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Abstract

We establish Luzin N - and Morse–Sard properties for mappings v : Rn → Rm of the
Sobolev–Lorentz class Wk

p,1 with k = n − m + 1 and p = n
k (this is the sharp case that

guaranties the continuity of mappings). Using these results we prove that almost all level
sets are finite disjoint unions of C1–smooth compact manifolds of dimension n−m.
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Introduction
The Morse–Sard theorem is a fundamental result with many applications. In its classical form it
states that the image of the set of critical points of a Cn−m+1 smooth mapping v : Rn → Rm has
zero Lebesgue measure in Rm. More precisely, assuming that n ≥ m the set of critical points
for v is Zv = {x ∈ Rn : rank∇v(x) < m} and the conclusion is that

L m(v(Zv)) = 0. (1)

The theorem was proved by Morse [23] in the case m = 1 and subsequently by Sard [27] in
the general case. It is well–known since the work of Whitney [33] that the Cn−m+1 smoothness
assumption on the mapping v cannot be weakened to Cj smoothness with j less than n−m+1.
While this is so Dubovitskiı̆ [12] obtained results on the structure of level sets for Cj mappings
v including the cases where j is smaller than n−m+ 1 (also see [4]).

An important generalization of the Morse–Sard theorem is the following result that we dis-
play as it, together with the classical result, forms the starting point for our investigations here.

∗The author was supported by the Russian Foundation for Basic Research (project No. 12-01-00390-a) and by
the Grant of the President of Russia for support of young doctors of sciences (grant No. MD-5146.2013.1).

†Work supported by the EPSRC Science and Innovation award to the Oxford Centre for Nonlinear PDE
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Theorem (Federer [14, Theorem 3.4.3]). Let m ∈ {1, . . . , n}, d, k ∈ N, and let v : Rn → Rd

be a Ck–smooth mapping. Denote q◦ = m− 1 + n−m+1
k

. Then

Hq◦(v(Zv,m)) = 0, (2)

where Hβ denotes the β–dimensional Hausdorff measure and Zv,m denotes the set of m–critical
points of v: Zv,m = {x ∈ Rn : rank∇v(x) < m}.

The Morse–Sard–Federer results have subsequently been generalized to mappings in more
refined scales of spaces, including Hölder and Sobolev spaces. For Hölder spaces we mention
in particular [3, 4, 22, 24, 34] where essentially sharp results were obtained, including examples
showing that the smoothness assumption on v in Federer’s theorem cannot be weakened within
the scale of Cj spaces. However, it follows from [3] that the conclusion (2) remains valid for
Ck−1,1 mappings v, and according to [22] it fails in general for Ck−1,α mappings whenever
α < 1. (For k ∈ N0 and α ∈ (0, 1] we say that the mapping v is of class Ck,α when v is
Ck and the k–th order derivative of v is locally α–Hölder continuous.) One interpretation of
these results is that for the validity of (2) one must assume existence of k derivatives of v in
a suitably strong sense. At a heuristic level the general problem is then to prove analogs of
the Morse–Sard–Federer results where we replace the assumption that the mapping is k times
continuously differentiable by a corresponding Sobolev assumption: v has weak derivatives
up to and including order k and these weak derivatives must satisfy a suitable integrability
condition. The aforementioned examples show that we cannot in general reduce the degree k of
differentiability. The question we wish to address here concerns the optimal local integrability
condition that the k–th order weak derivative must satisfy for the validity of (2). Previous works
on the Morse–Sard property in the context of Sobolev spaces include [4, 9, 10, 15, 17, 25, 31,
32, 7, 8]. The first Morse–Sard result in the Sobolev context that we are aware of is [10]. It
states that (1) holds for mappings v ∈ Wk

p,loc(Rn,Rm) when k ≥ max(n−m+1, 2) and p > n.
Note that by the Sobolev embedding theorem any mapping on Rn which is locally of Sobolev
class Wk

p for some p > n is in particular Ck−1, so the critical set Zv can be defined as usual.
When in the scalar case m = 1 we consider functions in Wn

p,loc(Rn) with p ∈ [1, n] we are in
general only assured everywhere continuity whereas the differentiability can fail at some points.
Hence for such functions one must adapt the definition of critical set accordingly. We define
the sets Av := {x ∈ Rn : v is not differentiable at x} and Zv := {x ∈ Rn \ Av : ∇v(x) = 0}.
In these terms the results of [7, 8] imply that (1) holds with m = 1 for all v ∈ Wn

1,loc(Rn) and
that also L 1(v(Av)) = 0. The latter is a consequence of a more general Luzin N property with
respect to one–dimensional Hausdorff content that Wn

1,loc functions are shown to enjoy. In fact
the results of [7, 8] even yield (1) with m = 1 and an appropriate definition of the critical set,
and the Luzin N property within the more general framework of functions of bounded variation
BVn,loc(Rn).

In this paper we shall be concerned with the vectorial case m > 1. Of course, it is very
natural to assume, that the inclusion v ∈ Wk

p(Rn,Rd) should guarantee at least the continuity
of v. For values k ∈ {1, . . . , n − 1} it is well–known that v ∈ Wk

p(Rn,Rd) is continuous
for p > n

k
and could be discontinuous for p ≤ n

k
. So the borderline case is p = p◦ = n

k
. It is

well–known (see for instance [16]) that really v ∈ Wk
p◦(R

n,Rd) is continuous if the derivatives
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of k-th order belong to the Lorentz space Lp◦,1, we will denote the space of such mappings
by Wk

p◦,1(R
n,Rd). We refer to section 2 for relevant definitions and notation.

