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SHOCK DIFFRACTION BY CONVEX CORNERED WEDGES FOR

THE NONLINEAR WAVE SYSTEM

GUI-QIANG G. CHEN XUEMEI DENG WEI XIANG

Abstract. We are concerned with rigorous mathematical analysis of shock diffraction
by two-dimensional convex cornered wedges in compressible fluid flow, through the non-
linear wave system. This shock diffraction problem can be formulated as a boundary
value problem for second-order nonlinear partial differential equations of mixed elliptic-
hyperbolic type in an unbounded domain. It can be further reformulated as a free
boundary problem for nonlinear degenerate elliptic equations of second order with a de-
generate oblique derivative boundary condition. We establish a global theory of existence
and optimal regularity for this shock diffraction problem. To achieve this, we develop sev-
eral mathematical ideas and techniques, which are also useful for other related problems
involving similar analytical difficulties.

1. Introduction

We are concerned with rigorous mathematical analysis of shock diffraction by two-
dimensional cornered wedges whose angles are less than π in compressible fluid flow,
through the nonlinear wave system. The study of the shock diffraction problem can date
back 1950’s by the work of Bargman [3], Lighthill [24, 25], Fletcher-Weimer-Bleakney [14],
and Fletcher-Taub-Bleakney [13] via asymptotic or experimental analysis. Also Courant-
Friedrichs [10] and Whitham [27].

In this paper, we develop several mathematical ideas and techniques through the non-
linear wave system to establish a rigorous theory of existence and regularity of solutions
to the diffraction problem. The nonlinear wave system consists of three conservation laws,
which takes the form:

ρt +mx1 + nx2 = 0,

mt + px1 = 0,

nt + px2 = 0,

(1.1)

for (t,x) ∈ [0,∞)× R2,x ∈ R2, where ρ stands for the density, p for the pressure, (m,n)
for the momenta in the (x1, x2)–coordinates. The pressure-density constitutive relation is

(1.2) p(ρ) = ργ/γ, γ > 1,

by scaling without loss of generality. Then the sonic speed c = c(ρ) is determined by

c2(ρ) := p′(ρ) = ργ−1.

Notice that c(ρ) is a positive, increasing function for all ρ > 0.
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The two-dimensional nonlinear wave system (1.1) is derived from the compressible isen-
tropic gas dynamics by neglecting the inertial terms, i.e., the quadratic terms in the ve-
locity; see Canic-Keyfitz-Kim [5]. Also see Zheng [28] for a related hyperbolic system, the
pressure gradient system of conservation laws; the same arguments developed in this paper
can be carried through to establish a corresponding theory of existence and regularity for
the pressure gradient system.

Let S0 be the vertical planar shock in the (t,x)–coordinates, t ∈ R+ := [0,∞),x =
(x1, x2) ∈ R2, with the left constant state U1 = (ρ1,m1, 0) and the right state U0 =
(ρ0, 0, 0), satisfying

m1 =
√(

p(ρ1)− p(ρ0)
)
(ρ1 − ρ0) > 0, ρ1 > ρ0.

When S0 passes through a convex cornered wedge:

W := {(x1, x2) : x2 < 0,−∞ < x1 ≤ x2 ctan θw},

shock diffraction occurs, where the wedge angle θw is between −π and 0; see Fig. 1. Then
the shock diffraction problem can be formulated as the following mathematical problem:

Figure 1. Initial-boundary value problem

Figure 2. Shock diffraction configuration
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Problem 1 (Initial-Boundary Value Problem). Seek a solution of system (1.1)
with the initial condition at t = 0:
(1.3)

(ρ,m, n)|t=0 =

{
(ρ0, 0, 0) in {x1 > 0, x2 > 0} ∪ {(x2 − x1 tan θw)x1 ≥ 0, x2 < 0},
(ρ1,m1, 0) in {x1 < 0, x2 > 0},

and the slip boundary condition along the wedge boundary ∂W :

(1.4) (m,n) · ν|∂W = 0,

where ν is the exterior unit normal to ∂W (see Fig. 1).

Notice that the initial-boundary value problem (1.1)–(1.4) is invariant under the self-
similar scaling:

(1.5) (t,x) → (αt, αx) for α ̸= 0.

Thus, we seek self-similar solutions with the form

(1.6) (ρ,m, n)(t,x) = (ρ,m, n)(ξ, η) for (ξ, η) =
x

t
.

In the self-similar coordinates (ξ, η), system (1.1) can be rewritten as

(m− ξρ)ξ + (n− ηρ)η + 2ρ = 0,(
p(ρ)− ξm

)
ξ
− (ηm)η + 2m = 0,

(ξn)ξ −
(
p(ρ)− ηn

)
η
− 2n = 0.

(1.7)

In the polar coordinates (r, θ), r =
√
ξ2 + η2, the system can be further written as

(1.8)

∂r

rρ− cos θm− sin θ n
rm− cos θ p(ρ)
rn− sin θ p(ρ)

+ ∂θ

sin θm− cos θ n
sin θ p(ρ)

− cos θ p(ρ)

 =

ρ+ cos θ
r m+ sin θ

r n

m+ cos θ
r p(ρ)

n+ sin θ
r p(ρ)

 .

The location of the incident shock S0 for large r ≫ 1 is:

(1.9) ξ = ξ1 =

√
p(ρ1)− p(ρ0)

ρ1 − ρ0
> 0.

Then Problem 1 can be reformulated as a boundary value problem in an unbounded
domain:

Problem 2 (Boundary Value Problem). Seek a solution of system (1.7), or equiv-
alently (1.8), with the asymptotic boundary condition when r → ∞:

(1.10) (ρ,m, n) →

{
(ρ0, 0, 0) in {ξ > ξ1, η > 0} ∪ {(η − ξ tan θw)ξ ≥ 0, η < 0},
(ρ1,m1, 0) in {ξ < ξ1, η > 0},

and the slip boundary condition along the wedge boundary ∂W :

(1.11) (m,n) · ν|∂W = 0,

where ν is the exterior unit normal to ∂W (see Fig. 2).

For a smooth solution U = (ρ,m, n) to (1.7), we may eliminate m and n in (1.1) to
obtain a second-order nonlinear equation for ρ:

(1.12)
(
(c2 − ξ2)ρξ − ξηρη + ξρ

)
ξ
+

(
(c2 − η2)ρη − ξηρξ + ηρ

)
η
− 2ρ = 0.
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Correspondingly, equation (1.12) in the polar coordinates (r, θ), r =
√
ξ2 + η2, takes

the form

(1.13)
(
(c2 − r2)ρr

)
r
+
c2

r
ρr + (

c2

r2
ρθ)θ = 0.

In the self-similar coordinates, as the incident shock S0 passes through the wedge corner,
S0 interacts with the sonic circle Γsonic of state (1): r = r1, and becomes a transonic
diffracted shock Γshock, and the flow in the domain Ω behind the shock and inside Γsonic
becomes subsonic. In Section 2, we reduce Problem 2 for shock diffraction into a one-phase
free boundary problem, Problem 3, for second-order elliptic equation in the domain Ω with
the free boundary Γshock, degenerate boundary Γsonic, and slip boundary ∂W ∩Ω. In this
paper, we focus on the existence of global solutions of shock diffraction and the optimal
regularity of the solution across the sonic circle Γsonic.

There are two additional difficulties to establish the global existence of solutions, besides
the ellipticity degenerates at the sonic circle Γsonic. The first is that the oblique derivative
boundary condition degenerates at P2, that is, β2 may equal to 0, for which a one-point
Dirichlet boundary condition has to be identified to ensure the uniqueness of solutions.
The second difficulty is that the diffracted shock may coincide with the sonic circle C0 :=
{r = c(ρ0)} of state (0) in the iteration where the oblique derivative boundary condition
fails again. Then we can not employ directly the results in Liebermann [20]–[23] to show
the existence of solutions for the fixed boundary value problem. One of our strategies here
is to add an additional condition r(θ) ≥ c(ρ0) + δ on the diffracted shock curve with δ
small enough and modify slightly the approximate shock curve to overcome the difficulty.

The approach used in this paper for establishing the global existence of solutions is first
to regularize the equation by adding the regularized differential operator ε∆ to make the
equation uniformly elliptic; and then to rely on the Perron method, as in [19], to show the
global existence of solutions for the fixed boundary value problem; and finally to apply
the Schauder fixed point theorem to show the existence of global solutions for the free
boundary problem. Moreover, we obtain uniform estimates for the global solutions with
respect to δ, ε > 0 so that we can pass the limits δ → 0 and ε → 0 to establish the
existence of solutions of the free boundary problem for the original system. In particular,
we prove that the diffracted shock is uniformly transonic, that is, the strength of the shock
is positive even at point P2.

In order to establish the optimal regularity across the sonic boundary Γsonic, we write
equation (1.13) in terms of the function

ψ := c2(ρ1)− c2(ρ)

in the (x, y)−coordinates, which is specified in §5, defined near Γsonic such that Γsonic

becomes a segment on {x = 0}, with the form

(1.14) (2c1x−ψ)ψxx+ψyy + c1ψx−ψ2
x−

1

(γ − 1)c21
ψ2
y = 0 in x > 0 and near x = 0,

plus “small” terms, since ρ and ψ have the same regularity in Ω. Then we employ the
approach in Bae-Chen-Feldman [2] to analyze the features of equation (1.14) and prove
the C1,α-regularity of solutions of the shock diffraction problem in the elliptic region up
to part Γsonic\P1 of the sonic shock. As a corollary, we establish that the C0,1−regularity
is actually optimal across the sonic boundary Γsonic from the elliptic region Ω to the
hyperbolic region of state (1), that is, the optimal regularity at the degenerate elliptic
boundary.
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We remark that the existence problem for a shock interaction with the right cornered
wedge (90-degree) was studied by Kim [18], in which some important features and behavior
of solutions have been exhibited. As far as we have known, for the shock diffraction
by a convex cornered wedges whose angles are between −π and 0 in compressible fluid
flow, no rigorous complete global mathematical results have been available, since the
early work by Bargman [3], Lighthill [24, 25], Fletcher-Taub-Bleakney [13], and Fletcher-
Weimer-Bleakney [14]. The results established in this paper is the first rigorous complete
mathematical results through the nonlinear wave system for the global existence and
optimal regularity of solutions of shock diffraction by any convex cornered wedge.

A closely related problem, shock reflection-diffraction by a concave cornered wedges, has
been systematically analyzed in Chen-Feldman [6, 7, 8] and Bae-Chen-Feldman [2], where
the existence of regular shock reflection-diffraction configurations has been established up
to the sonic wedge-angle for potential flow. Also see Canic-Keyfitz-Kim [4, 5] for the
unsteady transonic small disturbance equation and the nonlinear wave system, and Zheng
[28] for the pressure-gradient system.

The organization of this paper is as follows. In §2, we reformulate the shock diffraction
problem into a free boundary problem for the nonlinear second-order equation (1.1) in
both the self-similar and polar coordinates, and present the statement of our main theorem
for the existence and optimal regularity of the global solution. In §3, we first formulate
the regularized approximate free boundary problem by adding a regularized differential
operator with ε△ρ to the original equation (△ denotes the Laplace operator in the self-
similar coordinates) and the assumption c(ρ̄) ≥ c(ρ0) + δ, where ρ̄ is the data given at
point P2. Then we establish the existence of solutions to the regularized free boundary
problem for the uniformly elliptic equation in the polar coordinates, and so does in the
self-similar coordinates, as approximate solutions to the original free boundary problem.
In §4, we proceed to the limits ε → 0 and δ → 0 to establish the global existence of
solutions of the original problem in the self-similar coordinates. In §5, we establish the
optimal C0,1-regularity of the solution ρ across the degenerate sonic boundary. In §6, we
establish a corresponding theorem for the existence and regularity of solutions of the shock
diffraction problem for the nonlinear wave system.

2. Mathematical Formulation and Main Theorem

In this section, we derive mathematical formulation of the shock diffraction problem as
a free boundary problem for a nonlinear degenerate elliptic equation of second order and
present our main theorem of this paper. In particular, we employ the Rankine-Hugoniot
relations to set up a boundary condition along the free boundary (shock) and derive other
boundary conditions along the wedge boundaries in the polar coordinates.

2.1. Rankine-Hugoniot Conditions and Oblique Derivative Boundary Condi-
tion on the Diffracted Shock. Consider system (1.8) in the polar coordinates. Then
the Rankine-Hugoniot relations, i.e., the jump conditions, are

dr

dθ
= r

√
r2 − c̄2(ρ, ρ0)

c̄(ρ, ρ0)
,(2.1)

[p][ρ] = [m]2 + [n]2,(2.2)

with c̄(ρ, ρ0) =
√

p(ρ)−p(ρ0)
ρ−ρ0 , where we have chosen the plus branch so that drdθ > 0. Differen-

tiating (2.2) along Γshock and using the equations obtained above with careful calculation,
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we finally obtain

(2.3)
2∑
i=1

βiDiρ := β1ρr + β2ρθ = 0,

where β = (β1, β2) is a function of (ρ0, ρ, r(θ), r
′(θ)) with

(2.4) β1 = r′(θ)
(
c2(r2 − c̄2)− 3c̄2(c2 − r2)

)
, β2 = 3c2(r2 − c̄2)− c̄2(c2 − r2).

Thus, the obliqueness becomes

(2.5) 0 ̸= β · (1,−r′(θ)) = −2r2(c2 − c̄2)r′(θ) =: µ,

where (1,−r′(θ)) is the outward normal to Ω on Γshock. Note that µ becomes zero when
r′(θ) = 0, that is, r = c̄(ρ, ρ0). When the obliqueness fails, we have

β1 = 0, β2 = −c̄2(c2 − r2) < 0,

since c2(ρ) > c̄2(ρ, ρ0) = r2 if ρ > ρ0.

We define Q to be the governing second-order quasilinear operator in the subsonic
domain Ω:

(2.6) Qρ :=
(
(c2 − r2)ρr

)
r
+
c2

r
ρr +

( c2
r2
ρθ
)
θ
= 0,

and M to be the oblique derivative boundary operator:

(2.7) Mρ := β1ρr + β2ρθ = 0 on Γshock := {(r(θ), θ) : θw ≤ θ ≤ θ1}.

The second condition on Γshock is the shock evolution equation:

(2.8)
dr

dθ
= r

√
r2 − c̄2(ρ, ρ0)

c̄(ρ, ρ0)
:= g(r, θ, ρ(r, θ)), r(θ1) = r1,

where (r1, θ1) are the polar coordinates of P1 = (ξ1, η1).
At point P2, r

′(θw) = 0, M does not satisfy the oblique derivative boundary condition
at this point. We may alternatively express this as a one-point Dirichlet condition by
solving r(θw) = c̄(ρ(r(θw), θw), ρ0). In order to deal with this equation, we introduce the
notation:

(2.9) a = (c̄b)
−1(r) when c̄b := c̄(a, b) = r for fixed b.

Thus, we have

(2.10) ρ(P2) = ρ̄ = (c̄ρ0)
−1(r(θw)).

2.2. Boundary Condition on the Wedge. The boundary condition on the wedge is
the slip boundary condition, i.e., (m,n) · ν = 0. Differentiating it along the wedge, and
combining this with the second and third equations in (1.1), we conclude that ρ satisfies

(2.11) ρν = 0 on Γ0 := ∂Ω ∩ ({θ = π} ∪ {θ = θw}).

2.3. Boundary Condition on Γsonic of State (1). The Dirichelt boundary condition
on Γsonic:

(2.12) ρ = ρ1 on Γsonic := ∂Ω ∩ ∂Bc1(0).

