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Abstract

The classical one-phase Stefan problem describes the temperature distribution in
a homogeneous medium undergoing a phase transition, such as ice melting to
water. This is accomplished by solving the heat equation on a time-dependent
domain whose boundary is transported by the normal derivative of the temper-
ature along the evolving and a priori unknown free-boundary. We establish a
global-in-time stability result for nearly spherical geometries and small temper-
atures, using a novel hybrid methodology, which combines energy estimates,
decay estimates, and Hopf-type inequalities. c© 2000 Wiley Periodicals, Inc.

Contents

1. Introduction 1
2. Bootstrap assumptions and a priori bounds 15
3. Energy identity and the higher-order energy estimate 31
4. Existence for all time t ≥ 0 and nonlinear stability 38
5. The d-dimensional case on general near-spherical domains 48
Appendix A. Proof of Proposition 3.1 49
Appendix B. Proof of the inequality (3.5) 57
Bibliography 58

1 Introduction

1.1 The problem formulation
We consider the problem of global existence and asymptotic stability of classi-

cal solutions to the classical Stefan problem describing the evolving free-boundary
between the liquid and solid phases. The temperature of the liquid p(t,x) and the
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a priori unknown moving phase boundary Γ(t) must satisfy the following system
of equations:

pt −∆p = 0 in Ω(t) ;(1.1a)

V (Γ(t)) =−∂n p on Γ(t) ;(1.1b)

p = 0 on Γ(t) ;(1.1c)

p(0, ·) = p0 , Ω(0) = Ω0 .(1.1d)

For each instant of time t ∈ [0,T ], Ω(t) is a time-dependent open subset of Rd with
d ≥ 2, and Γ(t) := ∂Ω(t) denotes the moving, time-dependent free-boundary.

The heat equation (1.1a) models thermal diffusion in the bulk Ω(t) with thermal
diffusivity set to 1. The boundary transport equation (1.1b) states that each point on
the moving boundary is transported with normal velocity equal to−∂n p =−∇p ·n,
the normal derivative of p on Γ(t). Here n denotes the outward pointing unit normal
to Γ(t), and V (Γ(t)) denotes the speed or the normal velocity of the hypersurface
Γ(t). The homogeneous Dirichlet boundary condition (1.1c) is termed the classical
Stefan condition and problem (1.1) is called the classical Stefan problem. It implies
that the freezing of the liquid occurs at a constant temperature p = 0. Finally, we
must specify the initial temperature distribution p0 : Ω0→ R, as well as the initial
geometry Ω0. Because the liquid phase Ω(t) is characterized by the set {x ∈ Rd :
p(x, t) > 0}, we shall consider initial data p0 > 0 in Ω0. Problem (1.1) belongs
to the category of free boundary problems which are of parabolic-hyperbolic type.
Thanks to (1.1a), the parabolic Hopf lemma implies that ∂n p(t)< 0 on Γ(t) for t >
0, so we impose the non-degeneracy condition or so-called Taylor sign condition1

(1.2) −∂n p0 ≥ λ > 0 on Γ(0)

on our initial temperature distribution. Under the above assumptions, we proved in
Hadžić & Shkoller [29] that (1.1) is indeed well-posed.

1.2 The reference domain Ω and the dimension
For our reference domain, we choose the unit ball in R2 given by

Ω = B(0,1) := {x ∈ R2 : |x|< 1},
with boundary Γ = S1 := {x ∈ R2 : |x|= 1}. We shall consider initial domains Ω0
whose boundary Γ0 is a graph over the reference boundary Γ. In order to simplify
our presentation, we consider evolving domains Ω(t) in R2, but as we shall explain
in Section 5, our methodology works equally well in any dimension d ≥ 2.

Our choice of the reference domain Ω follows from two considerations. First,
we need employ only one global coordinate system near the boundary Γ, rather than

1 This type of stability condition dates back to the early work of Lord Rayleigh [46] and Taylor
[48] in fluid mechanics, and appears as a necessary well-posedness condition on the initial data in
many free-boundary problems wherein the effects of surface tension are ignored; examples include
the Hele-Shaw cell, the water waves equations [50], and the full Euler equations in both incompress-
ible [15] and compressible form [18, 17].
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a collection of local coordinate charts that a more general domain would necessi-
tate, and the use of one coordinate system greatly simplifies the presentation of our
energy identities, that provide very natural estimates for the second-fundamental
form of the evolving free-boundary Γ(t). Second, we shall need quantitative Hopf-
type inequalities in order to bound the term defined in (1.2) from below, and such
estimates are available in a particularly satisfying form in the case of the nearly
spherical domains, thanks to the explicit construction of comparison functions in
ODDSON [41].

1.3 Notation
For any s≥ 0 and given functions f : Ω→ R, ϕ : Γ→ R we set

‖ f‖s := ‖ f‖Hs(Ω) and |ϕ|s := ‖ϕ‖Hs(Γ).

Hs(Ω)′ shall denote the dual space of Hs(Ω), while on the boundary, Hs(Γ)′ =
H−s(Γ). If i = 1,2 then f ,i := ∂xi f is the partial derivative of f with respect to xi.
Similarly, f ,i j := ∂xi∂x j f , etc. For time-differentiation, ft := ∂t f . Furthermore, for
a function f (t,x), we shall often write f (t) for f (t, ·), and f (0) to mean f (0,x).
We use ∂̄ := τ ·∇ to denote the tangential derivative, so that

∂̄ f := ∂θ f , ∂̄
k f := ∂

k
θ f ,

where θ ∈ [0,2π) denotes the angular component in polar coordinates. The Greek
letter α will often be reserved for multi-indices α = (α1,α2), with ∂ α := ∂ α1

x1
∂ α2

x2

and |α|=α1+α2. The identity map on Ω is denoted by e(x) = x, while the identity
matrix is denoted by Id. We use C to denote a universal (or generic) constant that
may change from inequality to inequality. We write X . Y to denote X ≤CY . We
use the notation P(·) to denote generic real polynomial function of its argument(s)
with positive coefficients. The Einstein summation convention is employed, indi-
cating summation over repeated indices. The L2-inner product on Ω is denoted by
(·, ·)L2 .

1.4 Fixing the domain
We transform the Stefan problem (1.1), set on the moving domain Ω(t), to an

equivalent problem on the fixed domain Ω. For many problems in fluid dynam-
ics, the Lagrangian flow map of the fluid velocity provides a natural family of
diffeomorphisms which can be used to fix the domain, but for the classical Stefan
problem, we use instead (in the parlance of fluid dynamics) the so-called Arbitrary
Lagrangian-Eulerian (ALE) family of diffeomorphisms; these ALE maps interpo-
late between the Lagrangian and Eulerian representations of the equations. For
this problem, we choose a simple type of ALE map, consisting of harmonic coor-
dinates, also known as the harmonic gauge.
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The diffeormorphism Ψ(t)

We represent our moving domain Ω(t) as the image of a time-dependent family
of diffeomorphisms Ψ(t) : Ω→ Ω(t). In order to define these diffeomorphisms,
we let h(t, ·) : Γ→R denote the signed height function whose graph (over Γ) is the
set Γ(t). For ξ ∈ Γ = S1, we define the map

Ψ(t,ξ ) = (1+h(t,ξ ))ξ = R(t,ξ )ξ

which is a diffeomorphism of Γ onto Γ(t) as long as h(t) remains a graph. The
outward-pointing unit normal vector n(t, ·) to the moving surface Γ(t) is defined
by

(n◦Ψ)(t,ξ ) = (Rξ )⊥θ /|(Rξ )⊥θ | .
We shall henceforth drop the explicit composition with the diffeomorphism Ψ, and
simply write

n(t,ξ ) = (Rξ )⊥θ /|(Rξ )⊥θ |
for the unit normal to the moving boundary at the point Ψ(t,ξ ) ∈ Γ(t).

Introducing the unit normal and tangent vectors to the reference surface Γ as
(1.3)
N := ξ , τ := ξθ or equivalently N(θ)= (cosθ ,sinθ), τ(θ)= (−sinθ ,cosθ) ,

we write the unit normal to Γ(t) as

(1.4) n(t,ξ ) =
RN−hθ τ√

R2 +R2
θ

.

The evolution of h(t) is then given by

(1.5) ht = v ·N(θ)− hθ

R
v · τ(θ) .

Assuming that the signed height function h(t, ·) is sufficiently regular and re-
mains a graph, we can define a diffeomorphism Ψ : Ω→Ω(t) as the elliptic exten-
sion of the boundary diffeomorphism ξ 7→ (1+h(ξ , t))ξ , by solving the following
Dirichlet problem

∆Ψ = 0 in Ω,

Ψ(t,ξ ) = R(t,ξ )ξ ξ ∈ Γ.(1.6)

Since the identity map e : Ω→Ω is harmonic in Ω and Ψ− e = hξ on Γ, standard
elliptic regularity theory for solutions to (1.6) shows that

(1.7) ‖Ψ− e‖Hs(Ω) ≤C‖h‖Hs−0.5(Γ) , s > 0.5,

so that for h(t) sufficiently small and s large enough, the Sobolev embedding theo-
rem shows that ∇Ψ(t) is close to the identity matrix Id, and by the inverse function
theorem, each Ψ(t) is a diffeomorphism.
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The temperature and velocity variables on the fixed domain Ω

First we introduce the velocity variable u = −∇p in Ω(t). Next, we introduce
the following new variables set on the fixed domain Ω:

q = p◦Ψ (temperature),
v = u◦Ψ (velocity),
w = Ψt (extension of boundary velocity vector),

A = [DΨ]−1 (inverse of the deformation tensor),
J = detDΨ (Jacobian determinant),
a = JA (cofactor matrix of the deformation tensor).

The relation u = −∇p is then written as vi +Ak
i q,k= 0 for i = 1,2. By the chain

rule,
qt = pt ◦Ψ+(∇p◦Ψ) ·Ψt = pt ◦Ψ− v ·w ,

and
∆p◦Ψ = ∆Ψq := A j

i (A
k
i q,k ), j .

Letting ñ = J−1(R2 +R2
θ
)

1
2 n, we see that

(1.8) ñi(t,x) = Ak
i (t,x)Nk(x) ,

and equation (1.5) can be written as ht = v · ñ/RJ , where RJ = RJ−1. Note that
RJ = RJ−1 = (1+h)J−1 is very close to 1.

The classical Stefan problem set on the fixed domain Ω

The classical Stefan problem on the fixed domain Ω is written as

qt −A j
i (A

k
i q,k ), j =−v ·Ψt in (0,T ]×Ω ,(1.9a)

vi +Ak
i q,k = 0 in [0,T ]×Ω ,(1.9b)

q = 0 on [0,T ]×Γ ,(1.9c)

ht = v ·N− (1+h)−1hθ v · τ on (0,T ]×Γ ,(1.9d)

∆Ψ = 0 on [0,T ]×Ω ,(1.9e)

Ψ = (1+h)N on [0,T ]×Γ ,(1.9f)

q = q0 > 0 on {t = 0}×Ω ,(1.9g)

h = h0 on {t = 0}×Γ ,(1.9h)

where the initial boundary ∂Ω0 is given as a graph over Ω with the initial height
function h0, i.e. ∂Ω0 = {x ∈R2, x = (1+h0(ξ ))ξ , ξ ∈ S1}. Note that Φ = Ψ(0) :
Ω→Ω0 is a near identity transformation, mapping the reference domain Ω onto the
initial domain Ω0. The initial temperature function q0 equals p0 ◦Φ. Problem (1.9)
is a reformulation of the problem (1.1).

Henceforth, without loss of generality, we shall assume that the initial domain
Ω0 is the unit ball B1(0) or in other words h0 = 0. In this case, we set Φ = e, where
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e : Ω→ Ω is the identity map, and Ψ(t)|t=0 = e. In Section 5, we will explain the
minor modification required when h0 6= 0, as well as the case that the dimension
d = 3.

Observe that the boundary condition (1.9d) implies that

(1.10) Ψt ·n(t) = v ·n(t) on [0,T ]×Γ so that Ψ(t)(Γ) = Γ(t) .

The energy and dissipation functions
Near Γ = ∂Ω, it is convenient to use tangential derivatives ∂̄ := ∂θ with θ

denoting the polar angle, while near the origin, Cartesian partial derivatives ∂xi are
natural. For this reason, we introduce a non-negative C∞ cut-off function µ : Ω̄→
R+ with the property

µ(x)≡ 0 if |x| ≤ 1/2; µ(x)≡ 1 if 3/4≤ |x| ≤ 1.

Definition 1.1 (Higher-order norms). The following high-order energy and dissi-
pation functionals are fundamental to our analysis:

E (t) = E (q,h)(t)

:=
1
2 ∑

a+2b≤5
‖µ1/2

∂̄
a
∂

b
t v‖2

L2
x
+

1
2

2

∑
b=0
|(−∂Nq)1/2RJ−1

∂̄
6−2b

∂
b
t h|2L2

x
+

1
2 ∑

a+2b≤6
‖µ1/2(

∂̄
a
∂

b
t q+ ∂̄

a
∂

b
t Ψ · v

)
‖2

L2
x

+ ∑
|~α|+2b≤5

‖(1−µ)1/2
∂~α∂

b
t v‖2

L2
x
+

1
2 ∑
|~α|+2b≤6

‖(1−µ)1/2(
∂~α∂

b
t q+∂~α∂

b
t Ψ · v

)
‖2

L2
x

(1.11)

and

D(t) = D(q,h)(t)

:= ∑
a+2b≤6

‖µ1/2
∂̄

a
∂

b
t v‖2

L2
x
+

2

∑
b=0
|(−∂Nq)1/2RJ−1

∂̄
5−2b

∂
b
t ht |2L2

x
+ ∑

a+2b≤5
‖µ1/2(

∂̄
a
∂

b
t qt + ∂̄

a
∂

b
t Ψt · v

)
‖2

L2
x

+ ∑
|~α|+2b≤6

‖(1−µ)1/2
∂~α∂

b
t v‖2

L2
x
+ ∑
|~α|+2b≤5

‖(1−µ)1/2(
∂~α∂

b
t qt +∂~α∂

b
t Ψt · v

)
‖2

L2
x
.

(1.12)

Note that the boundary norms of the height function are weighted by
√
−∂Nq.

We thus introduce the time-dependent function

χ(t) := inf
x∈Γ

(−∂Nq)(t,x)> 0,

which will be used to track the weighted behavior of h. We will show that E is
indeed equivalent to

3

∑
l=0
‖∂ l

t q‖2
H6−2l(Ω)+χ(t)

3

∑
l=0
|∂ l

t h|2H6−2l(Γ) ,
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and that D is equivalent to

‖q‖2
H6.5(Ω)+

2

∑
l=0
‖∂ l

t qt‖2
H5−2l(Ω)+χ(t)

2

∑
l=0
|∂ l+1

t h|2H5−2l(Γ).

The elliptic operator in the parabolic equation (1.9a) for q has coefficients that
depend on A = [DΨ]−1, which in turn depend on h; hence, the regularity of q is
limited (and, in fact, determined) by the regularity of h on the boundary Γ. Since
the regularity of h is given by norms which are weighted by the factor χ(t), a naive
application of elliptic estimates would thus lead to the crude bound

(1.13) ‖∂ l
t q‖2

6.5−2l .
D

χ(t)
,

which could a priori grow in time. However, by using the fact that lower-order
norms of q have exponential decay (in time), estimate (1.13) can be improved to
yield

(1.14) ‖q‖2
6.5 +‖∂ l

t qt‖2
5−2l . e−γtE +D , l = 0, . . . ,2

for some positive constant γ > 0. This is one of the essential ingredients of our
analysis, as (1.14) will be used to control error terms arising from higher-order
energy estimates in Section 3.

In order to capture the exponential decay of the temperature q, we introduce the
lower-order decay norms:
(1.15)

Eβ (t) := eβ t
( 2

∑
b=0
‖∂ b

t q(t)‖2
H4−2b(Ω)+

1

∑
b=0
‖∂ b

t v‖2
H3−2b(Ω)

)
, D(t) :=

2

∑
b=0
‖∂ b

t q(t)‖2
H5−2b(Ω),

with the constant β denoting a positive real number given by

(1.16) β := 2λ1−η ,

where λ1 is the smallest eigenvalue of the Dirichlet-Laplacian on Ω = B1(0) and η

is a small positive constant related to the size of the initial data, which will be made
precise below. Note that the smallness of Eβ in particular implies an exponential
decay (in time) estimate for the H4-norm of the temperature q(t).

Taylor sign condition or non-degeneracy condition on q0

With respect to q0 = p0 ◦Φ, condition (1.2) becomes infx∈Γ[−∂Nq0(x)]≥ λ > 0
on Γ. For initial temperature distributions that are not necessarily strictly positive
in Ω, this condition was shown to be necessary for local well-posedness for (1.1)
(see [29, 40, 42]). On the other hand, if we require strict positivity of our initial
temperature function2 ,

(1.17) q0 > 0 in Ω ,

2 Condition (1.17) is natural, since it determines the phase: Ω(t) = {q(t)> 0}.
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then the parabolic Hopf lemma (see, for example, [21]) guarantees that−∂Nq(t,x)>
0 for 0 < t < T on some a priori (possibly small) time interval, which, in turn,
shows that E and D are norms for t > 0, but uniformity may be lost as t → 0. To
ensure a uniform lower-bound for −∂Nq(t) as t → 0, we impose the Taylor sign
condition with the following lower-bound3 :

(1.18) −∂Nq0 ≥C
∫

Ω

q0 ϕ1dx ,

Here, ϕ1 is the positive first eigenfunction of the Dirichlet-Laplacian, and C > 0
denotes a universal constant. The uniform lower-bound in (1.18) thus ensures that
our solutions are continuous in time; moreover, (1.18) allows us to establish a time-
dependent optimal lower-bound for the quantity χ(t) = infx∈Γ(−∂Nq)(t,x)> 0 for
all time t ≥ 0, which will be crucial for our analysis.