In this paper we prove the precise analog of the above Federer’s theorem for mappings
v : Rn → Rd locally of class Wk

p◦,1, k ∈ {2, . . . , n}, m ∈ {2, . . . , n} (the case k = 1, and,
consequently, q◦ = n, was considered in [16], so we omit it). It is easy to see (using well–known
results such as [11]) that such a function is (Fréchet–)differentiable Hq◦–almost everywhere,
where q◦ = m− 1 + n−m+1

k
is the same as in above Federer’s theorem. The critical set Zv,m is

defined as the set of points x, where v is differentiable and rank∇v(x) < m. As our main result
we prove that Hq◦(v(Zv,m)) = 0. In fact, the result in Theorem 3.1 is slightly more general and
concerns mappings locally of Sobolev class Wk

p◦ .
We also establish a related Luzin N property with respect to Hausdorff content in Theo-

rem 2.1. More precisely, when the mapping v : Rn → Rd is of class Wk
p◦,1 we find for any

ε > 0 a δ > 0 such that for all subsets E of Rn with Hq◦
∞(E) < δ we have Hq◦

∞(v(E)) < ε.
Here Hq◦

∞ is the q◦–dimensional Hausdorff content. In particular, it follows that Hq◦(v(E)) = 0
whenever Hq◦(E) = 0. So the image of the exceptional “bad” set, where the differential is not
defined, has zero q◦–dimensional Hausdorff measure. This ties nicely with our definition of the
critical set and our version of the Federer result.

Finally, using these results we prove that if v ∈ Wk
p◦,1(R

n,Rm) with k = n−m+1 then for
L m–almost all y ∈ Rm the preimage v−1(y) is a finite disjoint union of C1–smooth compact
manifolds of dimension n−m without boundary (see Theorem 5.2 ).

Of course, the results are in particular valid for functions v from the classical Sobolev spaces
Wk

p(Rn,Rd) with p > p◦ =
n
k

(see Remark 5.4).
We emphasize again that the similar results were proved for k = 1 (i.e., q◦ = n for any

m ∈ {1, . . . , n} ) in [16] and for m = 1, k = n in [7, 8]. We do not prove the analogs of
Federer’s theorem for the cases k > n or m = 1, k < n. In fact, these cases remain open.

While we have formulated all our results in the context of euclidean spaces it is clear that the
results are local and hence could, with the appropriate modifications, be formulated for Sobolev
mappings between smooth Riemannian manifolds instead.

Our proofs rely on the results of [21] on advanced versions of Sobolev imbedding theo-
rems (see Theorem 1.6), of [1] on Choquet integrals of Hardy-Littlewood maximal functions
with respect to Hausdorff content (see Theorem 1.8), and of [34] on the entropy estimate of
near–critical values of differentiable functions (see Theorem 1.9). The key step in the proof of
the Morse–Sard–Federer Theorem 3.1 is contained in Lemma 3.2, and it expands on a similar
argument used in [8].
Acknowledgment. We are grateful to Professor Jean Bourgain for very useful interaction on
the subject of this paper. The main part of the paper was written during a visit of MVK to the
Oxford Centre for Nonlinear PDE in June 2013.

1 Preliminaries
By an n–dimensional interval we mean a closed cube in Rn with sides parallel to the coordinate
axes. If I is an n–dimensional interval then we write `(I) for its sidelength.
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For a subset S of Rn we write L n(S) for its outer Lebesgue measure. The m–dimensional
Hausdorff measure is denoted by Hm and the m–dimensional Hausdorff content by Hm

∞. Recall
that for any subset S of Rn we have by definition

Hm(S) = lim
α↘0

Hm
α (S) = sup

α>0
Hm

α (S),

where for each 0 < α ≤ ∞,

Hm
α (S) = inf

{ ∞∑
i=1

(diamSi)
m : diamSi ≤ α, S ⊂

∞⋃
i=1

Si

}
.

It is well known that Hn(S) ∼ Hn
∞(S) ∼ L n(S) for sets S ⊂ Rn.

To simplify the notation, we write ‖f‖Lp instead of ‖f‖Lp(Rn), etc.
The Sobolev space Wk

p(Rn,Rd) is as usual defined as consisting of those Rd-valued func-
tions f ∈ Lp(Rn) whose distributional partial derivatives of orders l ≤ k belong to Lp(Rn) (for
detailed definitions and differentiability properties of such functions see, e.g., [13], [35], [11]).
Denote by ∇kf the vector-valued function consisting of all k-th order partial derivatives of f
arranged in some fixed order. However for the case of first order derivatives k = 1 we shall
often think of ∇f(x) as the Jacobi matrix of f at x, i.e., the d× n matrix whose r-th row is the
vector of partial derivatives of the r-th coordinate function.

We use the norm

‖f‖Wk
p
= ‖f‖Lp + ‖∇f‖Lp + · · ·+ ‖∇kf‖Lp ,

and unless otherwise specified all norms on the spaces Rs (s ∈ N) will be the usual euclidean
norms. We state the following result for later references, and only remark that it is well–known
and follows from the definition of Sobolev spaces. In its statement we denote by C∞

c (Rn) the
space of C∞ smooth and compactly supported functions on Rn.

Lemma 1.1. Let f ∈ Wk
p(Rn). Then for any ε > 0 there exist functions f0 ∈ C∞

c (Rn) and
f1 ∈ Wk

p(Rn) such that f = f0 + f1 and ‖f1‖Wk
p
< ε.

Working with locally integrable functions, we always assume that the precise representatives
are chosen. If w ∈ L1,loc(Ω), then the precise representative w∗ is defined by

w∗(x) =

 lim
r↘0

−
∫
B(x,r)

w(z) dz, if the limit exists and is finite,

0 otherwise,
(3)

where the dashed integral as usual denotes the integral mean,

−
∫
B(x,r)

w(z) dz =
1

L n(B(x, r))

∫
B(x,r)

w(z) dz,

and B(x, r) = {y : |y − x| < r} is the open ball of radius r centered at x. Henceforth we omit
special notation for the precise representative writing simply w∗ = w.
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We will say that x is an Lp Lebesgue point of w (and simply a Lebesgue point when p = 1),
if

−
∫
B(x,r)

|w(z)− w(x)|p dz → 0 as r ↘ 0.

If k < n, then it is well-known that functions from Sobolev spaces Wk
p(Rn) are continuous

for p > n
k

and could be discontinuous for p ≤ p◦ =
n
k

(see, e.g., [21, 35]). The Sobolev–Lorentz
space Wk

p◦,1(R
n) ⊂ Wk

p◦(R
n) is a refinement of the corresponding Sobolev space that for our

purposes turns out to be convenient. Among other things functions that are locally in Wk
p◦,1 on

Rn are in particular continuous.
Given a measurable function f : Rn → R, denote by f∗ : (0,∞) → R its distribution func-

tion
f∗(s) := L n{x ∈ Rn : |f(x)| > s},

and by f ∗ the nonincreasing rearrangement of f , defined for t > 0 by

f ∗(t) = inf{s ≥ 0 : f∗(s) ≤ t}.