On the Dirichlet boundary Γsonic, the equation Qρ = 0 becomes degenerate elliptic from
the inside of Ω.
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2.4. Reformulation of the Shock Diffraction Problem. With the derivation of the
free boundary condition on Γshock and the fixed boundary conditions on Γsonic and the
wedge Γ0, Problem 2 is reduced to the following free boundary problem in the domain Ω
for the second order equation (2.6), with (m,n) correspondingly determined by (1.8).

Problem 3 (Free Boundary Problem). Seek a solution of the second-order nonlinear
equation (2.6) for the density function ρ in the domain Ω, satisfying the free boundary
conditions (2.7)–(2.10) on Γshock, the Neumann boundary condition (2.11) on the wedge
Γ0, and the Dirichlet boundary condition (2.12) on the degenerate boundary Γsonic, the
sonic circle of state (1) (cf. Fig. 2).

2.5. Main Theorem. For the free boundary problem, Problem 3, we have the following
results, which form the main theorem of this paper.

Theorem 2.1. (Main Theorem) Let the wedge angle θw be between −π and 0. Then
there exists a global solution ρ(r, θ) in the domain Ω with the free boundary r = r(θ), θ ∈
[θw, θ1], of Problem 3:

ρ ∈ C2+α(Ω) ∩ Cα(Ω), r ∈ C2+α([θw, θ1)) ∩ C1,1([θw, θ1]).

Moreover, the solution (ρ(r, θ), r(θ)) satisfies the following properties:

(i) ρ > ρ0 on the shock Γshock, that is, the shock Γshock is separated from the sonic
circle C0 of state (0);

(ii) The shock Γshock is strictly convex, except point P1, in the self-similar coordinates
(ξ, η);

(iii) The solution is C1,α up to Γsonic and Lipschitz continuous across Γsonic;
(iv) The Lipschitz regularity of solutions across Γsonic and at P1 from the inside is

optimal.

In particular, Theorem 2.1 implies the following facts:

(i) The diffracted shock Γshock definitely is not degenerate at point P2. This has been
an open question even when the wedge angle is π

2 as in [18], though it is physically
plausible.

(ii) The curvature of the diffracted shock Γshock away from point P2 is strictly convex,
though the strict convexity of the curvature fails at P2.

(iii) The optimal regularity of solutions across Γsonic and at P1 from the inside is C0,1,
i.e., Lipschitz continuity.

We establish Theorem 2.1 in two main steps. First, we solve the regularized approximate
free boundary problem for Q involving two small parameters ε and δ, introduced in §3.
Then we analyze the limits ε→ 0 and δ → 0, and prove that the limits yield a solution of
Problem 3, i.e., (2.6)–(2.12), in §4. The optimal regularity is established in §5.

3. Regularized Approximate Problem

In this section we first formulate the regularized approximate free boundary problem and
establish the existence of solutions to this problem as approximate solutions to the original
problem. To solve the free boundary problem, we formulate the fixed point argument in
terms of the position of the free boundary. There are two main difficulties in establishing
the existence of solutions: The first is that the ellipticity degenerates at the sonic circle
Γsonic; and the second is that the free boundary Γshock may coincide with the sonic circle
C0 of state (0) in an iteration, which would make the iteration impossible. We overcome
these difficulties as described below.
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3.1. Approximate Problem and Existence Theorem for Approximate Solutions.
For fixed ε > 0, introduce a regularized operator:

Qε := Q+ ε△,

where △ represents the Laplace operator in the self-similar coordinates. For a given curve
r(θ), we first solve the fixed boundary value problem (2.6)–(2.7), (2.11)–(2.12), and (2.10)
with Q replaced by Qε; then we obtain a new shock position r̃(θ) by integrating (2.8):

(3.1) r̃(θ) = r1 +

∫ θ

θ1

g(r(s), s, ρ(s, r(s)))ds for θ ∈ [θw, θ1),

where g is defined in (2.8). Note that, on the right side of (3.1), we evaluate all the
quantities along the old shock position r(θ).

With this, it seems that the free boundary could be obtained by solving a fixed boundary
problem and then by integrating the shock evolution equation. However, we face the
second difficulty as indicated above, that is, r̃(θ) may meet the sonic circle C0 of state
(0). Introduce another small, positive parameter δ which is fixed and define the iteration
set of r, Kε,δ, which is a closed, convex subset of a Hölder space C1+α1([θw, θ1]), where α1

depends on ε and δ to be specified later. The functions in Kε,δ satisfy

(K1) r(θ1) = r1;
(K2) r′(θw) = 0;
(K3) c(ρ0) + δ ≤ r(θw);

(K4) 0 ≤ r′(θ) ≤ r21
c̄(ρ0)

for θw ≤ θ ≤ θ1.

When the difficulty occurs, we modify r̃(θ) slightly somewhere as r(θ) = c(ρ0)+ δ+A(θ−
θw)

3 + B(θ − θw)
n, where A,B, and n will be uniquely determined. Then we define a

mapping on Kε,δ:

J : r → r̃.

We now restate the regularized approximate problem as follows: For fixed ε, δ > 0, the
equation for ρ in the subsonic region is

(3.2) Qερ =
(
(c2 − r2 + ε)ρr

)
r
+
c2 + ε

r
ρr + (

c2 + ε

r2
ρθ)θ = 0;

the shock evolution equation remains the same when r ≥ c(ρ0) + 2δ:

(3.3)

{
dr
dθ = g(r, θ, ρ),

r(θ1) = r1;

and

(3.4) r(θ) = c(ρ0) + δ +A(θ − θw)
3 +B(θ − θw)

n

for some constants A,B, and n on the boundary when (3.3) does not hold; the remaining
boundary conditions as before are

(3.5) Mρ = β · ∇ρ = 0 on Γshock = {(r, θ) : θw < θ < θ1},

(3.6) ρ = ρ1 on Γsonic; ρν = 0 on Γ0,

where ν is the outward normal to Ω at Γ0; and

(3.7) ρ(P2) = ρ̄ = (c̄ρ0)
−1(r(θw)).
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Let V = {P1, P2, O, P3} denote the corners of Ω, and V ′ = V \{P2}. Set Ω′ = Ω\(V ∪
Γshock). For P ∈ V , we define the corner region

ΩP (σ) := {x ∈ Ω : dist(x, P ) ≤ σ}, ΩV (σ) := ∪P∈V ΩP (σ).

We define a region that is close to Γshock, but does not contain corner P1 by taking
a covering of Γshock with a ball of radius δ centered at the points on Γshock which are
bounded away from P1. Define

Γ′(σ) := {P ∈ Γshock : dist(P, P1) > σ}
and

Γ(σ) = {x ∈ Ω ∩
(
∪P∈Γ′(σ) Bσ(P )

)
},

where Bσ(P ) is a ball of radius σ centered at P . We then define

(3.8) Cab ≡ {u : ∥u∥ba := sup
σ>0

(
σa+b∥u∥a,Ω̄\(Γ(σ)∪ΩV ′ (σ))

)
<∞}.

We focus now on the proof of the following existence theorem in this section.

Theorem 3.1. For any ε ∈ (0, ε0) and δ ∈ (0, δ0) for some ε0, δ0 > 0, there exists a
solution (ρε,δ, rε,δ) ∈ C2+α

(−γ1)(Ω
ε,δ)×C1+α([θw, θ1]) to the regularized free boundary problem

(3.2)–(3.7) such that

(3.9) ρ0 < ρ̄ε,δ ≤ ρε,δ < ρ1, c2(ρε,δ) ≥ r2 in Ω
ε,δ

for some α, γ ∈ (0, 1), which depend on ε, δ, and the data (ρ0, ρ1, θw). Furthermore, the

solution satisfies (3.3) at the points of Γε,δshock where rε,δ ≥ c(ρ0) + 2δ. The curve rε,δ(θ),

defining the position of the free boundary Γε,δshock, is in Kε,δ. Here Ωε,δ is bounded by Γε,δshock,
Γsonic, and Γ0.

We establish Theorem 3.1 in the following steps whose details are given in the following
four subsections.

Step 1. Since the governing equation (3.2) is nonlinear and the ellipticity is not known
a priori, we impose a cut-off function in the equation Qερ = 0.

We introduce a smooth increasing function ζ ∈ C∞ such that

ζ(s) :=

{
s if s ≥ 0,

−1
2ε if s < −ε,

(3.10)

and |ζ ′(s)| ≤ 1. We then consider the following modified governing equation:

(3.11)
Qε,+ρ =

(
(ζ(c2 − r2) + ε)ρr

)
r
+ ( c

2+ε
r2

ρθ)θ +
(
1
r (ζ(c

2 − r2) + ε) + r
)
ρr

=
∑2

i=1Di

(
aεii(r, θ, ρ)Diρ

)
+ bε(r, ρ)Drρ = 0 in Ω.

Step 2. We make some estimates for a solution to the linear problem with fixed boundary
Γshock defined by r(θ) ∈ Kε,δ and establish the Schauder estimates on Γshock.

Step 3. We employ a technique in Lieberman [19] to solve the problem with the oblique
derivative boundary condition Mρ = 0. Using the Hölder gradient bounds to the linear
problem, we establish the existence results for the linear fixed boundary problem in the
polar coordinates, via the Perron method developed in [19].

Step 4. We apply the Schauder fixed point theorem to conclude the existence of a
solution to the free boundary problem with the oblique derivative boundary condition.
Finally we remove the cut-off function by the a priori estimates to conclude the results.
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3.2. Proof of Theorme 3.1: Regularized Linear Fixed Boundary Value Problem.
Replace ρ in the coefficients aεii and b

ε in (3.11) and βi in (3.5) by a function w in a set

W that is defined with respect to a given boundary component Γε,δshock and depends on the

given values ρ0, ρ1, and ρ̄
ε,δ = (c̄ρ0)

−1(rε,δ(θw)):

Definition 3.2. The elements w of W ⊂ C2
(−γ1) satisfy

(W1) ρ0 < ρ̄ε,δ ≤ w ≤ ρ1, w = ρ1 on Γsonic, wν = 0 on Γ0, and w(P2) = ρ̄ε,δ;

(W2) ∥w∥α0 ≤ K0, ∥w∥2+α0,Ωloc
≤ K0, and ∥w∥1+µ,Γ(d0) ≤ K0;

(W2) ∥w∥(−γ1)2 ≤ K1.

The weighted Hölder space is defined by (3.8). The values of γ1, α0, µ ∈ (0, 1), and
d0, as well as the values of K0 and K1, will be specified later. Obviously, W is closed,
bounded, and convex.

The quasilinear equation (3.11) and the oblique derivative boundary condition (3.5) are
now replaced by the linear equation and linear oblique derivative boundary condition on

Γε,δshock := {(r(θ), θ) : θw ≤ θ ≤ θ1}:

(3.12)
Lε,+u :=

∑2
i=1Di(a

ε
ii(P,w)Diu) + bε(P,w)D1u = 0 in Ω,

Mu := β1(P,w)Dru+ β2(P,w)Dθu = 0 on Γε,δshock,

with given r(θ) ∈ Kε,δ ⊂ C1+α1([θw, θ1]) ∩ C2((θw, θ1)) and w ∈ W, where the repeated
indices are summed as usual. Because of the cut-off function ζ, Lε,+ is uniformly elliptic
in Ω with the ellipticity ratio depending on the data and ε.

In this section, we demonstrate the key point that, thanks to the uniform distance
between the sonic circle C0 of the right state (0) and Γshock, for a given function w ∈ W,
the solution u to the linear equation (3.12) with the remaining boundary conditions:

(3.13) u = ρ1 on Γshock, uν = 0 on Γ0, u(P2) = ρ̄ε,δ,

satisfies the Hölder and Schauder estimates in Ω′ and the uniform bound in C1+µ(Γ(d0))

near Γε,δshock for any µ < min{γ1, α1}. This bound gives rise to enough compactness to
establish the existence of a solution to the quasilinear problem by applying the Schauder
fixed point theorem.

First, we state the Schauder estimates up to the fixed boundary Γsonic with the Dirich-
let boundary condition, to Γ0 with the Neumann boundary condition, and the Hölder
estimates at the corners V ′.

Lemma 3.3. Assume that Γshock is parameterized as {(r(θ), θ)} with r(θ) ∈ Kε,δ for some
α1 and that w ∈ W for given K0, K1, α0, and γ. Then there exist γV , αΩ ∈ (0, 1) such that

any solution u ∈ C2+αΩ
loc (Ω′) ∩ CγV (ΩV ′(d0)) to the linear problem (3.12)–(3.13) satisfies

(3.14) ∥u∥γ,ΩV ′ (d0) ≤ C1∥u∥0 for any γ ≤ γV ,

and

(3.15) ∥u∥2+α,Ω′
loc

≤ C2∥u∥0 for any α ≤ αΩ.

The exponent γV depends on the data ρ0, ρ1, and θw; and both αΩ and γV depend on ε
but are independent of α1 and γ1. The constant C2 is independent of K1 but depends on
K0.
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Figure 3. Scaling of the angles

Proof. The corner estimates at P1 and P3 directly follow from the results in Theorem 1,
Lieberman [23]. Near the origin, the wedge angle is larger than π; thanks to the symmetry
of the governing equation in the θ-axis with form (1.13), we derive the corner estimate as
follows.

First we flat out the boundary by introducing the transformation:

(r′, θ′) = (r,
π

π − θw
(θ − θw)), (ξ′, η′) = (r′ cos θ′, r′ sin θ′).

Then the governing equation in the (r′, θ′)-coordinates takes the form

Q̃ε,+ρ =
(
(ζ(c2(w)− r2) + ε)ρr

)
r
+
(ζ(c2(w)− r2) + ε

r
+ r

)
ρr +

π2

(π − θw)2
(c2(w) + ε

r2
ρθ
)
θ
,

and

(3.16)

Q̃ε,+ρ =
((

(ζ(c2(w)− r2) + ε) ξ
2

r2
+ π2

(π−θw)2
(c2+ε)η2

r2

)
ρξ

)
ξ

+
((

(ζ(c2(w)− r2) + ε) ξη
r2

− ( π2

(π−θw)2
(c2+ε)ξη

r2

)
ρη

)
ξ

+
((

(ζ(c2(w)− r2) + ε) ξη
r2

− π2

(π−θw)2
(c2+ε)ξη

r2

)
ρξ

)
η

+
((

(ζ(c2(w)− r2) + ε)η
2

r2
+ π2

(π−θw)2
(c2+ε)ξ2

r2

)
ρη

)
η
+ ξρξ + ηρη

in the (ξ′, η′)-coordinates, where we drop ′ for simplicity without confusion. The eigenval-
ues of (3.16) are

λ1 = ζ(c2 − r2) + ε, λ2 = (
π

π − θw
)2(c2 + ε).

Note that the transformation from the (ξ, η)−coordinates to (ξ′, η′)−coordinates is invert-

ible and the Cα–norms are equivalent, since det
(D(ξ′,η′)
D(ξ,η)

)
≡ π

π−θw > 0 for all (r, θ) ∈ R2.

As for the proof of the equivalence of the two norms, we have two cases:

Case 1. If θ ≥ π
2 as in Fig. 3, then

θ′ = kθ ≥ π

2
with k =

π − θw
π

.