Compatibility conditions

The definition of our higher-order energy function E , restricted to time t = 0,
requires an explanation of the time-derivates of q and h evaluated at t = 0. Specif-
ically, the values qt |t=0, qtt |t=0, ht |t=0 and htt |t=0 are defined via space-derivatives
using equations (1.9a) and (1.9d). To ensure that the solution is continuously dif-
ferentiable in time at t = 0 we must impose compatibility conditions on the initial
data (such conditions are, of course, only necessary for regular initial data). By
restricting the equation (1.9a) to the boundary at time t = 0 and using the fact that
qt(0) = 0 on Γ and that Ak

i |t=0 = δ k
i , where δ k

i denotes the Kronecker delta which
equals 1 if k = i and 0 otherwise, we obtain the first-order compatibility condition

(1.19) ∆q0 = (∂Nq0)
2 on Γ.

Upon differentiating (1.9a) with respect to time, and then restricting to Γ at t = 0
and using (1.19), we arrive at the second-order compatibility condition

(1.20) ∆
2q0 = ∆|∂Nq0|2 +2∂N(∆q0−|∂Nq0|2)∂Nq0−2|∂NNq0|2 on Γ,

where we have used that ht(t,θ) = v · [N(θ)− τ(θ)hθ (1+h)−1].
We note that our functional framework only requires specification of two higher-

order compatibility conditions (the condition q0 = 0 on Γ being the zeroth-order
condition).

Main result

Our main result is a global-in-time stability theorem for solutions of the clas-
sical Stefan problem for surfaces which are nearly spherical and for temperature

3 When h0 6= 0, the unit normal to the initial surface Γ0 is given by N =
(1+h0)ξ−∂θ h0τ√
(1+h0)2+∂θ h2

0
where

ξ = (cosθ ,sinθ) and τ = (−sinθ ,cosθ).
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fields close to zero. The notion of “near” is measured by our energy norms as well
as the dimensionless quantity

(1.21) K :=
‖q0‖4

‖q0‖0
.

as expressed in the following

Theorem 1.2. Let (q0,h0) satisfy the Taylor sign condition (1.18), the strict posi-
tivity assumption (1.17), and the compatibility conditions (1.19), (1.20). Let K be
defined as in (1.21). Then there exists an ε0 > 0 and a monotonically increasing
function F : (1,∞)→ R+, such that if

(1.22) E (q0,h0)<
ε2

0
F(K)

,

then there exist unique solutions (q,h) to problem (1.9) satisfying

sup
0≤t≤∞

E (q(t),h(t))<Cε
2
0 ,

for some universal constant C > 0. Moreover, the temperature q(t)→ 0 as t → ∞

with bound

‖q‖2
H4(Ω) ≤Ce−β t ,

where β = 2λ1−O(ε0) and λ1 is the smallest eigenvalue of the Dirichlet-Laplacian
on the unit disk. The moving boundary Γ(t) settles asymptotically to some nearby
steady surface Γ̄ and we have the uniform-in-time estimate

sup
0≤t<∞

|h−h0|4.5 .
√

ε0

Remark 1.3. The increasing function F(K) given in (1.22) has an explicit form.
For generic constants C̄,C > 1 chosen in Sections 3 and 4 below,

(1.23) F(K) := max{8K2CC̄K2
,C̄10(lnK)10K20C̄λ1}.

Remark 1.4. The use of the constant K in our smallness assumption (1.22) allows
us to determine a time T = TK when the dynamics of the Stefan problem become
strongly dominated by the projection of q onto the first eigenfunction ϕ1 of the
Dirichlet-Laplacian. Explicit knowledge of the K-dependence in the smallness
assumption (1.22) permits the use of energy estimates to show that solutions exist
in our energy space on the time-interval [0,TK ]. For t ≥ TK , certain error terms (that
cannot be controlled by our energy and dissipation functions for large t) become
sign-definite with a good sign.
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1.5 A brief history of prior results on the Stefan problem
There is a large amount of literature on the classical one-phase Stefan problem.

For an overview we refer the reader to FRIEDMAN [23], MEIRMANOV [40] and
VISINTIN [49]. First, weak solutions were defined by KAMENOMOSTSKAYA [32],
FRIEDMAN [22], and LADYZHENSKAYA, SOLONNIKOV & URAL’CEVA [38]. For
the one-phase problem studied herein, a variational formulation was introduced
by FRIEDMAN & KINDERLEHRER [24], wherein additional regularity results for
the free surface were obtained. CAFARELLI [5] showed that in some space-time
neighborhood of points x0 on the free-boundary that have Lebesgue density, the
boundary is C1 in both space and time, and second derivatives of temperature are
continuous up to the boundary. Under some regularity assumptions on the tem-
perature, Lipschitz regularity of the free boundary was shown by CAFARELLI [6].
In related work, KINDERLEHRER & NIRENBERG [35, 36] showed that the free
boundary is analytic in space and of second Gevrey class in time, under the a priori
assumption that the free boundary is C1 with certain assumptions on the temper-
ature function. In [7], CAFFARELLI & FRIEDMAN showed the continuity of the
temperature in d dimensions. As for the two-phase classical Stefan problem, the
continuity of the temperature in d dimensions for weak solutions was shown by
CAFFARELLI & EVANS [8].

Since the Stefan problem satisfies a maximum principle, its analysis is ideally
suited to another type of weak solution called the viscosity solution. Regularity of
viscosity solutions for the two-phase Stefan problem was established by ATHANA-
SOPOULOS, CAFFARELLI & SALSA in a series of seminal papers [3, 4]. Existence
of viscosity solutions for the one-phase problem was established by KIM [33], and
for the two-phase problem by KIM & POŽAR [34]. A local-in-time regularity result
was established by CHOI & KIM [11], where it was shown that initially Lipschitz
free-boundaries become C1 over a possibly smaller spatial region. For an exhaus-
tive overview and introduction to the regularity theory of viscosity solutions we
refer the reader to CAFFARELLI & SALSA [9]. In [37], KOCH showed by the use
of von Mises variables and harmonic analysis, that an priori C1 free-boundary in
the two-phase problem becomes smooth.

Local existence of classical solutions for the classical Stefan problem was es-
tablished by MEIRMANOV (see [40] and references therein) and HANZAWA [30].
Meirmanov regularized the problem by adding artificial viscosity to (1.1b) and
fixed the moving domain by switching to the so-called von Mises variables, obtain-
ing solutions with less Sobolev-regularity than the initial data. Similarly, Hanzawa
used Nash-Moser iteration to construct a local-in-time solution, but again, with de-
rivative loss. A local-in-time existence result for the one-phase multi-dimensional
Stefan problem was proved by FROLOVA & SOLONNIKOV [26], using Lp-type
Sobolev spaces. For the two-phase Stefan problem, a local-in-time existence result
for classical solutions was established by PRÜSS, SAAL, & SIMONETT [42] in the
framework of Lp-maximal regularity theory.
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In a related work, local existence for the two-dimensional two-phase Muskat
problem (with varying viscosity and density) was proved by CÓRDOBA, CÓRDOBA
& GANCEDO [13] and in three dimensions in [14]. Their methods rely on a
boundary-integral formulation for the Muskat problem, together with the Taylor
sign condition. In a subsequent work [12], various global existence results were
established. An overview can be found in [10].

As to the Stefan problem with surface tension (also known as the Stefan prob-
lem with Gibbs-Thomson correction), global weak solutions (without uniqueness)
were given by ALMGREN & WANG, LUCKHAUS, and RÖGER [2, 39, 47]. In
FRIEDMAN & REITICH [25] the authors considered the Stefan problem with small
surface tension, i.e. with σ � 1, whereby (1.1c) is replaced by v = σκ , κ denoting
mean curvature of the boundary. Local existence of classical solutions was studied
by RADKEVICH [45]; ESCHER, PRÜSS, & SIMONETT [20] proved a local exis-
tence and uniqueness result for classical solutions under a smallness assumption
on the initial height function close to the reference flat boundary. Global existence
close to flat hyper-surfaces was proved by HADŽIĆ & GUO in [28], and close to
stationary spheres for the two-phase problem in HADŽIĆ [27] and PRÜSS, SIMON-
ETT, & ZACHER [43].

In order to understand the asymptotic behavior of the classical Stefan problem
on external domains, QUIRÓS & VÁZQUEZ [44] proved that on a complement
of a given bounded domain G, with non-zero boundary conditions on the fixed
boundary ∂G, the solution to the classical Stefan problem converges, in a suitable
sense, to the corresponding solution of the Hele-Shaw problem and sharp global-
in-time expansion rates for the expanding liquid blob are obtained. Moreover, the
blob asymptotically has the geometry of a ball. Note that the non-zero bound-
ary conditions act as an effective forcing which is absent from our problem and
the techniques of [44] do not directly apply. Since the corresponding Hele-Shaw
problem (in the absence of surface tension and forcing) is not a dynamic problem,
possessing only time-independent solutions, we are not able to use the Hele-Shaw
solution as a comparison problem for our problem.

A global stability result for the two-phase classical Stefan problem in a smooth
functional framework was also established by MEIRMANOV [40] for a specific (and
somewhat restrictive) perturbation of a flat interface, wherein the initial geometry
is a strip with imposed Dirichlet temperature conditions on the fixed top and bot-
tom boundaries, allowing for only one equilibrium solution. A global existence
result for smooth solutions was given by DASKALOPOULOS & LEE [19] under
the log-concavity assumption on the initial temperature function, which in light of
the level-set reformulation of the Stefan problem, requires convexity of the initial
domain (a property that is preserved by the dynamics).

In [29], we established the local-in-time existence, uniqueness, and regularity
for the classical Stefan problem in L2 Sobolev spaces, without derivative loss, using
the functional framework given by (1.11) and (1.12). This framework is natural,
and relies on the geometric control of the free-boundary, analogous to that used in
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the analysis of the free-boundary incompressible Euler equations in COUTAND &
SHKOLLER [15, 16]; the second-fundamental form is controlled by a a natural co-
ercive quadratic form, generated from the inner-product of the tangential derivative
of the cofactor matrix a, and the tangential derivative of the velocity of the moving
boundary, and yields control of the norm

∫
Γ
(−∂Nq(t))|∂̄ k h|2 dx′ for any k≥ 3. The

Hopf lemma ensures positivity of −∂Nq(t) and the Taylor sign condition on q0 en-
sures a uniform lower-bound as t → 0; on the other hand, −∂Nq(t)→ 0 as t → ∞,
and so an optimal lower-bound for (−∂Nq(t)) for large t is essential to establish a
global existence and stability theory.

We remark that global stability of solutions in the presence of surface tension
(see, for example, [28, 27, 43]) does not require the use of function framework with
a decaying weight, such as −∂Nq(t). In this regard, the surface tension problem is
simpler for two important reasons: first, the surface tension contributes a positive-
definite energy-contribution that is uniform-in-time, and provides better regularity
of the free-bounary (by one spatial derivative), and second, the space of equilibria
is finite-dimensional and thus it is easier to understand the degrees-of-freedom that
regulate the asymptotic state of the system, given the initial conditions.

1.6 Methodology and outline of the paper
Our present work builds on our new energy method for the Stefan problem that

we developed in [29]. We obtain global and uniform control of the geometry of the
free-boundary by controlling the weighted boundary-norm supt∈[0,T ] ‖

√
χ(t)h‖6

for all t ≥ 0. We are thus able to track the location of the moving free-boundary
and measure its deviation from the initial state; this geometric control is strongly
coupled to, and dependent upon, the exponential-in-time decay of the temperature
function to zero.

There exist infinitely many steady states for the classical Stefan problem: for
any sufficiently smooth hypersurface Γ̄⊂Rd , the pair (p̄, Γ̄)≡ (0, Γ̄) forms an equi-
librium solution of the Stefan problem (1.1). This abundance of possible attractors
for the long-time behavior of the solution Γ(t) creates a conceptual difficulty in
approaching the question of “asymptotic” convergence.

We address the temporal asymptotics by requiring our initial surface to be
a small perturbation of the reference sphere. We use the energy spaces intro-
duced in [29]; moreover, we do not expect to observe any decay for the height
of the moving surface in this norm. Rather, given the expectation that the solu-
tion does converge to some nearby shape (so that h remains small), we expect
the temperature q(t) to converge to zero exponentially fast, since it is a solution
of the nonlinear heat equation (1.9a). Returning to the definition of the energy
space E given in (1.11), we immediately encounter a potential problem for global-
in-time estimates; specifically, the coefficient −∂Nq(t) in the energy expression∫

Γ

(
−∂Nq(t)

)
|∂̄ 6h|2 dθ is also expected to decay as t→ ∞ and it is a priori unclear

how to uniformly-in-time control the regularity of the boundary height function h.
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To understand the relationship between the decay of q(t) and the smallness of E ,
we will analyze the dynamics in three different and coupled regimes.

High-order energy estimates
We do not expect the height function h(t) to decay to 0 as t → ∞; rather, we

expect h(t) to remain close to the initial height function h0. Assuming, without loss
of generality, that h0 = 0, to guarantee the smallness of h− h0 = h we will prove
that

sup
0≤s≤t

E (s)+
∫ t

0
D(s)ds≤ E (0)+ sup

0≤s≤t
P(Eβ ) E (s)+δ

∫ t

0
D(s)ds

≤ E (0)+O(ε0) sup
0≤s≤t

E (s)+δ

∫ t

0
D(s)ds,(1.24)

where P is some polynomial function of the low-norm Eβ . The above estimate
yields an a priori bound on E if ε , δ and E (0) are sufficiently small.

However, to close the higher-order energy estimates and thus obtain (1.24), we
must contend with a very problematic integral (or error term) given by

N :=−
∫ T

0

∫
Γ

∂Nqt |∂̄ 6h|2 dθ dt .

Driven by intuition from the linear heat equation, we expect ∂Nqt to decay exactly
as fast as −∂Nq. Comparing N to the energy contribution

∫
Γ
(−∂Nq)|∂̄ 6h|2 above,

we note that N cannot be controlled by E , as it is the same order as E . Hence,
to bound N , we prove that after a sufficiently long time has elapsed, the quantity
∂Nqt turns strictly positive and hence N can be bounded from above by zero. In
Lemma 4.2 we will quantify the meaning of “sufficiently long” time t = TK from
the previous sentence, expressing it as a function of the ratio K = ‖q0‖4/‖q0‖0.

More precisely, we break the total time interval into a (possibly long) transient
interval [0,TK ] and [TK ,∞). On the transient time-interval [0,TK ] we do treat N as
an error term, and by choosing E (0) sufficiently small, a straightforward applica-
tion of a Gronwall-type inequality verifies that the interval of existence is greater
than TK , as explained in our proof of the main theorem (given Section 4.4). The
bound for N grows exponentially with time, and as such, cannot be used to estab-
lish global-in-time estimates. Instead, a significantly more refined analysis is em-
ployed on the time-interval [TK ,∞), wherein we prove in Lemma 4.2 the negativity
of N for t = TK and then use a maximum principle-type argument to guarantee
the negativity for all t ≥ TK .

Exponential decay-in-time of the temperature function q

The last inequality in (1.24) holds only if Eβ itself remains small; in fact we
will prove that as t→ ∞, ‖q(t)‖2

4 has the nearly optimal decay rate

(1.25) e−(2λ1−Cε0)t ,
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where λ1 denotes the smallest eigenvalue of the Dirichlet-Laplacian on the unit
disk. Moreover, the parabolic estimate we prove, will be roughly of the form

(1.26) ∂tEβ +D≤C(ε0 +‖q0‖4
e−β t/2

χ(t)1/2 )D,

where the norms Eβ and D have been defined in (1.15). A nice consequence of

our analysis is that the potentially growing term, e−β t/2

χ(t)1/2 , in fact remains small and
decays in time. Next, we explain why this is true.

Lower bound for the velocity of the free boundary
We may think of the presence of the denominator 1

χ(t)1/2 in the estimate (1.26)
as a possible obstruction to controlling the regularity of h and thus potentially pre-
venting uniform ellipticity bounds for the parabolic operator (1.9a). To deal with
this issue, we need a quantitative lower bound on the decay rate of χ(t). Moreover,
this lower bound has to favorably compare to the size of e−β t . With some extra
work, such a Hopf-type inequality is implied by a result of Oddson [41], which
leads to the lower-bound

(1.27) χ(t)& c1e−(λ1+cε0)t ,

where c > 0 denotes a generic constant, and as before c1 =
∫

Ω
q0ϕ1 is the first

coefficient in the eigenfunction expansion of the initial datum q0 with respect to
the L2-orthonormal eigenbasis of the Dirichlet-Laplacian on the unit disk. Finally,
combining (1.25) and (1.27), we will show in Lemma 2.3, that for small initial
data,

(1.28) ‖q0‖4
e−β t/2

χ(t)1/2 .
√

ε0e−γ∗t .

for some positive constant γ∗.
The result of Oddson [41] relies on a good choice of a barrier function that,

combined with a maximum principle, allows for very precise information on the
decay rate. That choice is, however, only one possible choice of a comparison
function, and it is possible that there are different ones since [41] gives nearly
sharp decay rate only in a nearly radial regime. If nearly radial, it is possible
that in a viscosity or weak solution framework, one can use comparison principle
arguments to deduce that “no-thin tentacles” form (cf. [31] which is in spirit close
to [44], but again relies on presence of the forcing term) and the moving boundary
remains in an annulus of width O(ε). To that end, but in absence of forcing, the
ideas from [4, 11, 44] may be very valuable - they would require a construction of
an adaptive family of comparison functions that yield precise decay rates as time
evolves. In forthcoming work, we plan to address the Stefan problem on arbitrary
domains diffeomorphic to the unit ball, as well as the case of the two-phase Stefan
problem. In both instances and not unrelated to the above discussion, we shall need
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a better, new choice of barrier functions related to the existence of so-called half-
eigenvalues for the extremal Pucci operators in order to get the sharp decay rates.
In particular, our approach is insensitive to the convexity properties of the initial
domain, but it requires sufficient regularity.

Another advantage of the techniques developed in this paper is that it provides
a general and robust framework for addressing the global stability questions for
related free boundary problems in fluid mechanics in absence of surface tension.