Since f and f ∗ are equimeasurable we have for every 1 ≤ p < ∞,(∫
Rn

|f(x)|p dx
)1/p

=

( +∞∫
0

f∗(t)p dt

)1/p

.

The Lorentz space Lp,q(Rn) for 1 ≤ p < ∞, 1 ≤ q < ∞ can be defined as the set of all
measurable functions f : Rn → R for which the expresssion

‖f‖Lp,q =



(
q

p

+∞∫
0

(t1/pf ∗(t))q
dt

t

)1/q

if 1 ≤ q < ∞

sup
t>0

t1/pf ∗(t) if q = ∞

is finite. We refer the reader to [19], [29] or [35] for information about Lorentz spaces. However,
let us remark that in view of the definition of ‖ · ‖Lp,q and the equimeasurability of f and f ∗

we have an identity ‖f‖Lp = ‖f‖Lp,p so that in particular Lp,p(Rn) = Lp(Rn). Further, for a
fixed exponent p and q1 < q2 we have an estimate ‖f‖Lp,q2

≤ ‖f‖Lp,q1
, and, consequently, an

embedding Lp,q1(Rn) ⊂ Lp,q2(Rn) (see [19, Theorem 3.8(a)]). Finally we recall that ‖ · ‖Lp,q is
a norm on Lp,q(Rn) for all q ∈ [1, p] (see [19, Proposition 3.3]).

Here we shall mainly be concerned with the Lorentz space Lp,1, and in this case one may
rewrite the norm as (see for instance [19, Proposition 3.6])

‖f‖p,1 =
+∞∫
0

[
L n({x ∈ Rn : |f(x)| > t})

] 1
p dt. (4)

We need the following subadditivity property of the Lorentz norm.

5



Lemma 1.2 (see, e.g., [26] or [19]). Suppose that 1 ≤ p < ∞ and E =
⋃

j∈N Ej , where Ej are
measurable and mutually disjoint subsets of Rn. Then for all f ∈ Lp,1 we have∑

j

‖f · 1Ej
‖pLp,1

≤ ‖f · 1E‖pLp,1
,

where 1E denotes the indicator function of E.

Denote by Wk
p,1(Rn) the space of all functions v ∈ Wk

p(Rn) such that in addition the Lorentz
norm ‖∇vk‖Lp,1 is finite. For given dimensions n,m,∈ N, 1 ≤ m ≤ n, and k ∈ {1, . . . , n}, we
denote the corresponding critical exponents by

p◦ =
n

k
and q◦ = m− 1 +

n−m+ 1

k
= p◦ + (m− 1)

(
1− k−1

)
. (5)

By direct calculation, from m ≥ 1, k ≥ 1 we find

p◦ ≤ q◦ ≤ n. (6)

Note that in the double inequality (6) we have equality in the first inequality iff m = 1 or k = 1,
while in the second inequality equality holds iff k = 1. In particular,

p◦ < q◦ < n for k,m ∈ {2, . . . , n}. (7)

For a mapping u ∈ L1(I,Rd), I ⊂ Rn, define the polynomial PI [u] = PI,k−1[u] of degree
at most k − 1 by the following rule:∫

I

yα (u(y)− PI [u](y)) dy = 0 (8)

for any multi-index α = (α1, . . . , αn) of length |α| = α1 + · · ·+ αn ≤ k − 1.
The following well–known bound will be used on several occasions.

Lemma 1.3. Suppose v ∈ Wk
p◦,1(R

n,Rd). Then v is a continuous mapping and for any n-
dimensional interval I ⊂ Rn the estimate

sup
y∈I

∣∣v(y)− PI [v](y)
∣∣ ≤ C‖1I · ∇kv‖Lp◦,1 (9)

holds, where C is a constant depending on n, d only. Moreover, the mapping vI(y) = v(y) −
PI [v](y), y ∈ I , can be extended from I to the whole of Rn such that the extension (denoted
again) vI ∈ Wk

p◦(R
n,Rd) and

‖∇kvI‖Lp◦ (Rn) ≤ C0‖∇kv‖Lp◦ (I), (10)

where C0 also depends on n, d only.
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Proof. By well–known estimates (see for instance [11, Lemma 2] or [19, Proposition 3.7]) we
have for any Lebesgue point y ∈ I of v,

|v(y)− PI [v](y)| ≤ C

∫
I

|∇kv(x)|
|y − x|n−k

dx

≤ C‖1I · ∇kv‖Lp◦,1 ·
∥∥∥∥ 1I
|y − ·|n−k

∥∥∥∥
L n

n−k
,∞

≤ C ′‖1I · ∇kv‖Lp◦,1 .

From this estimate the continuity of v follows in a routine manner, and thus (9) holds. Because
of coordinate invariance of estimate (10), it is sufficient to prove the assertions about extension
for the case when I is a unit cube: I = [0, 1]n. By results of [21, §1.1.15] for any u ∈ Wk,p◦(I)
the estimate

‖u‖Wk
p◦ (I)

≤ c
(
‖PI [u]‖L1(I) + ‖∇ku‖Lp◦ (I)

)
, (11)

holds, where c = c(n, k) is a constant. Taking u(y) = vI(y) = v(y) − PI [v](y), the first term
on the right hand side of (11) vanishes and so we have

‖vI‖Wk
p◦ (I)

≤ c‖∇kv‖Lp◦ (I). (12)

By the Sobolev Extension Theorem, every function u ∈ Wk
p◦(I) on the unit cube I = [0, 1]n

can be extended to a function U ∈ Wk
p◦(R

n) such that the estimate ‖∇kU‖Lp◦ (Rn) ≤ c‖u‖Wk
p◦ (I)

holds, see [21, §1.1.15]). Applying this result coordinatewise to u = vI and taking into ac-
count (12), we obtain the required estimate (10).

Remark 1.4. The above proof can easily be adapted to give that v ∈ C0(Rn), the space of
continuous functions on Rn that vanish at infinity (see for instance [19, Theorem 5.5]).

From Lemma 1.3 we deduce the following oscillation estimate.