Since 1 < k < 2, |x − y| ≥ max{r(x), r(y)} and |x′ − y′| ≥ max{r(x′), r(y′)}. Then
the equivalence of the two C1,1−norms can be easily shown by setting r(x) = r(x′) and
r(y) = r(y′).
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Case 2. If θ < π
2 , then the distance between two points in the (ξ, η)−coordinates and

(ξ′, η′)−coordinates is equivalent. By the cosine law, we define

m(k) := |x′ − y′|2 = r(x)2 + r(y)2 − 2r(x)r(y) cos(kθ),

and then ∂m(k)
∂k = 2kr(x)r(y) sin(kθ) > 0. Thus,

|x− y| =
√
m(1) ≤

√
m(k) = |x′ − y′| ≤

√
m(2) ≤ 2

√
m(1) = 2|x− y|.

Therefore, we can obtain the Hölder estimate of the solution at O. Here γV depends
on the angle at the corner, a fixed value that depends on the data (ρ0, ρ1, θw), and the
ellipticity ratio ε, but independent of γ1, α1, K0, and K1.

Finally, we can use the standard interior and boundary Schauder estimates to obtain
the local estimate (3.15). The constant C2 depends on ε, the Cα−norm of the coefficients
aij , and the domain. �

Because the interior Schauder estimates can be further applied, a solution in C2+α
loc (Ω′)

is actually in C3
loc(Ω).

We next establish the Hölder gradient estimates on Γshock. It is at this point that
we need to derive the basic estimates at point P2 where the boundary operator M is
not oblique. In order to avoid handling the Neumann boundary condition on the wedge
boundary θ = θw separately at each step of this proof, we reflect Ω across the wedge
boundary θ = θw, without further comment, i.e., Ω includes Σ0, and let Γshock stand for
the full C1+α1–boundary in Lemma 3.4 below. In addition, we extend ũ(2θw − θ) = u(θ)
for θ ∈ (θw, θ1) in a small neighborhood of θw. We still denote ũ by u for simplicity
without confusion.

Lemma 3.4. Assume that Γshock is given by {(r(θ), θ)} with r(θ) ∈ Kε,δ for some α1 and
that w ∈ W for given K0, K1, α0, and γ1. Then there exists a positive constant d0 such
that, for any d ≤ d0, the solution u ∈ C1

loc(Ω ∪ Γshock) ∪ C3
loc(Ω) to the linear problem

(3.12)–(3.13) satisfies

(3.17) ∥u∥1+µ,Γ(d)\Bd(P1) ≤ C(ε, δ, α1, γ1,K1, d0)∥u∥0
for any µ < min{γ1, α1}.

Proof. Away from a neighborhood Bd0(P2) of P2, the operator M is oblique. Thus we can
apply Theorem 6.30 in [16] to obtain (3.17) in Γ(d)\{Bd0(P1)∪Bd0(P2)}, with a constant
C depending on ε, α1, Ω, d0, and K0. For the estimates near P2, the proof is adopted
from [5], which is similar. The main idea is that, for a given solution u to (3.12)–(3.13),
we define

(3.18) v =
u

1 + ∥Du∥0
and z =Mv =

2∑
i=1

βi(P )Div.

For d0 > 0 small enough, O /∈ Bd0(P2). Then we construct barrier functions ±g for z on
B := Bd0(P2)∩Ω, by finding a suitable positive, increasing function g, g(0) = 0, such that

|z| ≤ g.

More precisely, g(ζ) = g0ζ
µ for any µ < γ2. This barrier function leads to

(3.19) |D(z + g)| ≤ ∥(z + g)∥(1−µ)1+γ2
dµ−1 ≤ C(m)dµ−1 for d < d0,

which leads to

∥v∥1+µ ≤ C.
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Finally, using the definition of v in (3.18), we apply the interpolation inequality with small
ϑ > 0 to obtain

(3.20) ∥u∥1+µ ≤ C
(
1 + ∥Du∥0

)
≤ C

(
1 + ϑ∥u∥1+µ + Cϑ∥u∥0

)
and thus (3.17) holds. Therefore, we obtain the Hölder gradient estimate at Γshock for the
solution u of (3.12). See [5] for more details. �

Now we focus on the existence of solutions in Theorem 3.1 for problem (3.12)–(3.13).
First we introduce two definitions with some modification in comparison with [19].

We say that problem (3.12)–(3.13) is locally solvable if, for each y ∈ Ω, there exists a
neighborhood O(y) such that, for any h ∈ C(N) with N := O(y) ∩ {Ω\({P2} ∪ Γsonic)},
there exists a solution v ∈ C2(N)∩C(N) of the problem Lε,+v = 0 in N ∩Ω, Mv = 0 on
N ∩ ∂Ω, and v = h on ∂′N , when P2 /∈ N(y); or Lε,+v = 0 in N ∩Ω, Mv = 0 on N ∩ ∂Ω,
v = h on ∂′N , and v|P2 = ρ̄ε,δ, when P2 ∈ N(y). Here ∂′N = ∂N ∩ Ω. For brevity, we
denote this function v by (h)y to emphasize its dependence on h and y.

A subsolution (supersolution) of (3.12)–(3.13) is a function w ∈ C(Ω) with w(r(θw), θw) ≤
ρ̄ε,δ (w(r(θw), θw) ≥ ρ̄ε,δ) such that, for any y ∈ Ω, if h ≥ w (h ≤ w) on ∂′N , then (h)y ≥ w
((h)y ≤ w) in N . The set of all subsolutions (supersolutions) is denoted by S− (S+).

We now establish the existence of solutions to problem (3.12)–(3.13).

Lemma 3.5. Assume that Γshock is given by {(r(θ), θ)} with r(θ) ∈ Kε,δ for some α1 and
that w ∈ W for given K0, K1, α0, and γ1. Then there exist γV , αΩ ∈ (0, 1) and d0 > 0,
which are independent of γ1 and α1, such that there exists a solution

uε,δ ∈ C1+µ(Γ(d)\Bd(P1)) ∩ C2+α(Ω′) ∩ Cγ(ΩV ′(d))

to the linear problem (3.12)–(3.13) for any α ≤ αΩ, µ < min{γ1, α1}, γ ≤ γV , and d ≤ d0,
which satisfies (3.14)–(3.15) and (3.17).

Proof. For fixed ε, δ > 0, we denote uε,δ = u in the proof without confusion. We use the
Perron method to show the existence of a solution to problem (3.12)–(3.13).

It suffices to show the local existence at P2. In fact, let B2 be a sufficiently small
neighborhood of P2 with smooth boundary such that O /∈ B2, β1 ≤ 0, and β2 < 0. Then
we study the local existence in the (ξ, η)−coordinates in B2. Reflect the region B2 across
θ = θw to obtain a new region, which is still denoted by B2. Then we introduce the
coordinate transform in a neighborhood of P2:

(3.21) ξ̂ = ξ̂(r, θ), η̂ = η̂(r, θ)

such that
ξ̂(rw, θw) = 0, η̂(rw, θw) = 0,
∂(ξ̂,η̂)
∂r = (0,−1), ∂(ξ̂,η̂)

∂θ = −( 1
β2
, β1β2 ).

Let Γshock := {(ξ̂, η̂) : η̂ = f(ξ̂)} = {(r, θ) : r = r(θ)} in B̂2. Then η̂(r(θ), θ) =

f(ξ̂(r(θ), θ)) and hence f ′(ξ̂) = −(β1−β2r
′(θ)) ≥ 0, and the function f(ξ̂) is increasing in

ξ̂ on Γshock ∩ B̂2. Thus, from
∂ξ̂
∂θ = − 1

β2
> 0 and ∂ξ̂

∂r = 0, we have

f(ξ̂) ≥ 0.

We replace Ω by Ωσ which is the σ−distance from point P2 upward, see Fig. 4. On the
bottom straight boundary of Ωσ, we impose

u = ρ̄ε,δ on bottom of Ωσ.
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Figure 4. Domain with tip P2 removed

Now we study the following boundary value problem:

(3.22)


L̂ε,δu =

∑2
i,j=1 âijDju+

∑2
i=1 b̂iDiu = 0 inΩσ,

M̂u = ∂ξ̂u = 0 on ∂Ωσ ∩ Γshock,

u = h on ∂B2 ∩ Ω,

u = ρ̄ε,δ onΣσ,

where

ãε11 =
âε11

β̂22
, ãε12 = ãε21 = − β̂1

β̂22
âε22, ãε22 = âε11 + (

β̂1

β̂2
)2â22,

b̃ε1 =
∂âε11
∂η̂

− âε22

β̂22

∂β̂1

∂ξ̂
+
β̂1â

ε
22

β̂22

∂β̂2
∂η̂

+
β̂1â

ε
22

β̂32

∂β̂2

∂ξ̂
− β̂21 â

ε
22

β̂32

∂β̂2
∂η̂

+ (
β̂1

β̂2
)2
∂âε22
∂η̂

− b̂ε,

b̃ε2 = − â
ε
22

β̂32

∂β̂2

∂ξ̂
+
âε22β̂1

β̂32
+

1

β̂2
∂âε22

∂ξ̂
− β̂1

β̂22

∂âε22
∂η̂

.

Here âεii, b̂
ε, and β̂i, i = 1, 2, are the coefficients of (3.12)–(3.13) in the (ξ̂, η̂)−coordinates,

and h is a continuous function satisfying ρ̄ε,δ < h ≤ ρ1. Following Lieberman [19], there
exists a solution

uσ ∈ C(Ω ∩ B̂2) ∪ C2,α(Ωσ ∩ B̂2)

for B̂2 small enough. The maximum principle holds for uσ, which converges locally in
C2(Ω ∩ B̂2) to a solution in C2+α(Ω ∩ B̂2) as σ → 0+.

We now use a barrier function to obtain the continuity of u at P2. We consider the
auxiliary function

(3.23) v = ρ̄ε,δ + c
(
1− e−l η̂

)
,

where c > 0 and l > 0 are specified later. For the oblique derivative boundary condition
along Ωσ ∩ Γshock, we have the following two cases:

Case 1: β̃ · ν > 0 and M̃(v − ρ̄ε,δ) ≥ 0 when ξ̂ > 0;

Case 2: β̃ · ν < 0 and M̃(v − ρ̄ε,δ) ≤ 0 when ξ̂ < 0,

where ν denotes the outward normal to Ωσ at Ωσ ∩ Γshock.
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Moreover, it is easy to see that v ≥ ρ̄ε,δ on Σσ. Choose C large enough such that
v ≥ sup |h| on ∂B̂2 ∩ Ω. For the equation, we have

ãεijDjv + b̃εiDiv = −ce−lη̂(l2ãε11 − lb̃ε1),

which is less than a negative constant by choosing l > ∥b̃ε∥0
λ , where λ ≤ ãε11(ξ̂, η̂). Thus,

ρ̄ε,δ ≤ u ≤ v.

Then u is continuous at point P2. The continuity of u at the other points follows from
Lieberman’s argument in [21, 23].

By Lemma 3.4, we have u ∈ C1,µ(B̂2 ∩ Ω).
In order to establish the global existence of solutions, it is required to show

sup
Ω

(w− − w+) = 0,

where w± are the supersolution and subsolution of problem (3.12)–(3.13), respectively.
In fact, we set m := sup

Ω
(w− − w+). We assume that m > 0 in Ω. Since w−(P2) −

w+(P2) ≤ 0, there exists a neighborhood B̂2(P2) of P2 such that w−(y)− w+(y) < m for

y ∈ B̂2(P2). Now we define

Y := {y ∈ Ω : w−(y)− w+(y) = m}.

Let y0 ∈ Y such that

dist(y0, P2) = min
y∈Y

dist(y, P2).

Let w̄± be the lifts of w± in M(y0). We see that w̄− − w̄+ ≤ m on ∂′N . The strong
maximum principle implies that either w̄− − w̄+ < m in M or w̄− − w̄+ ≡ m. Since
w̄−(y0)− w̄+(y0) ≥ w−(y0)−w+(y0) = m, it follows that w̄− − w̄+ = m in N , and hence

w̄− − w̄+ ≡ m on ∂′N,

which contains the point of Y closer to P2 than y0. This is a contradiction with the
definition of y0.

We refer to Lieberman [21] to handle the mixed case and both points P1 and P3, and
to Lieberman [22] to handle point O where the two Neumann boundary conditions are
satisfied. As for the interior and the Dirichlet boundary condition on the sonic arc Γsonic,
they are classical since the equation is uniformly elliptic for fixed ε > 0 (see Gilbarg-
Trudinger [16]).

With all of these, we then employ the Perron method to establish the existence of a
global solution. �

3.3. Proof of Theorem 3.1: Regularized Nonlinear Fixed Boundary Problem.
We now establish the existence of solutions to the nonlinear problem (3.2) with a fixed
boundary.

Lemma 3.6. For ε ∈ (0, ε0) and δ ∈ (0, δ0), given r(θ) ∈ Kε,δ ⊂ C1+α1, there exists a
solution ρε,δ ∈ C2+α

(−γ1)(Ω
ε,δ) to problem (3.2) and (3.6)–(3.7) with the oblique derivative

condition Mρε,δ = 0 for some α(ε, δ), γ1(ε, δ) ∈ (0, 1) such that

(3.24) ρ0 < ρ̄ε,δ ≤ ρε,δ ≤ ρ1.

Moreover, for some d0 > 0, the solution ρε,δ satisfies

(3.25) ∥ρε,δ∥γ,Γ(d0)∪Bd0
(P1) ≤ K2,
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where γ and K2 depend on δ, ε, γV , and K1, but are independent of α1. In addition, the
solutions satisfy the following three important properties:

(i) Ellipticity of the nonlinear system: c2(ρε,δ)− r2 ≥ 0 in Ω
ε,δ
;

(ii) (3.1) can be always integrated: c̄(ρε,δ, ρ0)− r ≤ 0 on Γε,δshock;
(iii) Local behaviours of density near shock wave and the convexity of the shock wave:

ρε,δ is monotone on Γshock.

Proof. The idea is to use Fixed point theorem to prove the existence and then to find
barrier function to control the behaviours of solutions. The proof is long and similar to
the one in [5] or in [18], while the main difference from these is that we need to treat
the singularity at origin. So we postpone the detailed proof into the Appendix for self-
contained. �

3.4. Proof of Theorem 3.1: The Regularized Nonlinear Free Boundary Prob-
lem. We now show the existence of a solution to the regularized free boundary problem.

Lemma 3.7. For each ε ∈ (0, ε0) and δ ∈ (0, δ0) with some ε0 > 0 and δ0 > 0, there
exists a solution (ρε,δ, rε,δ) ∈ C2+α

(−γ)(Ω
ε,δ)×C1+α1([−π

2 , θ1)) to the regularized free boundary

problem (3.2)–(3.7).

Proof. For the notational simplicity, we suppress the (ε, δ)-dependence in the proof.
For each r(θ) ∈ Kε,δ ⊂ C1+α1([θw, θ1]), using the solution ρ of the nonlinear fixed

boundary problem (3.2) and (3.6)–(3.7) given by Lemma 3.5, we define the map J on K,
r̃ = Jr, as in (3.1):

(3.26) r̃(θ) = r1 +

∫ θ

θ1

g(r(s), s, ρ(r(s), s))ds.

There are two cases for the approximate shock position r̃(θ):

Case 1: r̃(θw) ≥ c(ρ0) + δ. We check that J maps K into itself. It is easy to check
that r̃(θ) ∈ C1+γV ([θw, θ1])∩C1+1([θw, θ1)), from the definition of r̃ and by using Lemmas
3.3–3.4. property (K1) follows from (3.26). By the definition of g and ρ(P2) = ρ̄, r̃′(θ) = 0
holds, which implies property (K2). Then it suffices to show that property (K4) holds,
since the upper and lower bounds of ρ, Lemma 3.6, and (K4) imply (K3). From the
expression of g(r(θ), θ, ρ(r(θ), θ)) and the upper and lower bounds of ρ, we have (K4).