Plan of the paper

In Section 2, we introduce the bootstrap assumptions and obtain various a priori
estimates, that allow us to control low norms of the boundary function h as well as
the decaying low-norm Eβ , and also establish the equivalence between the energies
and the norms as mentioned earlier in the introduction (Section 2.5). In Section 3,
we state energy identities and then perform the energy estimates. Finally in Sec-
tion 4, we prove the main theorem. In Section 5, we discuss the modifications
required for the analysis in three space dimensions, and for initial height functions
h0 6= 0. Appendix A is devoted to the proof of the energy identities stated in Sec-
tion 3. The very short Appendix B provides a simple proof for the upper bound of
∂Nqt .

2 Bootstrap assumptions and a priori bounds

Let us assume that the solution (q,h) to the Stefan problem (1.9) exists on some
time interval [0,T ], T > 0, which is guaranteed by [29]. With the positive constant
ε0 < ε � 1 to be specified later, we make the following bootstrap assumptions:

(smallness) sup
0≤s≤T

E (s)+
∫ t

0
D(s)ds≤ ε

2, sup
0≤s≤T

Eβ (s)+
∫ t

0
D(s)ds≤ C̃Eβ (0) ,

(2.1a)

(lower-bound) χ(t)& c1e−(λ1+η/2)t ,

(2.1b)

where we the definitions of E , D , Eβ , and D are provided in (1.11), (1.12), and (1.15),
respectively. With β given in (1.16), β = 2λ1−η , the bootstrap assumption (2.1b)
can be written as χ(t) & c1e−(β/2+η)t . Moreover, η > 0 is a fixed small constant
and it will be shown in the proof of the main theorem, Section 4.4, that η must
be chosen smaller than 1/

√
C lnK for some universal constant C. Note that since

Eβ (0)≤ ε2, (2.1a) implies the decay estimate ‖q‖2
4 ≤ ε2e−β t . Recall that the con-

stant c1 in the estimate (2.1b) is defined as
∫

Ω
q0(x)ϕ1(x)dx.

We now briefly explain the logic of the proof of global existence that will be
carried out in Section 4. If T is defined to be the maximal time at which the
solution (q,h) exists and satisfies the bootstrap assumptions, the first objective is to
show that the bootstrap assumptions (2.1a) and (2.1b) yield an improved smallness
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and lower-bound estimates at time T . If T were finite, by the local-in-time well-
posedness theory and continuity of our norms we can extend the solution to an
interval T + T ∗, while preserving the bootstrap assumptions (2.1a) and (2.1b),
thus arriving at contradiction to the definition of T . Hence T must be infinite.

It remains to show that for ε chosen small enough, the smallness and the lower-
bound estimates can indeed be improved. In Corollary 2.14 we will show that
the assumption (2.1b) is in fact improved, and in Lemma 4.1 we show that the
assumption on Eβ +

∫ T
0 D in (2.1a) is also improved. Finally, in Section 4.4, we

will prove that the smallness of E +
∫ t

0 D assumed in (2.1a) is also preserved. Thus
the smallness regime introduced through (2.1a)–(2.1b) will be shown to remain
preserved by the dynamics of (1.9) for ε > 0 chosen sufficiently small.

2.1 Poincaré-type inequality
Because the first eigenfunction ϕ1 of the Dirichlet-Laplacian is positive in Ω,

while the remaining eigenfunctions oscillate about zero, it will be necessary to
introduce a constant into our estimates which gives a measure of the initial temper-
ature distribution in the first mode of the dynamics. To this end, we will make use
of the following

Lemma 2.1. For k ≥ 3, let f ∈ Hk(Ω)∩H1
0 (Ω), f : Ω→ R+ be a strictly posi-

tive function on the interior of Ω. Let ϕ1 be the first eigenvector of the Dirichlet-
Laplacian on the unit ball B1(0) = Ω. Then there exists a universal constant C∗

such that

‖ f‖2
0 ≤C∗

(∫
Ω

f (x)ϕ1(x)dx
)
‖ f‖3.

Proof. We have that ∫
Ω

f 2dx≤max
x∈Ω

f (x)
ϕ1(x)

∫
Ω

f ϕ1dx .

Since − ∂ϕ1
∂N (x)≥ c > 0 for all x ∈ Γ, the higher-order Hardy inequality (Lemma 1

in [18]) together with the Sobolev embedding theorem shows that

max
x∈Ω

f (x)
ϕ1(x)

≤C
∥∥∥∥ f

ϕ1

∥∥∥∥
2
≤C‖ f‖3

which proves the lemma. �

Corollary 2.2. Let q0 ∈ H4(Ω)∩H1
0 (Ω) with q0 > 0 in Ω. We consider the eigen-

function expansion q0 = ∑
∞
j=1 c jϕ j of q0 with respect to the L2-orthonormal basis

{ϕ1,ϕ2, . . .} consisting of the Dirichlet-Laplacian eigenfunctions on the unit disk
B1(0) = Ω. Then, if ‖q0‖4

‖q0‖0
≤ K, it follows in particular that

|c j|
c1

< K, j = 1,2, . . .
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Lemma 2.3. If the bootstrap assumptions (2.1a), (2.1b) hold, then

(2.2)
E1/2

β
(t)e−β t/2

χ(t)1/2 ≤
C̃1/2Eβ (0)1/2e−β t/2

χ(t)1/2 .
√

εe−γt/2

where γ = β

2 −η > 0.

Proof. By (2.1b), we have that

Eβ (t)1/2e−β t/2

χ(t)1/2 ≤ C
e−β t/2

e−(λ1/2+η/4)t

Eβ (0)1/2

c1/2
1

≤ Ce−γt/2 ‖q0‖4

c1/2
1

≤CK‖q0‖1/2
4 e−γt/2 ≤C

√
εe−γt/2,

where we have used the fact that c1/2
1 & 1

K1/2 ‖q0‖1/2
0 and ‖q0‖4 . K‖q0‖0. We

have also used the bound K‖q0‖1/2
4 ≤C

√
ε (since ε0 < ε), as well as the smallness

assumption (1.22) so that K‖q0‖1/2
4 . Kε0/F(K)1/2 ≤Cε . Note that γ is explicitly

given by γ = (β

2 −η)> 0, and that η � λ1/2. �

2.2 A priori bounds on h
Lemma 2.4 (Suboptimal decay bound for ht). Under the bootstrap assumptions (2.1a)
and (2.1b), the following decay bound holds:

(2.3) |ht |2.5 . εe−γt/2.

Proof. Differentiating equation (1.5), the Sobolev embedding theorem together
with the fact that h≥ 0 (by the maximum principle) show that

|ht |1 . |v|W 1,∞ + |h|2|v|2 + |h|1|v|1|h|1
. |v|2 + |h|2|v|2 + |h|1|v|1(|h0|1 + t sup

0≤s≤t
|ht |1) ,

where we have used the fundamental theorem of calculus for the last inequality.
Using the bootstrap assumption (2.1a), we see that |v(t)| . e−β t , while thanks to
Lemma 2.3 and the fact that

√
E . ε0 < ε ,

|h|2|v|2 .
√

χ|h|2
|v|1√

χ
.

√
Eβ√
χ

√
E e−β t/2 . εe−γt/2.

Hence,
sup

0≤s≤t
|ht |1 . εe−β t/2 + εe−γt/2(1+ sup

0≤s≤t
|ht |1

)
,

and with ε > 0 sufficiently small, we see that

(2.4) sup
0≤s≤t

|ht |1 . εe−γt/2 . ε .
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Taking more derivatives of (1.5), the Sobolev embedding theorem shows that
for k = 2,3,

|ht |k ≤ |v|k +
∣∣∣ hθ

1+h

∣∣∣
L∞
|v|k +

∣∣∣ hθ

1+h

∣∣∣
k
|v|L∞ . |v|k + |hθ |1|v|k +

∣∣∣ hθ

1+h

∣∣∣
k
|v|1,(2.5)

where we have again used the fact that h≥ 0. Since∣∣ hθ

1+h

∣∣
k . |h|k+1(1+P(|h|k−1)), k = 2,3,

for some polynomial function P, and since |h|k ≤ |h0|k + t sup0≤s≤t |ht |k, we see
that

(2.6)
∣∣ hθ

1+h

∣∣
k . |h|k+1

(
1+P(t)P( sup

0≤s≤t
|ht |k−1)

)
.

We now use (2.6) and (2.5) to infer that

(2.7) |ht |k . |v|k
(
1+ sup

0≤s≤t
|ht |2

)
+ |h|k+1|v|1

(
1+P(t)P( sup

0≤s≤t
|ht |2)

)
,

where we have used |hθ |1 . t sup0≤s≤t |ht |2. Interpolating between k = 2 and k = 3
yields

|ht |2.5 . |v|2.5
(
1+ sup

0≤s≤t
|ht |2

)
+ |h|2.5|v|1

(
1+P(t)P( sup

0≤s≤t
|ht |2)

)
.(2.8)

and as above, Lemma 2.3 provides us with the inequality |h|2.5|v|1. εe−γt/2, which
together with the bootstrap assumption (2.1a) shows that

sup
0≤s≤t

|ht |2.5 . εe−β t/2(1+ sup
0≤s≤t

|ht |2.5
)
+ εe−γt/2(1+P(t)P( sup

0≤s≤t
|ht |2)

)
and therefore with ε > 0 sufficiently small,

(2.9) sup
0≤s≤t

|ht |2.5 . εe−β t/2 + εe−γt/2(1+P( sup
0≤s≤t

|ht |2)),

where the polynomial P(t) has been absorbed in some universal constant due to the
exponentially decaying factor e−γt/2. On the other hand, the inequality (2.7) with
k = 2 together with the estimate (2.4) shows that |ht |2 . ε so that with (2.9), we
conclude the proof. �

Remark 2.5. Note that the estimate (2.3) can be stated more precisely, by keeping
track of constant c1 on the right-hand side, in which case,

(2.10) |ht |2.5 . ε
1/2√c1e−γt/2.

The proof follows from the last line of the proof of Lemma 2.4 since Eβ (0)1/2 ≤
K2c1, due to the bound ‖q‖4 ≤K‖q0‖ ≤K2c1. Note that

√
ε on the right-hand side

of (2.2) can be replaced by
√

c1 for the same reason.
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Lemma 2.6 (Smallness of the height function). Let c1 =
∫

Ω
q0ϕ1dx and suppose

that the bootstrap assumptions (2.1a), (2.1b) hold. For ε > 0 taken sufficiently
small,

(2.11) sup
0≤s≤t

|h(s)|4.5 .
√

ε ,

while for lower-order norms,

(2.12) sup
0≤s≤t

|h(s)|2.5 . c1 and sup
0≤s≤t

|h(s)|4 . ε
1/2c1/4

1 .

Proof. Observe that

|h|22.5≤ 2
∫ t

0
|h|2.5|hs|2.5 ds≤ sup

0≤s≤t
|h(s)|2.5

∫ t

0
|hs|2.5 ds. sup

0≤s≤t
|h(s)|2.5

∫ t

0
ε

1/2√c1e−γt/2,

where we have used (2.10) in the last bound. Taking the supremum over the time
interval [0, t] we deduce

sup
0≤s≤t

|h(s)|2.5 . ε
1/2√c1.

Using the well-known interpolation estimate (see, for example, [?])

(2.13) | f |k ≤ | f |θl | f |1−θ
m , θ =

m− k
m− l

, l ≤ k ≤ m,

with k = 3, l = 2.5, m = 4, and the fact that |√χ∂̄ 4ht |20 is bounded by E , we have
that

|ht |3 . |ht |1/3
4 |ht |2/3

2.5 .
E 1/6

χ(t)1/6 ε
1/3c1/3

1 e−γt/3

. ε
2/3c1/6

1 e−γ∗t ,

where γ∗ = −1
3 γ + 1

6(
β

2 + η

2 ) = −
1
6 β + 5η

12 > 0 (by definition, γ = −β

2 −η). As a
consequence,

|h|23 .
∫ t

0
|h|3|ht |3 . sup

0≤s≤t
|h(s)|3

∫ t

0
|ht(s)|3 ds. ε sup

0≤s≤t
|h(s)|3.

Upon taking the supremum over the inetrval [0, t], we finally have that

(2.14) sup
0≤s≤t

|h(s)|3 . ε.

We can now improve the decay result of Lemma 2.4, first for the quantity |ht |2.
Simply using the bound (2.14), exactly as in the proof of Lemma 2.4 , we infer the
improved estimate

(2.15) |ht |2 . ‖v‖2.5(1+ |h|3). c1e−β t/2.
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As an immediate consequence, we obtain the smallness bound for sup0≤s≤t |h(s)|4:∫
Γ

|∂̄ 4h|2 dθ =
∫ t

0

∫
Γ

∂̄
4h∂̄

4ht dθ ds =
∫ t

0

∫
Γ

∂̄
6h∂̄

2ht dθ ds

≤
∫ t

0
|∂̄ 6h|0|∂̄ 2ht |0 ds.

∫ t

0

( E 1/2

χ(s)1/2 c1e−β s/2)ds

.
∫ t

0
ε
√

c1e−γs/2 ds. ε
√

c1 .(2.16)

Note that (2.16), in particular, implies the second bound in (2.12). Next, we es-
tablish the a priori smallness of sup0≤s≤t |h(s)|4.5. Thanks to (2.16), we improve
the decay bound for |ht |2.5 in an analogous fashion to the improved decay esti-
mate (2.15) for |ht |2. We obtain |ht |2.5 . c1e−β t/2. The first bound in (2.12) now
follows from the fundamental theorem of calculus and the previous bound. A
straightforward interpolation argument for fractional Sobolev spaces on the unit
circle Γ, shows

(2.17) |h|24.5 .
∫ t

0
|h|6|ht |3 ds.

Using the interpolation estimate (2.13), with l = 2.5, k = 3, and m = 5, we see that

(2.18) |ht |3 ≤C|ht |4/5
2.5 |ht |1/5

5 .

Using (2.18) with (2.17), and using the above bound on |ht |2.5, yields

|h|24.5 .
∫ t

0
|h|6|ht |4/5

2.5 |ht |1/5
5 ds.

∫ t

0

E 1/2

χ(s)1/2 c4/5
1 e−2β s/5|ht |1/5

5 ds

. εc3/10
1

∫ t

0
e−γ̄s|ht |1/5

5 ds,

where we also used the bootstrap assumption (2.1b). One checks that γ̄ = −2β

5 +

(β

4 + η

2 ) =
3
20 β − η

2 > 0. We thus have

|h|24.5 . εc3/10
1

∫ t

0
e−γ̄s/2×

(
e−γ̄s/2|ht |1/5

5

)
ds.

Hölder’s inequality with p = 10
9 and q = 10 then shows that

|h|24.5 . εc3/10
1

(∫ t

0

(
e−γ̄s/2)10/9 ds

)9/10(∫ t

0
(e−5γ̄s|ht |25 ds

)1/10

. εc3/10
1

(∫ t

0
e−5γ̄s|ht |25 ds

)1/10
. ε

6/5c1/5
1 ,
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where the last inequality follows from the definition of γ̄ above, the bootstrap as-
sumptions (2.1b) and (2.1a), and the estimate∫ t

0
e−5γ̄s|ht |25 ds.

∫ t

0

1
c1

e−5γ̄s+(β/4+η/2)s inf
Γ
(−∂Nq(s))|ht |25 ds

.
∫ t

0

1
c1

e−(β/2+3η)s inf
Γ
(−∂Nq(s))|ht |25 ds

.
1
c1

∫ t

0

∫
Γ

(−∂Nq(s))|∂̄ 5ht |2 dθ ds≤ ε2

c1
.

�

2.3 Differentiation rules for A
Since A = [DΨ]−1, it follows that

∂tAk
i =−Ak

rwr,s As
i ; ∂̄Ak

i =−Ak
r ∂̄Ψ

r,s As
i .

In particular, a simple application of the above identities and the product rule imply
that for any given a,b ∈ N,

∂̄
a
∂

b
t Ak

i =−Ak
r ∂̄

a
∂

b
t Ψ

r,s As
i +{∂̄ a

∂
b
t , Ak

i } ,(2.19a)

{∂̄ m
∂

n
t , Ak

i } := ∑
l+l′≥1

al,l′ ∂̄
l
∂

l′
t (A

k
rAs

i )∂̄
m−l

∂
n−l′
t Ψ

r,s ,(2.19b)

where the term {·, ·} is the commutator error. Here the constants al,l′ are some
universal constants, depending only on m, n, l and l′ (where 0≤ l ≤m, 0≤ l′ ≤ n).

2.4 Estimates for ∇Ψ− Id and A− Id
Under assumption (2.1a), the elliptic estimate (1.7) shows that on the time-

interval [0,T ],

‖∇Ψ− Id‖L∞(B1) ≤C‖∇Ψ− Id‖1.5 ≤C|h|2(2.20)

and for 0≤ s≤ 3,
‖D2

Ψ‖s ≤C|h|s+1.5 .

Estimate (2.20) implies that

‖A− Id‖L∞(B1) = ‖(Id−∇Ψ)A‖L∞(B1) ≤C‖A‖L∞(B1)|h|2;

thus under assumption (2.1a),

‖A− Id‖L∞(B1) ≤C|h|2(2.21)

Note that (2.20) and (2.21) together imply that for 0≤ s≤ 3,

‖DA‖s ≤C|h|s+1.5.

Thus, with Lemma 2.6, we have proven the following

Lemma 2.7. With the bootstrap assumptions (2.1a), (2.1b) and for ε > 0 taken
sufficiently small,

‖∇Ψ− Id‖4 +‖A− Id‖4 .
√

ε .
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2.5 High-order derivatives of q
Because our energy function E (t) is formed using only tangential derivatives

in space, the purpose of this section is show that radial derivatives of the tempera-
ture q are also bounded, and thus the full Sobolev norms of the temperature q are
controlled by our energy function, as was explained in the introduction.

