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Abstract. We formulate a variational model for a geometrically necessary screw dislocation
in an anti-plane lattice model at zero temperature. Invariance of the energy functional under
lattice symmetries renders the problem non-coercive. Nevertheless, by establishing coercivity
with respect to the elastic strain and a concentration compactness principle, we prove existence
of a global energy minimiser and thus demonstrate that dislocations are globally stable equilibria
within our model.

1. Introduction

Dislocations are line defects in crystalline solids which can be described by discontinuous
displacements of a homogeneous crystal: to obtain the simplest forms of dislocations, the
lattice is sliced along some half plane (the Volterra cut), and then deformed so that the lattice
remains almost perfect away from the edge of that half plane (the dislocation line) [15, 36].
Since dislocations are the principal carriers of plastic flow in crystals [23, 27, 34], they are
among the most widely studied objects of materials science. They have been investigated
analytically as points in an elastic continuum [15, 7, 30, 13, 3, 6], as crystal defects using
molecular simulation techniques [6, 32, 31], or through a variety of intermediate models such
as phase field descriptions [19, 29, 14]. We refer to [11, 15, 18, 6] for introductions to these
various models.

In the present work, we focus on the atomistic structure of dislocations. Precisely, we shall
demonstrate that they can be understood as global minima in a variational problem. To the
best of our knowledge, our results are the first that establish the existence of dislocations as
stable equilibrium configurations of an atomistic energy.

Our work is motivated by ongoing efforts to develop multi-scale models of dislocations such
as dislocation dynamics [6], and far-field coarse-graining techniques such as quasicontinuum
and related methods [22, 31, 33]. Our results contribute to a precise qualitative understanding
of the atomistic structure of dislocations, which can be used to inform the formulation and
analysis of such multi-scale schemes [25, 20].

Further, our work is inspired by a recent effort to place the theory of dislocations on a rigorous
mathematical foundation, in particular clarifying the connections between the various models
mentioned above [21, 37, 28, 12]. We outline only a small fraction of the contributions here,
most closely related to our own work. We believe that, to some extent, our results help to
overcome simplifying assumptions made in many of these works.

Possibly the most complete analysis of a static model of dislocations is provided in [12, 14,
8]. This series of papers studies a continuum phase field model for dislocations in a periodic
environment of pinning sites first described in [19]. The authors obtain a variety of scaling
regimes, depending upon the number of the pinning sites relative to their size in terms of the
interatomic spacing.
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A mathematically consistent description of dislocations in an atomistic setting, using the
language of algebraic topology is given in [4]. The concepts and language developed therein
are used to derive models of the elastic energy of a dislocation configuration. A rigorous
discrete-to-continuum passage within this framework is established in [28] using the language
of Γ-convergence. Related works analysing dislocations and other similar defects in discrete
systems are [1, 2].

The works cited above concerning discrete and semidiscrete models of screw dislocations are
primarily concerned with asymptotics of the elastic stored energy, given a number of prescribed
dislocation cores. The creation or destruction of additional cores, for example via the intro-
duction of dipoles, is either forbidden or explicitly tracked in the energy functional through a
term accounting for a positive core energy.

In contrast, our model allows for the creation and destruction of dislocation dipoles without
any such penalty, accounting only for the stored elastic energy. More precisely, we consider a
static atomistic model for screw dislocations in a similar vein to [28], and show that uncon-
strained stable equilibrium configurations containing dislocations exist. Although we do not
pursue this in the present work, we observe that the analytic properties of the equilibria we
obtain should allow for a natural extension of the results in [28] to our unconstrained model.

1.1. Outline. We consider anti-plane displacements of a BCC crystal, in the direction of a
screw dislocation line (that is, parallel to the Burgers vector). For two displacements, y, ỹ we
consider the energy difference

E(y; ỹ) :=
∑
b∈B

[
ψ(Dỹb)− ψ(Dyb)

]
,

where B is a set of pairs of interacting (lines of) atoms, Dyb denotes a finite difference, and
ψ is a potential describing this interaction. The potential ψ is 1-periodic, where 1 is the
atomic spacing, mimicking the behaviour of realistic pair interaction potentials. In particular,
if y(ξ) − ỹ(ξ) ∈ Z for all lattice sites ξ, then E(y; ỹ) = 0. This invariance of the energy is the
primary source of analytical difficulties.

We call a deformation y which minimises E(y+ u; y) amongst all finite energy perturbations
u a globally stable equilibrium.

Building on [4] and the differential displacement maps first employed in [35], in §2.2 we
present a method by which we can identify dislocation cores and assign them a corresponding
Burgers vector.

Our main result, Theorem 3.2, states that there exists a globally stable equilibrium containing
one geometrically necessary dislocation core.

The proof of this result is developed throughout the remainder of the paper. In §4 we show
that E(u) := E(ŷ + u; ŷ), where ŷ is the linearised elasticity displacement field, is well-defined
on a discrete H1-function space describing finite energy states. In Theorem 4.5 we reformulate
and refine Theorem 3.2 as a variational problem, by stating the existence of a global minimiser
of E in that space. §5 is then devoted to the proof of Theorem 4.5.

Further, in §3 we discuss briefly how to expoit the global stability result of Theorem 4.5 to
construct locally stable configurations containing finitely many dislocation cores or configura-
tions with dislocations in a domain with boundary.

2. Geometric and Topological Preliminaries

2.1. Anti-plane displacements of the BCC lattice. Although our analysis can be applied
in other situations, it will be notationally convenient and physically relevant to restrict our
attention to the body-centred cubic (BCC) lattice, which may be defined by

L := BZ3 where B := s

 √8/9
√

2/9 0

0
√

2/3 0
1/3 −1/3 1

 ,
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and s > 0 is a scaling factor that we leave undefined for now.
To define anti-plane displacements, we fix the lattice vector ν := [0, 0, s] and define the

projection

Πν := I− ν
|ν| ⊗

ν
|ν| ,

which ‘flattens’ the Bravais lattice L onto the lattice plane with normal ν; see Figure 1(a). It is
straightforward to check that the set Πν(L) is a two-dimensional triangular lattice embedded in
R3, with lattice constant s

√
8/9; we will choose s =

√
9/8 so that the planar lattice constant

is 1. We further shift the origin so that the projected set may be identified with

Λ :=
(

1
2
,
√

3
6

)T
+ [ a1, a2] · Z2, where a1 = (1, 0)T and a2 =

(
1
2
,
√

3
2

)T
.

An anti-plane displacement in the direction ν (or, simply, displacement), is a map y : Λ →
R. The set of all displacements is denoted by W . A displacement y gives rise to a lattice
deformation Y : L → R3,

Y (η) := η + y
(
(1

2
,
√

3
6

)T + Πνη
)
ν, η ∈ L.

Let y, ỹ be displacements and Y, Ỹ the associated deformations. We say that y, ỹ are equiv-
alent if Y (L) = Ỹ (L) (i.e., they describe the same atomistic configurations). It is easy to see
that y, ỹ are equivalent if and only if (y − ỹ)(Λ) ⊆ Z.

2.2. Bonds and bond lengths. Each ξ ∈ Λ has six nearest neighbours, ξ + ai, i = 1, . . . , 6,
where a1 = (1, 0)T and ai = Ri−1

6 a1 where R6 denotes a rotation through angle π/3. At a point
ξ ∈ Λ, we define the set of outward-pointing nearest neighbour bonds

Rξ :=
{

(ξ, ξ + ai)
∣∣ i = 1, . . . , 6

}
=
{

(ξ, η)
∣∣ η ∈ Λ, |ξ − η| = 1

}
,

and furthermore define the set of all bonds to be the union

B :=
⋃
ξ∈Λ

Rξ =
{

(ξ, ξ + ai)
∣∣ ξ ∈ Λ, i = 1, . . . , 6

}
=
{

(ξ, η) ∈ Λ2
∣∣ |ξ − η| = 1

}
.

For any bond b = (ξ, ξ + ai), we denote the reverse bond by −b := (ξ + ai, ξ).
For b = (ξ, η) ∈ B we define the difference operator

Dyb := y(η)− y(ξ).

Moreover, we set Dy := (Dyb)b∈B. We also note that Dy−b = −Dyb.
With this notation, we can now define two important discrete function spaces: fixing a

reference lattice point ξ0 = (0,
√

3
3

)T ,

W0 :=
{
v ∈ W

∣∣ v(ξ0) = 0 and supp(Dv) is bounded
}
, and

Ẇ 1,2 :=
{
v ∈ W

∣∣ v(ξ0) = 0 and Dv ∈ `2(B)
}
.

It is shown in [24, Prop. 9] that Ẇ 1,2 is a Hilbert space and W0 ⊂ Ẇ 1,2 is dense.
We now introduce a crucial concept required to define the notation of dislocation. We denote

the set of bond length 1-forms by

[Dy] :=
{
α : B → [−1/2, 1/2]

∣∣α−b = αb and Dyb − αb ∈ Z for all b ∈ B
}
. (2.1)

We note that, if Dyb 6∈ 1
2

+ Z for all b ∈ B, then α ∈ [Dy] is unique, but in general there is
ambiguity in the definition of α. This non-uniqueness is an issue which we will return to in
§2.5.

The motivation behind this definition is that αb defines the ‘shortest bond length’ between
the two lines of nuclei represented by the 2D lattice sites ξ, ξ′, where b = (ξ, ξ′), in that

min
η,η′∈L

Πνη=ξ,Πνη′=ξ′

∣∣y(η)− y(η′)
∣∣ =

√
1 + α2

b ;



SCREW DISLOCATION UNDER ANTI-PLANE DEFORMATION 4

(a) Part of L, showing the BCC unit cell, ν and the
plane perpendicular to it.

(b) An illustration of the definition of αb and its
relationship to the shortest distance between atoms.

Figure 1. Illustrations of the lattice geometry.

see also Figure 1(b).
The importance of the concept of bond length stems from the fact that, due to the invariance

of the lattice under adding integer shifts to a displacement, the energy of the lattice can only
depend on αb, but not on Dyb directly.

2.3. The lattice complex. In this section, we review some terminology of discrete algebraic
topology which is convenient for our analysis. We follow the language described in [4], where
more details and applications to the study of dislocations can be found.

Repeating the definitions of Λ,B, we define a lattice complex as in [4, §2.3.3], with

Λ :=
{
ξ ∈ R2

∣∣ ξ ∈ ΠνL+ (1
2
,
√

3
6

)T
}
,

B :=
{

(ξ, ζ) ∈ Λ2
∣∣ |ξ − ζ| = 1

}
, and

C :=
{

(ξ, ζ, η) ∈ Λ3
∣∣ (ξ, ζ), (ζ, η), (η, ξ) ∈ B},

denoting, respectively, the sets of 0-cells, 1-cells and 2-cells of the lattice complex respectively
(see Figure 2 for an illustration). From now on, we will not explicitly use the terms p-cell,
p-chain and p-cochain as defined in [4, §2.2], preferring instead the more evocative terminology
‘lattice points’ for elements of Λ, ‘bonds’ for elements of B, and ‘cells’ for elements of C. We
note the additive structure that may be defined on these objects, and write a ∈ A to mean
that a is an elementary p-cell contained in the p-chain A. We also frequently use the boundary
operator ∂, which maps p-chains to their boundaries, assigning orientations in the usual way.