Corollary 1.5. Suppose v ∈ Wk
p◦,1(R

n,Rd). Then for any n-dimensional interval I ⊂ Rn the
estimate

diam v(I) ≤ C

(
‖∇v‖L1(I)

`(I)n−1
+ ‖1I · ∇kv‖Lp◦,1

)
≤ C

(
‖∇v‖Lq(I)

`(I)
n
q
−1

+ ‖1I · ∇kv‖Lp◦,1

)
(13)

holds for every q ∈ [1, n], where C depends on n, k only.

Proof. Because of coordinate invariance of estimate (13) it is sufficient to prove the estimates
for the case when I is a unit cube: I = [0, 1]n. But for a such fixed interval I the estimate follows
from (9) and from the fact that the coefficients of the polynomial PI [u] depend continuously on u
with respect to L1-norm.

We need a version of the Sobolev Embedding Theorem that gives inclusions in Lebesgue
spaces with respect to suitably general positive measures. Very general and precise statements
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are known, but here we restrict attention to the following class of measures. For β ∈ (0, n)
denote by M β the space of all nonnegative Radon measures µ on Rn such that

|||µ|||β = sup
I⊂Rn

`(I)−βµ(I) < ∞,

where the supremum is taken over all n-dimensional intervals I ⊂ Rn.

Theorem 1.6 (see [21], §1.4.4). Let µ be a positive Radon measure on Rn and p(k − 1) < n,
1 ≤ p < q < ∞. Then for any function v ∈ Wk

p(Rn) the estimate∫
|∇v|q dµ ≤ C|||µ|||β · ‖∇kv‖qLp

, (14)

holds with β =
(
n
p
− k + 1

)
q, where C depends on n, p, q, k.

We use also the following important strong-type estimate for maximal functions.

Theorem 1.7 (see Theorem A, Proposition 1 and its Corollary in [1]). Let β ∈ (0, n). Then for
nonnegative functions f ∈ C0(Rn) the estimates∫ ∞

0

Hβ
∞({x ∈ Rn : Mf(x) ≥ t}) dt ≤ C1

∫ ∞

0

Hβ
∞({x ∈ Rn : f(x) ≥ t}) dt

≤ C2 sup

{∫
f dµ : µ ∈ M β, |||µ|||β ≤ 1

}
,

hold, where the constants C1, C2 depend on β, n only and

Mf(x) = sup
r>0

r−n

∫
B(x,r)

|f(y)| dy

is the usual Hardy-Littlewood maximal function of f .

Applying the two foregoing theorems for p = p◦ = n
k

, q = β = q◦ = m − 1 + n−m+1
k

, we
obtain the first key ingredient of our proof.

Corollary 1.8. Let m, k ∈ {2, . . . , n}. Then for any function v ∈ Wk
p◦(R

n) the estimates

‖∇v‖q◦Lq◦ (µ)
≤ C|||µ|||q◦‖∇kv‖q◦Lp◦

∀µ ∈ M q◦ , (15)∫ ∞

0

Hq◦
∞({x ∈ Rn : M

(
|∇v|q◦

)
(x) ≥ t}) dt ≤ C‖∇kv‖q◦Lp◦

(16)

hold, where the exponents p◦, q◦ are defined by (5) and the constant C depends on n, k,m only.

For a subset A of Rm and ε > 0 the ε–entropy of A, denoted by Ent(ε, A), is the minimal
number of balls of radius ε covering A. Further, for a linear map L : Rn → Rd denote by
λj(L), j = 1, . . . , d, the lengths of the semiaxes of the ellipsoid L(B(0, 1)) ordered by the
rule λ1 ≥ λ2 ≥ · · · ≥ λd. Obviously the numbers λj are exactly the eigenvalues repeated
according to multiplicity of the symmetric nonnegative linear map

√
LL∗ : Rd → Rd. Also for

a differentiable mapping f : Rn → Rd put λj(f, x) = λj(dxf), where by dxf we denote the
differential of f at x. The next result is the second basic ingredient of our proof.
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Theorem 1.9 ([34]). For any polynomial P : Rn → Rd of degree at most k, for each ball
B ⊂ Rn of radius r > 0, and any number ε > 0 the estimate

Ent
(
εr, {P (x) : x ∈ B, λ1 ≤ 1 + ε, . . . , λm−1 ≤ 1 + ε, λm ≤ ε, . . . , λd ≤ ε}

)
≤ CY

(
1 + ε1−m

)
,

holds, where the constant CY depends on n, d, k only and for brevity we wrote λj = λj(P, x).

The application of Corollary 1.8 is facilitated through the following simple estimate (see for
instance Lemma 2 in [11]).

Lemma 1.10. Let u ∈ W1
1(Rn). Then for any ball B(z, r) ⊂ Rn, B(z, r) 3 x, the estimate∣∣∣∣u(x)−−

∫
B(z,r)

u(y) dy

∣∣∣∣ ≤ Cr(M∇u)(x)

holds, where C depends on n only and M∇u is the Hardy-Littlewood maximal function
of |∇u|.

By use of the triangle inequality we then deduce the following oscillation estimate (cf. [6]).

Corollary 1.11. Let u ∈ W1
1(Rn,Rd). Then for any ball B ⊂ Rn of radius r > 0 and for any

number ε > 0 the estimate

diam({u(x) : x ∈ B, (M∇u)(x) ≤ ε}) ≤ CMεr

holds, where CM is a constant depending on n, d only.

Finally, recall the following approximation properties of Sobolev functions.

Theorem 1.12 (see, e.g., Chapter 3 in [35] or [5]). Let p ∈ (1,∞), k, l ∈ {1, . . . , n}, l ≤ k,
(k − l)p < n. Then for any f ∈ Wk

p(Rn) and for each ε > 0 there exist an open set U ⊂ Rn

and a function g ∈ Cl(Rn) such that

(i) each point x ∈ Rn \ U is a Lebesgue point for f and for ∇jf , j = 1, . . . , l;

(ii) f ≡ g, ∇jf ≡ ∇jg on Rn \ U for j = 1, . . . , l;

(iii) L n(U) < ε if l = k;

(iv) Bk−l,p(U) < ε if l < k, where Bα,p(U) denotes the Bessel capacity of the set U .