We will make use of the heat equation and its time-differentiated variants:

qt −∆Ψq = f0 ,(2.22a)
qtt −∆Ψqt = f1(2.22b)

qttt −∆Ψqtt = f2 ,(2.22c)

where ∆Ψ = A j
i

∂

∂x j

(
Ak

i
∂

∂xk

)
and where the forcing functions f0, f1, f2 are given by

f0 =−Ψt · v ,

f1 =−(Ψt · v)t +A j
i (∂tAk

i q,k ), j +∂tA
j
i (A

k
i q,k ), j ,

f2 =−(Ψt · v)tt +2A j
i (∂tAk

i qt ,k ), j +2∂tA
j
i (A

k
i qt ,k ), j +2∂tA

j
i (∂tAk

i q,k ), j

+∂
2
t A j

i (A
k
i qt ,k ), j +A j

i (∂
2
t Ak

i q,k ), j .

We will repeatedly make use of the following elliptic estimate:

Lemma 2.8 (Elliptic regularity with Sobolev-class coefficients). Let q denote the
unique H1

0 (Ω) solution to

−∆Ψq = F in Ω ,

q = 0 on ∂Ω .

Suppose that k > 1, F ∈Hk−1(Ω), and A ∈Hk(Ω) satisfying Ak
i A j

i ξ jξk ≥ λ |ξ |2 for
all ξ ∈ R2 for some λ > 0. Then

‖q‖Hk+1(Ω) ≤C
[
‖F‖Hk−1(Ω)+‖A‖

p
Hk(Ω)

‖F‖L2(Ω)

]
for some power p > 1.

Proof. We provide the details in the course of the proof of Lemma 2.9. �

Lemma 2.9 (Bounding ∂ l
t q, l = 0,1,2,3, by E (t)). With the bootstrap assump-

tions (2.1a) and (2.1b) holding, and with ε > 0 sufficiently small, there exists a
constant C∗ such that

‖qttt‖2
0 +‖qtt‖2

2 +‖qt‖2
4 +‖q‖2

6 ≤C∗E .

Proof. Step1. Estimating |httt |0.5. We denote by X (t) the quantity ‖qttt‖2
0 +

‖qtt‖2
2 +‖qt‖2

4 +‖q‖2
6. Twice time-differentiating (1.9d), we find that

(2.23) httt = vtt ·N−
[ hθ

1+h

]
ttv · τ−2

[ hθ

1+h

]
tvt · τ−

hθ

1+h
vtt · τ.
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By the normal trace theorem (see, for example, equation (6.1) in [18]),

|vtt ·N|0.5 . ‖∂̄vtt‖2
0 +‖divvtt‖2

0.

Note that
(2.24)
divvtt =(divΨ v)tt +((div−divΨ)v)tt =(qt +v ·Ψt)tt +[(Ak

i −δ
k
i )v

i,k ]tt = qttt +Ψttt ·v+R,

where the remainder R reads

R = 2Ψtt · vt +Ψt · vtt +(Ak
i −δ

k
i )ttvi,k+2(Ak

i −δ
k
i )tvi

t,k +(Ak
i −δ

k
i )v

i
tt,k.

From Lemma 2.6 and 2.3, we obtain the estimate ‖R‖2
0 . εE + εX . Thus, re-

turning to (2.24) and using that ‖qttt +Ψttt · v‖2
0 ≤ E by (1.11), we get ‖divvtt‖2

0 .
E + εX and consequently

(2.25) |vtt ·N|0.5 . E + εX .

As for the last term on the right-hand side of (2.23), we use the tangential trace
theorem (see, for example, equation (6.2) in [18]) to infer that

|vtt · τ|. ‖∂̄vtt‖2
0 +‖curlvtt‖2

0.

Since curlΨv = 0 (recall v = −∇p ◦Ψ), we have curlvtt = [(curl− curlΨ)v]tt . By
a similar inequality as above, using Lemmas 2.6 and 2.3, we obtain the bound
‖[(curl− curlΨ)v]tt‖2

0 . εE + εX . Together with (2.25) and ‖∂vtt‖2
0 ≤ E , this

leads to
|vtt · τ|0.5 . E + εX .

Together with the smallness of hθ and hθ t from Lemma 2.6, the bound |√χ∂̄htt |21≤
E and Lemma 2.3, we finally infer from (2.23) that

(2.26) |httt |0.5 . E + εX .

Step 2: L2 estimates for ∂ l
t q. By the triangle inequality and the definition (1.11) of

E (t), we have that for l = 1,2,3,

‖∂ l
t q‖2

0 ≤ ‖∂ l
t q+∂

l
t Ψ · v‖2

0 +‖∂ l
t Ψ · v‖2

0

≤ E (t)+‖∂ l
t Ψ · v‖2

0

. E (t)+‖v‖2
3‖∂ l

t Ψ‖2
0 . E (t)+ ε

2|httt |20.5
. E (t)+ εX ,

where we used the Sobolev embedding theorem and (2.26).

Step 3: H2 estimate for qtt . We consider the elliptic equation −∆Ψq = f0− qt .
We note that Lemma 2.7 ensures that Ak

i A j
i ξkξ j ≥ 1

2 |ξ |
2 for all ξ ∈ R2. Given that

‖ f0− qt‖2
0 . E , elliptic estimates show that ‖q‖2

2 . E . This, in turn, implies that
‖ f1−qtt‖2

0 . E , and elliptic estimates then show that ‖qt‖2
2 . E . Hence, we have

that ‖ f2−qttt‖2
0 . E + εX , and once again use elliptic estimates to conclude that

‖qtt‖2
2 . E + εX .
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Step 4: H4 estimate for qt . Since ‖ f0−qt‖2
2 . E , Lemma 2.8 shows that ‖q‖2

4 . E ;
thus, ‖ f1− qtt‖2

2 . E + εX . Another application of Lemma 2.8 together with
Lemma 2.7 then shows that ‖qt‖2

4 . E + εX .

Step 5: H6 estimate for q. The elliptic estimates in Steps 3 and 4 made use of
Lemma 2.7. To obtain the H6 estimate for q requires us to improve the elliptic
estimate in Lemma 2.8 to be linear in ‖√χΨ‖6. To this end, we write A jk = A j

i Ak
i

and rewrite (2.22a) as

(2.27) −(A jkq,k ), j =−qt + f0−A j
i , j Ak

i q,k .

Letting ∂̄ α act on (2.27), we find that ∂̄ αq satisfies

−
[
A i j(∂̄ αq), j

]
,i =−∂̄

α(Ψt · v+qt)+ ∑
0<β≤α

Cαβ

[
(∂̄ β A i j)(∂̄ α−β q), j

]
,i

− ∑
0≤β<α

Cαβ ∂̄
β

(
A j

i , j Ak
i

)
∂̄

α−β q, j ,

where Cαβ are constants from the product rule. Multiplying this equation with ∂̄ αq
and integrating-by-parts, using the fact that ∂̄ αq = 0 on ∂Ω and that A ≥ 1/2, we
find that
1
2
‖∂̄ αq‖2

1 ≤ ‖∂̄ α−1(Ψt · v+qt)‖0‖∂̄ α+1q‖0 + ∑
0<β≤α

Cαβ

∥∥∥(∂̄ β A i j)(∂̄ α−β q), j

∥∥∥
0
‖∂̄ αq,i ‖0

+ ∑
0≤β<α

Cαβ

∥∥∥∂̄
β

(
A j

i , j Ak
i

)
∂̄

α−β q, j

∥∥∥
0
‖∂̄ αq‖0 +

∥∥∥∂̄
α−1
(

A j
i , j Ak

i

)
∂̄q, j

∥∥∥
0
‖∂̄ αq‖1 .

(2.28)

Let us examine the second term on the right-hand side of (2.28). By Young’s
inequality, for δ > 0,

∑
0<β≤α

Cαβ

∥∥∥(∂̄ β A i j)(∂̄ α−β q), j

∥∥∥
0
‖∂̄ αq,i ‖0 ≤ δ‖∂̄ αq‖2

1 +Cδ ∑
0<β≤α

Cαβ

∥∥∥∂̄
β A ∂̄

α−β Dq
∥∥∥2

0

where Cδ =C/δ . Since ∂̄ 5A ∼ ∂̄ 5DΨP(A)+ ∂̄ 4DΨP(∂̄DΨ,A)+ ∂̄ 3DΨP(∂̄ 2DΨ, ∂̄DΨ,A),
it thus follows that for α = 4 or 5,

(2.29) ‖∂̄ αA ‖0 ≤C‖∂̄ α−2(Ψ− e)‖2
3 ≤C

|√χh|25.5
χ

.
E

χ
.

The linear inequality (2.29) shows that our bootstrap assumptions (2.1a) and (2.1b)
imply that the map h 7→A is linear with respect to these high norms.

We first consider the case that α = 4. From (2.29) when α = β = 4

‖∂̄ αA Dq‖2
0 .

Eβ e−β t

χ
E . εe−γtE .(2.30)
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The Cauchy-Schwarz inequality, together with the Sobolev embedding theorem,
shows that ‖∂̄ 3A ∂̄Dq‖2

0 has the same bound. Next, ‖∂̄ 2A ∂̄ 2Dq‖2
0+‖∂̄A ∂̄ 3Dq‖2

0.
‖Ψ‖2

4‖q‖2
4 . εe−β tE . εe−γtE .

The first, third, and fourth terms on the right-hand side of (2.28) are estimated
in a similar fashion, so we do not provide the details. Hence, by choosing δ > 0
sufficiently small and employing Young’s inequality, we find that

‖q‖2
4 + ∑

α≤4
‖∂̄ αq‖2

1 . E + εX .

To estimate radial derivatives, we use polar coordinates for the disc (with the
usual basis er and eθ ). Expressing the components of the matrix A as

A =

[
A rr A rθ

A θr A θθ

]
,

we may write

div(A ∇q) = r−1(rA rrqr)r + r−1(A rθ qθ )r + r−1(A rθ qr)θ + r−1(r−1A θθ qθ )θ .

It follows that

−A rr
∂̄

αqrr = r−1(rA rr)r∂̄
αqr + r−1(A rθ

∂̄
αqr)r + r−1(A rθ

∂̄
αqr)θ + r−1(r−1A θθ

∂̄
αqθ )θ

− ∂̄
α(Ψt · v+qt)+ ∑

0<β≤α

Cαβ

[
(∂̄ β A i j)(∂̄ α−β q), j

]
,i

− ∑
0≤β≤α

Cαβ ∂̄
β

(
A j

i , j Ak
i

)
∂̄

α−β q, j ,

(2.31)

Let ω = {x ∈ Ω : 1
2 < |x|< 1}. For α ≤ 3, every term on the right-hand side

has L2(ω)-norm bounded by a constant multiple of E . Hence, it follows that

∑
α≤3
‖∂̄ αq‖2

2,ω . E + εX .

Allowing ∂

∂ r to act on (2.31), as many as three times, we conclude that

(2.32) ‖q‖2
5,ω . E + εX .

We return to the inequality (2.28) and consider the case that α = 5. Once
again, we focus on the second term on the right-hand side, the first and third terms
being similar (and easier). From (2.30) ‖∂̄ 5A Dq‖2

0 . εe−γtE . The Cauchy-
Schwarz inequality, together with the Sobolev embedding theorem, shows that
‖∂̄ 4A ∂̄Dq‖2

0 +‖∂̄ 3A ∂̄ 2Dq‖2
0 +‖∂̄ 2A ∂̄ 3Dq‖2

0 . εe−γtE . Finally, using (2.32),
we conclude ‖∂̄A ∂̄ 4Dq‖2

0 . ε‖v‖2
4 . εe−γtE . We conclude that

‖q‖2
4 + ∑

α≤5
‖∂̄ αq‖2

1 . E + εX .
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Then setting α = 0 and letting ∂ 4

∂ r4 act on (2.31) shows that indeed

‖q‖2
6,ω . E + εX .

By using a smooth cut-off function whose support contains Ω\ω , we easily obtain
the interior estimates, and find that ‖q‖2

6. E = εX . Recalling the definition of X
and the estimates from Steps 2, 3, and 4, we finally infer X . E , which concludes
the proof of the lemma. �

Lemma 2.10 (Bounding ∂ l
t q, l = 0,1,2,3 by D(t)). With the bootstrap assump-

tions (2.1a) and (2.1b),and for ε > 0 sufficiently small, there exists a γ > 0 such
that

(2.33)
2

∑
l=0
‖∂ l

t qt‖2
5−2l +‖q‖2

6.5 . εe−γtE +D .

Corollary 2.11. With the bootstrap assumptions (2.1a), (2.1b) and a sufficiently
small ε > 0,

‖v‖2
5.5 + |ht |25 . εe−γtE +D

with γ = β/2−η as defined in Lemma 2.3.

Proof of Corollary 2.11. We write (1.9b) as

v = Dq · (Id−A)−Dq .

Using the basic estimate from Lemma 2.7, we see that

‖v‖5 . (1+
√

ε)‖q‖6 +E
1
2
β

e−β t/2‖Ψ− e‖6 ,

‖v‖6 . (1+
√

ε)‖q‖7 +E
1
2
β

e−β t/2‖Ψ− e‖7 ,

so that an application of linear interpolation (see, for example, Theorem 7.17 in
Adams [?]) provides the inequality

‖v‖2
5.5 . (1+

√
ε)‖q‖2

6.5 +Eβ‖Ψ− e‖2
6.5 .

Using Lemmas 2.3 and 2.10, it follows that

‖v‖2
5.5 . (1+

√
ε)‖q‖2

6.5 +
Eβ (t)e−β t/2

χ(t)
χ(t)‖Ψ− e‖2

6.5

. (1+
√

ε)‖q‖2
6.5 +

Eβ (t)e−β t/2

χ(t)
E (t)

. ε
2e−γtE +D .

Next, using the formula (1.5), we see that

|ht |25 . χ(t)|h|26
|v|22.5
χ(t)

+ ε|v|25

which once again, thanks to Lemmas 2.3 and 2.10, is bounded by a constant mul-
tiple of ε2e−γtE +D . �
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Proof of Lemma 2.10. Step 1: H1 estimates for ∂ l
t q. We make use of the identity

∇q = v ·∇Ψ. It follows that

∇qt = vt ·∇Ψ+ v ·∇Ψt

∇qtt = vtt ·∇Ψ+2vt ·∇Ψt + v ·∇Ψtt

∇qttt = vttt ·∇Ψ+3vtt ·∇Ψt +3vt ·∇Ψtt + v ·∇Ψttt .

Employing Hölder’s inequality and the Sobolev embedding theorem,

‖∇qttt‖2
0 . ‖vttt‖2

0 |h|22 +‖vtt‖2
0 |ht |22 +

‖vt‖2
2

χ
|
√

χhtt |20 +
‖v‖2

2
χ
|
√

χhttt |20 .D

where we have used Lemma 2.2 for the last inequality. We have similar estimates
for qtt , qt , and q so that

(2.34)
3

∑
l=0
‖∂ l

t q‖2
1 .D .

Step 2. H3 estimate for qtt . Just as in the proof of Corollary 2.11, we see that as a
consequence of Lemma 2.9,

(2.35)
2

∑
l=0
‖∂ l

t v‖5−2l . E .

Returning to the equation (2.22a), we estimate −Ψt · v− qt in H1(Ω). By the
Sobolev embedding theorem together with Lemmas 2.4 and 2.3,

(2.36) ‖Ψt‖W 1,∞ . ‖Ψt‖3 .
√

εe−γt/2 ,

so that together with (2.35), ‖Ψt · v‖2
1 . εeγtE . Then, with with (2.34),

(2.37) ‖q‖2
3 . εe−γtE +D .

Next, we return to (2.22b) and estimate f1− qtt in H1(Ω). By Lemma 2.4,
‖Ψt · vt‖2

1 . εe−γtE , while ‖Ψtt · v‖2
1 .

E e−β t

χ
Eβ . εe−γtE . The estimates (2.34)

and (2.37) then show that ‖ f1−qtt‖2
1 . εe−γtE +D so that

‖qt‖2
3 . εe−γtE +D .

A similar estimate then shows that ‖ f2−qttt‖2
1 . εe−γtE +D so that from (2.22c),

‖qtt‖2
3 . εe−γtE +D .

Step 3. H5 estimate for qt . From (2.35) and (2.36), we see that ‖Ψt ·v‖2
3. εe−γtE +

D , so that with Lemmas 2.7 and 2.8, we have that

‖q‖2
5 . εe−γtE +D .

This, in turn, ensures that ‖ f1−qtt‖2
3 . εe−γtE +D so that

‖qt‖2
5 . εe−γtE +D .
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Step 4. H6.5 estimate for q. We first look at the estimate (2.28) with α = 5. We
find that

‖∂̄ 5q‖1 . ‖Ψt · v‖4 +‖qt‖4 + ∑
0<β≤5

∥∥∥(∂̄ β A i j)(∂̄ 5−β q), j

∥∥∥
0

+ ∑
0≤β<5

∥∥∥∂̄
β

(
A j

i , j Ak
i

)
∂̄

α−β q, j

∥∥∥
0
+
∥∥∥∂̄

4
(

A j
i , j Ak

i

)
∂̄q, j

∥∥∥
0

(2.38)

For the first term on the right-hand side, we note that with the Sobolev embedding
theorem and Lemma 2.3,

‖Ψt · v‖k . ‖
√

χΨt‖k
‖v‖3√

χ
+‖Ψt‖3‖v‖k

.
√

εe−γt/2(‖
√

χΨt‖k +‖v‖k) k = 4,5 .

Using the estimate (2.29), we see that

∑
0<β≤5

∥∥∥(∂̄ β A i j)(∂̄ 5−β q), j

∥∥∥
0
.
√

εe−γt/2(‖
√

χ(Ψ− e)‖6 +‖q‖5)

The last two term on the right-hand side of (2.38) are estimated in the same way so
that

‖∂̄ 5q‖1 .
√

εe−γt/2(‖
√

χΨt‖4 +‖
√

χ(Ψ− e)‖6 +‖v‖4 +‖qt‖4) .