We then follow [4, §3] in defining p-forms and integration on the lattice, writing∫
U

F :=
∑
e∈U

F (e),

where U is a p-chain, e are p-cells, and F is a p-form (i.e. a real-valued function on p-cells).
We note that this definition is linear in F and U , in the sense that∫

U+V

λF +G = λ
∑
e∈U

F (e) + λ
∑
e∈V

F (e) +
∑
e∈U

G(e) +
∑
e∈V

G(e),

= λ

∫
U

F +

∫
U

G+ λ

∫
V

F +

∫
V

G,
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Figure 2. An illustration of 0-, 1- and 2-cells in the triangular lattice. The
arrows show the boundary of the positively-oriented 2-cell. Note that orientation
only makes sense for 1- and 2-cells.

for any λ ∈ R, p-chains U and V , and p-forms F and G. We remark here that ‘bond length
1-forms’ α as defined in §2.2 are true 1-forms in the sense defined in [4, §3.1].

Finally, we define paths in the natural way as 1-chains

Γ :=
L∑
k=1

(ξk, ξk+1), (2.2)

where (ξk, ξk+1) ∈ B for each k, and we denote the length of a path Γ by |Γ| := L.

2.4. Measures of Lattice Distance. Since we will make use of more than simply the algebraic
structure that a lattice complex entails, we will occasionally abuse the notation given above by
identifying bonds and cells with their closed convex hulls; that is, we write

x ∈ b = (ξ, ζ) to mean x ∈ conv{ξ, ζ}, and
x ∈ C = (ξ, ζ, η) to mean x ∈ conv{ξ, ζ, η},

where conv(Ω) denotes the closed convex hull of a set Ω ⊂ R2; it will be clear from the context
whether we are referring to spatial points or subchains. Since we frequently refer to them, we
define xC to be the barycentre of a cell C, and C0 the cell for which xC0 = 0.

Using this form of the notation, we define the distance from each kind of cell to the origin as

dξ := |ξ|,
db := inf

x∈b
|x|,

dC := inf
x∈C
|x|,

which corresponds to the usual notion of distance between sets in Euclidean space.
The second notion of distance we will use is the graph theoretic notion. Since Λ can be

identified with a planar graph with edges b ∈ B, we can further identify cells with nodes in
the dual graph, and bonds as edges in this graph (see [9, §4.6]). This allows us to define the
hopping distance, hop2(C,C ′) as the length of the shortest path in the dual graph between the
cells C,C ′ ∈ C, as in [9, §1.3]. We note that since the dual graph is connected, this distance is
always finite, and we have the following ‘triangle inequality’ for any dual lattice points A, B
and C:

hop2(A,C) ≤ hop2(A,B) + hop2(B,C). (2.3)
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Figure 3. Two examples of bond length 1-forms corresponding to the same
deformation. The numbers are the value of the 1-form on the relevant bond,
and arrows indicate the bond direction in which it is positive. Note the number
and positions of the dislocation cores present change, but the sum of the Burgers
vectors does not.

2.5. The Burgers vector. We now define the notion of Burgers vector we use in our model,
which is a fundamental geometric concept describing the nature of a dislocation [15].

We call a path Γ =
∑L

k=1(ξk, ξk+1) as defined in (2.2) a Burgers loop (or, simply, loop) if
ξ1 = ξL+1 (or equivalently ∂1Γ = 0; this implies Γ = ∂2A for some sum of cells A, since the
lattice complex is perfect [4, §2.2.1, Axiom (A4)]). If Γ is a loop, y ∈ W , and α ∈ [Dy] an
associated bondlength 1-form, then∫

Γ

α =
∑
b∈Γ

Dyb +
∑
b∈Γ

(αb −Dyb) = 0 +N ∈ Z.

We call the integer N the Burgers vector of the bond length 1-form α around the loop Γ.

Definition 1 (Dislocation Core). A dislocation core of a bond length 1-form α is a positively
oriented 2-cell C such that

∫
∂C
α 6= 0.

We will refer to cores as being ‘contained in’ α. For future reference, we remark that∣∣∣∣ ∫
∂C

α

∣∣∣∣ ≤ |∂C|2
=

3

2
, (2.4)

that is, the Burgers vector around a single 2-cell can only be −1, 0 or 1, and hence we define
the sets of dislocation cores

C+[α] :=

{
C ∈ C

∣∣∣C positively oriented,
∫
∂C

α = +1

}
,

C−[α] :=

{
C ∈ C

∣∣∣C positively oriented,
∫
∂C

α = −1

}
,

C±[α] := C+[α] ∪ C−[α].

Remark 2.1. It is interesting to note that if α, α′ ∈ [Dy], then they need not have the same
number of cores; see Figure 3 for an illustration of this fact.

The only point at which this ambiguity is an issue is if α has C,C ′ ∈ C±[α] which are
adjacent. In that case, it may be checked that the b ∈ ∂C such that −b ∈ ∂C ′ must have
αb ∈ {−1/2, 0, 1/2}. In the case where αb = ±1/2, redefining αb = ∓1/2 removes these cores,
and α remains a bond length 1-form in [Dy], so we will always assume that minimising sequences
have αb = 0 for any bond b shared by 2 adjacent cores. �



SCREW DISLOCATION UNDER ANTI-PLANE DEFORMATION 7

The net Burgers vector is obtained by summing the signs of the cores, or equivalently, by com-
puting the Burgers vector on a sufficiently large loop enclosing all cores. Since α ∈ [Dy] is not
necessarily unique for a given y, we ensure that such a concept can be defined unambiguously.

For our purposes it will be enough to consider displacements with some prescribed far-field
behaviour.

Proposition 2.2. Let y ∈ W and α ∈ [Dy] such that αb → 0 as db → ∞. Then, for any
α′ ∈ [Dy], C±[α′] is finite and ∑

C∈C±[α′]

∫
∂C

α′ =
∑

C∈C±[α]

∫
∂C

α =

∫
Γ

α, (2.5)

where Γ is any loop that encloses all cores in α.

Proof. If αb → 0 as db →∞ then∫
∂C

α→ 0 as dC →∞.

Since
∫
∂C
α ∈ Z it follows that

∫
∂C
α = 0 for dC sufficiently large, and hence the number of

dislocation cores present in α is finite.
Moreover, since αb ∈ (−1/2, 1/2) for db sufficiently large, it follows that αb = α′b for all

α′ ∈ [Dy] and db sufficiently large. In particular, C±[α′] is also finite.
To prove (2.5), let Γ be a loop that encloses all the cores in α for which Γ = ∂A. Then∫

Γ

α =
∑
C∈A

∫
∂C

α =
∑
C∈C±

∫
∂C

α.

Taking Γ such that Dyb = αb = α′b for all b ∈ Γ we obtain the first identity in (2.5) as well. �

We can now formally define the net Burgers vector.

Definition 2 (Net Burgers Vector). Let y ∈ W such that αb → 0 as db → ∞ for some
α ∈ [Dy]. Then we define the net Burgers vector of y to be

B[y] :=
∑

C∈C±[α]

∫
∂C

α,

for an arbitrary α ∈ [Dy].

The quantity B[y] can be experimentally observed from outside the system, by determining
the strain at ‘infinity’. For example, if B[y] = 1, then this tells the observer that there must
be at least one dislocation in the system, but nothing about the total number.

3. Main Result

In this section we present the main result of the paper with accompanying assumptions.

3.1. Energy difference functional. Before we can state the main result, we introduce an-
other key concept that we employ in its formulation and proof: the energy difference functional.
We assume that lattice sites (corresponding to lines of atoms in the BCC crystal) interact via
a nearest-neighbour pair potential ψ ∈ C(R) ∩ C4(R \ (Z + 1/2)), which satisfies the following
properties:
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(ψ1) ψ is 1-periodic;
(ψ2) ψ and ψ(1

2
+ ·) are even;

(ψ3) ψ(r) = 0 if and only if r ∈ Z;
(ψ4) ψ′′(0) = µ > 0.
(ψ5) ψ(x) ≥ 1

2
ψ′′(0)x2 for all x ∈ [−1

2
, 1

2
].

Remark 3.1. Assumptions (ψ1) − (ψ4) are very general, and are natural in the physical
context: (ψ1) and (ψ2) encode lattice symmetries, while (ψ3) and (ψ4) state that the system
has a stable crystalline ground state.

The only “technical” assumption is (ψ5). The reason for this assumption will become apparent
in §5.1, where we use it to establish an a priori bound on the number of dislocation dipoles in
finite energy configurations. We believe that (ψ5) can be replaced with weaker variants, but
cannot be removed altogether.

We remark that the requirement that ψ ∈ C4(R \ (Z + 1/2)) can be relaxed further by
modifying the proofs we give below, but since this adds little at the expense of readability, we
omit such arguments here. The prototypical example of a potential satisfying (ψ1) − (ψ5) is
ψ(r) = ψlin(r) := 1

2
dist(r,Z)2. �

For two displacements y, ỹ ∈ W we define the energy difference functional, formally for the
moment, as

E(y; ỹ) :=
∑
b∈B

[
ψ(Dyb)− ψ(Dỹb)

]
.

For example, if y− ỹ ∈ W0, then E(y; ỹ) is clearly well-defined since the sum is effectively finite.
For arbitrary displacements y, ỹ, E(y; ỹ) need not be well-defined. However, we will show in
§4.1 that E can, under certain conditions, be extended by continuity to relative displacements
y − ỹ ∈ Ẇ 1,2.

Using the terminology of energy differences, we can define what we mean by a stable equi-
librium displacement. Intuitively, the definition entails that finite energy perturbations cannot
lower the energy.

Definition 3 (Stable Equilibrium). A displacement y ∈ W is a locally stable equilibrium
if there exists ε > 0 such that E(y + u; y) ≥ 0 for all u ∈ W0 with ‖Du‖2 ≤ ε.

A displacement y ∈ W is a globally stable equilibrium if E(y + u; y) ≥ 0 for all u ∈ W0.

3.2. Statement of the main result. Recalling Definitions 2 and 3 the existence of a screw
dislocation can be formulated as follows.

Theorem 3.2 (Existence of a geometrically necessary dislocation). There exists a
globally stable equilibrium displacement y ∈ W with net Burgers vector B[y] = 1.

The notion of global stability described in Definition 3 is equivalent to the statement that
a displacement is stable if any finite energy perturbation increases the energy of the system.
Describing a dislocation configuration as the minimiser of an energy difference functional gives
us access to the Direct Method of the Calculus of Variations.

We refer to this result as the existence of a ‘geometrically necessary’ dislocation since we do
not prescribe the absolute number of dislocation cores, but only the net Burgers vector.

Outline of the proof of Theorem 3.2.
(1) We define a reference configuration ŷ(ξ) = 1

2π
arctan( ξ2

ξ1
) (the continuum linear elasticity

solution for a dislocation), with the aim to minimise the energy difference functional
E(u) := E(ŷ + u; ŷ) over a suitable class of functions u.

We show that this functional, initially defined over W0, can be continuously extended
to a functional over Ẇ 1,2.
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(2) In order to use the Direct Method to establish the existence of a minimiser to E , the
crucial step is to obtain a global lower bound on the energy. This is the main step in
the proof, and requires careful geometric estimates based on the number of dislocation
cores and the distance between them. We shall prove that E(u) & ‖β‖2

2 − 1, where β
can be thought of as belonging to [Du] (however, see (5.1) for the precise definition).

(3) This lower bound guarantees in particular that the number of dislocation cores is
bounded along a minimising sequence as well as weak compactness of a minimising
sequence un.

(4) The final step is to ensure that limun has non-zero net-Burgers vector. This need not
be the case since weak convergence of Dun allows for energy to be translated to infinity.
In our present context it is possible, by introducing a dislocation dipole, to effectively
translate the geometrically necessary core to infinity, and thus obtain a limiting dis-
placement with zero net Burgers vector. We shift the minimising sequence and employ
a concentration compactness argument to prevent this.