Since for 1 < p < ∞ and 0 < n − αp < β ≤ n the smallness of Bα,p(U) implies the
smallness of Hβ

∞(U) (see, e.g., [2]), we have

Corollary 1.13. Let k ∈ {2, . . . , n} and v ∈ Wk
p◦(R

n). Then there exists a Borel set Av ⊂ Rn

such that Hq(Av) = 0 for every q ∈ (p◦, n] and all points of Rn \ Av are Lebesgue points for
∇v. Further, for every ε > 0 and q ∈ (p◦, n] there exist an open set U ⊃ Av and a function
g ∈ C1(Rn) such that Hq

∞(U) < ε and v ≡ g, ∇v ≡ ∇g on Rn \ U .
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2 On images of sets of small Hausdorff contents
The main result of this section is the following Luzin N–property with respect to Hausdorff
content for Wk

p◦,1–mappings:

Theorem 2.1. Let k ∈ {2, . . . , n}, q ∈ (p◦, n], and v ∈ Wk
p◦,1(R

n,Rd). Then for each ε > 0
there exists δ > 0 such that for any set E ⊂ Rn if Hq

∞(E) < δ, then Hq
∞(v(E)) < ε. In

particular, Hq(v(E)) = 0 whenever Hq(E) = 0.

For the case d = 1, k = n, and q = p◦ = 1 the assertion of Theorem 2.1 was obtained in the
paper [8], and the argument given there easily adapts to cover also the cases k = n, q = 1, and
d > 1. Our proof here for the remaining cases follows and expands on the ideas from [8].
For the remainder of this section we fix k ∈ {2, . . . , n}, q ∈ (p◦, n], and a mapping v in
Wk

p◦,1(R
n,Rd). To prove Theorem 2.1, we need some preliminary lemmas that we turn to next.

By a dyadic interval we understand an interval of the form [k1
2l
, k1+1

2l
]× · · · × [kn

2l
, kn+1

2l
], where

ki, l are integers. The following assertion is straightforward, and hence we omit its proof here.

Lemma 2.2. For any n-dimensional interval I ⊂ Rn there exist dyadic intervals Q1, . . . , Q2n

such that I ⊂ Q1 ∪ · · · ∪Q2n and `(Q1) = · · · = `(Q2n) ≤ 2`(I).

Let {Iα}α∈A be a family of n-dimensional dyadic intervals. We say that the family {Iα} is
regular, if for any n-dimensional dyadic interval Q the estimate

`(Q)q ≥
∑

α:Iα⊂Q

`(Iα)
q (17)

holds. Since dyadic intervals are either disjoint or contained in one another, (17) implies that
any regular family {Iα} must in particular consist of mutually disjoint1 intervals.

Lemma 2.3 (see Lemma 2.3 in [8]). Let {Iα} be a family of n–dimensional dyadic intervals.
Then there exists a regular family {Jβ} of n–dimensional dyadic intervals such that

⋃
α Iα ⊂⋃

β Jβ and ∑
β

`(Jβ)
q ≤

∑
α

`(Iα)
q.

Lemma 2.4. For each ε > 0 there exists δ = δ(ε, v) > 0 such that for any regular family {Iα}
of n–dimensional dyadic intervals we have if∑

α

`(Iα)
q < δ, (18)

then ∑
α

‖1Iα · ∇kv‖qLp◦,1
< ε (19)

and ∑
α

1

`(Iα)n−q

∫
Iα

|∇v|q < ε. (20)

1By disjoint dyadic intervals we mean intervals with disjoint interior.
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Proof. Fix ε ∈ (0, 1) and let {Iα} be a regular family of n–dimensional dyadic intervals satis-
fying (18), where δ > 0 will be specified below.

We start by checking (19). Of course, for sufficiently small δ we can achieve that ‖1Iα ·
∇kv‖Lp◦,1 is strictly less than say 1 for every α. Then in view of the inequalities q > p◦ and
Lemma 1.2 we have∑

α

‖1Iα · ∇kv‖qLp◦,1
≤
∑
α

‖1Iα · ∇kv‖p◦Lp◦,1
≤ ‖1⋃

α Iα · ∇kv‖p◦Lp◦,1
.

Using (4), we can rewrite the last estimate as

∑
α

‖1Iα · ∇kv‖qLp◦,1
≤
( +∞∫

0

[
L n({x ∈

⋃
α

Iα : |∇kv(x)| > t})
] 1

p◦ dt

)p◦

. (21)

Since
+∞∫
0

[
L n({x ∈ Rn : |∇kv(x)| > t})

] 1
p◦ dt < ∞,

it follows that the integral on the right–hand side of (21) tends to zero as L n(
⋃

α Iα) → 0.
In particular, it will be less than ε if the condition (18) is fulfilled with a sufficiently small δ.
Thus (19) is established for all δ ∈ (0, δ1], where δ1 = δ1(ε, v) > 0.

Next we check (20). By virtue of Lemma 1.1, applied coordinate–wise, we can find a
decomposition v = v0 + v1, where ‖∇v0‖L∞ ≤ K = K(ε, v) and

‖∇kv1‖Lp◦ < ε. (22)

Assume that δ ∈ (0, δ1] and ∑
α

`(Iα)
q < δ < 1

Kq+1
ε. (23)

Define the measure µ by

µ =

(∑
α

1

`(Iα)n−q
1Iα

)
L n, (24)

where 1Iα denotes the indicator function of the set Iα.
Claim. The estimate

sup
I

{
`(I)−qµ(I)

}
≤ 2n+q (25)

holds, where the supremum is taken over all n–dimensional intervals.
Indeed, write for a dyadic interval Q

µ(Q) =
∑

α:Iα⊂Q

`(Iα)
q +

∑
α:Iα*Q

`(Q ∩ Iα)
n

`(Iα)n−q
.

11



By regularity of {Iα} the first sum is bounded above by `(Q)q. If the second sum is nonzero
then there must exist an index α such that Iα * Q and Iα, Q overlap. But as the intervals {Iα}
are disjoint and dyadic we must then precisely have one such interval Iα and Iα ⊃ Q. But then
the first sum is empty and the second sum has only the one term `(Q)n/`(Iα)

n−q, hence is at
most `(Q)q. Thus the estimate µ(Q) ≤ `(Q)q holds for dyadic Q. The inequality (25) in the
case of a general interval I follows from the above dyadic case and Lemma 2.2. The proof of
the claim is complete.