Using the formula (2.31), we find that

‖q‖6 .
√

εe−γt/2(‖
√

χΨt‖4 +‖
√

χ(Ψ− e)‖6 +‖v‖4 +‖qt‖4)+‖qt‖4 .(2.39)

The identical procedure with α = 6 then yields

‖q‖7 .
√

εe−γt/2(‖
√

χΨt‖5 +‖
√

χ(Ψ− e)‖7 +‖v‖5 +‖qt‖5)+‖qt‖5 .(2.40)

Linear interpolation between (2.39) and (2.40), we have that

‖q‖6.5 .
√

εe−γt/2(‖
√

χΨt‖4.5 +‖
√

χ(Ψ− e)‖6.5 +‖v‖4.5 +‖qt‖4.5)+‖qt‖4.5

. εe−γt/2E 1/2 +D1/2 .

�

2.6 Lower bound on χ(t)
The heat equation (1.9a) for q can be rewritten as

qt −ak jq,k j−bkq,k = 0 in Ω,(2.41a)
q = 0 on Γ,(2.41b)

q(0, ·) = q0 > 0 in Ω(2.41c)

where the coefficient matrix a = (ak j)k, j=1,2, and the vector b = (b1,b2) are explic-
itly given by:

(2.42) ak j := Ak
i A j

i ; bk := Ak
i, jA

j
i +Ak

i Ψ
i
t .
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We first quote a theorem from [41], that will play an important role in producing
quantitative bounds from below for χ(t).

Lemma 2.12 (Oddson’s Theorem 2 in [41]). Let q ∈ C1,2(Ω) be a supersolution
to (2.41) in the unit disc Ω = B1(0), and let 0 < α ≤ 1

2 be the normalized ellipticity
constant satisfying

a jkξ jξk ≥ α
(
a11 +a22

)
|ξ |2

for any real vector ξ = (ξ1,ξ2). Moreover, let us introduce the quantities

k0(T ) := inf
Ω×[0,T ]

1
a11 +a22

, β (T ) := sup
Ω×[0,T ]

b · x.

Let Jµ denote the Bessel function of the first kind of order µ and ξ0 its first positive
zero. If we define

µ =
β +1

2α
−1, λ =

αξ 2
0

k0
,

then there exists a positive constant m satisfying

q(t,x)≥ mρe−λ t ,

in B1(0)× [σ ,∞[, where ρ stands for the distance from x to the boundary Γ and σ

is an arbitrary small time.

Remark 2.13 (Optimal decay rate for solutions of the heat equation). If we set
A = Id, then problem (2.41) turns into the initial-boundary value problem for the
linear heat equation. In this case k0 =

1
2 , α = 1/2, β ≡ 0, µ = 0+1

1 − 1 = 0, and
λ = ξ 2

0 , where ξ0 stands for the first positive zero of J0(ξ ). In particular, if qheat

denotes the associated solution, then the above lemma implies that

χheat(t) := inf
x∈Γ

(−∂Nqheat(t,x))& e−ξ 2
0 t ,

which is the optimal decay rate in the case of the linear heat equation, as the lowest
positive eigenvalue of the Dirichlet-Laplacian on the two-dimensional disk corre-
sponds exactly to

λ1 = ξ
2
0 .

Corollary 2.14 (Lower-bound for χ(t)). Under the bootstrap assumptions (2.1a)
and (2.1b) with ε small enough, there exists a universal constant C > 0 such that

χ(t)& c1e−(λ1+λ̃ (t))t ,

where c1 =
∫

Ω
q0ϕ1 dx is the first coefficient in the eigenfunction expansion of the

initial datum q0 with respect to the L2 ortho-normal basis {ϕ1,ϕ2, . . .} of the eigen-
vectors of the Dirichlet-Laplacian on B1(0), i.e q0 = c1ϕ1 + c2ϕ2 + . . . . Moreover,
λ̃ (t) ≥ 0 satisfying λ̃ (t) ≤ Cε for some positive constant C. In particular, with
ε > 0 sufficiently small so that Cε < η/4, we obtain the improvement of the boot-
strap bound (2.1b) given by χ(t)& c1e−(λ1+η/4)t .
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Proof. The proof of Oddson’s Theorem 2 in [41] (Lemma 2.12) relies on the con-
struction of a comparison function of the form v(t,r) = r−µJµ(ξ0r)e−λ t , where
λ ,µ,ξ0 are given in the statement of Lemma 2.12, Jµ is a Bessel function of the
first kind and r = |x| is the radial coordinate. The first property of v which is im-
portant for the proof is that v vanishes at the spatial boundary Γ and approaches it
like c(1−r)e−λ t as r→ 1. This is a consequence of the fact that limr→1

Jµ (ξ0r)
rµ (1−r) = c

for some constant c > 0, a well known property of Bessel functions. The second
important property is that v is a subsolution for (2.41) (and it is constructed with
the help of maximal Pucci operators as explained in detail in [41]).

The goal is to prove that for any arbitrarily small time σ > 0 there exists a
strictly positive constant δ (σ) > 0 such that q− δv is a positive supersolution to
the parabolic problem (2.41) on the time interval [σ ,∞[. The desired lower bound
for q then follows from the weak maximum principle.

Since v is a subsolution, it follows that for any δ > 0, q−δv is a supersolution.
The positivity of q− δv at t = σ follows from the parabolic Hopf lemma, from
which we infer the existence of a constant δ (σ) such that q

v > δ (σ) uniformly
over Ω̄. Note that we have used the fact that v(σ ,r) behaves like C(1− r) near the
boundary Γ for some positive constant C. Therefore it follows that the constant m
in the statement of Lemma 2.12 a priori depends on the time σ > 0, and moreover,
m is proportional to the lower bound for −∂q/∂N|t=σ on Γ.

From the proof of the parabolic Hopf lemma (see for instance Theorem 3.14
in [21]), the value −∂q/∂N|t=σ is proportional to the minimal value of the tem-
perature q on a space-time region of the form Kσ := B1−Cσ × [σ/2,3σ/2], di-
vided by σ (which is roughly the distance of Kσ from the parabolic boundary of
Ω× [0,2σ ]). Note that, unlike the elliptic case, we are forced to take into account
the time-dependence of the solution and in particular the region Kσ cannot be cho-
sen uniformly for all times, but only for times greater or equal some arbitrarily
small σ > 0. However, our solution is continuous all the way to t = 0 and we do
nevertheless obtain a lower bound for all times due to the Taylor sign condition;
namely, due to (1.18),

−∂Nq0 =
−∂Nq0

c1
c1 & c1.

Note however that if we define the dimensionless quantity L= (−∂Nq0)/c1 > 0 and
assume no universal bound on L from below, the only modification in the statement
of the main theorem will be that the smallness condition on initial data (1.22) will
additionally depend on L.

As to the bound on λ̃ , note that the exponent λ = λ ((ai j),(bi)) depends on the
coefficients (ai j)i, j=1,2 and (bi)i=1,2 through the relationship λ = αξ 2

0 /k0. Since
k0 and ξ0 vary continuously as the coefficients are varied, it proves that λ depends
continuously on the coefficients ai j,bi of the parabolic operator. On the other hand,
by Remark 2.13 it follows λ |ai j=δi j,bi=0 = λ1. As a consequence

|λ̃ (t)|= |λ (t)−λ1| ≤C(‖A− Id‖L∞ ,‖b‖L∞) = O(‖D2(Ψ− e)‖L∞ ,‖Ψt‖L∞).
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�

3 Energy identity and the higher-order energy estimate

3.1 The energy identity
Much of our analysis is founded on basic higher-order energy identities for the

classical Stefan problem. These identities provide the geometrical control of the
evolving phase boundary, which in turn controls the decay of the temperature func-
tion; moreover, these identities explain our definition of the higher-order energy
function E and the dissipation function D .

Proposition 3.1 (Energy identity). With R = 1 + h and RJ = RJ−1, sufficiently
smooth solutions to the classical Stefan problem satisfy

d
dt

E (t)+D(t) =
3

∑
j=0

(∫
Γ

(−∂Nqt)R2
J |∂̄ 6−2 j

∂
j

t h|2 +
∫

Ω

(R j + R̃ j)+
∫

Γ

G j

)

+
3

∑
j=1

(∫
Ω

(S j + S̃ j)+
∫

Γ

H j

)
,(3.1)

where the error terms R j, R̃ j, S j, S̃ j, G j, and H j are given by (A.14), (A.15),
(A.23), (A.27), (A.16), and (A.24), respectively.

The proof is provided in Appendix A.

Remark 3.2. On the right-hand side of (3.1), we have isolated the error term

(3.2) GHopf =
∫

Γ

(−∂Nqt)R2
J |∂̄ 6−2 j

∂
j

t h|2 dx′,

from the other boundary-integral error terms G j and H j; indeed, GHopf can only
be thought of as an “error term” on a transient time-interval, for after a sufficiently
large time, we will no longer be able to control GHopf via energy methods, and
instead, we have to rely upon a Hopf-type argument to prove that GHopf < 0.

3.2 Energy estimates
To control some of the highest-order error terms in our energy estimates, we

shall make use of the following technical lemma, whose proof is given in [15] and
[16].

Lemma 3.3. Let H
1
2 (Ω)′ denote the dual space of H

1
2 (Ω). There exists a positive

constant C such that

‖∂̄F‖ 1
2 (Ω)′

≤C‖F‖
H

1
2 (Ω)

for F ∈ H
1
2 (Ω) .

As a consequence of the energy identity (3.1), we can establish our fundamental
energy inequality.
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Proposition 3.4 (The energy estimate). Suppose that the bootstrap assumptions (2.1a)
and (2.1b) hold with ε > 0 and η > 0 sufficiently small. Letting K = ‖q0‖4

‖q0‖0
,

(3.3)

sup
0≤s≤t

E (s)+
1
2

∫ t

0
D(s)ds≤E (0)+CK2

∫ t

0
eηsE (s)ds+O(

√
ε) sup

0≤s≤t
E (s) for t ∈ [0,T ] .

Proof. Throughout the proof, we will rely on the a priori bounds of Section 2; in
particular, we will often make use of Lemmas 2.3, 2.6, 2.9, and 2.10.

Step 1. The estimate for GHopf in (3.2) We claim that

(3.4) |GHopf| ≤CK2
∫ t

0
eηsE (s)ds.

Note that∣∣∣∫ t

0

∫
Γ

(−∂Nqt)R2
J

∣∣∂̄ 6h
∣∣2∣∣∣≤C

∣∣∣∫ t

0

∫
Γ

(−∂Nqt)

−∂Nq
(−∂Nq)

∣∣∂̄ 6h
∣∣2∣∣∣≤C

∫ t

0

∣∣∣ ∂Nqt

−∂Nq

∣∣∣
L∞

E (s)ds.

In order to bound the term
∣∣ ∂Nqt

∂Nq

∣∣, we need a decay estimate for the numerator
|∂Nqt |. The Sobolev embedding theory would yield the bound |∂Nqt |L∞ . ‖qt‖2+δ

for δ > 0, but by definition of our decay norm Eβ , it is only the H2(Ω)-norm of qt
for which we have the desired decay. Thus, we arrive at the decay estimate for qt
by using a comparison principle together with Theorem 1 in Oddson [41]; indeed,
in Appendix B, we prove that

(3.5) |∂Nqt |L∞ . K2c1e−β t/2.

It then follows from the bootstrap assumption (2.1b) that

∣∣∣ ∂Nqt(s)
−∂Nq(s)

∣∣∣
L∞
≤ CK2c1e−(λ1−η/2)s

c1e−(λ1+η/2)s ≤CK2eηs ,

which, in turn, establishes (3.4).

Step 2. Estimates for R j, R̃ j, and G j in (3.1). Our objective will be to show that
(3.6)∣∣∣∫ t

0

∫
Ω

(R j + R̃ j)+
∫ t

0

∫
Γ

G j

∣∣∣≤ O(
√

ε) sup
0≤s≤t

E (s)+δ

∫ t

0
D(s), for j = 0, . . .3.

We establish (3.6) for the most difficult case, j = 0. The case when j = 1, 2, or
3 can then be proven in a similar fashion. The proof for j = 0 is divided into three
parts, and we shall begin with the term R0.
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Estimates for the integral
∫

Ω
R0

As derived in (A.9), the term R0 can be written as

R0 := µ

5

∑
l=1

cl ∂̄
lAk

i ∂̄
6−lq,k∂̄

6vi

︸ ︷︷ ︸
=:I1

+(µq,kAs
i A

k
r),s ∂̄

6
Ψ

r
κ ∂̄

6vi︸ ︷︷ ︸
=:I2

+µ{∂̄ 6,Ak
i }q,k∂̄

6vi︸ ︷︷ ︸
=:I3

+µAs
i ∂̄

6
Ψ

rAk
rq,k {∂̄ 6,∂s}vi︸ ︷︷ ︸
=:I4

− (µAk
i ),k ∂̄

6q∂̄
6vi︸ ︷︷ ︸

=:I5

−µAk
i {∂̄ 6,∂k}q∂̄

6vi︸ ︷︷ ︸
=:I6

−µ

6

∑
l=1

cl ∂̄
lAk

i ∂̄
6−lvi

,k
(
∂̄

6q+ ∂̄
6
Ψ · v

)︸ ︷︷ ︸
=:I7

+dl ∂̄
6−lw · ∂̄ lv

(
∂̄

6q+ ∂̄
6
Ψ · v

)︸ ︷︷ ︸
=:I8

− ∂̄
6
Ψ · vt

(
∂̄

6q+ ∂̄
6
Ψ · v

)︸ ︷︷ ︸
=:I9

 .

(A.9)

Estimate of
∫

Ω
I1. For the extremal case l = 5,∣∣∣∫

Ω

∂̄
5Ak

i ∂̄q,k ∂̄
6vi
∣∣∣≤ ‖∂̄ 5Ak

i ‖L4‖∂̄q,k ‖L4‖∂̄ 6vi‖0

. ‖Ψ− Id‖6.5‖∂̄q,k ‖0.5‖∂̄ 6vi‖0

. |h|6‖q‖4‖∂̄ 6vi‖0

.
‖q‖4

χ(t)1/2 E 1/2D1/2

≤ C
δ

e−γt
εE +δD ,

where we have used Hölder’s inequality and the Sobolev embedding theorem, as
well as Young’s inequality together with Lemma 2.3 for the last inequality.

If l = 4, then Lemmas 2.6 and 2.10 and Corollary 2.11 show that∣∣∣∫
Ω

∂̄
4Ak

i ∂̄
2q,k ∂̄

6vi
∣∣∣ ≤ ‖∂̄ 4Ak

i ‖0‖∂̄ 2q,k ‖L∞‖∂̄ 6vi‖0 . |h|4.5‖q‖4.5D
1/2

. ε(‖q‖2
4.5 +D). ε(εe−γtE +D). ε

2e−γtE + εD .

The case when l = 1,2 or 3 are estimated in the same way and yield the same
bound.

Estimates of
∫

Ω
Ik for k = 2,3,4,5. The following estimate holds:∣∣∣∫

Ω

I2 + I3 + I4 + I5

∣∣∣. C
δ

εe−γtE +δD .
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For the integral of I2, an application of an L∞-L2-L2 Hölder’s inequality together
with Lemmas 2.3 and 2.6 leads to∣∣∣∫

Ω

I2

∣∣∣. ‖(µq,kAs
i A

k
r),s ‖L∞‖∂̄ 6

Ψ
r‖0‖∂̄ 6vi‖0

. ‖µAs
i A

k
r‖W 1,∞‖q‖3

E 1/2

χ1/2 D1/2 .
C
δ

e−γt
εE +δD .

The estimates for terms I3, I4, I5, and I6 are established in the same manner. Note
that the commutator {∂̄ 6,Ak

i }q,k in I3 is defined in (2.19b) and has at most five
derivatives acting on q,k; moreover, the expression {∂̄ 6,∂k} f = ∂̄ 6∂k f − ∂k∂̄ 6 f is
of the form ∑1≤|α|≤6 aα∂α f , where the aα are smooth uniformly bounded functions
on the set ω = {x ∈Ω

∣∣ 1
2 ≤ |x| ≤ 1}.

Estimate
∫

Ω
I7. We first consider the case that l = 6, and write∫

Ω

∂̄
6Ak

i v,ik
(
∂̄

6q+ ∂̄
6
Ψ · v

)
=
∫

Ω

∂̄
6Ak

i v,ik ∂̄
6q︸ ︷︷ ︸

J1

+
∫

Ω

∂̄
6Ak

i v,ik ∂̄
6
Ψ · v︸ ︷︷ ︸

J2

.

Thanks to Lemma 3.3, we see that J1≤‖∂̄ 5A‖0.5‖Dv∂̄ 6q‖0.5. By linear interpo-
lation and the Sobolev embedding theorem, ‖Dv∂̄ 6q‖0.5. ‖v‖3‖q‖6+‖v‖2.5‖q‖6.5.
‖v‖3‖q‖6.5. It thus follows that

J1 . |h|6‖5.5‖v‖3‖q‖6.5 .
C
δ
|h|26‖v‖2

3 +δ‖q‖2
6.5 .

CE Eβ e−β t

δ χ(t)
. δD + εe−γtE +δ (εe−γtE +D),

for some positive constant γ > 0, where we have employed Lemmas 2.3 and 2.10
with Corollary 2.11.

As for the integral of J2, we again use Lemma 3.3 to deduce that∣∣∣∫
Ω

∂̄
6Ak

i v,ik ∂̄
6
Ψ · v

∣∣∣≤ ‖∂̄ 5Ak
i ‖0.5‖v,ik ∂̄

6
Ψ · v‖0.5 . ‖v‖2

2.5‖Ψ− Id‖2
6.5 . e−β tEβ

E

χ(t)
. εe−γtE ,

where γ > 0 is given by Lemma 2.3. Now for the case that l = 5 in the integral of
the term I7, it follows that∣∣∣∫

Ω

∂̄
5Ak

i ∂̄v,ik (∂̄
6q+ ∂̄

6
Ψ · v)

∣∣∣≤ ‖∂̄ 5Ak
i ‖L4‖∂̄v,ik ‖L4‖∂̄ 6q+ ∂̄

6
Ψ · v‖0

. ‖∂̄ 5Ak
i ‖0.5‖∂̄v,ik ‖0.5‖∂̄ 6q+ ∂̄

6
Ψ · v‖0 .