�

3.3. Locally stable equilibria. Theorem 3.2 establishes the existence of a configuration y =
ŷ + u, which is a globally stable equilibrium configuration for a single screw dislocation in an
infinite lattice. From this starting point, it is possible to construct more general locally stable
equilibrium configurations. The idea is (1) to superimpose copies of y and define

z̃(ξ) :=
J∑
j=1

sjy
(
ξ − xCj

)
,

where Cj ∈ C are cores in z̃ and sj ∈ {±1} the Burgers’ vectors of these cores; (2) to show that
z̃ is an approximate equilibrium when the cores Cj are sufficiently far from one another; and
(3) to apply the inverse function theorem to establish the existence of an equilibrium z close
to z̃.

Here, we only state two results that we obtain by this strategy, but refer for their proofs
to [17], where we present them in a more general context.

In step (3) of the strategy outlined above we require a discrete ellipticity condition (3.1),
which can be established rigorously, for example, for a piecewise quadratic potential.

Lemma 3.3 (Discrete ellipticity). Let ψ(r) := ψlin(r) := λ
2
dist(r,Z)2 and let y = ŷ + u,

u ∈ Ẇ 1,2, be a locally stable equilibrium configuration. Then Dyb ∈ R \ (1
2

+ Z) for all b ∈ B,
and hence ∑

b∈B

ψ′′(Dyb)Dv
2
b ≥ λ‖Dv‖2

2 ∀v ∈ Ẇ 1,2. (3.1)

Proof. Suppose there exists a bond b = (ξ, ζ) such that Dyb ∈ 1
2

+ Z. Let zt(η) := y + tδη,ξ,
then a direct calculation shows that E(zt; y) < 0 for some sufficiently small t (either positive
or negative). �

The two results we state in the following admit general ψ, but require (3.1) as an assumption:

(STAB): There exists a locally stable equilibrium y = ŷ + u, u ∈ Ẇ 1,2, satisfying the
ellipticity condition (3.1). Moreover, let A be a finite union of cells such that C±[α] ⊂ A,
for any α ∈ [Dy].

Our first local stability result states that any configuration of dislocations is stable pro-
vided that the cores are sufficiently separated. In particular, it shows that there exist stable
configurations with arbitrary net Burgers.

Corollary 3.4 (Finitely many cores). Suppose that (STAB) holds.
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Let Cj ∈ C, j = 1, . . . J, J ∈ N, be a finite collection of cells, and let sj ∈ {±1}. There is a
minimal separation distance L0 > 0 such that, if mini 6=j |xCj − xCi | ≥ L0, then there exists a
locally stable configuration z ∈ W such that, for any α ∈ [Dz],

C±[α] ⊂
J⋃
j=1

(
xCj + A

)
and∫

∂(xCj+A)

α = sj, for j = 1, . . . , J.

In particular, B[z] =
∑J

j=1 sj.

Our second local stability result states that dislocations are stable provided they are suffi-
ciently distant from any domain boundary. To state this result, let Ω := {ξ ∈ Λ | ξ2 ≤ 0} be a
discrete half space and let BΩ := {b = (ξ, ζ) ∈ B | ξ, ζ ∈ Ω} be the corresponding set of bonds.

Corollary 3.5 (Domain with boundary). Suppose that (STAB) holds.
Let C ∈ C such that L := −(xC)2 > 0. If L is sufficiently large, then there exists a locally

stable half-space configuration z : Ω→ R containing a dislocation. That is, for any α ∈ [Dz],

(1) C±[α] ⊂ xC + A,
(2)

∫
∂(xC+A)

α = 1, and
(3) there exists ε > 0 such that∑

b∈BΩ

(
ψ(Dzb +Dvb)− ψ(Dzb)

)
> 0 ∀v ∈ W0, ‖Dv‖2 < ε.

3.4. Regularity. The globally stable equilibrium configuration y, whose existence we estab-
lished in Theorem 3.2 is of the form y = ŷ + u, where ŷ(ξ) = 1

2π
arctan( ξ2

ξ1
) is the continuum

linearised elasticity solution for a screw dislocation. We refer to §4 and in particular to Theorem
4.5 for further details.

This fact implies that only a finite amount of energy is stored in the dislocation core, and
that, up to some fixed prescribed error tolerance, the linearised elasticity displacement field is
accurate outside of some fixed radius. These observations give rise to new points of view on the
concepts of dislocation core energy and core radius, which we explore in [16]. In particular the
core radius is an interesting concept related to the decay of the “corrector” u to the configuration
ŷ predicted by linear elasticity. Here, we state a regularity result proven in more general form
in [10], which precisely quantifies the rate of decay of Du. In effect, the results states that the
decay of Du is the same as predicted by linearised elasticity.

Proposition 3.6. Let y = ŷ + u, u ∈ Ẇ 1,2 be a locally stable equilibrium, then there exists C
such that

|Dub| ≤ Cd−2
b ∀b ∈ B. (3.2)

Remark 3.7. One may expect, and numerical simulations confirm this, that the corrector
u satisfies the three-fold symmetry of the lattice Λ with respect to its origin (recall that the
origin lies in the barycentre of a cell). Exploiting this symmetry, one can observe that the
decay rate is in fact |Dub| ≤ Cd−4

b . However, as soon as the symmetry is broken, for example
by applying a small shear displacement at infinity, or by moving the core off the centre of the
cell, the generic rate (3.2) is observed also numerically. �
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4. Analysis of the energy difference functional

4.1. Extension of the energy difference functional. We fix a displacement ŷ and define the
functional E(u) := E(ŷ + u; ŷ). For u ∈ W0 this is always well-defined. If Dŷb ∈ R \ (Z +B(ε))
for all b ∈ B, where ε > 0, then the first and second variations (in the sense of directional
derivatives) are also well-defined, and given by

〈δE(0), v〉 =
∑
b∈B

ψ′(Dŷb) ·Dvb, for v ∈ W0, and (4.1)

〈δ2E(0)v, w〉 =
∑
b∈B

ψ′′(Dŷb) ·DvbDwb for v, w ∈ W0. (4.2)

δ2E(0) can clearly be extended by continuity to v, w ∈ Ẇ 1,2, but this is less obvious for δE(0)
or for E itself. We first state a general result.

Lemma 4.1. Let ŷ ∈ W satisfy Dŷb ∈ R \ (Z +B(ε)) for some ε > 0 and suppose that δE(0)
is a bounded linear functional (〈δE(0), v〉 ≤ C‖Dv‖2 for all v ∈ W0). Then, E : W0 → R is
continuous with respect to the norm ‖D · ‖2; hence, there exists a unique continuous extension
of E to Ẇ 1,2.

Proof. The proof of this result is analogous to the proof of Theorem 2.8 (ii) in [26]. For
convenience we give a brief outline.

For u ∈ W0 it is easy to see that

E(u) =
∑
b∈B

[
ψ(Dŷb +Dub)− ψ(Dŷb)− ψ′(Dŷb)Dub

]
+
∑
b∈B

ψ′(Dŷb)Dub.

Since we assume that δE(0) is a bounded functional, the second term on the right-hand side is
continuous. Using the fact that ‖Dw‖∞ ≤ ‖Dw‖2, the smoothness of ψ, and the fact that each
summand in the first group is effectively quadratic in Dub, it is easy to show that the second
term on the right-hand side is continous as well. �

For future reference, we now derive a simple condition on ŷ under which δE(0) is a bounded
functional. Applying summation by parts to (4.1) we obtain

〈δE(0), v〉 =
∑
ξ∈Λ

f(ξ) · v(ξ), where f(ξ) :=
∑
b∈Rξ

ψ′(Dŷb(ξ)) (4.3)

is the force acting on atom ξ under the displacement ŷ. The following result states that, if ŷ is
sufficiently close to equilibrium in the far-field, then δE(0) is a bounded linear functional.

Lemma 4.2. Suppose that a displacement ŷ has associated forces f(ξ) satisfying the bound
|f(ξ)| ≤ C1(1 + |ξ|)−t for some t > 2, then 〈δE(0), v〉 ≤ C2‖Dv‖2 for all v ∈ W0.

Proof. Proposition 12 in [24] immediately implies that∥∥ v
log(|ξ|+2)

∥∥
∞ ≤ C‖Dv‖2, (4.4)

for some constant C > 0. (This inequality is essentially a consequence of the embedding
‖v‖BMO ≤ C‖∇v‖L2 for v ∈ C1(R2).)

We can therefore estimate∣∣〈δE(0), v〉
∣∣ ≤∑

ξ∈Λ

|f(ξ)| |v(ξ)| ≤
∥∥ log(|ξ|+ 2)f

∥∥
1

∥∥ v
log(|ξ|+2)

∥∥
∞.

The assumption |f(ξ)| ≤ C|ξ|−t with t > 2 implies that ‖ log(|ξ|+ 2)f‖1 is finite. �
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Figure 4. An illustration of the coordinate system and reference configuration chosen.

4.2. The reference displacement. We now specify the reference displacement ŷ used in the
definition of E in §4.1. It is best to think of ŷ as prescribing a far-field boundary condition
y(ξ) ∼ ŷ(ξ) as |ξ| → ∞. We wish to choose ŷ in such a way that it enforces a geometrically
necessary dislocation, and at the same time satisfies the condition of Lemma 4.2.

A natural choice is the dislocation displacement field from linear elasticity theory. Since it is
instructive (though not essential to our proofs) we give a brief motivation of this construction.
In the far-field, we expect that continuum linearized elasticity theory is a good approximation
to the atomistic equilibrium condition δE(0) = 0. This can be formalized by first deriving the
Cauchy–Born approximation and then linearising it. Due to the hexagonal symmetry of Λ one
finds that the linearised continuum approximation is simply Laplace’s equation, ∆ŷ(x) = 0.

Hence, following Section 3-2 in Hirth & Lothe [15], we define ŷ as follows:

ŷ(x) := 1
2π

arg(x) = 1
2π

arctan
(
x2

x1

)
, (4.5)

where we identify x ∈ R2 with the point x1 + ix2 ∈ C, and the branch cut is taken along the
positive ξ1-axis, as shown in Figure 4.

The gradient (away from the branch cut) is given by

∇ŷ(x) =
(−x2

2πr2
,
x1

2πr2

)T
, (4.6)

where r := |x|. This function can be extended to a function in C∞(R2 \ {0}), which we take as
the definition of∇ŷ from now on. Moreover, we can check that indeed ∆ŷ(x) = div(∇ŷ(x)) = 0,
in the pointwise sense, for x 6= 0.

Let α̂ = (α̂b)b∈B be a bond-length 1-form associated with ŷ; we claim this is unique, and the
following lemma provides a convenient formula for α̂b in terms of ∇ŷ.

Lemma 4.3. Let α̂ ∈ [Dŷ] then for any bond b = (ξ, ξ + ai) ∈ B, we have

α̂b =

∫ 1

0

∇ŷ
(
ξ + tai

)
· ai dt. (4.7)

Proof. By definition, ∇ŷ is independent of the choice of branch cut. Moreover, if the branch
cut is chosen differently, then the displacement at each site is only changed by an integer, which
means α̂ does not change; hence, α̂ is also independent of the branch cut.

Now fix b = (ξ, ξ+ ai) ∈ B. Since the origin lies at the centre of a cell we can redefine ŷ with
a branch cut that does not intersect b. The Fundamental Theorem of Calculus gives∫ 1

0

∇ŷ
(
ξ + tai

)
· ai dt = ŷ(ξ + ai)− ŷ(ξ) = 1

2π

(
arg(ξ + ai)− arg(ξ)

)
, (4.8)

and since we have assumed that b is a nearest neighbour bond, it has length 1. The term on
the right hand side is 1/2π times the angle formed by the points ξ, 0 and ξ + ai, which is
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maximised by making ξ and ξ + ai as close to the origin as possible — that is, when ξ and
ξ+ ai are on the boundary of C0. It follows that the angle can be no larger than 2π

3
, and hence

α̂b = ŷ(ξ+ai)− ŷ(ξ) ∈ [−1
3
, 1

3
]. This implies that α̂ is unique, since Dŷb 6= ±1

2
for all b ∈ B. �

As an immediate corollary of Lemma 4.3 we obtain the following bound on α̂b:

|α̂b| ≤
1

2πdb
∀b ∈ B. (4.9)

We conclude the analysis of ŷ by showing that it satisfies the conditions of Lemma 4.2.