Case 2: r̃(θw) < c(ρ0) + δ. Since r̃′(θ) > 0 for θ ∈ (θw, θ1) and r1 = c(ρ1) > c(ρ0) + δ,
there exists a unique θa ∈ (θw, θ1) such that r̃(θa) = c(ρ0) + δ. Now, choosing τ to be
determined later such that r̃(θa+ τ) ≤ c(ρ0) + 2δ and letting x1 = θa+ τ − θw, we modify
the approximate shock position on θw ≤ θ ≤ θa + τ by defining

r̂(θ) = c(ρ0) + δ +A(θ − θw)
3 +B(θ − θw)

n

with

A =
1

(n− 3)x31
(na− bx1), B =

1

(n− 3)xn1
(bx1 − 3a),

where a = r̃(θa + τ)− c(ρ0)− δ and b = r̃′(θa + τ).
Choose τ small enough such that

bx1 − 3a > 0,

and then n sufficiently large such that

na− bx1 > 0,
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where n depends on δ, but independent of the iteration. Next, we choose n and τ precisely.
In fact, it is easy to see that

|b| ≤ c(ρ1)

c(ρ0)

√
c2(ρ1)− c2(ρ0),

and

|bx1| ≤ C(ρ0, ρ1, θ1, θw) :=
c(ρ1)

c(ρ0)

√
c2(ρ1)− c2(ρ0)(θ1 − θw).

If 3δ ≤ bx1, we choose τ such that a = δ and n1 =
C(ρ0,ρ1,θ1,θw)

δ +1, which depend only
on δ, ρ0, and ρ1.

If 3δ > bx1, letting τ small enough, we can obtain new a and b satisfying 3a = bx1,
where we choose the biggest τ smaller than the old one such that 3a = bx1 holds. Note
that bx1 > 0 and r̃(θa) = c(ρ0) + δ. Thus, choosing n2 = 4, we have A > 0 and B = 0.

Let n = max(n1, n2) = n(ρ0, ρ1, θ1, θw, δ), which is independent of the iteration pro-
cess. Thus, r̂(θ), uniquely determined, is a strictly increasing function on [θw, θa + τ ].
Furthermore, we have

0 = r̂′(−π
2
) ≤ r̂′(θ) ≤ r̂′(θa + τ) = r̃′(θa + τ).

We define

Jr(θ) =

{
r̃(θ) for θ ∈ [θa + τ, θ1],

r̂(θ) for θ ∈ [θw, θa + τ ].

It is easy to show that Jr(θ), θ ∈ [θw, θ1], satisfies properties (K1)–(K4).
First, since r̃(θ) ∈ C1+γV ([θa+τ, θ1]), r̂(θ) ∈ C∞([θw, θa+τ ]), and (Jr)′(θ) ∈ C([θw, θ1]),

we have
Jr(θ) ∈ C1+γV ([θw, θ1]).

Next, for θ ∈ [θw, θa + τ ], r̂′(θ) = 3A(θ − θw)
2 + nB(θ − θw)

n−1. Then

r̂′(θ2)− r̂′(θ3)

= 3A(θ2 − θw)
2 − 3A(θ3 − θw)

2 + nB(θ2 − θw)
n−1 − nB(θ3 − θw)

n−1

= 3A(θ2 − θ3)(θ2 + θ3 − 2θw) + nB(θ2 − θ3)(
n−2∑
j=0

Cjn−2(θ2 − θw)
n−2−j(θ3 − θw)

j).

Using the fact that θ2 − θw, θ3 − θw ≤ x1, and A,B ≥ 0, we obtain

|r̂(θ2)′ − r̂(θ3)
′| ≤ |θ2 − θ3|α

(
6Ax2−α1 + C(n)Bxn−1−α

1

)
≤ C(n)

(
ax−1−α

1 + bx−α1

)
|θ2 − θ3|α.

Notice that r̃′ = r
c̄

√
r2 − c̄2, r ∈ C1+γV , and θa + τ is uniformly away from θ1, which

means ρ ∈ C1+µ. We obtain

r̃′ ≤ C(ρ0, ρ1, ε, δ)x
1/2
1 ,

which implies

|r̂′(θ2)− r̂′(θ3)| ≤ C(ρ0, ρ1, ε, δ)|θ2 − θ3|α if α ≤ 1

2
.

Thus
∥Jr∥C1+α([−π

2
,θ1]) ≤ C(ρ1, ρ2, ε, δ)

if α ≤ min{γV , 12}, which satisfies (K1)–(K4).
Thus, we define a map

J : Kε,δ → Kε,δ
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by

r̃ = Jr.

Obviously, Kε,δ is a convex and closed subset of the Banach space Cα1 , and J is compact,
if α1 < min{γV , 12}. In order to use the Schauder fixed point theorem, we need to prove

that J is continuous on Kε,δ.
Assume that rm, r ∈ Kε,δ for m = 1, 2, · · · , rm → r as m→ ∞, and ρm solves the fixed

boundary problem for rm for each fixed m. Then, by the standard argument as in [5],
ρm → ρ, which solves the problem for r. Therefore, we have

g(rm(θ), θ, ρm(rm(θ), θ)) −→ (r(θ), θ, ρ(r(θ), θ)) m→ ∞,

which implies Jrm → Jr as m → ∞ at the point where (3.3) holds for both rm and r.
Then Jrm → Jr as m→ ∞, if Jr belongs to Case 1. For Case 2, due to the construction,
we divide it into three subcases:

3δ < bx1; 3δ > bx1; 3δ = bx1,

where b = r̃′(θa + τ), x1 = θa + τ − θw, and r̃(θa + τ) = c(ρ0) + 2δ depend only on r and
δ. For any case, it is easy to deduce that

(τm, θa,m) → (τ, θa), (Am, Bm) → (A,B) m→ ∞.

Then Jrm → Jr, with the fact that

Jrm = c(ρ0) + δ +Am(θ − θw)
3 +Bm(θ − θw)

n

for θ < θa,m + τm, where n, θw, and ρ0 are universal constants.

Then, for any fixed ε, δ > 0, we obtain the existence of a solution (ρε,δ, rε,δ) to the
free boundary problem by the standard fixed point argument. Moreover, we have rε,δ ∈
C1+α([θw, θ1]) for α ≤ α1. This completes the proof. �

3.5. Proof of Theorem 3.1: Completion. We note that Lemma 3.7 implies that there
exists a solution (ρε,δ, rε,δ) such that rε,δ ∈ Kε,δ. From Lemma 3.6 and the interior
Schauder estimate, we note that ∥ρε,δ∥

C2,α
loc

≤ C, and ρε,δ satisfies property (3.9). By

Lemma 3.6, we have c2(ρε,δ) ≥ r2. This completes the proof.

4. Proof of Theorem 2.1: Existence of Solutions

In this section, we study the limiting solution, as the elliptic regularization parameter ε
and the oblique derivative boundary regularization parameter δ tend to 0. We start with
the regularized solutions of problem (3.2) and (3.5)–(3.7), whose existence is guaranteed
by Theorem 3.1. Denote by ρε,δ a sequence of the regularized solutions of the boundary
value problem.

We first construct a uniform lower barrier to obtain the uniform ellipticity in any com-
pact domain contained by Ω\(Γsonic ∪Γ′

sonic) for the solutions of the regularized problems.

Lemma 4.1. There exists a positive function φ, independent of ε and δ, such that

φ→ 0 as dist((ξ, η),Γsonic ∪ Γ′
sonic) → 0,

and

c2(ρε,δ)− (ξ2 + η2) ≥ φ in Ω\(Γsonic ∪ Γ′
sonic).
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Proof. For 0 < R < 1 and X0 = (ξ0, η0) ∈ Ω̃, as in [5], let

ζ(X) = 1− (ξ − ξ0)
2 + (η − η0)

2

R2
for BR(X0) ∩ Γsonic = ∅.

We define
φ(ξ, η) = δ0

(
ζ(X)

)τ
,

where δ0 and τ are two positive constants to be specified later, and 0 ≤ ζ ≤ 1 independent
of ε. Then, piecing together these B 3

4
RX0

(X0), X0 ∈ Ω\Γsonic, we can obtain a local

uniform lower barrier of c2(ρε,δ)− (ξ2 + η2). That is,

c2(ρe,δ)− ξ2 − η2 ≥ φ = δ0ζ
τ in B 3

4
RX0

(X0) ∩ Ωε,

where δ0 and τ are independent of ε (though they may depend on R). Moreover, δ0 tends
to 0 as dist((ξ, η),Γsonic) → 0, so does φ. See [5] for more details. �

The proof of Lemma 4.1 also implies that we can obtain the uniform ellipticity of (3.2),
which is independent of ε in B 3

4
RX0

(X0) ∩ Ωε.

The uniform lower bound of c2 − ξ2 − η2 independent of ε implies that the governing
equation (3.2) is locally uniformly elliptic, independent of ε and δ, which allows us to apply
the standard local compactness arguments to obtain the limit ρ locally in the interior of
the domain.

We first consider the behavior of shock position rε,δ, as ε and δ tend to 0. We divide
the shock position into three cases:

Case 1: c(ρ0) < r(θ) ≤ c̄(ρ1, ρ0) for all θ ∈ [θw, θ1) and r
′(θ) = r

√
r2−c̄2
c̄2

;

Case 2: r(θw) = c(ρ0) and c(ρ0) < r(θ) ≤ c̄(ρ1, ρ0), r
′(θ) = r

√
r2−c̄2
c̄2

for all θ ∈ (θw, θ1);

Case 3: There exists θa ∈ (θw, θ1) such that r(θ) ≡ c(ρ0) for θ ∈ [θw, θa], r(θ) > c(ρ0),

and r′(θ) = r
√

r2−c̄2
c̄2

for θ ∈ (θa, θ1).

Lemma 4.2. There exist functions r(θ) ∈ C1([θw, θ1]) and ρ ∈ C2+α
loc (Ω)∩C(Ω), satisfying

one of the three cases stated above, such that

rε,δ → r in C([θw, θ1]), ρε,δ → ρ in C2+α
loc ,

and (ρ, r) is a solution of the free boundary problem (3.2)–(3.7).

Proof. For ε, δ > 0, it follows from Lemma 3.7 that

rε,δ ∈ C1+α([θw, θ1]), ∥rε,δ∥C1([θw,θ1]) ≤ C,

where C is independent of ε and δ. Thus, by the Ascoli-Arzela theorem, there exists
a subsequence converging uniformly to a function r(θ) in Cα([θw, θ1]) as ε, δ → 0 for
any α < 1. By the local ellipticity (cf. Lemma 4.1) and the standard interior Schauder
estimate, there exists a function ρ ∈ C2+α

loc such that ρε,δ → ρ in any compact subset
contained by Ω̄\(Γsonic ∪ Γshock), satisfying Qρ = 0 in Ω.

For (r(θ0), θ0) ∈ Γsock with r(θ0) > c(ρ0), there exist a neighborhood of θ0 and a
constant δ⋆ > 0 independent of ε and δ such that rε,δ ≥ c(ρ0) + δ⋆ for ε and δ small
enough. It follows from c(ρε,δ) ≥ rε,δ ≥ c(ρ0) + δ⋆ that

ρε,δ > ρ0 + δ⋆.

Thus, we obtain the uniform ellipticity locally, as well as the uniform negativity of β · ν
locally. Hence, we can pass the limit to obtain ρ ∈ C1+α and

Mρ = 0 on Γshock near (r(θ0), θ0)
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such that r′(θ) = r
c̄

√
r2 − c̄2.

Then the remainder is to show the case that (r(θ0), θ0) ∈ Γshock and r(θ0) = c(ρ0).
First, it follows from Lemma 3.6 that

c(ρ0) ≤ rε,δ(θ) ≤ c(ρε,δ(rε,δ(θ), θ)) ≤ c(ρε,δ(rε,δ(θ0), θ0))

for θ ∈ [θw, θ0], and

c(ρ0) ≤ c̄(ρε,δ(rε,δ(θ0), θ0), ρ0) ≤ rε,δ(θ0).

Thus,

ρε,δ(rε,δ(θ0), θ0) → ρ0.

Therefore, r(θ) ≡ c(ρ0) for θ ∈ [θw, θ0].

Next we prove the continuity of solutions up to the boundary where r(θ) = c(ρ0). First,
we prove that r ∈ C1. Still from Lemma 3.6, we obtain that

ρ(r(θ), θ) → ρ0 if θ → θ0 from the right.

On the other hand,

r′(θ) = r(θ)

√
r2(θ)− c̄2

c̄2
for θ > θ0,

which implies that r′(θ) → 0 as θ → θ0 from the right-hand side, and it holds obviously
from the left-hand side. If we define r′(θ0) = 0, then r ∈ C1.

Note that the equation for u = c2(ρ) is

Q(u) := (c2 − r2 + ε)urr +
c2 + ε

r2
uθθ +

c2 + (γ − 2)(r2 − ε)

(γ − 1)c2
(ur)

2(4.1)

+
1

(γ − 1)r2
(uθ)

2 +
c2 − 2r2 + ε

r
ur

= 0.

We prove the most complicated case θ0 = θa first, and the other cases will be discussed
later.

We construct a family of barrier functions {Ψτ} with parameter τ . For any m > 0,
there exists δ1(m) > 0 such that r′(θ) < m for |θ − θa| < δ1(m). This implies that

|r(θ)− r(θa)| < mδ1(m) for |θ − θa| < δ1(m),

where δ1(m) → 0 as m→ 0.
Let m < 1 and mδ(m) = τ

2 (τ will be specified later). We have

ρ0 ≤ ρ(r(θ), θ) ≤ ρ(r(θa + δ1(m)), θa + δ1(m)) ≤ (c̄ρ0)
−1(r(θa + δ1(m))) ≤ ρ0 +

Cm

2
.

For ε, δ small enough, we obtain

ρ0 ≤ ρε,δ(rε,δ(θ), θ) ≤ ρ0 + Cm

and

0 ≤ rε,δ(θ)− c(ρ0) < τ for |θ − θa| < δ1(m),

where C depends only on γ and ρ0. We define

Ψτ = Ψε,δ
τ = c2(ρ0 + Cm) +A(c(ρ0) + τ − r)α +B(θ − θa)

2

in

Qε,δ = {(r, θ) : |r − c(ρ0)| ≤ δ2, |θ − θa| ≤ δ1(m)} ∩ Ωε,δ,

where δ2 > τ will be chosen later.
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Choose

B =
c2(ρ1)− c2(ρ0)

δ21(m)
, A = A1 =

c2(ρ1)− c2(ρ0)

δα2
.

Since ρ0 ≤ ρε,δ ≤ ρ1 and ρε,δ ≤ ρ0 + Cm on Γε,δshock ∩ ∂Q
ε,δ, we have

Ψτ ≥ c2(ρε,δ) on ∂Qε,δ.

Thus, we have

(4.2)

Q(Ψε,δ
τ ) = Aα(α− 1)

(
c2(ρε,δ)− r2

)(
c(ρ0)− r + τ

)α−2
+ 2Bc2

r2

+
(
1− γ−2

(γ−1)c2
(c2 − r2)

)
A2α2

(
c(ρ0)− r + τ

)2α−2

+ 4B2

(γ−1)r2
(θ − θa)

2 − Aα(c2−2r2)
r

(
c(ρ0)− r + τ

)α−1
.

Consider (4.2) in Qε,δ ∩ {(r, θ) : c2(ρε,δ)−Ψε,δ
τ ≥ 0}. Since

c(ρ0 + Cm) ≥ c(ρε,δ(rε,δ(θ), θ)) ≥ rε,δ(θ) ≥ r,

we have

c2(ρε,δ)− r2 + ε ≥ c2(ρε,δ)−Ψε,δ
τ + c2(ρ0 + Cm)− r2 +A

(
c(ρ0) + τ − r

)α
≥ A

(
c(ρ0) + τ − r

)α
.