E 1/2

χ(t)1/2 ‖v‖2.5E
1/2 .

E1/2
β

e−β t/2

χ(t)1/2 E .
√

εe−γtE ,

where we used Lemma 2.3 again and the fact that (by definition of E ), ‖∂̄ 6q+
∂̄ 6Ψ · v‖2

0 . E . Hereby we used the estimate (2.2). The remaining cases l =
1,2,3,4 follow analogously and the estimates rely on a systematic use of Lem-
mas 2.3, 2.6, 2.10, and Corollary 2.11.
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Estimate of
∫

Ω
I8. For the case that l = 1 or 2, we have that∣∣∣∫

Ω

∂̄
6−lw · ∂̄ lv

(
∂̄

6q+ ∂̄
6
Ψ
)∣∣∣. ‖∂̄ 6−lw‖0‖∂̄ lv‖L∞‖∂̄ 6q+ ∂̄

6
Ψ · v‖0 .

D1/2

χ(t)1/2 E1/2
β

e−β t/2E 1/2

.
εe−γt

δ
E +δD ,

while for the case that l = 3,4,5 or 6,∣∣∣∫
Ω

∂̄
6−lw · ∂̄ lv

(
∂̄

6q+ ∂̄
6
Ψ · v

)∣∣∣. ‖∂̄ 6−lw‖L∞‖∂̄ lv‖0‖∂̄ 6q+ ∂̄
6
Ψ · v‖0 . εD ,

where we used the Sobolev embedding H1+δ ↪→ L∞ and Lemma 2.6.

Estimate of
∫

Ω
I9. We see that∣∣∣∫

Ω

∂̄
6
Ψ ·vt(∂̄

6q+ ∂̄
6
Ψ ·v)

∣∣∣. ‖∂̄ 6
Ψ‖0‖vt‖L∞‖(∂̄ 6q+ ∂̄

6
Ψ ·v)‖0.

E 1/2

χ(t)1/2 E1/2
β

e−β t/2E 1/2.
√

εe−γt/2E ,

with the decay rate γ > 0 given in Lemma 2.3.

Estimate of
∫

Ω
R̃1

In the same manner, we find that
∣∣∣∫Ω

R̃1

∣∣∣. εe−γtE +δD .

Estimate of the boundary integral
∫

Γ
G0

We begin with the formula (A.10) (whereby we recall (1.8) ñ=AN =
√

R2 +R2
θ

n).

G0 =−∂Nq∂̄
6
Ψ · ñ∂̄

6
Ψ · ñt︸ ︷︷ ︸

K1

−∂Nq
d
dt

[
R∂̄

6h
(
−RJ +

5

∑
a=0

cJ
a∂̄

ah∂̄
6−a

ξ · (hξ −hθ T )
)]

︸ ︷︷ ︸
K2

+∂Nq
d
dt

[(
−RJ +

5

∑
a=0

cJ
a∂̄

ah∂̄
6−a

ξ · (hξ −hθ T )
)2
]

︸ ︷︷ ︸
K3

+
6

∑
l=1

al(−∂Nq)∂̄ 6
Ψ · ñ∂̄

6−l(v−w) · ∂̄ l ñ︸ ︷︷ ︸
K4

.

(A.10)

Estimate of
∫

Ω
K1. Note that∣∣∣∫

Γ

∂Nqt ∂̄
6
Ψ · ñ∂̄

6
Ψ · ñt

∣∣∣. |∂Nqt |L∞ |ñt |L∞ |∂̄ 6
Ψ|20 . |∂Nqt |1|ht |2

E

χ(t)
. Eβ

e−β t

χ(t)
E . εe−γtE ,

where we used the trace theorem and Lemma 2.3.

Estimates of
∫

Ω
K2 and

∫
Ω

K3. These two integrals are lower-order and thanks to
Lemmas 2.6 and 2.3 are bounded by εe−γtE + δD . Note that |J| = 1+O(ε) re-
mains close to 1 due to the a priori smallness bounds from Lemma 2.6.
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Estimate of
∫

Ω
K4. The estimate of

∫
Ω

K4 requires some explanation, as it has the
largest derivative count in G0. In Appendix A, we derive the identity

(3.7) ∂̄
6
Ψ · ñ = RJ ∂̄

6h−RJ +
5

∑
a=0

cJ
a∂̄

ah∂̄
6−a

ξ · (hξ −hθ τ),

where we recall that τ is the unit tangent defined by (1.3) and RJ = RJ−1. Substi-
tution of (3.7) in the integral

∫
Γ
(−∂Nq)∂̄ 6Ψ · ñ∂̄ 6−l(v−w) · ∂̄ l ñ then yields∣∣∣∫

Γ

(−∂Nq)∂̄ 6
Ψ · ñ∂̄

6−l(v−w) · ∂̄ l ñ
∣∣∣. ∣∣∣∫

Γ

(−∂Nq)∂̄ 6−l(v−w) · ∂̄ l ñ
∣∣∣

+
∣∣∣∫

Γ

(−∂Nq)O(∂̄ 5h) · ñ∂̄
6−l(v−w) · ∂̄ l ñ

∣∣∣+ ∣∣∣∫
Γ

(−∂Nq)R∂̄
6h∂̄

6−l(v−w) · ∂̄ l ñ
∣∣∣.(3.8)

The first and the second integrals on the right-hand side of (3.8) are easily esti-
mated using Hölder’s inequality and the Sobolev embedding theorem, while the
third integral on the right-hand side of (3.8) requires some care due to the presence
of ∂̄ 6h. If l = 1 or l = 2, then∣∣∣∫

Γ

(−∂Nq)R∂̄
6h∂̄

6−l(v−w) · ∂̄ l ñ
∣∣∣≤ |√−∂Nq∂̄

6h|0|
√
−∂NqR|L∞(|∂̄ 4v|1 + |∂̄ 4ht |1)|∂̄ l ñ|L∞

. E 1/2‖q‖1/2
2 (εe−γt/2E 1/2 +D1/2)ε . ε

2P(E ,Eβ )e
−γtE +δD ,

where we have used Corollary 2.11, Lemma 2.6, and then Young’s inequality
for the last estimate. The case that l = 3, 4, or 5 follows similarly from Lem-
mas 2.3, 2.6, and 2.10. The case l = 6 appears problematic because of the term
∂̄ 6ñ ·τ which, modulo coefficients, is essentially ∂̄ 7h, one derivative more than ap-
pears in E . The integral is, however, easily estimated thanks to the presence of an
exact derivative, formed from the integrand ∂̄ 7h ∂̄ 6h.

We set Jh =
√

R2 +h2
θ

and write the unit tangent to Γ(t) as t= J−1
h (Rτ +hθ N).

A simple computation shows that

nθ = J−2
h (R2 +2h2

θ +Rhθθ )t .

Since v−w = t · (v−w) t on Γ, we see that ∂̄ 6n · (v−w) = t · (v−w) ∂̄ 6n · t. We
then write

∂̄
6ñ · (v−w) = g1 ∂̄

7h+g2,

where g1 = t · (v−w)J−2
h R, and where g2 is a lower-order term in v−w and has at

most six tangential derivatives on h. We then write∫
Γ

(−∂Nq)R ∂̄
6h(v−w) · ∂̄ 6ñ =

∫
Γ

(−∂Nq)Rg1 ∂̄
6h ∂̄

7h+
∫

Γ

(−∂Nq)R ∂̄
6hg2

=−1
2

∫
Γ

∂̄ [(−∂Nq)Rg1] |∂̄ 6h|2 +
∫

Γ

(−∂Nq)R ∂̄
6hg2
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Arguing in a similar fashion as for the case that l = 1 or 2, we see that∣∣∣∫
Γ

(−∂Nq)R∂̄
6h(v−w) · ∂̄ 6ñ

∣∣∣.√εe−γtE .

Step 3. Estimates for S j, S̃ j, H j in (3.1). We next prove that
(3.9)∣∣∣∫ t

0

∫
Ω

(S j + S̃ j)+
∫ t

0

∫
Γ

H j

∣∣∣≤ O(
√

ε) sup
0≤s≤t

E (s)+δ

∫ t

0
D(s), j = 1,2,3.

We will analyze the case that j = 1, as the estimates for the case that j = 2 or 3
follow in the same manner. We begin with the definition of S1 given in (A.23) as

S1 := ∑
0<a+b<6
a≤5,b≤1

cabµ∂̄
a
∂

b
t Ak

i ∂̄
5−a

∂
1−b
t q,k∂̄

5vi +S′1

−
5

∑
l=1

dlµ∂̄
5−l

Ψt · ∂̄ lv
(
∂̄

5qt + ∂̄
5
Ψt · v

)
−

5

∑
l=1

clµ∂̄
lAk

i ∂̄
5−lvi

,k
(
∂̄

5qt + ∂̄
5
Ψt · v

)
,

(A.23)

where S′1 is a lower-order term given by

S′1 = (µq,kAs
i A

k
r),s ∂̄

5
Ψ

r
t ∂̄

5vi +{∂̄ 5
∂t ,Ak

i }q,k∂̄
5vi +{∂̄ 5Ak

t,i}q,k∂̄
5vi +µAs

i ∂̄
5
Ψ

r
t Ak

rq,k {∂̄ 5,∂s}vi

−(µAk
i ),k ∂̄

5qt ∂̄
5vi +µAk

i ∂̄
5
∂

j
t q{∂̄ 5,∂k}vi +µAk

i {∂̄ 5,∂k}∂tq∂̄
5vi

Most of the estimates are completely standard and we focus on the more problem-
atic terms, characterized by the highest number of derivatives applied to two out
of the three terms in our cubic integrands. For illustration, in the first term on the
right-hand side of (A.23) we analyze the cases (b = 0,a = 1) and (b = 0,a = 5). If
(b = 0,a = 1) then we first integrate-by-parts and an L∞-L2-L2 Hölder’s inequality
to find that∣∣∣∫

Ω

∂̄Ak
i ∂̄

4
∂tq,k∂̄

5vi
∣∣∣ = ∣∣∣∫

Ω

∂̄
2Ak

i ∂̄
3
∂tq,k∂̄

5vi +
∫

Ω

∂̄Ak
i ∂̄

3
∂tq,k∂̄

6vi
∣∣∣

≤ ‖∂̄Ak
i ‖W 1,∞‖∂̄ 3

∂tq,k‖0(‖∂̄ 5vi‖+‖∂̄ 6v‖0)

≤ |h|3.5‖qt‖4(‖∂̄ 5vi‖+‖∂̄ 6v‖0). εD ,

where Lemmas 2.3 and 2.10 have been used. If (b = 0,a = 5) then∣∣∣∫
Ω

∂̄
5Ak

i ∂tq,k∂̄
5vi
∣∣∣≤ |h|6‖qt‖2‖∂̄ 5v‖0 ≤

E 1/2

χ(t)1/2 Eβ (t)
1/2e−β t/2D1/2 .

εe−γt

δ
E +δD ,

where we used Lemmas 2.3, 2.6, and 2.9. The remaining estimates in the expres-
sions (A.23) and (A.26) for S1 and S̃1 follow in the identical manner. As to the
boundary integral of H1, we state the formula for the integrand derived in (A.24)
as
(A.24)

H1 := 2∂Nq∂̄
5htRJ

4

∑
a=0

∂̄
aht ∂̄

5−a
ξ · ñ+

4

∑
l=1

al(−∂Nq)∂̄ 5
Ψ · ñ∂̄

5v · ñ∂̄
5−l(v−w) · ∂̄ l ñ.
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We consider the boundary integral of the first term on the right-hand side. We begin
with the interpolation bound

(3.10) |ht |4 ≤ |ht |1/2
3 |ht |1/2

5 .
√

ε
D1/4

χ(t)1/4 ,

where we have used (2.18) to bound |∂̄ 3ht | and the definition of D given in (1.12).
If a = 4 in the first term of the right-hand side of (A.24), then∣∣∣∫

Γ

∂Nq∂̄
5htRJ ∂̄

4ht ∂̄ ξ · ñ
∣∣∣ = 1

2

∣∣∣∫
Γ

∂Nq∂̄ (|∂̄ 4ht |2)RJ ∂̄ ξ · ñ
∣∣∣

.
∣∣∣∫

Γ

∂̄ (∂Nq∂̄ ξ · ñ)|∂̄ 4ht |2
∣∣∣. ‖q‖4ε

D1/2

χ(t)1/2 . ε
3/2e−γtD1/2

. ε
3/2e−2γt + ε

3/2D ,

where we have once again used Lemma 2.3 in second inequality, the estimate
(3.10), and Young’s inequality. If a ∈ {0,1,2,3} then∣∣∣∫

Γ

∂Nq∂̄
5htRJ ∂̄

aht ∂̄
5−a

ξ · ñ
∣∣∣ . |∂Nq|L∞ |∂̄ 5ht |0|RJ|L∞ |∂̄ aht |0|∂̄ 5−a

ξ · ñ|L∞

. ‖q‖3
D1/2

χ(t)1/2 ε . ε
3/2e−γtD1/2 . ε

3/2e−2γt + ε
3/2D ,

where we used Lemmas 2.6 and 2.3 and the same idea as above. The estimates
for the second term on the right-hand side of (A.24) follow in an analogous vein,
relying crucially on Lemmas 2.6 and 2.3. This finishes the proof of (3.9).

Step 4. The proof of the lemma is a direct consequence of the bounds (3.4), (3.6),
and (3.9). �

4 Existence for all time t ≥ 0 and nonlinear stability

4.1 Structure of the proof
The basic goal in our strategy for global-in-time existence and decay of the

temperature function is to prove that on any time-interval on which the bootstrap
assumptions (2.1a) and (2.1b) are valid, we have that

sup
0≤s≤t

E (s)+
∫ t

0
D(s)ds≤CKE (0),

where CK > 0 is some explicit constant depending on K. Upon choosing the initial
data (q0,h0) sufficiently small, we can obtain an improvement of the first bootstrap
bound in (2.1a). In Section 4.2 we show the improvement of the bootstrap assump-
tion on Eβ in (2.1a) and in Corollary 2.14 we have already shown the improvement
of the bootstrap assumption (2.1b). By a continuity argument this leads to a global
existence result.

In order to implement the above strategy, we start with the basic energy inequal-
ity given by (3.3). Note however the presence of an exponentially growing term
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CK2 ∫ t
0 eηsE (s)ds on the right-hand side of (3.3). That term appears by treating

the terms
∫

Γ
(−∂Nqt)R2

J |∂̄ 6−2 j∂
j

t h|2 dθ , j = 0,1,2,3 as error terms. By applying a
straightforward Gronwall-type argument, this will be enough to guarantee that so-
lutions to the classical Stefan problem (1.9) exist on a sufficiently long time-interval
[0,TK ], where the time TK may be larger than the time of existence guaranteed by
our local well-posedness theorem in [29]. As we explained in the introduction, by
a sufficiently long time-interval, we mean a time TK after which the dynamics of
the Stefan problem (1.9a) are, in fact, dominated by the projection of the solution
onto the first eigenfunction ϕ1 of the Dirichlet-Laplacian.

To prove global existence we need, however, more refined estimates that will
show that the

∫
Γ
(−∂Nqt)R2

J |∂̄ 6−2 j∂
j

t h|2 dθ are in fact sign-definite for t ≥ TK , lead-
ing to the elimination of the exponentially-in-time growing bounds. First, in Sec-
tion 4.3 we prove strict positivity of the term ∂Nqt at time TK . Finally in Section 4.4,
we use a comparison principle to show that ∂Nqt remains positive after time TK .
This allows us, in turn, to prove the uniform-in-time energy bound and extend the
solution for all time t ≥ 0.

4.2 Boundedness of Eβ

The following lemma shows that under the bootstrap assumptions, the bound
on Eβ +

∫ t
0 D(s)ds from (2.1b) is improved.

Lemma 4.1. There exists a constant C̃ and ε > 0 sufficiently small, such that if the
bootstrap assumptions (2.1a) and (2.1b) hold with such ε and C̃, then

Eβ (t)+
∫ t

0
D(s)ds <

C̃
2

Eβ (0).

Proof. We set

x(t)= ‖q(t)‖2
4+‖qt(t)‖2

2+‖qtt(t)‖2
0 and recall that D(t)= ‖q(t)‖2

5+‖qt(t)‖2
3+‖qtt(t)‖2

1 .

Step 1. Energy inequality for qtt . From equation (2.22c), we see that
1
2

d
dt
‖qtt‖2

0 +‖∇Ψqtt‖2
0 =

∫
Ω

f2 qtt ,

where the forcing term f2 is defined just below equation (2.22). We next show that
the right-hand side can be bounded by εD. We first focus on the term (Ψt · v)tt in
the forcing function f2. Using the product rule we obtain∫

Ω

(Ψt · v)tt qtt =
∫

Ω

Ψttt · vqtt︸ ︷︷ ︸
A1

+
∫

Ω

2Ψtt · vt qtt︸ ︷︷ ︸
A2

+
∫

Ω

Ψt · vtt qtt︸ ︷︷ ︸
A3

.

For the integral A1, we see that∣∣∣∫
Ω

Ψttt · vqtt

∣∣∣≤ ‖Ψttt‖0‖v‖L∞‖qtt‖0 . |httt |0.5‖v‖2‖qtt‖0 . εD,
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where we used the bound (2.26) to estimate |httt |0.5 by E 1/2. The estimate |A2|.
εD follows analogously to the estimate for term A1 and the bound on A3 follows
from ∣∣∣A3

∣∣∣. ‖Ψt‖L∞‖vtt‖0‖qtt‖0 . ‖Ψt‖2 . εD,

where we have used Lemma 2.6 to infer that ‖Ψt‖2 . ε . All of the remaining terms
in the forcing function f2 can be estimated by a straightforward application of the
Sobolev embedding theorem together with Lemma 2.6 (to guarantee the smallness
of various Sobolev norms applied to the coefficient matrix (Ak

i )k,i=1,2). Thus, in
summary,

(4.1)
1
2

d
dt
‖qtt‖2

0 +‖∇Ψqtt‖2
0 ≤Cε D.