Now return to (20). By properties (22), (14) (applied to the mapping v1 and parameters
p = p◦, β = ( n

p◦
− k + 1)q = q ), we have

∑
α

1

`(Iα)n−q

∫
Iα

|∇v|q ≤ Kq

Kq + 1
ε+

∑
α

1

`(Iα)n−q

∫
Iα

|∇v1|q

≤ C ′ε+

∫
|∇v1|q dµ ≤ C ′′ε.

Since ε > 0 was arbitrary, the proof of Lemma 2.4 is complete.

Proof of Theorem 2.1. Fix ε > 0 and take δ = δ(ε, v) from Lemma 2.4. Then by Corollary 1.5
for any regular family {Iα} of n–dimensional dyadic intervals we have if

∑
α `(Iα)

q < δ,
then

∑
α

(
diam v(Iα)

)q
< Cε. Now we may conclude the proof of Theorem 2.1 by use of

Lemmas 2.2 and 2.3. Indeed they allow us to find a δ0 > 0 such that if for a subset E of Rn we
have Hq

∞(E) < δ0, then E can be covered by a regular family {Iα} of n– dimensional dyadic
intervals with

∑
α `(Iα)

q < δ.

Remark 2.5. Recall, that the assertion of Theorem 2.1 is also true for k = n, q = p◦ = 1 by
[8] and for k = 1, q = p◦ = n by results of [16]. Note that the order of integrability p◦ is sharp:
for example, the Luzin N–property fails in general for continuous mappings v ∈ W1

n(Rn,Rn)
(here k = 1, q = p◦ = n), see, e.g., [18].

3 Morse–Sard–Federer theorem for Sobolev mappings
Let k,m ∈ {2, . . . , n} and v ∈ Wk

p◦,loc
(Ω,Rd), where Ω is an open subset of Rn. Then,

by Corollary 1.13, there exists a Borel set Av such that Hq◦(Av) = 0 and all points of the
complement Ω \ Av are Lebesgue points for the gradient ∇v(x). We remark that with the
assumed Sobolev regularity the mapping v need not be differentiable at any point of Ω, and that
∇v(x) simply is the precise representative of the weak gradient of v. There are of course many
other ways to give pointwise meaning to ∇v(x), but as these play no role in our considerations
here we omit any further discussion. Denote Zv,m = {x ∈ Ω \ Av : rank∇v(x) < m}. We can
now state the main result of the section:

Theorem 3.1. If k,m ∈ {2, . . . , n}, Ω is an open subset of Rn, and v ∈ Wk
p◦,loc

(Ω,Rd), then
Hq◦(v(Zv,m)) = 0.
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The exponents occuring in the theorem are the critical exponents that were defined in (5):

p◦ =
n

k
and q◦ = m− 1 +

n−m+ 1

k
.

We emphasize the fact that, in contrast with the Luzin N– property with respect to Hausdorff
content of Theorem 2.1, the Morse–Sard–Federer Theorem 3.1 is valid within the wider context
of Wk

p–Sobolev spaces (finiteness of the Lorentz norm is not required).
Before embarking on the detailed proof let us make some preliminary observations that will
enable us to make some convenient additional assumptions. Namely because the result is local
we can without loss in generality assume that Ω = Rn and that v ∈ Wk

p◦(R
n,Rd). Indeed note

that it suffices to prove that
Hq◦(v(Zv,m ∩ Ω′)) = 0 (26)

for all smooth domains Ω′ whose closure Ω′ is compact and contained in Ω. Now such domains
Ω′ are extension domains for Wk

p◦ and so v|Ω′ can be extended to V ∈ Wk
p◦(R

n,Rd), and hence
proving the statement for V we deduce (26) and therefore prove the theorem.

For the remainder of the section we fix k,m ∈ {2, . . . n} and a mapping v ∈ Wk
p◦(R

n,Rd).
In view of the definition of critical set adopted here we have that

Zv,m =
⋃
j∈N

{x ∈ Zv,m : |∇v(x)| ≤ j}.

Consequently we only need to prove that Hq◦(Z ′
v) = 0, where

Z ′
v = {x ∈ Zv,m : |∇v(x)| ≤ 1}.

The following lemma contains the main step in the proof of Theorem 3.1.

Lemma 3.2. For any n-dimensional dyadic interval I ⊂ Rn the estimate

Hq◦
∞(v(Z ′

v ∩ I)) ≤ C
(
‖∇kv‖q◦Lp◦ (I)

+ `(I)m−1‖∇kv‖1−m+q◦
Lp◦ (I)

)
(27)

holds, where the constant C depends on n,m, k, d only.

Proof. By virtue of (10) it suffices to prove that

Hq◦
∞(v(Z ′

v ∩ I)) ≤ C
(
‖∇kvI‖q◦Lp◦ (Rn) + `(I)m−1‖∇kvI‖1−m+q◦

Lp◦ (Rn)

)
(28)

for the mapping vI defined in Lemma 1.3, where C = C(n,m, k, d) is a constant.
Fix an n-dimensional dyadic interval I ⊂ Rn and recall that vI(x) = v(x) − PI(x) for all

x ∈ I . Denote
σ = ‖∇kvI‖q◦Lp◦

, σ∗ = `(I)m−1‖∇kvI‖1−m+q◦
Lp◦

,

and for each j ∈ Z

Ej =
{
x ∈ Rn : (M|∇vI |q◦)(x) ∈ (2j−1, 2j]

}
and δj = Hq◦

∞(Ej).
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Then by Corollary 1.8,
∞∑

j=−∞

δj2
j ≤ Cσ

for a constant C depending on n,m, k, d only. By construction, for each j ∈ Z there exists a
family of balls Bij ⊂ Rn of radii rij such that

Ej ⊂
∞⋃
i=1

Bij and
∞∑
i=1

rq◦ij ≤ 2q◦δj.

Denote
Zj = Z ′

v ∩ I ∩ Ej and Zij = Zj ∩Bij.

By construction Z ′
v ∩ I =

⋃
j Zj and Zj =

⋃
i Zij . Put

ε∗ =
1

`(I)
‖∇kvI‖Lp◦ ,

and let j∗ be the integer satisfying εq◦∗ ∈ (2j∗−1, 2j∗ ]. Denote Z∗ =
⋃

j<j∗
Zj , Z∗∗ =

⋃
j≥j∗

Zj .
Then by construction

Z ′
v ∩ I = Z∗ ∪ Z∗∗, Z∗ ⊂ {x ∈ Z ′

v ∩ I : (M|∇vI |q◦)(x) < εq◦∗ }.