For α < 1, (4.2) implies

Q(Ψε,δ
τ ) ≤ A2α

((
2− γ−2

(γ−1)c2
(c2 − r2)

)
α− 1

)(
c(ρ1)− r + τ

)2α−2

− c2−2r2

r Aα
(
c(ρ1)− r + τ

)α−1
+ 4

(γ−1)r2
B2(θ − θa)

2 + 2B c2

r2
.

Moreover, let

A > A1, B =
C(ρ0, ρ1)

δ21(m)
.

If α < 1
2+C(ρ0,ρ1,γ)

and δ2 + τ small enough, we have

Q(Ψε,δ
τ ) ≤ C(ρ0, ρ1)

(
(2 + C(ρ0, ρ1, γ))α− 1

)
A2

(
c(ρ1) + τ − r

)2α−2
+
C(ρ1, ρ2)

δ21(m)
.

Then there exists a constant A2(δ2,m, ρ0, ρ1) such that

Q(Ψε,δ
τ ) ≤ 0 for A > A2.

In fact, if r < c(ρ0), we choose δ2 =
√
mδ1(m) to obtain

c(ρ0)− r + τ ≤ 2
√
mδ1(m),

and let

A
(1)
2 =

C(ρ0, ρ1, α)m
1−α
2

δα1 (m)
, A1 =

C(ρ0, ρ1)

m
α
2 δα1 (m)

.

If r ≥ c(ρ0),
c(ρ0) + τ − r ≤ τ,

and we let

A
(2)
2 =

C(ρ0, ρ1, α)m
1−α

δα1 (m)
.

Set A = max{A1, A
(1)
2 , A

(2)
2 }. Then ρε,δ ≤ Ψε,δ

τ in Qε,δ. Passing to the limits δ, ε → 0, we
obtain

ρ ≤ Ψτ in the domain Q(m,
√
mδ1(m)) := ∩δ,ε>0Q

ε,δ.
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With these barrier functions, we can show that ρ is continuous at (r(θa), θa). In fact,
for every ε1 > 0, there exists m > 0 such that

c2(ρ0 + Cm)− c2(ρ0) <
ε1
3
.

For this m, we can choose A, B, and τ such that

c2(ρ) ≤ Ψτ ≤ ε1
3

+ c2(ρ1) +A
(
c(ρ0)− r + τ

)α
+B(θ − θa)

2.

Choose the neighborhood of (r(θa), θa) small enough so that

A(c(ρ0)− r + τ)α ≤ A(2τ)α ≤ C(ρ0, ρ1, α)m
α
2 .

Then, choosing m small again, we have

c2(ρ) ≤ 2ε1
3

+ c2(ρ0) +B(θ − θa)
2.

Finally, we choose a small neighborhood such that

c2(ρ0) ≤ c2(ρ) ≤ ε1 + c2(ρ0).

Thus, we obtain our claim that ρ is continuous at (r(θa), θa), that is, the results hold for
this case.

As for the case θ ∈ [θw, θa), we can choose arbitrary τ > 0, which is independent of
the neighborhood of θ. This fact makes the similar proof of this case much easier for all
sufficiently small ε and δ, and we omit the details here. �

Next, we discuss the wave strength at the sonic circle r ≡ c(ρ0) and conclude that Case
3 in Lemma 4.2 can not actually occur.

Lemma 4.3. Let r(θ) be monotone increasing in θ on Γshock and ρ > ρ0 in the subsonic
region. Then r(θ) > c(ρ0) for θw < θ ≤ θ1.

Proof. We divide the proof into five steps.

1. We show our claim by contradiction. More precisely, if there exists θ̄ such that
r(θ̄) = c(ρ0) := c0. Then, using the monotonicity of r(θ),

r(θ) ≡ c0 for θw ≤ θ ≤ θ̄.

2. For θ0 ∈ [θw, θ̄], we define

w1 = c20 +A1(c0 − r)
1
2 −B1(c0 − r)β1 +D1(θ − θ0)

2,

where A1, B1, D1 > 0 and 1
2 < β1 < 1, all of which will be specified later to proof that

ρ ∈ C
1
2 near this boundary point.

Using (4.1) with the coefficient of urr replaced by u− r2, we have

(4.3)

Q̂(w1) =
(
− (β21 − 1

4)A1B1(c0 − r)β1−
3
2 +O1

)
+
(
β1(2β1 − 1)B2

1(c0 − r)2β1−2 +O2

)
− (γ−2)

4(γ−1)c2
A2

1(c
2 − r2)(c0 − r)−1

+
(
− A1D1

4 (c0 − r)−
3
2 (θ − θ0)

2 +O4

)
,
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where

O1 = −A1
2 c0(c0 − r)−

1
2 − 2c0β1(β1 − 1)B1(c0 − r)β1−1 + A1

4 (c0 − r)
1
2

+β1(β1 − 1)B1(c0 − r)β1 + 2c2

r2
D1 +

A1r
2 (c0 − r)−

1
2 − β1B1r(c0 − r)β1−1

+ (γ−2)β1A1B1

(γ−1)c2
(c2 − r2)(c0 − r)β1−

3
2 − A1

2r (c
2 − r2)(c0 − r)

1
2

+β1B1

r (c2 − r2)(c0 − r)β1−1,

O2 = − (γ−2)β2
1B

2
1

(γ−1)c2
(c2 − r2)(c0 − r)2β1−2,

O4 = β1(β1 − 1)B1D1(c0 − r)β1−2(θ − θ0)
2 + 4D1

(γ−1)r2
(θ − θ0)

2.

Notice that there exists 0 < α < 1
2 such that c2 − r2 ≤ (c0 − r)α for c0 − r > 0 small.

Thus, ∣∣∣ (γ − 2)

4(γ − 1)c2
A2

1(c
2 − r2)(c0 − r)−1

∣∣∣ ≤ C(ρ0, ρ1)A
2
1(c0 − r)α−1.

We can choose a proper constant α such that β1 − 3
2 < α− 1, i.e., α > β1 − 1

2 .
On one hand, let c0 − r > 0 be small enough so that

(β21 −
1

4
)A1B1(c0 − r)β1−

3
2 > 3C(ρ0, ρ1)A

2
1(c0 − r)α−1,

which implies

(4.4) B1 >
3C(ρ0, ρ1)

β21 − 1
4

A1(c0 − r)α−β1+
1
2 := A1C(ρ0, ρ1, β1)(c0 − r)α−β1+

1
2 .

On the other hand, if c0 − r > 0 is sufficiently small, we have

(β21 −
1

4
)A1B1(c0 − r)β1−

3
2 > 3β1(2β1 − 1)B2

1(c0 − r)2β1−2,

which implies

(4.5) A >
(2β21 − β1)B1

β21 − 1
4

(c0 − r)β1−
1
2 := C(β1)B1(c0 − r)β1−

1
2 .

Moreover, we have

C(ρ0, ρ1, β1)(c0 − r)α−β1+
1
2 < C(β1)(c0 − r)

1
2
−β1

when r ∈ [r̄, c0], and r̄ is close to c0.
Choose proper constants A1 and D1 such that

w1 > c20 +
1

2
A1(c0 − r)

1
2 +D1(θ − θ0)

2 > c2

at the boundary of a relatively neighborhood N1 of (c0, θ0) to Ω. Choose B1 sufficiently
small such that

Q̂(w1) < 0

and

C(ρ0, ρ1, β1)(c0 − r)α−β+
1
2 <

B1

A1
< min

{
C(β),

1

4(β1 − β21)

}
(c0 − r)

1
2
−β1 in N1.

This implies that (4.4) and (4.5) hold.
Obviously, we have

∂rrw1 < 0 in N1
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if (4.4) and (4.5) hold. If S1 = {(r, θ) ∈ N1 : c2 > w1} ≠ ∅, we have Q(w1) ≤ Q̂(w1) < 0
in S1. Thus,

0 < Qu−Q(w1).

Using the maximum principle, u ≤ w1, which contradicts with c2 > w1. Thus

c2 ≤ w1 in N1.

3. We define

w2 = c20 +A2(c0 − r)
1
2 +B2(c0 − r)β2 −D2(θ − θ0)

2,

where A2, B2, D2 > 0 and 1
2 < β2 < 1, all of which will be specified later to prove that C

1
2

is optimal. Through a simple algebraic calculation, we have
(4.6)

Q̂(w2) =
(
(β22 − 1

4)A2B2(c0 − r)β2−
3
2 +O1

)
+

(
β2(2β2 − 1)B2

2(c0 − r)2β2−2 +O2

)
+
(
− β2(β2 − 1)B2D2(c0 − r)β2−2(θ − θ0)

2 +O3

)
+
(
β2B2r(c0 − r)β2−1 +O4

)
+ 1

4A2D2(c0 − r)−
3
2 (θ − θ0)

2

+2β2(β2 − 1)B2c0(c0 − r)β2−1,

where

O1 = − (γ − 2)

4(γ − 1)c2
A2

2(c
2 − r2)(c0 − r)−1 − A2

2
c0(c0 − r)−

1
2 +

A2

4
(c0 − r)

1
2

−β2(β2 − 1)B2(c0 − r)β2 − 2c2

r2
D2 +

A2r

2
(c0 − r)−

1
2 − A2

2r
(c2 − r2)(c0 − r)

1
2

−(γ − 2)β2A2B2

(γ − 1)c2
(c2 − r2)(c0 − r)β2−

3
2 ,

O2 = −(γ − 2)β22B
2
2

(γ − 1)c2
(c2 − r2)(c0 − r)2β2−2,

O3 = − 4D2

(γ − 1)r2
(θ − θ0)

2,

O4 = −β2B2

r
(c2 − r2)(c0 − r)β2−1.

Let D2 be large enough such that c2 > w2 for some θ = θa, θb. We choose r̃ < c0 such
that

c2 > c20 + 2A2(c0 − r̃)
1
2 −D2(θ − θ0)

2

≥ c0 +A2(c0 − r̃)
1
2 +B2(c0 − r̃)β2 −D2(θ − θ0)

2.

The second inequality holds provided that B2
A2

≤ (c0 − r̃)
1
2
−β2 . Choosing β2 >

7
8 , we have

1

2
β2B2r(c0 − r)β2−1 + 2β2(β2 − 1)B2c0(c0 − r)β2−1 ≤ 0 for

c0
2
< r < c0,

and
Q̂(w2) > 0.

Then, if S2 = {(r, θ) ∈ N1 : c2 < w2} ̸= ∅, we have

Q(w2) ≥ Q̂(w2) > 0 in S2.

Thus, Qu − Q(w2) < 0. Using the maximum principle, c ≤ w2, which contradicts with
c2 < w1. Thus

c2 ≥ w2 in N2.
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4. We now show that

c2 > c20 +A3(c0 − r)
1
2 +B3(c0 − r)β3 =: w3

in a relative neighborhood of (r0, θ0), where A3 andB3 are positive constants to be specified

later, so that the C
1
2 –regularity is optimal.

Since c2 ≥ w2, we can choose θ̄a and θ̄b such that

c2 ≥ c20 +A2(θa, θa)(c0 − r)
1
2 +B2(c0 − r)β2 for N3 ⊂ N2.

Thus, there exist positive constants A3, B3, and β3 such that

w3 ≤ c2.

It is easy to see that

Q̂(w3) =
(
(β23 −

1

4
)A3B3(c0 − r)β3−

3
2 + Õ1

)
+

(
β3(2β3 − 1)B2

3(c0 − r)2β3−2 + Õ2

)
+
(
β3B3r(c0 − r)β3−1 + Õ4

)
+ 2β3(β3 − 1)B3c0(c0 − r)β3−1,

where

Õ1 = − (γ − 2)

4(γ − 1)c2
A2

3(c
2 − r2)(c0 − r)−1 − A3

2
c0(c0 − r)−

1
2 +

A3

4
(c0 − r)

1
2

+
A3r

2
(c0 − r)−

1
2 − A3

2r
(c2 − r2)(c0 − r)

1
2

−(γ − 2)β3A3B3

(γ − 1)c2
(c2 − r2)(c0 − r)β3−

3
2 ,

Õ2 = β3(β3 − 1)B3(c0 − r)β3 − (γ − 2)β23B
2
3

(γ − 1)c2
(c2 − r2)(c0 − r)2β3−2,

Õ3 = −β3B3

r
(c2 − r2)(c0 − r)β3−1.

Similarly, we can show that c2 ≥ w3 in N3.

Thus, 1
2A3(c0 − r)

1
2 ≤ c2 − c20 ≤ 2A1(c0 − r)

1
2 in N1 ∩N3. This implies

a(c0 − r)
1
2 ≤ v := ρ− ρ0 ≤ A(c0 − r)

1
2 in N1 ∩N3

for some constants a and A, so the optimal regularity of ρ is C
1
2 near the sonic circle.

5. We introduce the coordinates: (x, y) = (c0 − r, θ − θw) and set v = c2 − c20. Thus,
rewriting the equation for c2 in the divergence form, we have

(4.7) Qv =
(
a11(v + 2c0x− x2)vx

)
x
+ b1vx + (a22vy)y = 0,

where a11 =
c
2(2−γ)
γ−1

γ−1 , a22 =
c

2
γ−1

(γ−1)r2
, and b1 =

c
2

γ−1

(γ−1)r .

Scaling v in N1 ∩N3 by defining

(4.8) u(S, T ) =
1

S
1
5

v(S− 12
5 , y0 + S− 14

5 T ),

for (S− 12
5 , y0 +S− 14

5 T ) ∈ N1 ∩N3. Moreover, u satisfies the following governing equation:

(4.9) Qu = (ã11uS)S+(ã12uT )S+(ã21uS)T +(ã22uT )T +(b̃2u)T + c̃1uS+ c̃2uT + d̃2u = 0,
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where

ã11 = a11(S
7
5u+ 2c0S

− 6
5 − S− 18

5 ),

ã12 =
14T

5S
a11(S

7
5u+ 2c0S

− 6
5 − S− 18

5 ),

ã21 =
14T

5S
a11(S

7
5u+ 2c0S

− 6
5 − S− 18

5 ),

ã22 =
144

25
a22 +

189T 2

25S2
a11(S

7
5u+ 2c0S

− 6
5 − S− 18

5 ),

b̃2 =
14T

25S2
a11(S

7
5u+ 2c0S

− 6
5 − S− 18

5 ) = b̃22TS
−2,

c̃1 =
S

7
5u(2− γ)S− 11

5

5(γ − 1)2
c
2(3−2γ)

γ−1 (S
7
5u+ 2c0S

− 6
5 − S− 18

5 )

−a11(4c0 − S− 12
5 )

5S
11
5

− 12b1

5S
11
5

= c̃11S
− 11

5 ,

c̃2 =
168T

25S2
a11(S

7
5u+ 2c0S

− 6
5 − S− 18

5 )− 189Ta11
25S2

− 168b1T

25S
16
5

= c̃22S
−2T,

d̃ =
S

7
5u(2− γ)S− 16

5

25(γ − 1)2
c
2(3−2γ)

γ−1 (S
7
5u+ 2c0S

− 6
5 − S− 18

5 )

−13a11(2c0 − S− 12
5 )

25S
16
5

−
12a11S

7
5u(c0 +

6
5S

− 6
5 )

25S
23
5

− 12b1

25S
16
5

= d̃1S
− 16

5 .