Lemma 4.4. Let ŷ be defined by (4.5), and let f(ξ), ξ ∈ Λ, be the associated forces (see
(4.3)), then α̂ ∈ [Dŷ] satisfies α̂b ∈ [−1/3, 1/3] and

|f(ξ)| . |ξ|−3 ∀ξ ∈ Λ.

In particular ŷ satisfies all conditions of Lemma 4.2.

Proof. Recall from (4.3) that

f(ξ) =
∑
b∈R(ξ)

ψ′(Dbŷ) =
∑
b∈R(ξ)

ψ′(α̂b).

Taylor expanding ψ′b to third order, using the fact that ψ′(0) = ψ′′′(0) = 0 (since ψ is even
about 0), gives

f(ξ) =
∑
b∈R(ξ)

[
ψ′′(0)α̂b + 1

6
ψ(4)(sb)(α̂b)

3
]
,

for some sb ∈ conv{0, α̂b}. Applying (4.9) we obtain

f(ξ) =
∑
b∈R(ξ)

ψ′′(0)α̂b +O
(
d−3
b

)
, (4.10)

We now inspect the sum on the right-hand side of (4.10) in more detail. Applying (4.7) we
rewrite this sum as ∑

b∈R(ξ)

ψ′′(0)α̂b =
6∑
i=1

ψ′′(0)

∫ 1

0

∇ŷ
(
ξ + tai

)
· ai dt.

Taylor expanding ∇ŷ
(
ξ + tai

)
and using the fact that |∇4ŷ(x)| . |x|−4, we obtain∫ 1

0

∇ŷ
(
ξ + tai

)
· ai dt = ∇ŷ(ξ) · ai + 1

2
∇2ŷ(ξ)[ai, ai] + 1

6
∇3ŷ(ξ)[ai, ai, ai] +O

(
|ξ|−4

)
.

Summing over i = 1, . . . , 6 the first and third terms cancel since ai+3 = −ai, hence we obtain

∑
b∈R(ξ)

ψ′′(0)α̂b =
1

2

6∑
i=1

aTi ∇2ŷ(ξ)ai +O
(
|ξ|−4

)
. (4.11)

We now observe that
1

2

6∑
i=1

aTi ∇2ŷ(ξ)ai = −3
2
∆ŷ(ξ) = 0.

Inserting the last identity into (4.11) and combining the resulting estimate with (4.10) we obtain
the stated estimate on |f(ξ)|. �
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4.3. The variational problem in Ẇ 1,2. Combining Lemma 4.4 with Lemma 4.1 and Lemma
4.2, we deduce that E(u) := E(ŷ + u; ŷ) is a well-defined and continuous functional on Ẇ 1,2,
where ŷ is the reference configuration defined in (4.5). It will later be convenient to recall from
the proof of Lemma 4.1 that the explicit definition of the extension is

E(u) =
∑
b∈B

[
ψ(α̂b +Dub)− ψ(α̂b)− ψ′(α̂b)Dub

]
+ 〈δE(0), u〉, (4.12)

In the next section, § 5, we will prove the following result:

Theorem 4.5. There exists u ∈ Ẇ 1,2 such that E(u) ≤ E(v) for all v ∈ Ẇ 1,2.

As an immediate corollary we can now prove Theorem 3.2.

Proof of Theorem 3.2. Let y := ŷ+u, where u is a minimizer of E in Ẇ 1,2. Since Du ∈ `2(B) it
follows that |Dub| → 0 uniformly as db →∞. Using also the fact that |α̂b| → 0 uniformly (cf.
(4.9)), we conclude that αb = α̂b +Dub + zb, where zb is a compactly supported, integer-valued
1-form. From the definition of the net Burgers vector and from (2.5), it now follows immediately
that B[y] = B[ŷ] = 1. Moreover, minimality of u implies that y is a globally stable equilibrium
in the sense of Definition 3. �

Theorem 4.5 is interesting in its own right: it shows that atomistic configurations containing
dislocations can be obtained as global minimizers of a variational problem formulated over Λ.
This is particularly useful for further study (e.g., of regularity; cf. § 3.4) of dislocations in this
model.

We also remark that any local minimizer u of E in Ẇ 1,2 would give rise to a locally stable
equilibrium with net Burgers vector B(ŷ + u) = 1. The advantage of local minimisers is that
they can be computed numerically.

5. Proof of Theorem 4.5

As currently formulated, it is not obvious that the energy E is bounded below, and it is even
less clear whether E is coercive in a sense which would allow us to invoke the Direct Method.
This is due in large part to the fact that the reference configuration is nonlinear and ψ is
periodic, so the integrand has infinitely many energy wells.

The periodicity of ψ allows the creation of dislocation dipoles ‘cheaply’. If dipoles are well-
separated, then each dipole gives a positive contribution to the energy which is proportional to
the logarithm of the dipole length (the separation distance between the two cores of the dipole).
However, for generic configurations of dipoles the sign of the energy contribution is difficult to
determine, since it depends strongly upon the relative orientations of the dipoles. In essence,
this is a geometric nonlinearity of the system, and most of the effort expended in what follows
will be to control the number of dipoles that can form.

From a technical point of view the issue arises as follows: in §2.2 we decomposed Dy = α+w,
α ∈ [Dy], since the energy of the displacement y only depends on α due to the periodicity of
the potential ψ. Consequently, if we have a sequence un with E(un) uniformly bounded, then
this will bound only ‖βn‖2 for βn ∈ [Dun], and not ‖Dun‖2. In particular, generic minimising
sequences cannot be weakly compact.

By exploiting the vertical shift invariance (§5.2) and the horizontal translation invariance
(§5.3) of the energy E , we will construct a weakly compact minimising sequence. Having made
this special choice of minimising sequence, we use a profile decomposition in §5.6. We show that
each profile obtained in this way has net Burgers vector zero, leading to the conclusion that
the net Burgers vector of the limit remains 1, and proving existence of a minimiser with the
properties required.
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5.1. An elementary lower bound. Our eventual goal is to establish a coercivity result for
E . We begin with an elementary lower bound that will motivate subsequent constructions.

Let y = ŷ + u, u ∈ Ẇ 1,2, be a trial displacement, α ∈ [Dy], and recall that α̂ = [Dŷ] is
unique. Since u ∈ Ẇ 1,2, and hence Dub → 0 as db → ∞, it follows that y has a well-defined
net Burgers vector in the sense of Definition 2, and B[y] = B[ŷ] = 1.

Let
β := α− α̂; (5.1)

this 1-form satisfies the property that∫
∂C

β 6= 0 if and only if
∫
∂C

α 6=
∫
∂C

α̂,

that is, dislocation cores present in β are those that are introduced by the addition of u to ŷ.

Remark 5.1. We note that βb does not necessarily belong to [−1/2, 1/2], and hence is not
a bond length 1-form, so the definitions of §2.5 do not strictly apply; however, it remains a
1-form in the sense of [4, §3.1]. As

∫
∂C
β ∈ {0, 1,−1} for all C ∈ C, we shall therefore slightly

abuse our notation and refer to dislocation cores in β as the cells C ∈ C for which∫
∂C

β = ±1.

We also define C+[β], C−[β] and C±[β] in the obvious way. �

Next, we define z : B → Z via
Du = β + z, (5.2)

which is compactly supported since β,Du ∈ `2(B). We shall see in §5.2 that the support of z
can be thought of as a union of branch cuts connecting dislocation dipoles.

With this notation, we obtain the following result.

Lemma 5.2. For any u ∈ Ẇ 1,2 with Du = β + z as in (5.2) and for any ε > 0, we have

E(u) ≥
(

1
2
ψ′′(0)− ε

)
‖β‖2

`2 −
∑
b∈B

ψ′(α̂b)zb + 〈δE(0), u〉 − Cε, (5.3)

where Cε > 0 is a constant that is independent of u.

Proof. This estimate arises from the expression (4.12); using the periodicity of the potential ψ,
we can write

E(u) =
∑
b∈B

(
ψ(α̂b + βb)− ψ(α̂b)− ψ′(α̂b)βb

)
−
∑
b∈B

ψ′(α̂b)zb + 〈δE(0), u〉.

Define the function

g(s, t) :=

{
ψ(t+ s)− ψ(t)− ψ′(t)s

s2
s 6= 0,

1
2
ψ′′(t) s = 0.

By assumption (ψ5) in §3.1, g(s, 0) ≥ 1
2
ψ′′(0) for any |s| ≤ 1/2.

Since g is uniformly continuous on [−1/2, 1/2] × [−τ, τ ] for some τ > 0, it follows that for
each ε > 0 there exists δ(ε) > 0 such that

g(s, t) ≥ 1
2
ψ′′(0)− ε for |s| ≤ 1

2
+ δ(ε) and |t| ≤ δ(ε).

Next, we note that (4.9) implies

|α̂b| ≤
1

2πdb
and |βb| = |αb − α̂b| ≤

1

2
+

1

2πdb
.

Hence there exists R0 > 0 such that, for db ≥ R0,

g(βb, α̂b) ≥ 1
2
ψ′′(0)− ε,
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which can equivalently be stated as

ψ(α̂b + βb)− ψ(α̂b)− ψ′(α̂b)βb ≥
(

1
2
ψ′′(0)− ε

)
|βb|2 for db ≥ R0. (5.4)

It may be checked that
#
{
b
∣∣ db < R0

}
. R2

0,

and since ψ, ψ′ and β are uniformly bounded, it therefore follows that∑
b∈B

(
ψ(α̂b + βb)− ψ(α̂b)− ψ′(α̂b)βb

)
≥
(

1
2
ψ′′(0)− ε

)∑
b∈B

|βb|2 − CR2
0. �

We can think of ‖β‖2
2 as estimating elastic stored energy. In the following sections we will

establish several results on z = Du− β, which will eventually allow us to bound the remaining
terms 〈δE(0), u〉 and

∑
b ψ
′(α̂b)zb in (5.3).

5.2. Dipoles & Branchcuts. Let y = ŷ+u, u ∈ Ẇ 1,2, be a trial displacement, α ∈ [Dy], and
let β, z be defined by (5.2). While α and hence β are uniquely defined (except in borderline
cases when αb ∈ {±1/2}), one can exploit the vertical shift invariance of the lattice (encoded
in assumption (ψ1), periodicity of ψ) to construct equivalent displacements ũ ∈ Ẇ 1,2,

ũ := u+ U (5.5)

where U : Λ→ Z and U ∈ W0, and hence modify the z component.
If we let ỹ := ŷ+ũ, then clearly, α ∈ [Dỹ] and this leads to the same definition of β. Crucially,

though, Dũ − β 6= Du − β. We can therefore ask how to choose U in an “optimal” way. It
turns out that minimizing the total length of the branch cuts is a useful choice, which amounts
to minimizing ‖Du + DU − β‖1 = ‖z + DU‖1. Since z has compact support, a minimizer
clearly exists, but it need not be unique; see Figure 5. We may therefore assume, without loss
of generality, that u satisfies the discrete minimal connection property (DMCP)

‖Du− β‖1 = ‖z‖1 = min
Z:Λ→Z

‖Du+DZ − β‖1. (5.6)

This minimality condition is similar to the idea of minimal connections, introduced in [5].

