω̄ , and if ū1 is given by ū1 = u1 in Ω̄\N(y) and ū1 = (u1)y

in N(y), then ū1 ∈ S−.
(iii) If w± ∈ S±, then w+ ≥ w− in Ω .
(iv) If w± ∈ C2(N)∩C(N̄) satisfy Lw+ = Lw− in N ∩Ω , M̃w+ = M̃w− on N ∩

Γwedge, and w+ ≥ w− in N ∩Ω , then either w+ = w− in N or else w+ > w− in N.
(v) S± are non-empty.
(vi) Let {um} be a bounded sequence of C2(N)∩C(N̄)–solutions of Lum = 0 in

N∩Ω and M̃um = 0 on N∩Γwedge. Then there is a convergent subsequence {um}
such that u = limumi is a C2(N)–solution of Lu = 0 in N ∩Ω and M̃u = 0 on
N ∩Γwedge.

(vii) For each x0 ∈ Γshock ∪Γsonic, there are sequences {w±
m} of subsolutions and

supersolutions such that limw±
m(x0) = u(x0).

4.6 Existence of solutions for the modified nonlinear fixed
boundary problem for v

Once the linearized problem is solved, the existence for the modified nonlinear prob-
lem can be proved by the Leray–Schauder fixed point theorem (cf. Theorem 11.3 in
[15]).

To achieve this, we first introduce the sets H ε that is defined in a bounded do-
main Ω and K ε in a bounded domain (−ξ1 tan(π − θw),η1], depending on given
values θw, ρ0, ρ1 and u0, as follows:

Definition 4.1 The elements of H ε ∈C2+α
(−ν), satisfy

(H1) u = u0 on Γsonic;
(H2) |u−u0| ≤ A0(c0 − r)1/6 when |c0 − r| small independent on θ ;
(H3) ∥u∥(−ν)

2+α ≤ A1(ε);
(H4) ∥u∥(−ν−1)

2+α ≤ A2(ε) away from the wedge-angle O.

Definition 4.2 The elements of K ε ∈C2+α , satisfy

(K1) ξ (η1) = ξ1;
(K2) ξ ′(η1) = 0;
(K3) |ξ (η)− ξ̂ (η)| ≤ δ∗;
(K4) 0 ≤ ξ ′(η)≤ K2
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The weighted Hölder space is defined in (21). The values of α , ν ∈ (0,1), as
well as Ki, δ1, and Ai, will be specified later. Obviously, H ε and K ε are closed,
bounded and convex.

Then the crucial step to apply the fixed point theorem is to prove the following
uniform estimates which are also stated in Section 3:

Lemma 4.2 For given Ki, δ1, and Ai for K ε and H ε , there exist σ∗, α0 ∈ (0,1),
and d0 > 0 such that any solution v ∈C2+α

(−σ)
(Ω)∩C2+α

(−σ−1)(Ω\Bd0(O)) to the non-
linear problem v = σTv with α ≤ α0, σ ≤ σ∗, and σ ∈ [0,1] satisfies

∥v∥(−σ)
2+α,Ω ≤C tan(π −θw), (66)

∥v∥(−1−σ)
2+α,{Ω\Bd0 (P0)}

≤C tan(π −θw), (67)

(68)

and
−g(ξw,θw) tan(π −θw)≤ v ≤ 0, (69)

where C independent of v.

Finally, we can show that the solution obtained in this subsection is unique by the
maximum principle, which will be used to demonstrate that the mapping introduced
in Subsection 4.7 is well–defined.

4.7 Existence of solutions for the modified nonlinear fixed
boundary problem for (ρ,u,v).

Thanks to the uniform estimates of v and then u near Γsonic stated in Section 3, we
can prove the existence for the modified nonlinear fixed boundary problem (36) and
(38)–(42) by the Leray–Schauder fixed point theorem.

From Subsection 4.6, for every u∈H ε , there exists a unique v∈C(−σ)
2+α satisfying

∥v∥(−σ)
2+α <C tan(π −θw). Thus, we can define a mapping for u as

S : u → ū,

in the following:

ū(ξ ,η) = Su := u0 +
∫ η

η(ξ )
vξ (ξ ,s)ds, (70)

where (ξ ,η(ξ )) denotes the point on the sonic circle Γsonic. For the other quantities
ρ and ψ , we can obtain them once the nonlinear problem for u and v established as
follows:

ψξ =U = u−ξ , ψη =V = v−η ,

ρ =
(
− (γ −1)ψ − γ−1

2 (U2 +V 2)
) 1

γ−1 .
(71)
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Furthermore, for the solutions to the nonlinear equations, we can prove v and then
φ is monotone along Γshock by contradiction argument.

4.8 The free boundary problem

We can now prove the existence of solutions to the free boundary value problem. As
indicated above, for any given boundary ξ = ξ (η) ∈ K ε , which is a small pertur-
bation of the background solution ξ = ξ1, we solve the fixed boundary problem and
then give an update boundary by

J(ξ )(η)

dη
=− vε

uε with J(ξ )(η1) = ξ1. (72)

The fixed point theorem which will be used here is the standard Schauder theorem
(cf. Corollary 11.2, [15]). Then Theorem 4.1 is proved.