From the optimal continuity,

0 < a ≤ S
7
5u ≤ A,

we have

0 < C−1 ≤ λ1, λ2, b̃22, c̃11, c̃22, d̃1 ≤ C

if S−1 and T are sufficiently small. Here λ1 and λ2 are the eigenvalues of the matrix
(ãij)2×2, so the equation is uniformly elliptic for u in the (S, T )-coordinates.

Let x−1
0 < S ≤ x

− 5
4

0 with x0 small enough. Then, using Theorem 8.20 in [16], we have

ax
7
5
0 ≤ u(x−1

0 , 0) ≤ sup
x−1
0 ≤S≤x−5/4

0

u(S, T )

≤ C inf
x−1
0 ≤S≤x−5/4

0

u(S, T ) ≤ Cu(x
− 5

4
0 , 0) ≤ CAx

7
4
0 ,

where C ≤ C(n)(
Λ
λ
+νR) in [16] is independent of x0, since (Λ, λ) = (λ1, λ2), R = x

− 5
4

0 −
x−1
0 ≤ x

− 5
4

0 , and ν := max
x−1
0 ≤S≤x−5/4

0

{b̃2, c̃1, c̃2,
√
d̃} ≤ Cx

8
5
0 . This implies that x

− 7
20

0 ≤ C,

which is a contradiction if x0 is sufficiently small. This completes the proof. �

Next, we consider Γshock in the (ξ, η)–coordinates to obtain finer properties.

Lemma 4.4. For the free boundary Γshock = {(ξ, η(ξ)) : ξw < ξ < ξ1} determined by
(3.2)–(3.7), we have

η(ξ) ∈ C2([ξw, ξ1))

and η(ξ) is strictly convex for ξ ∈ [ξw, ξ1).



SHOCK DIFFRACTION BY CONVEX CORNERED WEDGES 27

Proof. We define

(4.10) F (ξ, η) = ξ2 + η2 − r2(θ(ξ, η)) = 0 on Γshock.

It is easy to check that

Fη = (2η − 2rr′θη)|ξ=ξw = 2η(ξw) ̸= 0.

By the implicit function theorem, there exists η = η(ξ) such that (4.10) holds locally on
Γshock near ξ = ξw. That is, there exists ξ̄ > 0 such that (ξ, η(ξ)) ∈ Γshock for ξw < ξ ≤ ξ̄.

Recall that η′(ξ) = f(ξ, η(ξ), ρ(ξ, η(ξ))). Then

η′′ = fξ + fηη
′ + fρρ

′ for ξ ∈ (ξw, ξ̄).

Observe that, if ρ were constant, the shock would be a straight line. We conclude fξ +
fηη

′ = 0. Therefore, the sign of η′′ is determined entirely by the sign of fρ and ρ′. Note

that ρ is increasing, ρ′ > 0, and dc̄2

dρ > 0. Moreover, we have

∂f

∂c̄2
=

−2ξηc̄
√
ξ2 + η2 − c̄2 + 2η2(ξ2 + η2 − c̄2) + (ξ2 + η2)(c̄2 − η2)

c̄
(
ξη − c̄

√
ξ2 + η2 − c̄2

)2√
ξ2 + η2 − c̄2

(4.11)

=

(
ξc̄− η

√
ξ2 + η2 − c̄2

)2
c̄
(
ξη − c̄

√
ξ2 + η2 − c̄2

)2√
ξ2 + η2 − c̄2

.

If ξη ≤ 0, it is clear from (4.11) that ∂f
∂c̄2

> 0.
If ξη > 0, from (4.11), we have

∂f

∂c̄2
=

(ξ2 + η2)2(c̄2 − η2)2
(
ξη + c̄

√
ξ2 + η2 − c̄2

)2
c̄
√
ξ2 + η2 − c̄2(ξ2 − c̄2)(η2 − c̄2)

(
ξc̄+ η

√
ξ2 + η2 − c̄2

)2
=

(ξ2 + η2)2
(
ξη + c̄

√
ξ2 + η2 − c̄2

)2
c̄(c̄2 − ξ2)

√
ξ2 + η2 − c̄2

(
ξc̄+ η

√
ξ2 + η2 − c̄2

)2 > 0.

These imply that η = η(ξ) is strictly convex for ξ ∈ [ξw, ξ1). �

Lemma 4.4 yields that problem (3.2)–(3.7) is equivalent to the following free boundary
problem in the self-similar coordinates:

(i) Equation:

(4.12) Lρ =
2∑

i,j=1

Di(aij(ξ, η, ρ)Djρ) +
2∑
i=1

bi(ξ, η)Diρ = 0 in Ω

with a11(ξ, η, ρ) = c2(ρ)− ξ2, a22(ξ, η, ρ) = c2(ρ)− η2, a12(ξ, η, ρ) = a21(ξ, η, ρ) =
−ξη, b1(ξ, η) = ξ, and b2(ξ, η) = η.

(ii) The shock equation:

dη

dξ
= f(ξ, η, ρ) =

ξη + c̄
√
ξ2 + η2 − c̄2

ξ2 − c̄2
with η(ξ1) = η1,

with the boundary condition on Γshock:

(4.13) Nρ =
2∑
i=1

βiDiρ = 0 on Γshock = {η = η(ξ) : 0 ≤ ξ ≤ ξ1},
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where β1 and β2 are the following functions of (ξ, η), ρ, and η′:

β1 = (ξ2 + η2)(−η′ξ + η)
(
c2(ρ) + c̄2(ρ, ρ0)

)
(4.14)

−2c̄2(ρ, ρ0)
(
− η′ξ(c2 + η2) + (η − η(η′)2 − ξη′)(c2 − ξ2)

)
and

β2 = η′(ξ2 + η2)(η − η′ξ)
(
c2(ρ) + c̄2(ρ, ρ0)

)
(4.15)

−2c̄2(ρ, ρ0)
(
(η′η − ξ − ξ(η′)2)(c2 − η2) + η′η(c2 + ξ2)

)
.

(iii) The remaining boundary conditions:

(4.16) ρ = ρ2 on Γsonic, ρν = 0 on Γ0, ρ(P2) = ρ̄,

where ν is the outward normal to Ω at Γ0.

It is easy to check that (4.13) is the oblique derivative boundary condition along Γshock.

With Lemma 4.4, we can show that Case 1 is the only case for the solutions, which
implies that we can obtain the finer regularity near P2.

Lemma 4.5. Suppose that (ρ, r) is the solution to the free boundary problem (3.2)–(3.7).
Then the shock does not meet the circle r = r0 at the wedge.

Proof. The main idea of the proof is the same as that in Lemma 4.3, and the only main
difference is that the domain to be considered is a sector instead of a ball. We only list the
major procedure and the difference here. We show our claim by contradiction. Otherwise,
r(θw) = c0.

First, let η = r cos(θ − θw) and consider

ϕ = c20 +A1(c0 − η)
1
2 −B1(c0 − η)β1 + C1(θ − θ0)

2,

where θ ∈ [θw, θw + δ], δ > 0 small enough, A1, B1, C1 > 0 and 1
2 < β1 < 1, all of which

will be specified later to prove that ρ ∈ C
1
2 near this boundary point.

Since 0 ≤ c20 − η2 = (c20 − r2) + r2 sin2(θ− θw) on Γshock from its convexity indicated in
Lemma 4.4, we have

0 ≤ r2 − c20 ≤ r2 sin2(θ − θw) ≤ C(θ − θw)
2 on Γshock

for some constant C > 0. This implies that c̄2− c20 ≤ r2− c2 ≤ r2− c20 ≤ C(θ− θw)2. Then

c2 − c20 ≤ C(θ − θw)
2,

since c2 and c̄2 are both functions of ρ. We can choose C1 > 0 so large that c2 ≤ ϕ on
Γshock. Then, as in the proof of Lemma 4.3, we can now show that ϕ is an upper barrier
of ρ, i.e., c2 ≤ ϕ in N1, which means,

0 ≤ c2 − c20 ≤ A1(c0 − η)
1
2 + C1(θ − θw)

2.

Next, for a lower barrier of ρ, as the proof of Lemma 4.3, we can show that there exist
a neighborhood N2 of (rw, θw) and a constant A2 > 0 such that

c2 − c20 ≥ A2(c0 − r)
1
2 in N2 ∩ {(r, θ) : r ≤ c0}.

The only new here is the boundary r = c0, which is obvious. This implies that

a(c0 − r)
1
2 ≤ v := ρ− ρ0 ≤ A(c0 − r)

1
2 in N1 ∩N2 ∩ V ,

where V is an upward sector containing the wedge, with the vertex at P2 and the angle
smaller than π

2 , for some constants a and A depending on V . This implies that the optimal

regularity along the wedge is C
1
2 near the sonic circle.
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With this optimal regularity in hand, we introduce the coordinates:

(4.17) x = c0 − r, y = θ − θw, v = c2 − c20.

Thus, rewriting the equation for c2 in the divergence form, we have

(4.18) Qv =
(
a11(v + 2c0x− x2)vx

)
x
+ b1vx + (a22vy)y = 0,

where a11 =
c
2(2−γ)
γ−1

γ−1 , a22 =
c

2
γ−1

γ−1
1
r2
, and b1 =

c
2

γ−1

γ−1
1
r .

As in the proof of Lemma 4.3, scale v in N1 ∩N3 ∩ V by defining

(4.19) u(S, T ) =
1

S
1
5

v(S− 12
5 , S− 14

5 T )

for (S− 12
5 , S− 14

5 T ) ∈ N1 ∩N3 ∩ V . Moreover, u satisfies the governing equation (4.9).

From the optimal continuity, 0 < a ≤ S
7
5u ≤ A. Then exactly following the proof of

lemma 4.3, we obtain a contradiction when x0 is small. This completes the proof. �

Finally, we establish the Lipschitz continuity for the solution near the degenerate sonic
boundary.

Lemma 4.6. The solution ρ to the free boundary problem (4.12)–(4.16) is Lipschitz con-
tinuous up to the boundary Γsonic.

Proof. On one hand, since ρ ≤ ρ1 in Ω, we have

c2(ρ)− ξ2 − η2 < c2(ρ1)− ξ2 − η2.

On the other hand, it follows from Lemma 3.1 that

c2(ρ)− ξ2 − η2 > ξ2 + η2 − c2(ρ1) in Ω.

Let r22 = c2(ρ2). We have

|c2(ρ)− c2(ρ2)| ≤ |c2(ρ)− ξ2 − η2|+ |c2(ρ2)− ξ2 − η2|
≤ 2|c2(ρ2)− ξ2 − η2|
≤ 4r2|r2 −

√
ξ2 + η2|,

which implies that ρ is Lipschiz continuous up to the degenerate boundary Γsonic. �

Proof of the Existence Part of Theorem 2.1. The above seven lemmas, i.e., Lem-
mas 4.1–4.6, show that there exists a solution

(ρ, r) ∈ C2+α(Ω) ∩ Cα(Ω) ∩ C0,1(Ω ∪ Γsonic)× C2+α′
((θw, θ1)) ∩ C1,1([θw, θ1])

which satisfies (2.6)–(2.10). This completes the proof of the existence part. �

5. Proof of Theorem 2.1: Optimal regularity near the sonic boundary

In this section, we prove that the Lipschitz continuity is the optimal regularity for ρ
across the sonic boundary Γsonic, as well as at the intersection point P1 between Γsonic and
Γshock. In §4, we have shown that the solution ρ to the free boundary problem (4.12)–
(4.16) is Lipschitz continuous in Ω up to the degenerate boundary Γsonic. Now we employ
the approach introduced in Bae-Chen-Feldman [2] with the aid of the estimates in §4 to
analyze the finer behavior of ρ near the sonic circle r = r1 := c(ρ1).

For ε ∈ (0, c12 ), we denote by

Ωε := Ω ∩ {(r, θ) : 0 < c1 − r < ε},
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the ε−neighborhood of the sonic circle Γsonic within Ω. In Ωε, we introduce the coordinates:

(5.1) (x, y) = (c1 − r, θ − θ1).

One of our main observations is that it is convenient to study the regularity in terms of
the difference between c2(ρ1) and c

2(ρ):

(5.2) ψ := c2(ρ1)− c2(ρ),

since ψ and ρ have the same regularity in Ωε.
It follows from (1.13) that ψ satisfies

(5.3)
L1ψ := (2c1x− ψ +O1)ψxx + (c1 +O2)ψx − (1 +O3)ψ

2
x

+(1 +O4)ψyy − ( 1
(γ−1)c21

+O5)ψ
2
y = 0 in Q+

r,R

in the (x, y)−coordinates, where

O1(x, ψ) = −x2, O2(x, ψ) = −3x+ ψ
c1
,

O3(x, ψ) = −γ−2
γ−1(2c1x− ψ − x2), O4(x, ψ) =

c21−ψ
(c1−x)2 − 1,

O5(x, ψ) =
1

(c1−x)2 − 1
c21
.

(5.4)

Moreover, ψ satisfies

(5.5) ψ > 0 in Q+
r,R

and the following Dirichlet boundary condition:

(5.6) ψ = 0 on ∂Q+
r,R ∩ {x = 0},

where Q+
r,R := {(x, y) : x ∈ (0, r), |y| < R} ⊂ R2, with R = θw − θ1, since we can extend

ψ(x, y) from Ωε, by defining ψ(x, y) = ψ(x,−y) for (x, y) ∈ Ωε, and extend the domain Ωε
with respect to y. Thus, without further comment, we study the behavior of ψ in Q+

r,R.

It is easy to see that the terms Oi(x, y), i = 1, · · · , 5, are continuously differentiable
and

|O1(x, y)|
x2

+
|Ok(x, y)|

x
+

|DO1(x, y)|
x

+ |DOk(x, y)| ≤ N for k = 2, · · · , 5,(5.7)

in {x > 0} for some constant N depending only on c1 and γ. Inequality (5.7) implies
that the terms Oi(x, y), i = 1, · · · , 5, are small. Thus, the main terms of (5.3) form the
following equation:

(5.8) (2c1 − ψ)ψxx + c1ψx − ψ2
x + ψyy −

1

(γ − 1)c21
ψ2
y = 0 in Q+

r,R.

It follows from Lemmas 4.1 and 4.5 that

(5.9) 0 ≤ ψ ≤ 2(c1 − ϑ)x,

where ϑ depends only on ρ1 and γ. Then equation (5.8) is uniformly elliptic in every
subdomain {x > δ} with δ > 0. The same is true for (5.3) in Q+

r,R if r is sufficiently small.

Remark 5.1. If r̂ is sufficiently small, depending only on c1 and γ, then (5.7) and (5.9)
imply that (5.3) is uniformly elliptic with respect to ψ in Q+

r,R∩{x > δ} for any δ ∈ (0, r̂2).
We will always assume such a choice of r̂ hereafter.
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5.1. First-order lower bound of ψ. In order to prove that C0,1 is the optimal regularity
of ψ across the sonic boundary, our idea is to construct a positive subsolution of (5.3) and
(5.5)–(5.6) first, which provides our desired lower bound of ψ.

Lemma 5.2. Let ψ be a solution of the Dirichlet problem (5.3) and (5.5)–(5.6). Then
there exist r̂ > 0 and µ > 0, depending only on c1, γ, θw, and inf

Q+
r̂,R∩{x>r̂/2}

ψ, such that,

for all r ∈ (0, r̂2 ],

(5.10) ψ(x, y) ≥ µc1x in Q+
r, 15R

16

.

Proof. In the proof below, without further comment, all the constants depend only on the
data, i.e., c1, r̂, γ, θw, and inf

Q+
r̂,R∩{x>r̂/2}

ψ, unless otherwise is stated.