Step 2. Elliptic estimates. We next prove that the quantities x and y are respec-
tively controlled by ‖qtt‖2

0 and ‖∇Ψqtt‖2
0. Using the elliptic regularity estimate of

Lemma 2.8, the elliptic equations (2.22), and Lemma 2.6, it follows that

(4.2) ‖qt‖2 . ‖qtt‖0 +‖ f1‖0 ,

and

(4.3) ‖q‖4 . ‖qt‖2 +‖ f0‖2 . ‖qtt‖0 +‖ f1‖0 +‖ f0‖2 .

A straightforward application of the Sobolev embedding theorem together with
Lemma 2.6 implies that

(4.4) ‖ f1‖2
0 +‖ f0‖2

2 . εx(t).

Hence, with (4.2)–(4.4),
x(t). ‖qtt‖0 + εx(t) ,

so that for ε > 0 taken sufficiently small,

x(t). ‖qtt(t)‖2
0 .

Since ‖ f1‖2
1 +‖ f0‖2

3 . εD(t), the same argument provides

(4.5) D. ‖qtt‖2
1 . ‖∇qtt‖2

0 . ‖∇Ψqtt‖2
0 ,

the last inequality following from the uniform lower-bound of the matrix AAT .

Step 3. Poincaré inequality. The following bound holds:

(4.6) (λ1−O(ε))‖ f‖2
0 ≤ ‖∇Ψ f‖2

0 ,

where ∇Ψ = AT ∇ and f ∈ H1
0 (Ω). To see (4.6), note that the inequalities (2.21)

and (2.14) show that
‖A− Id‖L∞ . ε ,

from which it follows that Ak
i A j

i ξkξ j ≥ (1−O(ε))|ξ |2 for all ξ ∈R2. The Poincaré
inequality λ1‖ f‖2

0 ≤ ‖∇ f‖2
0 for all q ∈ H1

0 (Ω) then concludes the proof.
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Step 4. The differential inequality and decay. From (4.1) and (4.5) we obtain that
1
2

d
dt
‖qtt‖2

0 +(1−O(ε))‖∇Ψqtt‖2
0 ≤ 0.

Using the Poincaré inequality (4.6), it follows that
d
dt
‖qtt‖2

0 +(2λ1−O(ε))‖qtt‖2
0 ≤ 0.

From this differential inequality, we immediately infer the bound

‖qtt(t)‖2
0 ≤ ‖qtt(0)‖e−(2λ1−O(ε))t .

From the elliptic estimate in Step 2, it finally follows that

x(t)≤C‖qtt(0)‖2
0e−(2λ1−O(ε))t ≤C′Eβ (0)e

−(2λ1−O(ε))t .

Since Eβ (t) = x(t)eβ t and β = 2λ1−η < 2λ1−O(ε) for ε sufficiently small, it is
now clear that we can choose C̃ so that on the time interval of validity of bootstrap
assumptions (2.1a) and (2.1b) we actually have the improved bound Eβ (t)≤ C̃

2 e−β t .
�

4.3 Pointwise positivity of ∂Nqt at time TK = C̄ lnK
Lemma 4.2. Assume that the solution (q,h) to the Stefan problem (1.9) exists on
a given time interval [0,T ]. Let the bootstrap assumptions (2.1a) and (2.1b) hold
on that time interval with ε > 0 sufficiently small, and assume the smallness as-
sumption (1.22) for the initial data. There exists a universal constant C̄ such that
if T ≥ TK := C̄ lnK, then

−qt(TK ,x)>Cc1e−λ1TK ϕ1(x), x ∈ B1(0),

where ϕ1 is the first eigenfunction of the Dirichlet-Laplacian on Ω and c1 =
∫

Ω
q0ϕ1 dx.

As a consequence,
inf
x∈Γ

∂Nqt(TK ,x)> 0.

Proof. Step 1. Hardy-type estimate. As a consequence of the higher-order Hardy
inequality (see Lemma 1 in [18]) and the Sobolev embedding theorem, for any
f ∈ H2.25(B1(0))∩H1

0 (B1(0)),

(4.7) sup
x∈B1(0)

∣∣∣∣ f (x)
ϕ1(x)

∣∣∣∣≤C‖ f‖2.25,

where ϕ1 is the first eigenfunction of the Dirichlet-Laplacian on the unit ball.

Step 2. The Duhamel formula. Let

q0 =
∞

∑
j=1

c jϕ j

be the eigenvector decomposition of the initial datum q0 with respect to the L2

orthonormal basis {ϕ1,ϕ2, . . .} associated with the Dirichlet-Laplacian on the unit
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disk B1(0). Writing the time-differentiated Stefan problem as a perturbation of the
linear heat equation, we see that in Ω, qt satisfies

(4.8) qtt −∆qt = N(q,h),

where

(4.9) N(q,h) := (ai j−δi j)qt,i j +biqt,i +ai j,tq,i j +bi,tq,i+Ak
,itq,k wi +Ak

i q,k wi
t ,

and the coefficients ai j, bi are defined in (2.42). Note that at time t = 0, qt(0) =
∆q0 +∇q0 ·w0; moreover, since ∆ϕ j = −λ jϕ j and et∆ is a linear semi-group , the
Duhamel principle implies that the solution qt to (4.8) can be written as

−qt = c1λ1e−λ1t
ϕ1 +

∞

∑
j=2

c jλ je−λ jtϕ j︸ ︷︷ ︸
=:X

−et∆(∇q0 ·w0)︸ ︷︷ ︸
=:Y

−
∫ t

0
e(t−s)∆N(q,h)︸ ︷︷ ︸

=:Z

.

We first prove that X(t) > 0 for times t = C̄ lnK, where C̄ denotes a universal
constant. We shall then show that at time t = C̄ lnK, |Y (t)|+ |Z(t)| is bounded by
a small fraction of X(t).

Step 3. Estimate of X. We begin by writing X as

(4.10) X(t,x) = c1λ1e−λ1t
ϕ1(x)+ c1λ1e−λ1t

ϕ1(x)
( ∞

∑
j=2

c jλ j

c1λ1
e(λ1−λ j)t ϕ j(x)

ϕ1(x)

)
.

Our goal is to prove that the term

(4.11) σ :=
∞

∑
j=2

c jλ j

c1λ1
e(λ1−λ j)t ϕ j(x)

ϕ1(x)

is small. By Corollary 2.2,

(4.12)
|c j|
c1
≤ K for all integers j ≥ 2 .

Furthermore, using the normalization ‖ϕ j‖0 = 1, and the eigenvalue problem,
∆ϕ j =−λ jϕ j, elliptic regularity shows that ‖ϕ‖2 ≤ λ j and that ‖ϕ‖4 ≤ λ 2

j ; hence,
linear interpolation provides us with the inequality

(4.13) ‖ϕ j‖2.25 . λ
1.25
j .

Using (4.12) and (4.13), together with the bound (4.7), we see that

|σ | ≤CK
∞

∑
j=2

λ
2.25
j e(λ1−λ j)t .

Since λ1 < λ2 ≤ λ3 ≤ . . . , there exists a constant c∗, uniform in j ≥ 2, such that
λ1/λ j < (1−2c∗). This implies that

(λ1−λ j)<−2c∗λ j for integers j ≥ 2 .
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In particular, for t ≥ C̄ lnK

CKλ
2.25
j e−c∗λ jt ≤CKλ

2.25
j K−C̄c∗λ j =C

λ 2.25
j

KC̄c∗λ j−1
<

1
2

for C̄ chosen sufficiently large, but independent of K. (Recall that K > 1 since
K ≥ ‖q0‖1

‖q0‖0
≥ 1+λ1 > 6.) Hence, from (4.11) and the previous inequality it follows

|σ | ≤ 1
2

∞

∑
j=2

e−c∗λ jt ≤ 1
2

∞

∑
j=2

K−C̄c∗λ j <
1
2
.

Plugging this into (4.10), we obtain for any x ∈ B1(0)

(4.14) X(t,x)≥ 1
2

c1λ1e−λ1t
ϕ1(x)> 0, t ≥ C̄ lnK.

Step 4. Estimates of Y and Z. The term Y satisfies the estimate

‖Y (t,x)‖L∞ . ‖et∆(∇q0 ·w0)‖2 . e−λ1t‖∇q0 ·w0‖2 . e−λ1t‖q0‖3‖w0‖2 . εc1e−λ1t ,

where we used the Sobolev embedding theorem together with the bound ‖q0‖3 .
Kc1, which follows from ‖q0‖4/‖q0‖0 ≤ K. Thus |Y (t,x)| < 1

4 |X(t,x)| with ε

sufficiently small. Next, to estimate Z which vanishes at the boundary, we have
that

|Z|
ϕ1(x)

≤
∫ t

0

∣∣e∆(t−s)N(q,h)(s)
ϕ1(x)

∣∣ds.
∫ t

0
‖e∆(t−s)N(q,h)(s)‖2.25 ds

.
∫ t

0
‖N(q,h)(s)‖2.25 ds.

√
t
(∫ t

0
‖N(q,h)(s)‖2

2.25 ds
)1/2

.

In the above chain of inequalities, we have used the bound (4.7) for the second
inequality, and the fact that ‖et∆‖Hs→Hs ≤ 1.

We shall conclude our estimate by showing that

(4.15)
∫ t

0
‖N(q,h)(s)‖2

2.25 ds. c11/5
1 ε

9/5.

We recall that

(4.9) N(q,h) := (ai j−δi j)qt,i j︸ ︷︷ ︸
=:Z1

+biqt,i +ai j,tq,i j +bi,tq,i+Ak
,itq,k wi +Ak

i q,k wi
t︸ ︷︷ ︸

=:Z2

,

and note that Z1 is the highest-order term with respect to the number of derivatives
applied to q. Writing Z1 = (a− Id)D2qt , where Id denotes the identity matrix, we
see that∫ t

0
‖Z1‖2

2.25 ds. ‖a− Id‖2
2.25‖D2qt‖2

2.25 . sup
0≤s≤t

‖a− Id‖2
2.25

∫ t

0
‖qt‖2

4.25.

From the sharp estimate (2.12), we infer that sup0≤s≤t ‖a− Id‖2
2.25 . c2

1; further-

more, for the term ‖qt‖4.25 we apply the interpolation estimate ‖qt‖2
4.25. ‖qt‖1/5

2 ‖qt‖9/5
4.5 .

c1/5
1 e−β t/10‖qt‖9/5

4.5 .
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Using Lemma 2.10, we then infer that∫ t

0
‖Z1‖2

2.25 ds. c11/5
1

∫ t

0
e−β t/10‖qt‖9/5

4.5 . c11/5
1 ε

9/5 ,

the last inequality following from Hölder’s inequality and the fact that
∫ t

0 ‖qt‖2
4.5 .

ε2 by Lemma 2.10 and the bootstrap assumption (2.1a).
Analogous estimates are applied to the term Z2 to finally deduce (4.15). By (4.15)

and the above chain of estimates, it follows that
|Z|

ϕ1(x)
.
√

tc11/10
1 ε

9/10.

Hence, at time T = C̄ lnK

|Z(T,x)|. C̄1/2 lnK1/2c1c1/10
1 ε

9/10
ϕ1(x). c1

ε
1/10
0

F(K)1/20 C̄1/2 lnK1/2
ε

9/10
ϕ1(x)

≤ c1
ε

F(K)1/20 C̄1/2 lnK1/2
ϕ1(x)<

1
4

c1λ1e−λ1T
ϕ1(x)≤

1
2

X(t,x).

Note that we have used the estimate c1/10
1 . ε

1/10
0 /F(K)1/20 (which follows from

‖q0‖ . E (0)1/2 and the smallness assumption (1.22)) as well as ε0 ≤ ε which is
going to hold by our choice of ε0. Observe that the very last inequality follows
from (4.14). The next-to-last bound is equivalent to

ε

F(K)1/20 <
λ1

4C̄1/2 lnK1/2KC̄λ1
,

which then follows from the choice (1.23) of the function F(K) in Remark 1.3.
The second inequality above follows from the estimate c1 . ‖q0‖ . E (0)1/2 .
ε/F(K)1/2.

Step 5. Finishing the proof. From the above estimates on X , Y , and Z it finally
follows that for any x ∈ B1(0), T = C̄ lnK,

−qt(T,x) ≥ |X(T,x)|− |Y (T,x)|− |Z(t,x)| ≥ X(T,x)− 1
2

X(T,x)− 1
4

X(T,x) =
1
4

X(t,x)

≥ c∗c1e−λ1T
ϕ1(x).

Finally, since ∂Nϕ1 ≥ c for some c > 0 uniformly over Γ and since ϕ1 > 0 in Ω, it
follows infx∈Γ ∂Nqt(T,x)> 0. �

4.4 Proof of Theorem 1.2
Step 1. By Proposition 3.4 with ε sufficiently small, we conclude that

(4.16) sup
0≤t≤T

E (t)+
∫ T

0
D(t)dt ≤ 2E (0)+CK2

∫ T

0
eηtE (t)dt, t ∈ [0,T ],

where T is the maximal interval of existence on which the bootstrap assump-
tions (2.1a) and (2.1b) hold (with ε sufficiently small). Our goal is to prove that on
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[0,T ], the quantity E (t) is bounded from above by 2E (0)e2CK2t . We shall accom-
plish that by bounding E (t) from above by the function g(t) : R+→ R, which is
defined as the solution of the differential equation

g′(t) =CK2eηtg(t), g(0) = 2E (0).

Solving this differential equation, we obtain

g(t) = 2E (0)e
CK2

η
(eηt−1) = 2E (0)e(1+∑

∞
k=2 ηk−1tk/k!)CK2t

= 2E (0)e(1+O(η))CK2t ≤ 2E (0)e2CK2t ,

where the convergence of the sum ∑
∞
k=2 ηk−1tk/k! is guaranteed for times t ≤ 1√

η
.

Applying the integral Gronwall inequality to the difference E (t)−g(t), it follows
from (4.16) and the previous inequality that

E (t)≤ g(t)≤ 2E (0)e2CK2t

for any t ≤ T . Our goal is to prove that T ≥ C̄ lnK. Using (4.16) once again, we
obtain the same smallness bound on

∫ t
0 D(s)ds to finally conclude that

(4.17) sup
0≤s≤t

E (s)+
∫ t

0
D(s)ds≤ 2E (0)e2CK2t .

For t ≤ C̄ lnK, (4.17) and smallness assumption (1.22) on E (0) implies that

sup
0≤s≤t

E (s)+
∫ t

0
D(s)ds≤ ε/2.

Moreover, by Lemma 4.1 and since the bootstrap assumptions (2.1a) and (2.1b) are
valid on [0,T ] it follows that

Eβ (t)+
∫ t

0
D(s)ds <

C̃
2

Eβ (0).

Thus, by the continuity of E +Eβ and the maximality of T , we conclude min{T ,C̄ lnK}=
C̄ lnK = TK since the bootstrap assumptions are still satisfied at time t = C̄ lnK (the
argument is true as long as η above is chosen in such a way that 1√

η
> C̄ lnK). By

the local well-posedness theorem from [29] and the continuity of E and Eβ in time,
we actually have the strict inequality T > TK as we can extend the solution locally
in time. We will argue by contradiction that T = ∞. Assume T < ∞.

Step 2. Preserving the positivity of ∂Nqt . We next show that ∂Nqt > 0 on the time
interval [TK ,T [. This will be done with help of Lemma 4.2 and the maximum
principle. We start by constructing a suitable comparison function,

(4.18) P(t,r) = κ1e−
3
2 λ1t(ϕ1(r)−κ2(1− r2)),
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with positive constants κ1,κ2 to be specified later. A straightforward calculation
shows that

(∂t −ai j∂i j−bi∂i)P = κ1e−
3
2 λ1t[− 1

2
λ1ϕ1−2κ2Tr(a)

+
3
2

λ1κ2(1− r2)− (ai j−δi j)ϕ1−b · (∇ϕ1 +2κ2x)
]
.(4.19)

Observe that both ϕ1 and (1− r2) vanish for r = 1, the trace of the matrix a is
very close to 2, i.e., a11 + a22 = 2+O(ε) and the coefficients bi are very small,
i.e. |b| = O(ε). Note that the first and the second term in the parenthesis on the
right-hand side of (4.19) are negative, while the fourth and the fifth term are small
of order ε . If r = |x| is close to 1, then the second term dominates the third term
and if r is away from the boundary r = 1, then one can choose κ2 > 0 so that the
first term dominates the third term. It follows easily that there exists a κ2 > 0 and
some constant C1 such that

(4.20) (∂t −ai j∂i j−bi∂i)P <−C1κ1e−
3
2 λ1t .

It then follows from (4.20) and (2.42) that
(4.21)
(∂t−ai j∂i j−bi∂i)(−qt−P)>−(∂tai j q,i j +∂tbi qi+∂tAk

,i q,k wi+Ak
i q,k wi

t)+C1κ1e−
3
2 λ1t .