We will now establish various properties of the structure of z defined in (5.2). In particular,
we will show that z can be decomposed into a sum

∑
zm and that the support of each zm is

analogous to a branch cut for a dipole.

Lemma 5.3. Let u ∈ Ẇ 1,2 satisfy the DMCP (5.6) and suppose Du = β + z as in (5.2).
Then we can write

z =
M∑
m=1

zm, (5.7)

where M = #C+[β] is the number of dipoles contained in β and zm : B → {−1, 0,+1},
m = 1, . . . ,M , satisfy the following properties:

(1) zmbi = 1 on a sequence of bonds (bi)
n
i=0 such that

(a) ∂bi and ∂bi+1 share a common 0-cell for each i = 0, . . . , n− 1,
(b) b0 ∈ ∂C−m and −bn ∈ ∂C+

m where C+
m ∈ C+[β] and C−m ∈ C−[β].

(2) zmb = 0 for bonds outside the set {±bi | i = 0, . . . n}.

Proof. The result is geometrically intuitive; see Figure 5. We therefore postpone a complete
proof to Appendix A.1. �
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Figure 5. A typical example of the support of a minimal z and its decomposition
into zm for a given distribution of dipoles. An arrow means that zb = 1 on the
bond pointing in the direction of the arrow, and a double arrow means zb = 2.
The grey dashed bonds on the left of the diagram show an alternative definition
of z with the same minimal norm, and the black dashed lines show two lines
which show that z2 can be decomposed into 2 straight cuts.

We will say that zm connects the dislocation cores C+
m and C−m. Moreover, we obtain the

following corollary.

Corollary 5.4. Each 1-form zm in the decomposition (5.7) can be identified with a shortest
path in the dual lattice between C+

m ∈ C+[α] and C−m ∈ C−[α], and further

‖zm‖1 = hop2(C+
m, C

−
m).

Proof. First, we observe that, due to the DMCP (5.6) and the decomposition proven in
Lemma 5.3,

‖z‖1 =
M∑
m=1

‖zm‖1. (5.8)

That is, if zmb , zm
′

b 6= 0, then zmb , zm
′

b have the same sign.
The construction employed in the proof of Lemma 5.3 identifies a sequence of bonds bi and

cells Cm,i such that bi,−bi+1 ∈ ∂Cm,i, zmbi = 1. Using the natural identification of cells with
points in the dual lattice, this implies that Cm,i are adjacent in the dual lattice, and furthermore
that bi can be identified with edges connecting these cells; this leads to the fact that

‖zm‖1 ≥ hop2(C+
m, C

−
m).

To prove the converse, we take the path in the dual lattice corresponding to zm, adjoin a
shortest path between C+

m and C−m in the dual lattice, and thus obtain a closed dual lattice
path. We construct a polygonal closed path in R2 by connecting the barycentres of the cells
along the path and define U to be the characteristic function of the bounded interior of this
loop in R2.

It is now straightforward to check that by defining z̃m := zm +DU and z̃ := z − zm + z̃m

‖z̃‖1 ≤
M∑

m′=1

‖zm′‖1 − ‖zm‖1 + ‖z̃m‖1.
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Since U is a compactly supported integer shift as in (5.5), the discrete minimal connection
property (5.6) implies that ‖zm‖1 ≤ ‖z̃m‖1 = hop2(C+

m, C
−
m), completing the proof. �

Later on it will be convenient to assume that each cut zm is made up of at most two straight
cuts: straight cuts are defined to be 1-forms z : B → {−1, 0, 1} for which there exists a line
L := {xC + tai | t ∈ R}, where xC is the barycentre of some C ∈ C and ai a nearest neighbour
direction, such that zb 6= 0 if and only if the bond satisfies b ∩ L 6= ∅,

clos
{
x ∈ R2

∣∣x ∈ b ∈ B, zb 6= 0
}

is a connected set, and zb > 0 either exclusively on bonds in the directions ai+1 and ai+2 or in
the directions ai−1 and ai−2. We will say that a straight cut ‘lies in the direction aj’ whenever
ai = ±aj in the definition of the corresponding L. See the cut depicted in the centre of Figure 5
for a visualisation of the definition.

In the next lemma, we show that we can always choose the decomposition (5.7) such that
each zm is composed of at most 2 straight cuts. We will refer to any u as in the conclusion of
Lemma 5.5 as satisfying the straight cuts property.

Lemma 5.5. Let u ∈ Ẇ 1,2, and Du = β + z as in (5.2). Then there exists ũ ∈ Ẇ 1,2

satisfying the DMCP (5.6) as well as Dũ = β +
∑#C+[β]

m=1 zm where each zm is the sum of at
most 2 straight cuts.

Proof. The idea is to show that we may always find a shortest path in the dual lattice between
any pair of cells which is made up of 2 straight segments. It is intuitively clear from Figure 5
that this can always be done.

A complete proof is postponed until Appendix A.2. �

5.3. Shifting the Origin. Suppose that y = ŷ+u, where u ∈ Ẇ 1,2 satisfies the DMCP (5.6).
For any C ∈ C, we define the affine transformation

FCξ :=

{
ξ + xC if the triangle C points upwards,

R6(ξ + xC) if the triangle C points downwards, (5.9)

where R6 denotes the rotation through angle π/3. Thus, FC maps the lattice onto the lattice,
and C0 onto the cell C.

Next, let
uC := u ◦ FC + ŷ ◦ FC − ŷ. (5.10)

It follows that ŷ(ξ) + uC(ξ) = ŷ(FCξ) + u(FCξ) for all lattice points ξ ∈ Λ, so that there are
corresponding bond length 1-forms αC ∈ [Dŷ +DuC ] satisfying

αC = α ◦ FC .

As before, define βC := αC − α̂. According to these definitions,

ŷ(FCξ)− ŷ(ξ) := 1
2π

(
arg(ξ + xC)− arg(ξ)

)
;

if we make this function single–valued by introducing a compact polygonal branch cut pass-
ing through the barycentres of a shortest dual lattice path between C0 and C, then it is a
straightforward exercise to show that

|D(ŷ ◦ FC)b −Dŷb| . d−2
b ;

therefore uC ∈ Ẇ 1,2, and

E(uC) = E
(
ŷ + uC ; ŷ

)
= E

(
ŷ ◦ FC + u ◦ FC ; ŷ

)
= E

(
ŷ ◦ FC + u ◦ FC ; ŷ ◦ FC

)
+ E

(
ŷ ◦ FC ; ŷ

)
= E(u),
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noting that the the first term on the third line is simply a resummation of E(u), and the second
term vanishes.

For each C ∈ C+[α], we can replace uC with ũC = uC + U for some U : Λ → Z, such that
‖DuC +DU − βC‖1 is minimal, i.e. ũC satisfies the DMCP (5.6). We obtain that

E(ũC) = E(uC) = E(u).

To summarize, we have constructed a corrector displacement ũC ∈ Ẇ 1,2 with the same energy
as u, but for which C ∈ C+[α] has been shifted to the origin. Upon minimising ‖DũC − βC‖1

amongst all choices C ∈ C+[α], we obtain the following result.

Lemma 5.6. Let v ∈ Ẇ 1,2, then there exists u ∈ Ẇ 1,2 such that E(u) = E(v) and such that
the discrete optimal connection property holds:
(DOCP) There exists α ∈ [D(ŷ + u)] such that

‖Du− β‖1 = min
C∈C+[α]

min
U :Λ→Z

‖DuC +DU − βC‖1, (5.11)

where β = α− α̂, uC is defined by (5.10) and βC = α ◦ FC − α̂, where FC is defined in (5.9).

The crucial property that we obtain from the DOCP (5.11) is a bound on the distance
between the necessary core at C0 and all negative cores.

Lemma 5.7. Suppose u ∈ Ẇ 1,2 satisfies the DOCP (5.11) and let z =
∑M

m=1 z
m according

to (5.7). Then,
hop2(C0, C

−
m) ≥ hop2(C+

m, C
−
m), for m = 1, . . . ,M, (5.12)

where we recall that zm connects the cores C+
m ∈ C+[α] and C+

m ∈ C−[α].

Proof. Suppose the converse for contradiction. Then there exists m and a dual lattice path
connecting C0 to C−m which is strictly shorter than hop2(C+

m, C
−
m). Letting F := FC+

m and
v := uC

+
m ,

Dv − β ◦ F = z ◦ F + z̃ =
∑
m

zm ◦ F + z̃,

where z̃ is the contribution coming from the branch cut in ŷ ◦ F − ŷ. Consider the closed
curve passing from FC+

m = C0 to FC0 along the branch cut, then along a shortest lattice path
between FC0 and FC−m, and then back to FC+

m along the support of zm ◦ F . This is a closed
curve, and by a similar argument to that in Corollary 5.4, we can define w ∈ W0 as w(ξ) = 1 for
ξ ∈ Λ inside the curve, and 0 outside. It can then be checked that v + w has a corresponding
z̄ which satisfies

‖z̄‖1 = ‖z ◦ F‖ − ‖zm ◦ F‖+ hop2(C0, C
−
m) =

∑
i 6=m

‖zi‖1 + hop2(C0, C
−
m) < ‖z‖1,

the required contradiction. �

As a corollary we obtain the following stronger property.

Corollary 5.8. Suppose u ∈ Ẇ 1,2 satisfies the DOCP (5.11) and let z =
∑M

m=1 z
m according

to (5.7). Then, for any m ∈ {1, . . . ,M} and for any cell C ∈ C such that zmb 6= 0 for some
b ∈ ∂C,

hop2(C0, C) ≥ hop2(C+
m, C). (5.13)

Proof. Lemma 5.7 states that, if C− ∈ C− and C+ ∈ C+ are connected by zm, then

hop2(C0, C
−) ≥ hop2(C+, C−).

It is clear that any subpath of a shortest path in a graph is also a shortest path. By the
construction of zm, C lies on a shortest path between C+ and C−, and therefore

hop2(C+, C−) = hop2(C+, C) + hop2(C,C−).
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The triangle inequality for paths (2.3) now directly implies

hop2(C0, C) ≥ hop2(C+, C). �

5.4. Estimating 〈δE(0), u〉. In §5.2 and §5.3, we showed that for any u ∈ Ẇ 1,2, we can find
ũ ∈ Ẇ 1,2 such that E(u) = E(ũ), and for which the corresponding branch cuts z satisfy
the DOCP(5.11). We are now in a position to exploit the chosen structure of z to derive
compactness for minimising sequences.

Our first step is to provide a stronger bound on δE(0). We have already shown that
|〈δE(0), u〉| . ‖Du‖`2 , but this will not be sufficient since our estimates so far only provide
a bound on β, and not on Du itself. Therefore we need to estimate |〈δE(0), u〉| only in terms
of ‖β‖2.

Lemma 5.9. For each u ∈ Ẇ 1,2, let βu := β be defined through (5.1).
There exists a constant C > 0 such that〈

δE(0), u
〉
≤ C‖βu‖2 ∀u ∈ Ẇ 1,2 satisfying the DOCP (5.11).

We provide the proof of this fundamental estimate throughout the remainder of this section.
Recall the definition of ξ0 from §2.2. For any ξ ∈ Λ, it is always possible to express the

difference ξ − ξ0 as
ξ − ξ0 = nai +mai+1,

for some nearest neighbour lattice direction ai and some n,m ∈ N ∪ {0} with n 6= 0 unless
ξ = ξ0. We then define the path Γξ to be

Γξ :=
n−1∑
j=0

(
ξ0 + jai, ξ0 + (j + 1)ai

)
+

m−1∑
j=0

(
ξ0 + nai + jai+1, ξ0 + nai + (j + 1)ai+1

)
;

cf. Figure 6. Integrating Dub along Γξ, we obtain

|u(ξ)| =
∣∣∣∣ ∫

Γξ

Du

∣∣∣∣ =

∣∣∣∣ ∫
Γξ

β + z

∣∣∣∣
≤ |Γξ|1/2

(∑
b∈Γξ

|βb|2
)1/2

+

∣∣∣∣∣
∫

Γξ

z

∣∣∣∣∣
. |ξ|1/2‖β‖2 +

∣∣∣∣∣
∫

Γξ

z

∣∣∣∣∣, (5.14)

using the Cauchy-Schwarz inequality. We now bound the final term in (5.14).