Fix y0 with |y0| ≤ 15R
16 . We now prove that

(5.11) ψ(x, y0) ≥
5

8
µx for x ∈ (0, r).

Without loss of generality, we may assume that R = 2 and y0 = 0; otherwise, we set

ψ̃(x, y) = ψ(x, y0 +
R
32y) for all (x, y) ∈ Q+

r̂,2. Then ψ̃(x, y) ∈ C(Q+
r̂,R) ∩C

2(Q+
r̂,R) satisfies

(5.3) with (5.7) and (5.9) in Q+
r̂,2, with some modified constants N , ϑ, and Oi, depending

only on the corresponding quantities in the original equation and on R. Moreover,

inf
Q+

r̂2∩{x>r̂/2}
ψ̃ = inf

Q+
r̂,R∩{x>r̂/2}

ψ.

Then (5.11) for ψ follows from (5.11) for ψ̃ with y0 = 0 and R = 2. Thus we keep the
original notation with y0 = 0 and R = 2. That is, it suffices to prove that

(5.12) ψ(x, 0) ≥ 5

8
µx for x ∈ (0, r).

By the Harnack inequality, we conclude that, for any r ∈ (0, r̂2), there exists σ = σ(r) >
0, depending only on r and the data c1, r̂, γ, θw, and inf

Q+
r̂,R∩{x>r̂/2}

ψ, such that

(5.13) ψ ≥ σ on Q+
r̂,3/2 ∩ {x > r}.

Let r ∈ (0, r̂2) and

(5.14) 0 < µ0 ≤ min{σ(r)
r
, c1},

where r will be chosen later. Define

(5.15) g(y) =


µ(y + 1)2, −1 ≤ y < −1

2 ,

µ(2y4 − 2y2 + 5
8), −1

2 ≤ y ≤ 1
2 ,

µ(y − 1)2, 1
2 < y ≤ 1.

Set w(x, y) = µxg(y) with g ∈ C2([−1, 1]). Then, using (5.14) and (5.15), we obtain that,
for all x ∈ (0, r) and |y| < 1, 

w(0, y) = 0 ≤ ψ(0, y),

w(r, y) ≤ 5
8µr ≤ ψ(r, y),

w(x,±1) = 0 ≤ ψ(x,±1).

Therefore, we have
w ≤ ψ on ∂Q+

r,1.
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Next, we show that w(x, y) is a strict subsolution L1w(x, y) > 0 inQ+
r,1, if the parameters

are appropriately chosen. In fact,

L1w(x, y)

=
(
c1g(y)− g2(y)

)
+x

(
g′′(y)− 1

(γ−1)c21
x(g′(y))2 + O2

x g(y)−
O3
x g

2(y) +O4g
′(y)− xO5(g

′(y))2
)
.

On one hand, for 1− |y| < ε0 with ε0 small enough, we can see

g′′(y)− 1

(γ − 1)c21
x(g′(y))2 +

O2

x
g(y)− O3

x
g2(y) +O4g

′(y)− xO5(g
′(y))2

≥ g′′(y)− 1

(γ − 1)c21
x(g′(y))2 −Nx(g(y) + 1)g(y)− xNg′(y) +Nx2(g′(y))2

=: h(x, y).

It is easy to see that h(x, y) is continuous with respect to x, h(0, y) = 0, and that there
exists r1 > 0 such that h(x, y) > 0 for r < r1.

On the other hand, for 1− |y| > ε0,

L1w(x, y)

≥ x
(
g′′(y)− 1

(γ−1)c21
x(g′(y))2 + O2

x g(y)−
O3
x g

2(y) +O4g
′(y)− xO5(g

′(y))2
)

+µε20(c1 − 5
8µ).

Then there exists r2 > 0 such that the above inequality is positive.
We claim

sup
Q+

r,1

(w − ψ) ≤ sup
∂Q+

r,1

(w − ψ) ≤ 0,

whenever 0 < r < r0 := min{r1, r2} and µ ∈ (0, µ0]. Otherwise, there exists a point
(x0, y0) ∈ Q+

r,1 such that

0 < (L1w − L1ψ)(x0, y0)

= (2c1x− ψ +O1)(w − ψ)xx + (c1 +O2)(w − ψ)x − (1 +O3)(w + ψ)x(w − ψ)x

+(1 +O4)(w − ψ)yy −
( 1

(γ − 1)c21
+O5

)
(w + ψ)y(w − ψ)y ≤ 0,

where we have used the fact that wxx = 0, which is a contradiction. Hence, we obtain our
claim:

ψ(x, y) ≥ w(x, y) = xf(y) in Q+
r,1.

In particular,

ψ(x, 0) ≥ 5

8
µx for x ∈ [0, r].

This implies (5.11). Then (5.10) holds by modifying µ, which is still denoted by µ. This
completes the proof. �
5.2. C1,α–Estimate of ψ. If ψ satisfies (5.3), (5.5)–(5.6), and (5.9), it is expected that
ψ is very close to c1x, which is a solution of (5.8). More precisely, we now prove

|ψ(x, y)− c1x| ≤ Cx1+α for all (x, y) ∈ Q+
r̂, 7R

8

for some constant C.
To prove this, we study the function:

(5.16) W (x, y) := c1x− ψ(x, y).



SHOCK DIFFRACTION BY CONVEX CORNERED WEDGES 33

By (5.3), W satisfies

L2W = (c1x+W +O1)Wxx − (c1 −O2 − 2c1O3)Wx + (1−O3)W
2
x(5.17)

+(1 +O4)Wyy − (
1

(γ − 1)c21
−O5)W

2
y

= c1O2 + c21O3 in Q+
r̂,R,

W (0, y) = 0 on ∂Q+
r̂,R ∩ {x = 0},(5.18)

−(c1 − ϑ)x ≤W (x, y) ≤ c1x in Q+
r̂,R.(5.19)

Then we establish the following two estimates.

Proposition 5.3. Let c1, r̂, R, and ϑ be the same as in Lemma 5.2. Then, for any
α ∈ (0, 1), there exist positive constants r and A, which depend only on N , c1, r̂, R, ϑ,

and α, such that, if W ∈ C(Q+
r̂,R) ∩ C

2(Q+
r̂,R) satisfies (5.17)–(5.19), then

(5.20) W (x, y) ≤ Ax1+α in Q+
r, 3R

4

.

Proof. The main idea of the proof is the same as that in [2], and we only list the major
procedure and the difference here.

First, we prove that there exist α1 ∈ (0, 12) and r1 > 0 such that, if W ∈ C(Q+
r̂,R) ∩

C2(Q+
r̂,R) satisfies (5.17)–(5.19), then

W (x, y) ≤ c1(1− µ1)

rα
x1+α in Q+

r, 7R
8

,

whenever α ∈ (0, α1], r ∈ (0, r1], and µ1 < min{µ, 12}, where µ is the constant determined
by Lemma 5.2.

As in [2], we first note that, without loss of generality, we may assume that R = 2 and
y0 = 0. Then it suffices to prove that

W (x, 0) ≤ c1(1− µ1)

rα
x1+α for x ∈ (0, r)

for some r ∈ (0, r0) and α ∈ (0, α1), under the assumptions that (5.17)–(5.19) hold in
Q+
r̂,2. For any given r ∈ (0, r0), let

v = A1x
1+α(1− y2) +B1xy

2.

with A1r = c1(1− µ1) and B1 = c1(1− µ1). Then we obtain

W ≤ v on ∂Q+
r0,1

,

and

L2v − L2W − vxx(v −W ) < 0 in Q+
r,1,

whenever r ∈ (0, r1] and α ∈ (0, α1] so that

(5.21) (2α− 1)(α+ 1)c1A1 < −µ1
2
,

and

(5.22) r1 < min
{( µ1

4c1

) 1
α
,
(B1c2 −B2

1

C

) 1
α
, r0

}
.

Then

W ≤ v in Q+
r,1.
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Next, we generalize the result for any α ∈ (0, 1), which suffices to show that for the case
α > α1. Fix any α ∈ (α1, 1) and set the following comparison function:

v =
c1(1− µ1)

rα1
1 rα−α1

x1+α(1− y2) +
c1(1− µ1)

rα1
1

x1+α1y2.

Then, as before, we can prove

W ≤ v on ∂Q+
r,1 for r ∈ (0, r1].

and
L2v − L2W − vxx(v −W ) < 0.

Then it is easy to prove that this proposition holds with

A =
c1(1− µ1)

rα1
1 rα−α1

.

�
Proposition 5.4. Let c1, r̂, R, ϑ, and Oi be the same as in Lemma 5.2. Then, for any
α ∈ (0, 1), there exist positive constants r and B, depending on N , c1, r̂, R, ϑ, and α, so

that, if W ∈ C(Q+
r̂,R) ∩ C

2(Q+
r̂,R) satisfies (5.17)–(5.19), we have

(5.23) W (x, y) ≥ −Bx1+α in Q+
r, 3R

4

.

Proof. Similar to the proof of Proposition 5.3, it suffices to prove that, with the assumption
R = 2,

W (x, 0) ≥ −c1 − ϑ

rα
x1+α for x ∈ (0, r)

for some r > 0 and α ∈ (0, α2). For this, we use the comparison function:

v(x, y) := −Lx1+α(1− y2)−Kxy2, with Lrα = K =
c1 − ϑ

rα
.

It is easy to check that

W ≥ v on ∂Q+
r,1 for r ∈ (0, r1].

Then we follow the same procedure as in [2], except that L2v > L2W , to find that the
conditions for the choice of α, r > 0 are inequalities (5.21) and (5.22) with (µ1, r1) replaced
by (β, r2), respectively, and with an appropriate constant C.

We claim that
min
Q+

r,1

(W − v) ≥ min
∂Q+

r,1

(W − v) ≥ 0.

Otherwise, there exists a point (x0, y0) ∈ Q+
r,1 such that (W − v)(x0, y0) < 0 and

(5.24)

0 > (L2W − L2v)(x0, y0)

= (c1x+W +O1)(W − v)xx − (c1 −O2 − 2c1O3)(W − v)x

+(1−O3)(W + v)x(v −W )x + (1 +O4)(W − v)yy

−( 1
(γ−1)c21

−O5)(W + v)x(W − v)x + vxx(W − v)

≥ 0 in Q+
r,1,

which is a contradiction. This completes the proof for the case α ≤ α2.
For the case α ∈ (α2, 1), we set the comparison function:

u−(x, y) := − c1 − ϑ

rα2
2 rα−α2

x1+α(1− y2)− c1 − ϑ

rα2
2

x1+α2 .
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Then, using the argument as before, we can choose r > 0 appropriately small such that

L2u− − L2W > 0

holds for all (x, y) ∈ Q+
r,1. �

Lemma 5.5. Let ψ ∈ C(Q+
r̂,R)∩C

2(Q+
r̂,R) be a solution of the Dirichlet problem (5.3) and

(5.5)–(5.6). Then ψ ∈ C1,α(Q+
r̂/2,R/2) for any α ∈ (0, 1) with

ψx(0, y) = c1, ψy(0, y) = 0 for any |y| ≤ R

2
.

Proof. The proof is quite similar to that in [2], and the main difference is the scaling due
to the different equations. For fixed z0 = (x0, y0) ∈ Q+

r/2,R/2, rescale W in Rz0 by defining

W (z0)(S, T ) =
1

x1+α0

W (x0 +
x0
8
S, y0 +

√
x0
8
T ) for (S, T ) ∈ Q1,

where Qh = (−h, h)2 for h > 0. Keep this in mind, we can prove this lemma easily by
following [2] step by step. Thus we omit the detail of proof here. �

Now, following the procedure in [2] with the aid of the results above, we can obtain the
next theorem step by step:

Theorem 5.6. Let ρ ∈ C2+α(Ω) ∩ C(Ω) be the solution of the free boundary problem
(2.6)–(2.10) in §4. Then ρ cannot be C1 across the degenerate sonic boundary Γsonic.

We now study more detailed regularity of ρ near the sonic circle. From now on, we use
a localized version of Ωε: For given neighborhood N (Γsonic) of Γsonic and ε > 0, define

Ωε := Ω ∩N (Γsonic) ∩ {x < ε}.
Since N (Γsonic) is fixed in the following theorem, we do not specify the dependence of Ωε
on N (Γsonic).

Finally, we show the regularity part of Theorem 2.1.

Theorem 5.7. Let ρ be the solution of the free boundary problem (4.12)–(4.16) established
in §4 and satisfy the properties: There exists a neighborhood N (Γsonic) of Γsonic such that,
for ψ := c21 − c2(ρ),

(a) ψ is C0,1 across part Γsonic of the degenerate sonic boundary;

(b) there exists ϑ0 > 0 so that, in the coordinates (5.1),

(5.25) |ψ| ≤ (2c1 − ϑ0)x in Ω ∩N (Γsonic).

Then we have

(i) There exists ε0 > 0 such that ψ is C1,α in Ω up to Γsonic away from point P1 for
any α ∈ (0, 1). That is, for any α ∈ (0, 1) and (ξ0, η0) ∈ Γsonic\P1, there exists
K < ∞ depending only on ρ0, ρ1, γ, ε0, α, ∥ψ∥C0,1, and d = dist((ξ0, η0),Γsonic)
so that

∥ψ∥1,α;Bd/2(ξ0,η0)∩Ωε0/2
≤ K;

(ii) For any (ξ0, η0) ∈ Γsonic\P1, lim
(ξ,η)→(ξ0,η0)
(ξ,η)∈Ω

Drψ = c1;

(iii) The limit lim
(ξ,η)→P1

(ξ,η)∈Ω

Drψ does not exist.
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The proof is quite similar to the one in [2], which can be achieved by following the proof
of Theorem 4.2 in [2] step by step with the aid of the estimates obtained above. Hence we
omit the proof here.

6. Proof of Theorem 2.1: Global Solutions

Finally, we show that the solution established above is a global solution indeed, valid
through the sonic circle Γsonic, as claimed in Theorem 2.1.

Since ρ is only Lipschitz continuous across the sonic circle, we treat the solution in the
weak sense: For every ζ ∈ C∞

c (Ω−), with Ω− denoting the region of the left state,∫
Ω−

(
(c2 − r2)ρrζr +

c2

r2
ρθζθ −

c2

r
ρrζ

)
drdθ = 0.

Notice that ρ is Lipschitz continuous across the sonic circle. Then, due to the Green
theorem, the integrand is equal to 0 if and only if

(6.1) [
(
(c2 − r2)ρr,

c2

r2
ρθ
)
· ν] = 0 on Γsonic,

where the bracket [·] denotes the difference of the quantity between two sides of the
sonic circle, and ν is the normal direction. It is obvious because from the facts that
(ρr, ρθ) = (−c1, 0) up to the sonic circle from the subsonic domain obtained in Lemma
5.5, (ρr, ρθ) = (0, 0) from the supersonic domain and the fact that c2− r2 = 0 on the sonic
circle. This completes the proof of Theorem 2.1.

7. Existence and Regularity of Global Solutions of the Nonlinear Wave
System

In our main theorem, Theorem 2.1, we have constructed a global solution ρ of the
second-order equation (4.12) in Ω, combining this function with ρ = ρ1 in state (1) and
ρ = ρ0 in state (0). That is, we have obtained the global density function ρ that is piecewise
constant in the supersonic region, which is Lipschitz continuous across the degenerate sonic
boundary Γsonic from Ω to state (1).