Since ∇PI(x) = ∇v(x) − ∇vI(x), |∇vI(x)| ≤ 2j/q◦ , |∇v(x)| ≤ 1, and λν(v, x) = 0 for
x ∈ Zij and ν ∈ {m, . . . , d}, we have2

Zij ⊂
{
x ∈ Bij : λ1(PI , x) ≤ 1 + 2j/q◦ , . . . , λm−1(PI , x) ≤ 1 + 2j/q◦ ,

λm(PI , x) ≤ 2j/q◦ , . . . , λd(PI , x) ≤ 2j/q◦
}
.

Applying Theorem 1.9 and Corollary 1.11 to mappings PI , vI , respectively, with B = Bij and
ε = εj = 2j/q◦ , we find a finite family of balls Ts ⊂ Rd, s = 1, . . . , sj with sj ≤ CY (1+ ε1−m

j ),
each of radius (1 + CM)εjrij , such that

sj⋃
s=1

Ts ⊃ v(Zij).

Therefore, for j ≥ j∗ we have

Hq◦
∞(v(Zij)) ≤ C1sjε

q◦
j rq◦ij = C2(1 + ε1−m

j )2jrq◦ij ≤ C2(1 + ε1−m
∗ )2jrq◦ij , (29)

where all the constants Cν above depend on n,m, d only. By the same reasons, but this time
applying Theorem 1.9 and Corollary 1.11 with ε = ε∗ and instead of the balls Bij we take a ball
B ⊃ I with radius r =

√
n`(I), we have

Hq◦
∞(v(Z∗)) ≤ C3(1 + ε1−m

∗ )εq◦∗ `(I)q◦ = C3(1 + ε1−m
∗ )σ = C3(σ + σ∗). (30)

2Here we use the following elementary fact: for any linear maps L1 : Rn → Rd and L2 : Rn → Rd the
estimates λk(L2 + L2) ≤ λk(L1) + ‖L2‖ hold for all k = 1, . . . , d, see, e.g., [34, Proposition 2.5 (ii)].
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From (29) we get immediately

Hq◦
∞(v(Z∗∗)) ≤

∑
j≥j∗

∑
i

C2(1 + ε1−m
∗ )2jrq◦ij ≤

∑
j≥j∗

C2(1 + ε1−m
∗ )2j+q◦δj

≤ C4(1 + ε1−m
∗ )σ = C4(σ + σ∗).

The last two estimates combine to give Hq◦
∞(v(Z ′

v ∩ I)) = Hq◦
∞(v(Z∗ ∪Z∗∗)) ≤ C(σ+ σ∗), and

hence finish the proof of the lemma.

Corollary 3.3. For any ε > 0 there exists δ > 0 such that for any subset E of Rn we have
Hq◦

∞(v(Z ′
v ∩ E)) ≤ ε provided L n(E) ≤ δ. In particular, Hq◦(v(Z ′

v ∩ E)) = 0 whenever
L n(E) = 0.

Proof. Let L n(E) ≤ δ, then we can find a family of disjoint n-dimensional dyadic intervals Iα
such that E ⊂

⋃
α Iα and

∑
α

`n(Iα) < Cδ. Of course, for sufficiently small δ the estimate

‖∇kv‖Lp◦ (Iα) < 1 is fulfilled for every α. Then in view of q◦ > p◦ and Lemma 1.2 we have∑
α

‖∇kv‖q◦Lp◦ (Iα)
≤ ‖∇kv‖p◦Lp◦ (

⋃
Iα)

(31)

Analogously, by Hölder inequality and by virtue of the equalities 1 − m + q◦ = n−m+1
k

and
(1−m+ q◦)

n
n−m+1

= n
k
= p◦, we have

∑
α

`(Iα)
m−1‖∇kv‖1−m+q◦

Lp◦ (Iα)
≤

(∑
α

`(Iα)
n

)m−1
n
(∑

α

‖∇kv‖p◦Lp◦ (Iα)

)n−m+1
n

≤ δ
m−1
n ‖∇kv‖

n−m+1
k

Lp◦ (
⋃

Iα)
.

The last two estimates together with Lemma 3.2 allow us to conclude the required smallness of∑
α

Hq◦
∞(Z ′

v ∩ Iα) ≥ Hq◦
∞(Z ′

v ∩ E).

Invoking Federer’s Theorem for the smooth case g ∈ Ck(Rn), Theorem 1.12 (iii) (applied
to the case k = l ) implies

Corollary 3.4 (see, e.g., [10]). There exists a set Z̃v of n-dimensional Lebesgue measure zero
such that Hq◦(v(Z ′

v \ Z̃v)) = 0. In particular, Hq◦(v(Z ′
v)) = Hq◦(v(Z̃v)).

From Corollaries 3.3 and 3.4 we conclude that Hq◦(v(Z ′
v)) = 0, and this ends the proof of

Theorem 3.1.
Theorem 3.1 implies the following analog of the classical Morse–Sard Theorem:
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Corollary 3.5. Let Ω be an open subset of Rn. If m ∈ {1, . . . , n} and v ∈ Wn−m+1
n

n−m+1
,loc(Ω,Rm),

then L m(v(Zv,m)) = 0.

This assertion follows directly from Theorem 3.1 for m > 1 and from the results of [8] for
m = 1.

Remark 3.6. Arguments of [8] allow also to prove the assertion of Theorem 3.1 for the vectorial
case d > 1, k = n, m = 1.

4 On differentiability properties of Sobolev-Lorentz functions
We start with the following simple technical observation.

Lemma 4.1. If k ∈ {2, . . . , n} and v ∈ Wk
p◦,1(R

n,Rd), then for Hp◦–almost all x ∈ Rn,

lim
r↘0

r−1‖1B(x,r) · ∇kv‖Lp◦,1 = 0

holds.