Lemma 5.10. Suppose u ∈ Ẇ 1,2 satisfies the DOCP (5.11) and the straight cuts property
(cf. Lemma 5.5); then ∣∣∣∣ ∫

Γξ

z

∣∣∣∣ . min
{
|ξ|2,#C+[α]

}
.

Proof. First, we note that for any straight cut z′,∣∣∣∣ ∫
Γξ

z′
∣∣∣∣ ≤ 1.

This follows from the fact that all b ∈ B for which z′b = 1 can be written as

(ξ + naj, ξ + naj + aj+1) or (ξ + naj, ξ + naj + aj+2)
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Figure 6. An illustration of the definition of Γξ.

for some ξ ∈ Λ, n ∈ N and some nearest neighbour lattice direction aj, and the definition of
Γξ. Using the straight cuts property, we find that∣∣∣∣ ∫

Γξ

z

∣∣∣∣ ≤∑
m

∣∣∣∣ ∫
Γξ

zm
∣∣∣∣ ≤ 2 #C+[α].

To prove the second bound, enumerate the bonds bj ∈ Γξ, beginning at with the bond
b1 = (ξ0, ξ0 +ai). Each bj ∈ ∂Cbj for some Cbj ∈ C. Since u satisfies the DOCP, Corollary 5.8,
zmbj 6= 0 implies that if zm connects to C+ ∈ C+[α], then

hop2(C+, Cbj) ≤ hop2(C0, C
bj) ≤ hop2(C0, C

b0) + 2j,

where we have repeatedly applied the triangle inequality (2.3). Further application of the
triangle inequality implies that the sequence of sets{

C ∈ C
∣∣ hop2(C,Cbj) ≤ hop2(C0, C

b0) + 2j
}

for j = 1, . . . , |Γξ| is increasing, and it is easy to see that

#
{
C ∈ C

∣∣ hop2(C,Cbj) ≤ hop2(C0, C
b0) + 2j

}
. j2.

Since by (2.4) each cell can contain at most one dislocation core, we must therefore have∣∣∣∣ ∫
Γξ

z

∣∣∣∣ . |Γξ|2 . |ξ|2. �

Next, we show that the number of cores can be bounded in terms of β. This is intuitive,
since, as discussed in [28], each core stores a positive amount of elastic energy. Let C ∈ C±[β],
then Jensen’s inequality implies ∫

∂C

|β|2 ≥ 1

3

∣∣∣∣ ∫
∂C

β

∣∣∣∣2 =
1

3
. (5.15)

Hence, we obtain
#C±[β] ≤ 3‖β‖2

2. (5.16)

Proof of Lemma 5.9. We now combine Lemma 5.10, Lemma 4.4 and (5.16) to estimate

|〈δE(0), u〉| ≤
∑
ξ∈Λ

|f(ξ)||u(ξ)|,

.
∑
ξ∈Λ

{
‖β‖2|ξ|−5/2 + min

(
‖β‖2

2, |ξ|2
)
|ξ|−3

}
.
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We note that the |ξ|−5/2 ∈ `1(Λ), so that the first term is bounded above by C‖β‖2. The second
term splits into ∑

ξ∈Λ

min
(
‖β‖2

2, |ξ|2
)
|ξ|−3 ≤

∑
|ξ|≤‖β‖2

|ξ|−1 + ‖β‖2
2

∑
|ξ|>‖β‖2

|ξ|−3.

Straightforward radial estimates yield the bounds∑
|ξ|≤‖β‖2

|ξ|−1 . ‖β‖2 and
∑
|ξ|>‖β‖2

|ξ|−3 . ‖β‖−1
2 .

Combining the previous estimates, we obtain the stated result. �

5.5. Estimating
∑

b∈B zbψ
′(α̂b). In this section, we estimate the second group in (5.3). Unlike

in our previous estimates, which are generic, we now resort to precise quantitative bounds based
heavily on our assumption (ψ5).

Lemma 5.11. Suppose that u ∈ Ẇ 1,2 satisfies the DOCP (5.11), then for any cut zm
connecting to a dipole C+ ∈ C+[α] to C− ∈ C−[α], we have the lower bound:∑

b∈B

zmb ψ
′(α̂b) ≥ −ψ′′(0)

arcsinh
(
2/
√

3
)

π
− c0 hop2(C0, C

−)−1, (5.17)

where c0 > 0 is independent of u.

Remark 5.12. We have no reason to believe that the estimate (5.17) is sharp. It is sufficient
for our purpose, due only to the fairly strong technical assumption (ψ5) made in §3.1. �

The complete proof of Lemma 5.11 is given in Appendix A, but since this is a crucial part
of our analysis, we provide a brief sketch.

Sketch of the proof of Lemma 5.11. A crucial consequence of the DOCPis (5.13), since this
inequality says that the dipoles described by each zm satisfy

either: hop2(C0, C
+) ≤ hop2(C0, C

−);

or: hop2(C0, C
−) < hop2(C0, C

+), but hop2(C+, C−) ≤ hop2(C0, C
−).

Since there is a positive dislocation core present in C0, dipoles in the first category give a
positive contribution to the sum, since the repulsive force between C+ and C0 dominates.

In the second case, the attractive forces between C0 and C− dominate, hence these dipoles
give a negative contribution to the energy. Requiring the straight cuts property derived in
Lemma 5.5 allows us to obtain estimates on the terms in the sums∑

b∈B

ψ′(α̂b)z
m
b

using (4.9), and estimating sums in terms of integrals that can be evaluated explicitly. Thus, we
obtain explicit bounds for various different cases in terms of hop2(C0, C

−) and hop2(C+, C−).
These estimates are logarithmic, and hence turn out to essentially depend upon the ratio

hop2(C+, C−)

hop2(C0, C−)
≤ 1;

the final result is the bound stated in (5.17). �

We have now collected all estimates required to obtain a coercivity result. Although we state
the result for general u ∈ Ẇ 1,2, we will only require it later for u satisfying the DOCP.

Theorem 5.13. Let u ∈ Ẇ 1,2, then there exists α ∈ [Dŷ +Du] and β = α− α̂, such that

E(u) ≥ c1 ‖β‖2
2 + c2 #C±[β]− c3, (5.18)

where ci > 0 are independent of u.
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Remark 5.14. We note that since we will show ‖β‖2
2 & #C±[β], we could write (5.18) more

concisely as
E(u) ≥ c1 ‖β‖2

2 − c3. �

Proof. The bound is clearly invariant under the vertical shift and horizontal shift and rotation
transformations we applied in §5.2 and §5.3. Without loss of generality, we may therefore
assume that u satisfies the DOCP (5.11). Moreover, according to Remark 2.1 we can choose
α ∈ [Dŷ + Du] in such a way that αb = 0 on any bond that lies on the intersection between
two cores.

Summing (5.17) over m, we find that∑
b∈B

zbψ
′(α̂b) ≥ −ψ′′(0)

arcsinh(2/
√

3)

2π
#C±[β]− c0

∑
C∈C−[β]

hop2(C,C0)−1. (5.19)

for some c0 > 0.
The second group in (5.19) can be estimated using the fact that each cell can contain no

more that 1 dislocation core, so that for any δ > 0, there is a constant Cδ such that∑
C∈C−[β]

hop2(C,C0)−1 ≥ −δ#C±[β]− Cδ.

Bringing together (5.3), (5.9) and (5.19), we have that for arbitrary ε > 0 and δ > 0

E(u) ≥
(

1
2
ψ′′(0)− ε)‖β‖2

2 −
(
ψ′′(0)

arcsinh(2/
√

3)

2π
+ δ

)
#C±[α]− Cε,δ.

Since we assumed that αb = 0 on any bond that is adjacent to two cores (cf. Remark 2.1),
we obtain from (5.15) that

‖β‖2
2 ≥ 1

3
#C±[β].

Since
1

3
>

arcsinh(2/
√

3)

π
≈ 0.314,

the result follows by taking ε and δ small enough. �

5.6. Existence of Minimisers of E. With the coercivity result of Theorem 5.13 in place, we
are now in a position to apply the Direct Method and establish existence of a minimiser of E
in Ẇ 1,2.

Take a sequence un ∈ Ẇ 1,2 such that

E(un)→ inf
u∈Ẇ 1,2

E(u).

Referring back to §5.3, we may assume that un satisfies the DOCP. Let αn ∈ [Dŷ + Dun]
satisfy the condition of Theorem 5.13, and βn := αn − α̂. Theorem 5.13 then implies that βn
has a weakly convergent subsequence in `2(B). In the next lemma, we also obtain convergence
of Dun.

Lemma 5.15. Suppose un ∈ Ẇ 1,2 is a minimising sequence for which each un satisfies
the DOCP (5.11). Then there exists a subsequence which converges weakly in Ẇ 1,2, and the
corresponding zn converges weakly in any `p(B) with 1 < p < 2.

Proof. Corollary 5.13 implies that, selecting a subsequence of un (not relabelled), we may
assume that βn ⇀ β weakly in `2(B) and that M := #C+[βn] is constant along the sequence.

Let Dun = βn + zn. Lemma 5.3 implies that each zn can be decomposed into

zn =
M∑
m=1

zn,m.
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Let B be any finite sum of positively-oriented cells. Since weak convergence in `2(B) implies
pointwise convergence, it follows that∫

∂B

βn = −
∫
∂B

zn → N ∈ Z as n→∞.

We enumerate the cores Cn,m ∈ C±[αn], n ∈ N, m = 1, . . . , 2M + 1. LetMbdd be the set of
indices of cores that remain at a bounded distance from the origin, that is,

Mbdd :=
{
m ∈ {1, . . . , 2M + 1}

∣∣∣ sup
n∈N

dCn,m < +∞
}
.

Since the core centres xCn,m with m ∈Mbdd can only take a finite number of positions, we can
extract a further subsequence (not relabelled) so that they are constant.

We therefore observe that

A :=
∑
C±[β] =

∑
m∈Mbdd

Cn,m, for all n.

Then, for any finite sum of cells B, B ⊃ A, we have

lim
n→∞

∫
∂B

βn = lim
n→∞

∫
∂A

βn =

∫
∂A

β =: N ∈ Z.

We aim to show that N = 0. For all n sufficiently large, applying Jensen’s inequality implies∫
∂A

|βn|2 ≥ 1

|∂A|

∣∣∣∣ ∫
∂A

βn
∣∣∣∣2 =

N

|∂A|
.

Let B0
0 ⊃ A be a finite sum of cells that form a convex lattice polygon, and let

B0
k = B0

k−1 ∪ {C : ∂C ∩B0
k−1 6= ∅},

for k ∈ N. By considering all possible corners for a convex lattice polygon it is straightforward
to show that |∂B0

k| = |∂B0
k−1| + 6. Since limn→∞

∫
∂B0

k
βn = N ∈ Z, there exist nk such that∫

∂B0
i
βnk = N for i = 1, . . . , k, and hence,

‖βnk‖2
2 ≥

k∑
i=0

∫
∂B0

i

|βnk |2 ≥
k∑
i=0

N

|∂B0
k|
& N log(k).

Since ‖βnk‖2 is bounded, we obtain that N = 0. We can therefore conclude that, for any finite
sum of positively oriented cells b, B ⊃ A,∫

∂B

zn → 0 as n→∞.