To recover the momentum components, m and n, we can integrate the second and third
equation in (1.7). These can be also written in the radial variable r,

(7.1)
∂m

∂r
=

1

r
p(ρ)ξ,

∂n

∂r
=

1

r
p(ρ)η,

and integrated from the boundary of the subsonic region toward the origin.
Note that we have proved that the limit of Dρ does not exist at P1 as (ξ, η) in Ω tends

to (ξ1, η1), but |Dc(ρ)| has a upper bound. Thus, p(ρ) is Lipschitz, which implies that
(m,n) are at least Lipschitz across the sonic circle Γsonic.

Furthermore, (m,n) have the same regularity as ρ inside Ω except the origin r = 0.
However, (m,n) may be multi-valued at the origin r = 0.

In conclusion, we have

Theorem 7.1. Let the wedge angle θw be between −π and 0. Then there exists a global
solution (ρ,m, n)(r, θ) with the free boundary r = r(θ), θ ∈ [θw, θ1], of Problem 2 such that

(ρ,m, n) ∈ C2+α(Ω), ρ ∈ Cα(Ω), r ∈ C2+α([θw, θ1)) ∩ C1,1([θw, θ1]),

and (ρ,m, n) = (ρ1,m1, 0) in the domain {ξ < ξ1, r > r1} and (ρ0, 0, 0) in the domain
{ξ > ξ1, η > η1} ∪ {r > r(θ), θ ∈ [θw, θ1]}. Moreover, the solution (ρ,m, n)(r, θ) with the
free boundary r = r(θ) satisfies the following properties:
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(i) ρ > ρ0 on the shock Γshock, that is, the shock Γshock is separated from the sonic
circle C0 of state (0);

(ii) The shock Γshock is convex in the self-similar coordinates (ξ, η);
(iii) The solution (ρ,m, n) is C1,α up to Γsonic and Lipschitz continuous across Γsonic;
(iv) The Lipschitz regularity of the solution across Γsonic and at P1 from the inside is

optimal;
(v) The momentum components (m,n) may be multi-valued at the origin.

8. Appendix: Proof of Lemma 3.6

For self-contained, we illustrate a stretched proof of Lemma 3.6 in the following:

Proof. For the notational simplicity, we write ρ = ρε,δ throughout the proof. The existence
part of the proof is similar to that in [5]. The main idea is that, for any function w ∈ W,
we define a mapping

T : W ⊂ C2
(−γ1) → C2

(−γ1)

by Tw = ρ, where ρ is the solution to the linear regularized fixed boundary problem
(3.12)–(3.13) solved in Lemma 3.5. Because of the cut-off function ζ, and by Lemma 3.5,
T obviously maps W into a bounded set in C2+α

(−γV ), where γV is the value given by Lemma

3.5. Since γV is independent of γ1, we may take γ1 = γV
2 so that T (K) is precompact in

C2
(−γ1).

Next, since it is easy to verify that Tw satisfies (W1) and (W3) in Definition 3.2, by
the boundary conditions, the maximum principle, and the standard interior and boundary
Hölder estimates (cf. Theorems 8.22 and 8.27 in [16]). In order to show that T maps
W into itself, the remaining task is to show that Tw satisfies (W2) in Definition 3.2. To
verify (W2), it suffices to find a constant K such that

(8.1) sup
δ>0

(
δ2−γ1∥ρ∥2,Ω\{Γ(δ)∪ΩV (δ)}

)
< K,

under the assumption that ∥w∥(−γ1)2 ≤ K. Note that Lemma 3.4 gives us a local bound
for the weighted norm of ρ on Γ(d0) of the form

(8.2) d2−γ1∥ρ∥2 ≤ d1−γ1+µC,

which holds for all d < d0, where C depends on K, α1, and γ1. To show (8.1), we make
the L∞–estimate by considering separately the domains in Ω\{Γ(δ) ∪ ΩV (δ)} for which

δ > d̃, with d̃ ≤ d0 to be specified later, and the domains for which δ ≤ d̃.
In the domains of the first kind, Ω\{Γ(δ)∪ΩV (δ)} with δ > d̃, the solution is smooth, and

trivially its C2–norm bound is independent ofK by uniform Hölder estimate, interpolation
inequality (cf. Lemma 6.32, [16]), and the bootstrap iteratively.

Finally, we estimate δ2−γ1∥ρ∥2,Ω\{Γ(δ)∪ΩV (δ)} with δ ≤ d̃. We divide the subdomain

Ω\{Γ(δ) ∪ ΩV (δ)} into two parts: The part for which δ > d̃ and its complement. The

supremum over the subdomain for which δ > d̃ has been calculated above. Next, we use
the estimates for the behavior of the solution near Γshock to obtain the supremum over the
complement. By the interpolation inequality, let γ1 =

γV
2 , we can obtain

d2−γ1∥ρ∥2 ≤ KV , ∀ d < dV ,

where KV is independent of K. Therefore, we can choose d̃ ≤ min{d0,dV }
2 in (8.2) small

enough that d̃1−γ1+µC ≤ K. Therefore, (8.1) is satisfied, and we have chosen the param-
eters K, K0, and α0 defining W so that T maps W into itself.
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Now, by the Schauder fixed point theorem, there exists a fixed point ρ such that Tρ =
ρ ∈ C2

(−γ1). Then ρ is a solution of the boundary value problem (3.2) and (3.5)–(3.7) and

meets the estimates listed in the lemma.

Next, we will show the three properties listed in this lemma for the fixed boundary
nonlinear problem (3.2) and (3.5)–(3.7). First we prove property (i):

(8.3) c2(ρε,δ)− r2 ≥ 0 in Ω
ε,δ
,

by maximum principle.
On contrary, we assume that there exists a nonempty set D = {(ξ, η) ∈ Ω : c2(ρ)−r2 <

0}. Then it is easy to check that P2 /∈ D. Since O /∈ D,

D ⊂ Ωs := {X ∈ Ω\V : r2 > c̄2(ρ, ρ0)},

where V is the set of the corner points of Ω.
Firstly inside Ωs, multiplying (γ − 1)ργ−2 both sides of the equation Qε,+ρ = 0, and

denoting c2(ρ) = ργ−1 = u, we have

(8.4)

Lu = (γ − 1)ργ−2Qε,+ρ

=
∑2

i=1 a
ε
ii(Diiu− γ−2

γ−1
1

ργ−1 |Diu|2) + ζ ′(c2 − r2)(c2 − r2)rur +
1
r2
u2θ + bεur

= 0.

We note that ε
2 ≤ aε11 ≤ ε due to the cut-off function ζ in D. We evaluate Lr2 in D:

(8.5)
Lr2 ≥ −2ε

∣∣1− 2(γ−2)
γ−1

1
ργ−1 r

2
∣∣+ ζ ′(c2 − r2)(c2 − r2)rur + 2c2

≥ 2r20 − 2ε

ργ−1
0

∣∣ργ0 − 1− 2|γ−2|
γ−1 r20

∣∣ > 0

with small ε < ε0 :=
ργ−1
0 r20∣∣ργ−1

0 − 2|γ−2|
γ−1

r20

∣∣ when (c2 − r2)r = 0. Then it means the minimum

point of c2 − r2 can not obtained in D.
Secondly, along Γshock ∩D, Multiplying (γ− 1)ργ−2 over the equation Mρ = 0, we have

the boundary condition for u

0 = (γ − 1)ργ−2Mρ = M̃u =
2∑
i=1

βiDiu.

At the same time, we have

(8.6) M̃r2 = 2rβ1 = 2rr′
(
c2(r2 − c̄2)− 3c̄2(c2 − r2)

)
> 0 on Γshock ∩D,

where we have used the fact that r2 ≥ c2 ≥ c̄2 in Ωs. Thus it means the minimum point
of c2 − r2 can not obtained along Γshock ∩D.

Thirdly, on Γ0 ∩D. Notice

(γ − 1)ργ−2 ∂ρ

∂ν
− ∂r2

∂ν
= 0,

which is a contradiction due to the Hopf maximum principle. Therefore, there is no
minimum point, which implies that the set D = ∅. This completes the proof of property
(i). We remark here that property (i) guarantees the ellipticity of our nonlinear system,
so that we can remove the cut-off function.

Now, we can show property (ii), i.e.,

r − c̄(ρ, ρ0) ≥ 0 on Γshock.
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The proof is similar to [18] based on Lemma 3.6. The main idea is to assume that there
exists a non-empty set B = {X ∈ Γshock : c̄(ρ, ρ0)− r > 0} and a point X ∈ B such that

max
B

(
c̄2(ρ, ρ0)− r2

)
= (c̄2 − r2)(X) = m > 0.

It is clear that X ̸= P1, P2. Therefore, if X exists, then X ∈ Γshock \ {P1, P2}. Then X
can be either a local maximum point or a saddle point in Ω ∪ Γshock. We show that both
cases can not occur, which implies that such X does not exist. The case that X is a local
maximum point is proved by the maximum principle. For the more complicated case that
X is a saddle point, then multiplying (c̄2)′ both sides of Qερ = 0 yields

Lc̄2 =

2∑
i=1

aεiiDii(c̄
2) + a1(c̄

2)2r + a2(c̄
2)2θ + b̃ε(c̄2)r,

where a1 = −aε11 + a
(c̄2)′ and a2 = −aε22 + a

r2(c̄2)′ .

Since X is a saddle point, we can construct a barrier function ψ so that X = (rx, θx) is
a maximum point along the normal direction.

We define d := rx − r + r′(θx)(θ − θx) and a set

W := {(r, θ) ∈ Ω : d > 0} ∩ {(r, θ) ∈ Ω : c̄2 − r2 > m}.
Set u = c̄2 − r2 −m, and let

w :=
1

µ0
(eµ0u − 1), µ0 > 0.

Choose µ0 = max{ai}
e0

, where aε11, a
ε
22 ≥ e0 > 0 in W , and µ0 and e0 are independent of ε.

Thus, we find ψ(d) to be

ψ =
m0b1 + d1f1

b1

1− e−b1d/e0

1− e−b1d1/e0
− f1
b1
d,

which satisfies the boundary condition:

ψ(0) = 0, ψ(d1) = m0,

with m0 = eµ0umax−1
µ0

, where umax = max
W

u = max
W

(c̄2 − r2 − m) and d1 > 0. Here

b1 = max
W

(4a1r + b), f1 = max
W

eµ0u(2aε011 + 4r2a1 + 2rb̃ε)+, and ε ≤ ε0.

Hence, in the set W , using the maximum principle and (2.5), at X, we finally have

0 ≥ 2rβ1 − ψ′µdr(X) + β2(ψ
′dθ + β2ψ

′r′dr)(X)

= 2rβ1 + ψ′(0)(β1 − r′β2)

= 2rβ1 + ψ′(0)µ.

On the other hand, by the Taylor series expansion, we can show that, for sufficiently small
d1 and ϑ = O(d1), we have

2rβ1 + ψ′(0)µ > 0,

which is a contradiction. Therefore, there is no such X, which implies that the set B = ∅.
Finally, we study the monotonicity of ρ along the shock boundary Γshock, which will be

used to describe the behavior of ρε,δ and rε,δ near the shock Γε,δshock when ε, δ tend to zero,
and the convexity of the shock in the (ξ, η)-coordinates.

The proof is technical, which can be followed as in [5], with the main difference that we
only need the uniform Cα–regularity. We only list the major procedure and the difference.
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For simplicity, we write ρ = ρε,δ throughout the proof. To prove the monotonicity, we
argue by contradiction.

First examine the Cα–function ρ restricted to Γshock. Without confusion, we may order
the points along Γshock by θ and refer to the intervals along Γshock by the label. Then the
lack of monotonicity implies that there exist points Θ1 and Θ2 on Γshock, with P2 < Θ1 <
Θ2 < P1, at which ρ(Θ1) > ρ(Θ2). Thus we immediately deduce that

1. In (P2,Θ2), there exists C̃ with ρ(C̃) = max
[P2,Θ2]

ρ;

2. In (C̃, P1), there exists D with ρ(D) = min
[C̃,P1]

ρ.

We want to identify points C and D on Γshock with C < D such that

(i) ρ(P2) ≤ ρ ≤ ρ(C) on [P2, C];

(ii) ρ(C) ≥ ρ ≥ ρ(D) on [C,D];

(iii) ρ(D) ≤ ρ ≤ ρ(P1) on [D,P1].

Now, property (ii) may not hold with C = C̃ because ρ(C̃) is the maximum value of ρ
only at the interval [P2, D], and we may have D > Θ2. Then, if there is a point in (P2,Θ2)

at which ρ > ρ(C̃), we let C to be the point. Otherwise, we choose C = C̃. Thus, all the
three properties hold.

Now we look at the function ρ in Ω. The idea is to partition Ω into three subdomains
by two curves ΓC and ΓD from C and D to points A and B respectively on Γ0, in such
a way ρ(A) > ρ(B) that we can deduce that there is a point m on Γ0 at which ρ obtains
a maximum on either the subdomain ΩA or the domain ΩB, thus violating the Hopf
maximum principle. This is also the case even if it happens to be the origin O. It suffices
to show that ρ(m) is the maximum value of ρ on the boundary of ΩA or ΩB.

We now construct the Lipschitz curves on which ρ has certain monotone property. That
is,

ρ(A) ≥ ρ ≥ ρ(C)− µ on ΓC , ρ(A) > ρ(C),

ρ(B) ≤ ρ ≤ ρ(D) + µ on ΓD, ρ(B) < ρ(D),

for certain number µ > 0. We specify

µ =
1

4
min{ρ(C)− ρ(D), ρ1 − ρ(C), ρ(D)− ρ̄}.

Since ρ ∈ Cα(Ω), we have

|ρ(X1)− ρ(X2)| ≤M |X1 −X2|α

for some M > 0 and X1, X2 ∈ Ω. Now, on any ball with radius r > 0,

Osc(ρ) ≤ 2Mrα.

Let R = ( µ
2M )−α. We have

OscBR∩Ω(ρ) ≤ µ.

Now ΓC can be constructed as follows (cf. Fig. 5): In BR(C) ∩ Ω, let X1 be a point at

which ρ attains its maximum value in BR(C). Then the first segment of ΓC is a straight
line from C to X1, and on the segment, we have

ρ(X) ≥ ρ(C)− µ, ρ(X) ≤ ρ(X1).

Now we continue inductively, forming a sequence of the line segments with corners
at {Xi} (take X0 = C), along which ρ(X) ≥ ρ(C) − µ and ρ(X1) < ρ(X2) < · · · .
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Figure 5. Hypothetical Curves

Since the domain Ω is finite, this process must end at finite steps when we reach a point
XL = B ∈ ∂Ω. Similarly, we construct ΓD, with termination point A ∈ ∂Ω.

We now locate A and B. We note that the two curves cannot cross each other. Further-
more, ΓC cannot terminate at Γsonic where ρ > ρ1 − µ > ρ(D) + µ. For the same reason,
it can not come back to Γshock in [P2, C] or [C,D] where ρ ≤ ρ(C). Finally, A cannot lie
in the segment [P2, C] of Γshock. Hence, A has to end on Γ0. Similarly, B cannot lie on
Γshock where ρ ≥ ρ(D) in the interval [D,P1) and must lie on Γ0 (see Fig. 5).

Now we reach to our final contradiction. Since ρ(A) is larger than ρ̄ and ρ(B), there is
a point m along the boundary P2OB at which ρ attains a maximum. Assume first that
m is not the origin, then m can not be a local maximum for the domain Ω by the Hopf
lemma. However, along the entire boundary of the domain P2CDBP2, ρ ≤ ρ(m), which
implies that it is a maximum. This is a contradiction. Now, if m coincides with O, the
similar minimum point X resembling B can not coincide with O. We can find that there
is no place for such X either. Thus, this is also a contradiction. We conclude that ρ is
monotone along Γshock from P2 to P1. �
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