4.9 The limiting solution and the equivalence to the original system

We now study the limiting solution, as the elliptic regularization parameter ε tends
to zero, to obtain a solution to system (58) and then to the original system, i.e. the
potential flow equation, which we will study next to remove the elliptic cut–off. In
fact, we can establish the following existence result.

Proposition 4.1 There exist constants σ∗ > 0, α0 > 0, and δ0 > 0 small enough
such that, for any σ < σ∗, α < α0, and π −δ0 ≤ θw < π , there exists a solution

(u,v,ψ) ∈
(
Cα(Ω)∩C1(Ω\(Γsonic ∪O))∩C2(Ω)

)3

with (u−ξ ,v−η) = (ψξ ,ψη) to problem (58), (38)–(40), (42), (64), and (65), i.e.
ā11uξ +2ā12uη + ā22vη = 0,

vξ = uη ,

D(ψ −ψ0) = (u−u0,v),

(73)

so that the velocity potential ψ satisfies (8) in Ω , i.e.,

div
(
ρ(|∇ψ|2,ψ)Dψ

)
+2ρ(|∇ψ|2,ψ) = 0, (74)

the slip boundary condition on Γwedge with φ = ψ −ψ0:

φν = 0 (75)
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with ν the normal direction and the following boundary conditions on Γshock:

φ = φ1, (76)
F(φξ ,φη ,φ ,η) = 0, (77)

where F(p,z,η)= 0 comes from the Rankine-Hugoniot condition satisfying F(0,0,η)=
0, DpF ·ν ̸= 0, and DzF ̸= 0. Moreover, on Γsonic, the velocity potential ψ satisfies
the Dirichlet boundary condition:

ψ = ψ0. (78)

4.10 Removal of the cut–off function ζM for the higher order
smallness

It is convenient to study this problem in a new coordinate introduced by (x,y) =
(c0 − r,θ −θ1) near Γsonic. Then the equation reads(

c0x+(γ +1)c0xζ
( 1

γ+1 −
φx
x

)
+O1

)
φxx +O2φxy +(1+O3)φyy

−(c0 +O3)φx −O2φy = 0,
(79)

with
O1 ≤ (M+1)|x|2, O2 ≤ (M+1)|x|

3
2 , |O3| ≤ (M+1)|x|,

due to the cut-off function ζM . By scaling argument, we have the following estimates
to remove the cut-off function ζM for the higher order smallness:

0 ≤ φ ≤ 3
5(γ +1)

x2 in Ω ∩{c0 − r ≤ 2ε0} (80)

and
∥φ∥(−1−α)

2+α,Ω∩{c0−r≥s} ≤C(s)(π −θw) (81)

for all s ∈ (0,8ε0) with C(s) depending only on the data and s.

4.11 Removal of the degenerate elliptic cut-off

Now we remove the degenerate elliptic cut–off ζ1 in the (x,y)–coordinates with

(x,y) = (c0 − r,θ −θ1) in Ω ∩{c0 − r < 4ε0}.

In this subsection, we let |π − θw| sufficiently small, depending only on the data,
so that φ is a solution of the shock diffraction problem. Since the elliptic cut–off
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introduced here is more precise and sinθ may be 0 at P2, in comparison with that
in [7], which means that the proof could not be used directly. Thus, we need more
careful argument to re-control it.

First we bound φx near P1 by the following lemma:

Lemma 4.3 For |π −θw| sufficiently small, we have

− x
6(γ +1)

≤ φx ≤
4x

3(γ +1)
in Ω ∩{x ≤ 4ε0}∩{y ≤ 4ε2}. (82)

Next, away from P1, we bound φx with one additional assumption, by the follow-
ing lemma:

Lemma 4.4 Assume that

|φ − x2

2(γ +1)
| ≤C1x2+α in Ω ∩{x ≤ 2ε0}∩{y ≥ 2ε2}. (83)

Then, for |π −θw| sufficiently small, we have

− x
3(γ +1)

≤ φx −
x

γ +1
≤ x

3(γ +1)
in Ω ∩{x ≤ 4ε0}∩{x ≥ 2ε2}. (84)

For this lemma, we first prove that the cut–off function can be removed when x
small enough, which may depend on y. Then, in this domain, rewrite this equation
in a more convenient form and scale it to obtain a uniform estimate to guarantee that
the removal can be extended to x = 2ε0 without respect to y. With this proposition in
hand, the remaining task is to show that (83) holds for some α < 1

2 , which is proved
in the following lemma.

Lemma 4.5 For |π −θw| sufficiently small, we have

|φ − x2

2(γ +1)
| ≤C1x2+α in Ω ∩{x ≤ ε ′}∩{y ≥ 2ε2}, (85)

where C1 and ε ′ only depends on the data.

This completes the proof of the existence theory of the shock diffraction config-
uration with the required properties stated in Definition 3.1 when π − θw small. If
it is large, using the same idea but much more technically, we can obtain that, for
any Θw ∈ I, there exists a constant δ0 > 0 such that, for any Θw − δ0 < θw ≤ Θw,
there is a solution W (θw) = (U (θw),V (θw)) close to W (Θw). Then, from the estimates
stated above, we obtain that (θw,W (θw)) belongs to the solution set defined in Defi-
nition 3.1. This means that the set I is open. Thus, from the fact that I is close and
nonempty, we then finally have (θc ,π)⊂ I.

For further details, see Chen-Xiang [9].
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