Using a concentration compactness argument, we now show that we can “group” those cores
which diverge into sums of cells with net Burgers vector zero.

To that end, define the lattice translation operators F n
m := FCnm as in (5.9), where Cn

m ∈
C+[βn] and βnm := βn ◦ F n

m. Note that ∥∥βnm∥∥2
=
∥∥βn∥∥

2
,

so βnm is a bounded sequence for each m, and we can select a subsequence such that βnm ⇀ βm
for some βm in `2(B) and for each m = 1, . . . ,M . As above, it follows that there exists a finite
sum of positively-oriented cells Am which contains C0 and all dislocation cores of βm, and is
such that for any sum of positively-oriented cells B containing Am as a subsum,

−
∫
∂B

zn ◦ F n
m =

∫
∂B

βnm = 0 for n sufficiently large. (5.20)
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Let Anm := (F n
m)−1Am, then we have shown that, for all n sufficiently large, all dislocation

cores in βn lie within the set

Sn :=
M⋃
m=1

Anm.

We are now ready to establish that ‖zn‖1 is bounded. Since each zn satisfies the DMCP,
‖zn‖∞ ≤ M . We therefore simply need to rule out the possibility that #supp{zn} → ∞ as
n→∞ (i.e., that the branch cut lengths diverge).

Fix some m ∈ {1, . . . ,M} and suppose that the core Cn
m ∈ C+[βn] is connected to Kn

1 ∈
C−[βn] via a “cut” zn,m. We claim that Kn

1 ∈ An,m.
If this were false and Kn

1 ∈ An`1 where `1 6= m, then there must be Ln1 ∈ C+[βn], Ln1 ∈ An`1 ,
which is connected to another core Kn

2 ∈ C−[βn] outside of An`1 and outside Anm. Upon iterating
this construction, we find a series of cores Kn

1 , L
n
1 , K

n
2 , L

n
2 , . . . , which must eventually repeat.

Let Ln1 := Cn
m. We know, by construction of the groups An` that hop2(Lni , K

n
i+1) → ∞ but

hop2(Kn
i , L

n
i ) is bounded as n→∞ for each i. This clearly contradicts the DMCP and hence

the DOCP.
Hence, the claim thatKn

1 ∈ An,m follows, and this immediately implies that ‖zn‖1 is bounded.
Since ‖zn‖1 is bounded and `1 compactly embeds into `p for any p > 1, it follows that we

may extract a further subsequence which weakly converges in some `p(B) with 1 < p < 2.
This further imples that both zn and βn converge weakly in `2(B), and in particular that un

converges weakly in Ẇ 1,2, as required. �

We now complete the proof of our main result.

Proof of Theorem 4.5. Invoking Lemma 5.15, suppose that the minimising sequence un ⇀ u
in Ẇ 1,2, which is a candidate minimiser for E , and furthermore that the corresponding zn

converges weakly in `p(B) with 1 < p < 2. It remains to show that lim inf E(un) ≥ E(u). Recall
from (4.12) that

E(u) =
∑
b∈B

[
ψ(α̂b +Dub)− ψ(α̂b)− ψ′(α̂b)Dub

]
+ 〈δE(0), u〉.

Since the second term is a bounded linear functional, it is weakly continuous. Using (4.9), it
may be shown that the linear functional L defined to be

L(z) :=
∑
b∈B

ψ′(α̂b)zb

is in
(
`p(B)

)∗ for all p < 2, and is therefore also weakly continuous along the sequence. From
(5.4) we obtain that there exists R0, λ > 0 such that, for db ≥ R0,

ψ(α̂b +Dunb )− ψ(α̂b)− ψ′(α̂b)βnb ≥ λ|βnb |2 ≥ 0.

We can therefore apply Fatou’s lemma to obtain

lim inf
n→∞

∑
b∈B

ψ(α̂b +Dunb )− ψ(α̂b)− ψ′(α̂)βnb ≥
∑
b∈B

ψ(α̂b +Dub)− ψ(α̂b)− ψ′(α̂b)βb,

and thus, in combination with the weak continuity of L and δE(0) along the minimising se-
quence,

inf
v∈Ẇ 1,2

E(v) = lim inf
n→∞

E(un) ≥ E(u) ≥ inf
v∈Ẇ 1,2

E(v),

completing the proof of Theorem 4.5. �
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6. Conclusion

We have presented a model which has allowed us to analyse the stability of screw dislocations
under anti-plane deformation, and we have obtained the surprising result that single screw
dislocations exist as globally stable states, i.e. they are global energy minimisers among all
finite energy displacements. Further, we then showed that configurations with arbitrarily many
dislocations of arbitrary sign are locally stable, as long as the dislocation cores are suitably
separated, but such configurations do not appear to be globally stable.

Our work suggests two immediate directions for future study. Firstly, our analysis relies
crucially on the technical assumption (ψ5) made in §3.1. It would be of interest to understand
the extent to which this assumption could be weakened, but to do so would require a more
qualitative estimate than the quantitative one made in Lemma 5.11, and would require a deeper
insight into the geometry of dipole interaction. Secondly, it would be interesting to understand
which other lattice defects are globally stable states; this seems far from clear to us at present.

Appendix A. Analysis of Branchcuts: Proofs

In this appendix, we detail the proofs of various geometrical lemmas from §5.2.

A.1. Proof of Lemma 5.3. We will prove this lemma algorithmically. First, if zb = 0 every-
where, then the result is trivial. Next, we note that β contains an even number of dislocation
cores, and #C+[β] = #C−[β] < +∞ since u ∈ Ẇ 1,2. We therefore enumerate C+

i ∈ C+[β].
Put C1,0 = C+

1 . Since C+
1 is a positive dislocation core and zb is integer-valued, it follows

that at least one bond b1 ∈ ∂C+
1 satisfies zb > 0. Let C1,1 be the cell such that −b1 ∈ C1,1.

There are now 2 possibilities: either C1,1 ∈ C−[β], in which case we stop, or we can find another
bond b2 ∈ ∂C1,1 such that zb > 0. Iterating, we obtain a (possibly infinite) sequence of cells
C1,j and bonds bj.

We now claim that no two bonds bj = bk with j 6= k in this sequence, and consequently
the sequence terminates; suppose the converse for contradiction. Let j and k be indices such
that j < k and k − j is minimal over all pairs of indices such that bj = bk. Define a polygonal
curve P passing through the barycentres of the cells xC1,j , . . . , xC1,k . P is a simple continuous
closed curve, since the cells C1,j, . . . , C1,k−1 are distinct by definition, and C1,j = C1,k. Hence,
P partitions R2 into a bounded set Ω (the interior of P ) and an unbounded set, R2 \Ω. Define
ũ = u∓1Ω, taking the sign according to whether P traverses ∂Ω in an anticlockwise or clockwise
direction respectively.

It is now straightforward to check that Dũ = Du except on the bonds bi. For each of the
bonds bi,

Dũbi = Dubi − 1 = βbi + zbi − 1,

but since zbi ≥ 1, this contradicts the DMCP, (5.6). It follows that the sequence bi contains no
two identical bonds, and as zb has compact support, the sequence must terminate at a negative
dislocation core.

Define z1
b = ±1 if ±b ∈ {b1, . . . , bn}, and z1

b = 0 otherwise, and then consider iterating the
procedure described above starting at C+

i , but using the criterion at each step that each bond
in the sequence must satisfy

zb −
i−1∑
m=1

zmb > 0.

This leads to a sequence 1-forms, zi; the resulting 1-form

zb −
N∑
i=1

zib

must be identically zero. If not, then the same technique as used above shows that that either
the DMCP is violated, or else supp{z} is infinite, and hence u /∈ Ẇ 1,2.
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To complete the proof of Lemma 5.3, we simply need to show that for 2 adjacent bonds in the
support of any zm, ∂bi∩∂bi+1 is a single 0-cell. This is clear, since by definition bi,−bi+1 ∈ ∂Cm,i,
bi 6= bi+1 and |∂Cm,i| = 3.

A.2. Proof of Lemma 5.5. We now show that we can always choose zm to be made up of 2
straight cuts. Recall that Corollary 5.4 states that ‖zm‖1 = hop2(C+

m, C
−
m).

Next, define the 2-cell hop operators Hi for i = 1, . . . 6 which act on 2-cells by taking a cell C
to the first cell ‘in the direction ai’, that is, the positively-oriented cell which satisfies C ′ 6= C,

xC +
√

3
2
ai ∈ C ′.

It is straightforward to check this is well-defined; see Figure 7. We can represent paths in the
dual lattice by words taken from the alphabet of operators {H1, . . . , H6}. In general however,
the representation is non-unique – to see this, it is clear that for C2 in Figure 7, H2C2 = H1C2.
As with the vectors ai, we define

Hi+6m := Hi

for any m ∈ Z.
We note the following properties of the operators Hi, which may be easily checked:
(1) The orbit of the group of operators generated by {H2

1 , . . . , H
2
6} acting on any cell C is

a lattice.
(2) The operators H2

i and Hj commute for any i and j.
(3) For any cell C and any i, one of the following is true: HiC = Hi+1C or HiC = Hi−1C.
(4) If HiC = HjC, then HiH

2m
k C = HjH

2m
k C, and if HiC 6= HjC, then HiH

2m
k C 6=

HjH
2m
k C.

(5) Hi+3Hi = Hi+3Hi is the identity map for any i.
(6) HiC 6= Hi±2C for any cell C and for any i.

Setting N := ‖zm‖1, we claim that for any pair of cells C±m, it is possible to write shortest paths
in the dual lattice as a word of the form

HN−k
i+1 Hk

i (A.1)

for some i and some k ∈ {1, . . . , N}. By the definition of the hopping operators, it is clear that
such words represent a sequence of cells lying on the lines xC

−
m + tai and xC

+
m − tai+1.

We now prove the claim: first, we show that any shortest path must be able to be written as
a word made up of only 2 of the operators Hi and Hi+1. Suppose this is false, for contradiction.
(6) implies that we may assume that it contains a segment which may be written as

Hi+2H
m
i Hi−2 or Hi−2H

m
i Hi+2

for some i and some m ∈ N. Since both cases are similar, we consider only the first. If C is the
first cell in this subsequence, Hi−2C 6= Hi−3C, or else HiHi−2C = HiHi−3C = C by (5), and
there exists a shorter path. (3) therefore implies

Hi−2C = Hi−1C. (A.2)

Invoking property (3) again, either

HiHi−2C = HiHi−1C = H2
i−1C or HiHi−2C = Hi+1Hi−2C = C. (A.3)

Once more, the second case results in a contradiction; hence repeatedly using (2),

Hi+2H
2k+1
i Hi−2C = H2k

i Hi+2HiHi−2C = H2k
i Hi+2H

2
i−1C = H2k

i Hi−1C,

implying a contradiction in the case where m is odd. In the case that m is even, repeatedly
using (2), (A.2) and (5), we have

Hi+2H
2k
i Hi−2C = H2k

i Hi+2Hi−2C = H2k
i Hi+2Hi−1C = H2k

i C,

obtaining another contradiction; it follows that it is impossible that every shortest path can be
written as a word containing no more than 2 of the operators Hi.
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Figure 7. This illustration shows the operation of the operator Ha1 on two
representative cells, C1 and C2.

We next show that if the two operators are Hi and Hi+2 for some i, we may rewrite the word
in terms of Hi and Hi−1, or Hi+1 and Hi. In (A.3), we showed that for any cell C contained in
a shortest path HiHi−2C = H2

i−1C. Suppose that a shortest path is represented as a product
of Hi−2 and Hi. Then each pair HiHi−2 may be replaced by H2

i−1, and using (2) to permute
each of these pairs to the right, we eventually obtain one of

Hm
i H

2n
i−1 or Hm

i−2HiH
2n
i−1.