Proof. Fix ε > 0. Let {Bα} be a family of disjoint balls Bα = B(xα, rα) such that

‖1Bα · ∇kv‖Lp◦,1 ≥ εrα

and supα rα < δ for some δ > 0, where δ is choosen small enough to guarantee supα ‖1Bα ·
∇kv‖Lp◦,1 < 1. Then by Lemma 1.2 we have∑

α

rp◦α ≤ ε−1
∑
α

‖1Bα · ∇kv‖p◦Lp◦,1
≤ ε−1‖1⋃

α Bα · ∇kv‖p◦Lp◦,1
. (32)

Since the last term tends to 0 as L n(
⋃

α Bα) → 0, and L n(
⋃

α Bα) ≤ δn−p◦
∑

α r
p◦
α , we get

easily that
∑

α r
p◦
α → 0 as δ → 0. Using this fact and some standard covering lemmas we arrive

in a routine manner at the required assertion

Hp◦
(
{x ∈ Rn : lim sup

r↘0
r−1‖1B(x,r) · ∇kv‖Lp◦,1 ≥ ε}

)
= 0.

From the last lemma, Corollary 1.13 and estimate (13) we obtain the following result that is
probably well–known to specialists:

Theorem 4.2. Let k ∈ {2, . . . , n} and v ∈ Wk
p◦,1(R

n,Rd). Then there exists a Borel set
Av ⊂ Rn such that Hq(Av) = 0 for every q ∈ (p◦, n] and for any x ∈ Rn \ Av the function v is
differentiable (in the classical Fréchet sense) at x, furthermore, the classical derivative coincides
with ∇v(x), where

lim
r↘0

−
∫
B(x,r)

|∇v(z)−∇v(x)| dz = 0.

The case k = 1, q = p◦ = n is a classical result due to Stein [28] (see also [16]), and for
m = 1, k = n the result is also proved in [11].
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5 Application to the level sets of Sobolev-Lorentz mappings
Applying Theorems 2.1 and 3.1 in combination with the Corollary 1.13, we obtain

Corollary 5.1. Let k,m ∈ {2, . . . , n}, v ∈ Wk
p◦,1(R

n,Rd), and rank∇v(x) ≤ m for all x ∈
Rn \ Av. Then for any ε > 0 there exist an open set V ⊂ Rd and a mapping g ∈ C1(Rn,Rd)
such that Hq◦

∞(V ) < ε, v(Av) ⊂ V and v|v−1(Rd\V ) = g|v−1(Rd\V ), ∇v|v−1(Rd\V ) = ∇g|v−1(Rd\V ),
and rank∇v|v−1(Rd\V ) ≡ m.

Here Av is the Borel set with Hq◦(Av) = 0 from Theorem 4.2.

Theorem 5.2. Let k,m ∈ {2, . . . , n} and v ∈ Wk
p◦,1(R

n,Rm). Then for L m–almost all
y ∈ v(Rn) the preimage v−1(y) is a finite disjoint family of (n −m)–dimensional C1-smooth
compact manifolds (without boundary) Sj , j = 1, . . . , N(y).

Proof. The inclusion v ∈ Wk
p◦,1(R

n,Rm) and Lemma 1.3 easily imply the following statement
(see also Remark 1.4):

(i) For any ε > 0 there exists Rε ∈ (0,+∞) such that |v(x)| < ε for all x ∈ Rn \B(0, Rε).

Fix an arbitrary ε > 0. Take the corresponding set V ⊂ Rm and mapping g ∈ C1(Rn,Rm)
from Corollary 5.1. Let 0 6= y ∈ Rm \ V . Denote Fv = v−1(y), Fg = g−1(y). We assert the
following properties of these sets.

(ii) Fv is a compact set;

(iii) Fv ⊂ Fg;

(iv) ∇v = ∇g and rank∇v = rank∇g = m on Fv;

(v) The function v is differentiable (in the classical sense) at each x ∈ Fv, and the classical
derivative coincides with ∇v(x) = lim

r↘0
−
∫
B(x,r)

∇v(z) dz.

Indeed, (ii) follows by continuity and from (i) since y 6= 0, (iii)-(iv) follow from Corollary 5.1,
and (v) follows from the condition v(Av) ⊂ V of Corollary 5.1 (see also Theorem 4.2).
We require one more property of these sets:

(vi) For any x0 ∈ Fv there exists r > 0 such that Fv ∩B(x0, r) = Fg ∩B(x0, r).

Indeed, take any point x0 ∈ Fv and suppose the claim (vi) is false. Then there exists a sequence
of points Fg \ Fv 3 xi → x0. For r > 0 we put

Hm = (ker dx0g)
⊥ ∩B(0, r), Sm = (ker dx0g)

⊥ ∩ ∂B(0, r),

Hm(x) = x+Hm, Sm(x) = x+ Sm,
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where (ker dx0g)
⊥ is the orthogonal complement of the (n − m)-dimensional linear subspace

ker dx0g. Evidently, for sufficiently small r > 0 we have Hm(x) ∩ Fg = {x} for any x ∈
Fg ∩B(x0, r). Then by construction

Hm(xi) ∩ Fv = ∅ (33)

for sufficiently large i. Since v is differentiable (in the classical sense) at x0 with ∇v(x0) =
∇g(x0), for sufficiently small r > 0 we have v(x) 6= y for all x ∈ Sm(x0), and deg(v,Hm(x0), y) =
±1, where we denote by deg(v,Hm(x0), y) the topological degree of v|Hm(x0) at y. Then for suf-
ficiently large i we must have v−1(y)∩Sm(xi) = ∅ and deg(v,Hm(xi), y) = deg(v,Hm(x0), y) =
±1. But this contradicts (33) and finishes the proof of (vi).

Obviously, (ii)–(vi) imply that each connected component of the set Fv = v−1(y) is a com-
pact (n−m)-dimensional C1- smooth manifold (without boundary).

Remark 5.3. The assertion of Theorem 5.2 is also true for k = 1,m = n by results of [16] and
for k = n,m = 1 by [8].

Remark 5.4. Since for an open set U ⊂ Rn of finite measure the estimate ‖1U · f‖Lp◦,1 ≤
CU‖f‖Lp(U) holds for p > p◦ (see, e.g., [19, Theorem 3.8]), the results of the above theo-
rems 2.1, 3.1, 4.2, and 5.2 are in particular valid for mappings v ∈ Wk

p(Rn,Rd) with p > p◦ =
n
k

.
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