In the first case, the proof is complete. In the second case, it must be that HiH
2n
i−1 = H2n+1

i−1 or
else m = 0, since otherwise (3) implies

Hm
i−2HiH

2n
i−1 = Hm

i−2Hi+1H
2n
i−1 = Hm−1

i−2 H2n
i−1,

which is a contradiction. Hence we have proved the claim, and in fact since we have obtained
a shortest path in the form (A.1), the lemma is proven for this particular case.

Finally, we consider a general word made up of only the operators Hi and Hi+1. Now consider
a word of the form Hi+1H

m
i Hi+1. If m is even, then we can generate a new word corresponding

to a shortest path H2
i+1H

m
i . If m is odd, then we can write a new shortest path as

Hi+1HiHi+1H
m−1
i .

But then using (3), this must be able to be written either as

H3
i+1H

m−1
i , or Hi+2Hi−1Hi+2H

m−1
i ,

where the second case results in a contradiction. It is now possible to check that this implies
the full conclusion, since by these arguments we can always transform a general word composed
of Hi and Hi+1 in one of the form (A.1).

A.3. Proof of Lemma 5.11. To prove this lemma, we use Lemma 5.5 to assert that z should
be made up of straight cuts. This will allow us to make estimates for each straight segment,
which depend upon on the orientation of each segment. We divide the lattice into ‘sextants’
by defining

S i :=
{
x ∈ R2

∣∣ ∃λ > 0, µ ≥ 0 such that x = λai + µai+1

}
.

and rings Ri by defining R−1 = ∅, R0 := C0, and then

Ri = clos
⋃{

C ∈ C \
(
Ri−1 ∪Ri−2

) ∣∣ clos(C) ∩ clos(Ri−1) 6= ∅
}
.

We will say a straight cut z is:
(1) tangential if supp{z} ⊆ S i and the cut direction is ai+2, or equivalently supp{z} ⊆
S i ∩Rr for some r, and
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(2) radial if supp{z} ⊆ S i and it has direction ai or ai+1.
It may be checked that for any straight cut, there exist C+, C− ∈ C such that∫

∂C±
z = ±1.

We separate the full result into 2 further lemmas, which give precise estimates for each of
these classes of straight cuts, before combining them to complete the proof for the general case.
By Taylor expanding ψ′(α̂b) around 0 we write∑

b∈B

ψ′(α̂b)zb =
∑
b∈B

ψ′′(0)α̂b zb + 1
6
ψ(4)(sb)(α̂b)

3zb. (A.4)

We proceed to estimate the first terms in the summand, by estimating on the radial and
tangential straight segments of zm separately.

Lemma A.1. For a tangential cut ztan with ‖ztan‖1 = hop2(C+, C−) = l on ring Rr, we have
the following estimate:∑

b∈B

ztan
b α̂b ≥ −

1

2π
arctan

(
2bmin(l, 2r − l)/2c+ 1

(r − 2/3)
√

3

)
−O(r−1).

Proof. First, we appeal to symmetry. If b = (ξ, ξ + aj) ∈ Si, then applying the reflection

R =
1

3
(ai + ai+1)⊗ (ai + ai+1)− ai+2 ⊗ ai+2,

it is straightforward to check that if b′ = (Rξ,Rζ), then

α̂b = −α̂b′ .
This means that if a tangential cut crosses the line of symmetry {t(ai + ai+1) | t ∈ R}, then
some of the bond contributions cancel. It follows that we need only consider the case where
all bonds in the support on ztan lie on one side of this line of symmetry, since this is the worst
case. For such cuts, it may be checked that l ≤ r.

Identifying ztan with a dual lattice path, we may enumerate bk ∈ supp{ztan} ‘along the path’,
and elementary geometry now shows that α̂bk has alternating sign as k increases. Letting
ξr := 1

2
(r − 2

3
)(ai + ai+1) if i is odd, ξr := 1

2
(r − 1

3
)(ai + ai+1) if i is even, it is straightforward

to show that each bond bk can be represented as one of

(ξr + sai+2, ξ
r + sai+2 + ai) or (ξr + sai+2, ξ

r + sai+2 + ai+1)

where s ∈
{

0, 1
2
, . . . , r−1

2

}
. Elementary trigonometry now allows us to calculate that

2πα̂b z
tan
b = ±

[
arctan

(
s+ 1/2

|ξr+1|

)
− arctan

(
s

|ξr|

)]
or ±

[
arctan

(
s− 1/2

|ξr+1|

)
− arctan

(
s

|ξr|

)]
respectively for the cases above. We therefore have that

2π
∑
b

ztan
b α̂b =

bl/2c∑
t=1

arctan
(
t+s0+1/2
|ξr+1|

)
− 2 arctan

(
t+s0
|ξr|

)
+ arctan

(
t+s0−1/2
|ξr+1|

)
+O(r−1),

or =

bl/2c∑
t=1

arctan
(
t+s0+1/2
|ξr|

)
− 2 arctan

(
t+s0
|ξr+1|

)
+ arctan

(
t+s0−1/2
|ξr|

)
+O(r−1),

where s0 ∈
{

0, 1
2
, . . . , r−1

2

}
, and the O(r−1) term arises from the contribution of at most 2

bonds we have neglected, whose contribution we estimate using (4.9). In the second case, the
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fact that − arctan is convex for positive arguments implies that the sum is bounded below by
0. In the first case, for all t in the range of summation,

t+ s0 + 1/2

|ξr+1|
≥ t+ s0

|ξr|
and trivially

t+ s0

|ξr+1|
≤ t+ s0

|ξr|
.

Since arctan is increasing, we obtain the lower bound

2π
∑
b

ztan
b α̂b ≥

bl/2c∑
t=1

{
arctan

(
t+ s0 − 1/2

|ξr|

)
− arctan

(
t+ s0

|ξr|

)}
+O(r−1)

≥ − arctan

(
bl/2c+ 1/2

|ξr|

)
+O(r−1),

using the fact that arctan is positive and increasing for positive arguments. Finally, note that
in the case where l > r, i.e. the tangential cut crosses the line of symmetry, and we obtain the
same estimate but with 2r − l in place of l in the formula above, so using the definition of ξr
gives the result. �

Lemma A.2. For a radial cut zrad such that ‖zrad‖1 = hop2(C+, C−) = l, either |xC+ | < |xC− |
and ∑

b∈B

zrad
b α̂b ≥ 0,

or else |xC+| > |xC−|, and if C− ∈ Rr, then∑
b∈B

zrad
b α̂b ≥ −

1

π
arcsinh

(
2dl/2e√

3(r − 2/3)

))
−O(r−1).

Proof. First, we enumerate the bonds in bk ∈ {b ∈ B | zrad
b > 0}, beginning with the bond for

which db is smallest, and proceeding outwards along the cut. Elementary geometry shows that
the terms zrad

bk
α̂bk are all positive in the case where b1 is in one of the directions ai+1, ai+2 or

ai+3, which corresponds to having |xC+| < |xC− |; this immediately provides the first bound.
In the second case (4.9) implies

α̂bk ≥ −
1

2πdbk
.

Without loss of generality, we assume the cut direction is ai, the case with direction ai+1 being
similar. There are now two cases: b1 is either in the direction ai−1, or ai−2. Further elementary
geometry allows us to conclude that in the first case, db1 = |x| for some x ∈ S i, and in the
second, db1 > |x| with x = xC

− ∈ clos(S i). In either case, db2 satisfies the same lower bound as
db1 , and further, we have that

db2n−1 , db2n ≥ |x+ nai|.
Noting that as x ∈ clos(S i), it follows that ai · x ≥ 0 and

1

|x+ tai|
=

1√
|x|2 + 2t ai · x+ t2

≤ 1√
|x|2 + t2

,

which is a decreasing function of t, so we estimate

l∑
k=1

α̂bk ≥ −
1

π

dl/2e∑
i=0

1

|x+ nai|
≥ − 1

π

(
1

|x|
+

∫ dl/2e
0

1√
|x|2 + s2

ds

)
.

Evaluating the integral, and noting further that |x| ≥
√

3
2

(r−2/3), we obtain the conclusion. �
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We now combine the estimates of Lemma A.1 and Lemma A.2 to obtain an estimate for a
general cut zm made up of two straight segments. As we showed in Lemma 5.5, each zm is
made up of at most 2 straight segments. It may be checked that each of these segments is
either purely radial, purely tangential, or changes from tangential to radial part way along its
length, with one bond which crosses ∂S i. All possible cuts satisfying the DMCP and made
up of 2 straight segments can therefore be decomposed as either

(1) a tangential cut and 2 radial cuts or
(2) a tangential cut, a radial cut and tangential cut,

where any of these segments could possibly have length 0, and neglecting the extra bonds
mentioned above for now. Recalling the result of Corollary 5.8,

hop2(C0, C
−
m) ≥ hop2(C0, C

+
m).

Consider the first case, letting the two radial segments be of length l1 and l2 respectively, and
the tangential segment of length l− l1− l2. If |xC

+
m| < |xC−m| and the radial cuts are of non-zero

length, then the radial segments have the trivial lower bound, by Lemma A.2. In the worst
case, where l − l1 − l2 = r, we have the bound∑

b∈B

zmb α̂b ≥ −
1

2π
arctan

(
r + 1

(r − 2/3)
√

3

)
−O(r−1) = − 1

12
−O(r−1).

Otherwise, |xC+
m| > |xC−m|, so applying Corollary 5.8, we have that for C ′ ∈ Rr,

2r ≥ hop2(C0, C
′) ≥ hop2(C+

m, C
′) = l1 + l2. (A.5)

Therefore, applying Lemma A.1 and Lemma A.2,∑
b∈B

zb α̂b ≥ −
1

2π

(
arctan

(
2b(l − l1 − l2)/2c+ 1

(r − 2/3)
√

3

)
+ 2 arcsinh

(
2dl1/2e√
3(r − 2/3)

)

+ 2 arcsinh

(
2dl2/2e√

3(r + bl1/2c − 2/3)

)
+O(r−1)

)
.

By ignoring the floor functions, it is possible to check that under the bound (A.5), the function
in parentheses is increasing in both l1 and l2 if r is suitably large; we therefore have that the
maximum must occur when l = l1 + l2. Hence putting l2 = l − l1, we have∑

b∈B

zb α̂b ≥ −
1

π

(
arcsinh

(
2dl1/2e√
3(r − 2/3)

)
+ arcsinh

(
2d(l − l1)/2e√

3(r + bl1/2c − 2/3)

)
+O(r−1)

)
.

Dropping the floor and ceiling functions, this estimate is convex in l1. The worst cases are
therefore l1 = 0 or l1 = l and 2dl/2e = 2r + 1, giving the value∑

b∈B

zb α̂b ≥ −
1

π
arcsinh

(
2r + 1√

3(r − 2/3)

)
+O(r−1) = −

arcsinh
(
2/
√

3
)

π
+O(r−1).

In the case where we have tangential, radial and tangential segments, similar arguments show
that, once more, the worst possible bound arises in the case where the cut is purely radial,
giving the same lower bound.

We now return to the lower order terms in (A.4). Then by crudely estimating∣∣∣∣∑
b∈B

1
6
ψ(4)(sb)(α̂b)

3zmb

∣∣∣∣ .∑
db≥r

d−3
b .

1

r

and noting that the worst case bounds always have occur when hop2(C0, C
−
m) ' r, we have∑

b∈B

zmb ψ
′(α̂b) ≥ −ψ′′(0)

arcsinh
(
2/
√

3
)

π
− c0 hop2(C0, C

−
m)−1.
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