Note, however, that the term in parenthesis on the right-hand side above is a qua-
dratic non-linearity and as such decays at least as fast as e−2β t :

‖∂tai j q,i j +∂tbi qi +∂tAk
,i q,k wi +Ak

i q,k wi
t‖L∞

≤ ‖∂tai j q,i j ‖1+δ +‖∂tbi qi‖1+δ +‖∂tAk
,i q,k wi‖1+δ +‖Ak

i q,k wi
t‖1+δ

≤C2Eβ (0)
1/2

εe−2β t ≤C2c1εe−2β t .(4.22)

Now, using (4.21) and the above bound, we note that by choosing the constant
κ1 := C2

C1
c1ε , we have that

(∂t −ai j∂i j−bi∂i)(−qt −P)>C2c1εe−
3
2 λ1t −C2c1εe−2β t > 0,

since 2β = 2λ1−η > 3
2 λ1. The previous bound implies that −qt −P is a super-

solution for the operator ∂t −ai j∂i j−bi∂i. Moreover, by the construction of P, we
have −qt −P = 0 on Γ = ∂B1(0). Furthermore, at time TK = C̄ lnK, we have by
Lemma 4.2 and (4.18), that

(−qt−P)|T=C̄ lnK >Cc1e−λ1T
ϕ1(x)−Cc1εe−

3
2 λ1T

ϕ1(x)+Cc1εκ2e−
3
2 λ1T (1−r2)> 0

for ε sufficiently small. Thus, by Lemma 2.12, there exists a constant m > 0 such
that

−qt −P≥ m(1− r)e−(λ1−O(ε))t , t > TK ,
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or in other words

−qt ≥ m(1− r)e−(λ1−O(ε))t +Cc1ε(1− r)e−
3
2 λ1t(

ϕ1(r)
1− r

−κ2(1+ r))

= (1− r)e−(λ1−O(ε))t
(

m+Cc1εe(−
1
2 λ1t−O(ε))t(

ϕ1(r)
1− r

−κ2(1+ r))
)
,

which readily gives the positivity of ∂Nqt on the time-interval [TK ,T [ since ϕ1(r)
1−r −

κ2(1+ r)> 0 by our choice of κ2 above. We conclude that the positivity of −qt at
time TK = C̄ lnK is a property preserved by our bootstrap regime and moreover we
get a quantitative lower bound on ∂Nqt on the time interval [TK ,T [.

Step 3. Conclusion. Thus for any t ∈ [TK ,T [, the energy identity takes the form

E (t)+
∫ t

TK

D(t)+
1
2

3

∑
j=0

∫ t

TK

∫
Γ

∂NqtR2
J |∂̄ 6−2 j

∂
j

t h|2 dx

= E (TK)+
4

∑
i=1

∫ t

TK

∫
Ω

{Ri +Si}+
4

∑
i=0

∫ t

TK

∫
Ω

{R̃i + S̃i}+
4

∑
i=0

∫ t

TK

∫
Γ

{Gi +Hi},

where we formally define S4 = S̃4 =G4 = 0. In particular, by the energy estimates
stated in (3.6) and (3.9) the right-hand side of the above identity is bounded by

E (TK)+O(
√

ε) sup
TK≤s≤t

E (s)+(O(ε)+δ )
∫ t

TK

D(s)ds.

Note here the absence of the exponentially growing term in the above bound as
opposed to their presence in Proposition 3.4. This is due to the fact that terms∫ t

TK

∫
Γ

∂NqtR2
J |∂̄ 6−2 j∂

j
t h|2 dx, j = 0,1,2,3 are positive and no longer treated as error

terms. By absorbing the small multiples of supTK≤s≤t E (s) and
∫ t

TK
D(s)ds into the

left-hand side and using the positivity of ∂Nqt from Step 2, we obtain

(4.23) sup
TK≤s≤t

E (s)+
∫ t

TK

D(s)ds≤ 2E (TK)≤ 8E (0)e2CK2TK

by (4.17). Finally, we choose ε0 in the statement of Theorem 1.2 so that ε2
0 < ε2/2.

Bound (4.23) and the condition E (0) . ε2
0/F(K) (with F(K) given as in (1.23))

imply

sup
TK≤s≤t

E (s)+
∫ t

TK

D(s)ds≤ ε2

2
.

Together with Lemma 4.1 and Corollary 2.14, we infer that the bootstrap assump-
tions (2.1a) and (2.1b) are improved. Since E is continuous in time, we can extend
the solution by the local well-posedness theory to an interval [0,T +T ∗] for some
small positive time T ∗. This however contradicts the maximality of T and hence
T = ∞. This concludes the proof of the main theorem.
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5 The d-dimensional case on general near-spherical domains

In this section we briefly sketch the set-up of the problem in general dimensions
and explain how to adapt the arguments from the 2-D case to the 3-D case. Let
Ω(t)⊂Rd be an open simply connected subset of Rd , d≥ 2. The moving boundary
Γ(t) = ∂Ω(t) is parametrized as a graph over the unit sphere Sd−1

Γ(t) = {x | x = R(t,ξ )ξ = (1+h(t,ξ ))ξ , ξ ∈ Sd−1}.

Initially R0(ξ ) is assumed to be close to 1, i.e. R0(ξ )− 1 = h0(ξ ) = O(ε). We
shall assume that Ω0 is diffeomorphic to B1(0), where Φ : Ω→ Ω0 is the dif-
feomorphism mapping of the unit ball onto the initial domain. Moreover, let Ψ̃

denote the family of diffeomorphisms from the initial domain Ω0 to the moving
domain Ω(t), satisfying the harmonic equation ∆Ψ̃ = 0 and the boundary condi-
tion Ψ̃(Γ0) = Γ(t). We shall pull back the Stefan problem onto the unit ball B1(0)
via the map Ψ : B1(0)→Ω(t) given as a composition of Ψ̃ and Φ:

Ψ = Ψ̃◦Φ.

Upon defining q, v, w, and A just as in Section (1.9), the Stefan problem (1.1) takes
exactly the same form as (1.9). Abusing the notation, the normal velocity V (Γ(t))
is now given by

V (Γ(t)) =
RtR√

R2 + |∇R|2Sd−1

.

Here |∇R|2Sd−1 stands for the squared norm of the Riemannian gradient of R(t, ·)
on the unit sphere Sd−1, which is a coordinate invariant expression. The gauge
equation for Ψ transforms into

∆Φ−1Ψ = 0, Ψ(t,Sd−1) = Γ(t)

due to the assumption ∆Ψ̃ = 0 and the definition of Ψ. This easily implies the
optimal trace bound ‖Ψ‖Hs(Ω) . |Ψ|Hs−0.5(Ω) due to the the smoothness of Φ and
the closeness assumption ‖DΦ− Id‖Hs . ε , with s sufficiently large. When d = 3,
the Sobolev embedding theorem requires us to raise the degree of spatial regularity
in the definition our energy spaces by one derivative.

The second key observation is that the lower bound for the quantity χ(t) is
obtained in the same way as in the case that d = 2, from Lemma 2.12. We ν1
denote the first eigenvalue of the operator −∆Φ−1 , which is the pull-back of the
negative Laplacian from the initial domain Ω0 to B1(0). By Lemma 2.12 we obtain
that

χ(t)& c1e−λ t ,

where |λ − ν1| ≤ O(|h− h0|W 2,∞ + |ht |L∞) = O(ε). Since ‖DΦ− Id‖Hs . ε for s
sufficiently large, we have |ν1−λ1|. ε , where we recall that λ1 stands for the first
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eigenvalue of the Dirichlet-Laplacian. Together, the two previous estimates imply
the analogous conclusion of Corollary 2.14, namely

χ(t)& c1e−λ1−λ̃1(t)t , λ̃1 = O(ε).

Let ∂̄ i denote the tangential component of ∂ i restricted to S2. To each multi-index
~α = (α1,α2,α3) we associate the tangential operator ∂̄

~α = ∂̄ α1 ∂̄ α2 ∂̄ α3 . With d = 3,
we define

E3D(t) = E3D(q,h)(t) :=
1
2 ∑
|α|+2b≤6

‖µ1/2
∂̄
~α

∂
b
t v‖2

L2
x
+

1
2 ∑
|~α|+2b≤7

|(−∂Nq)1/2RJ ∂̄
~α

∂
b
t h|2L2

x
+

1
2 ∑
|~α|+2b≤7

‖µ1/2(∂̄~α
∂

b
t q+ ∂̄

~α
∂

b
t Ψ · v)‖2

L2
x

∑
|~α|+2b≤6

‖(1−µ)1/2
∂~α∂

b
t v‖2

L2
x
+

1
2 ∑
|~α|+2b≤7

‖(1−µ)1/2(∂~α∂
b
t q+∂~α∂

b
t Ψ · v)‖2

L2
x

and

D3D(t) = D3D(q,h)(t) :=

∑
|~α|+2b≤7

‖µ1/2
∂̄
~α

∂
b
t v‖2

L2
x
+ ∑
|~α|+2b≤6

|(−∂Nq)1/2RJ ∂̄
~α

∂
b
t ht |2L2

x
+ ∑
|~α|+2b≤6

‖µ1/2(∂̄~α
∂

b
t qt + ∂̄

~α
∂

b
t Ψt · v)‖2

L2
x

+ ∑
|~α|+2b≤7

‖(1−µ)1/2
∂~α∂

b
t v‖2

L2
x
+ ∑
|~α|+2b≤6

‖(1−µ)1/2(∂~α∂
b
t qt +∂~α∂

b
t Ψt · v)‖2

L2
x
.

The lemmas of Section 2 carry through analogously, as do the energy estimates of
Section 3. By the continuity argument of Section 4, we arrive at the 3-D version of
our main theorem:

Theorem 5.1 (The 3-D case). Let (q0,h0) satisfy the Taylor sign condition (1.18),
the strict positivity assumption (1.17), and the corresponding compatibility condi-
tions. Let ‖q0‖4/‖q0‖0 ≤ K. Then there exists an ε0 = ε0(K)> 0 and δ0 > 0 such
that if E (q0,h0) < ε2

0 , then there exists a unique global solution to problem (1.9),
satisfying

sup
0≤t≤∞

E3D(q(t),h(t))<Cδ
2
0 ,

for some universal constant C > 0, and ‖q‖2
H5(B1(0))

≤ Ce−β t , where β = 2λ1−
Cε0 and λ1 is the smallest eigenvalue of the Dirichlet-Laplacian on the unit ball
B(0,1) ⊂ R3. The moving boundary Γ(t) settles asymptotically to some nearby
steady surface Γ̄ and we have uniform-in-time estimate

sup
0≤t<∞

|h−h0|5.5 .
√

δ0

Appendix A: Proof of Proposition 3.1

To prove the energy identity of Proposition 3.1, we start by applying the dif-
ferential operator of the form ∂̄ 6−2 j∂

j
t to the equation (1.9b). For j = 0,1,2,3 we

multiply it then by ∂̄ 6−2 j∂
j

t and integrate-by-parts. Additionally, if j = 1,2,3 we
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apply the operator ∂̄ 7−2 j∂
j

t to (1.9b), multiply by ∂̄ 7−2 j∂
j−1

t vi, and again integrate-
by-parts.
Based on these two cases we distinguish between the two different types of identi-
ties.

A.1 Identities of the first type
Recall that µ : Ω̄→ R is a C∞ cut-off function with the property

µ(x)≡ 0 if |x| ≤ 1/2; µ(x)≡ 1 if 3/4≤ |x| ≤ 1.

Applying the tangential differential operator µ∂̄ 6 to the equation (1.9b), multiply-
ing it by ∂̄ 6vi and integrating over Ω, we obtain(

µ∂̄
6vi +µ∂̄

6Ak
i q,k +µAk

i ∂̄
6q,k, ∂̄

6vi)
L2 =

5

∑
l=1

cl
(
µ∂̄

lAk
i ∂̄

6−lq,k, ∂̄
6vi)

L2 ,

where cl =
(6

l

)
. Recalling (2.19), we write

∂̄
6Ak

i =−As
i ∂̄

6
Ψ

r
,sA

k
r +{∂̄ 6,Ak

i },

where {∂̄ 6,Ak
i } denotes the lower-order commutator defined in (2.19b). With this

identity, we obtain(
µ∂̄

6Ak
i q,k, ∂̄ 6vi)

L2(Ω)
=−

(
µAs

i ∂̄
6
Ψ

r
,sA

k
rq,k, ∂̄ 6vi)

L2(Ω)
+
(
µ{∂̄ 6,Ak

i }q,k, ∂̄ 6vi)
L2(Ω)

=−
∫

Γ

q,kAs
i ∂̄

6
Ψ

rAk
r ∂̄

6viNs +
∫

Ω

µAs
i ∂̄

6
Ψ

rAk
rq,k ∂̄

6vi
,s +

∫
Ω

T1

=−
∫

Γ

q,kAs
i ∂̄

6
Ψ

rAk
r ∂̄

6viNs−
∫

Ω

µAs
i ∂̄

6
Ψ

rvr
∂̄

6vi
,s +

∫
Ω

T1,(A.1)

where we have integrated-by-parts with respect to xs for the second equality, and
have used the identity vr =−Ak

rq,k for the last equality; the error term T1 is given
by

T1 = (µq,kAs
i A

k
r),s ∂̄

6
Ψ

r
κ ∂̄

6vi +µ{∂̄ 6,Ak
i }q,k, ∂̄ 6vi +µAs

i ∂̄
6
Ψ

rAk
rq,k {∂̄ 6,∂s}vi.

Furthermore, integration-by-parts with respect to xk yields

(A.2)

(
µAk

i ∂̄
6q,k, ∂̄

6vi)
L2 =

∫
Ω

µAk
i ∂k∂̄

6q∂̄
6vi +

∫
Ω

µAk
i {∂̄ 6,∂k}q∂̄

6vi

=−
∫

Ω

µAk
i ∂̄

6q∂̄
6vi

,k−
∫

Ω

(µAk
i ),k ∂̄

6q∂̄
6vi +

∫
Ω

µAk
i {∂̄ 6,∂k}q∂̄

6vi,

where we have used ∂̄ 6q = 0 on Γ, and where {∂̄ 6,∂k} denotes the lower-order
commutator. Summing (A.1) and (A.2), we find that
(A.3)(

µ∂̄
6Ak

i q,k +µAk
i ∂̄

6q,k, ∂̄ 6vi)
L2(Ω)

=−
∫

Γ

q,kAs
i ∂̄

6
Ψ

rAk
r ∂̄

6viNs

−
∫

Ω

µAk
i ∂̄

6vi
,k
(
∂̄

6q+ ∂̄
6
Ψ · v

)
+
∫

Ω

(T1− (µAk
i ),k ∂̄

6q∂̄
6vi +µAk

i {∂̄ 6,∂k}q∂̄
6vi).
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The first two terms on the right-hand side of (A.3) will be the source of positive
definite quadratic contributions to the energy. To extract the quadratic coercive
contribution from the first integral on the right-hand side of (A.3), note that q,k=
Nk∂Nq on Γ, and also recall from (1.8) the normal vector ñ = AT N. Thus
(A.4)

−
∫

Γ

q,kAs
i ∂̄

6
Ψ

rAk
r ∂̄

6viNs =
∫

Γ

(−∂Nq)∂̄ 6
Ψ

rñr
∂̄

6viñi =
∫

Γ

(−∂Nq)∂̄ 6
Ψ · ñ∂̄

6v · ñ.

Using the boundary condition (1.10), we reexpress ∂̄ 6v · ñ as

∂̄
6v · ñ = ∂̄

6w · ñ+ ∂̄
6(v−w) · ñ

= ∂̄
6w · ñ+ ∂̄

6((v−w) · ñ︸ ︷︷ ︸
=0

)
−

6

∑
l=1

al ∂̄
6−l(v−w) · ∂̄ l ñ

= ∂̄
6
Ψt · ñ−

6

∑
l=1

al ∂̄
6−l(v−w) · ∂̄ l ñ.

Due to the above identity and (A.4), we obtain that∫
Γ

(−∂Nq)∂̄ 6
Ψ · ñ∂̄

6v · ñ =
∫

Γ

(−∂Nq)∂̄ 6
Ψ · ñ ∂̄

6
Ψt · ñ−

6

∑
l=1

al

∫
Γ

(−∂Nq)∂̄ 6
Ψ · ñ∂̄

6−l(v−w) · ∂̄ l ñ

=
∫

Γ

(−∂Nq)
1
2

d
dt
|∂̄ 6

Ψ · ñ|2 dx′+
∫

Γ

∂Nq∂̄
6
Ψ · ñ ∂̄

6
Ψ · ñt −

6

∑
l=1

al

∫
Γ

(−∂Nq)∂̄ 6
Ψ · ñ∂̄

6−l(v−w) · ∂̄ l ñ.

(A.5)

Recall that ñ = J−1(RN−Rθ τ) = J−1(N +hN−hθ τ). Thus, using Ψ(t,ξ ) = N +
h(t,ξ )N, we obtain via the Leibniz rule

∂̄
6
Ψ · ñ =

[
∂̄

6N + ∂̄
6(hN)

]
· [(1+h)N−hθ τ]J−1

= (−R+R∂̄
6h+

5

∑
a=0

ca∂̄
ah∂̄

6−aN · (hN−hθ τ))J−1

= (−RJ +RJ ∂̄
6h+

5

∑
a=0

cJ
a∂̄

ah∂̄
6−aN · (hN−hθ τ)),

where we have used the relations ∂̄ 2N = −N and N · τ = 0 and also denoted cJ
a =

caJ−1 (recall RJ = RJ−1). From here we obtain
(A.6)

1
2

d
dt

(
|∂̄ 6

Ψ · ñ|2
)
=

1
2

d
dt

(
R2

J |∂̄ 6h|2
)

+
d
dt

[(
−RJ +2RJ ∂̄

6h+
5

∑
a=0

cJ
a∂̄

ah∂̄
6−aN · (hN−hθ τ)

)(
−RJ +

5

∑
a=0

cJ
a∂̄

ah∂̄
6−aN · (hN−hθ τ)

)]
.

Thus, going back to (A.5), we obtain∫
Γ

(−∂Nq)∂̄ 6
Ψ · ñ∂̄

6
Ψt · ñ =

1
2

d
dt

∫
Γ

(−∂Nq)R2
J |∂̄ 6h|2 + 1

2

∫
Γ

∂NqtR2
J |∂̄ 6h|2 +

∫
Γ

T2,
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where the error term T2 is given by

T2 =(−∂Nq)
d
dt

[(
−RJ+2RJ ∂̄

6h+
5

∑
a=0

cJ
a∂̄

ah∂̄
6−aN ·(hN−hθ τ)

)(
−RJ+

5

∑
a=0

cJ
a∂̄

ah∂̄
6−aN ·(hN−hθ τ)

)]
.

As to the second term on the right-hand side of (A.3), note that

Ak
i ∂̄

6vi
,k = ∂̄

6(Ak
i vi

,k)−
6

∑
l=1

cl ∂̄
lAk

i ∂̄
6−lvi

,k =−∂̄
6(qt + v ·w)−

6

∑
l=1

cl ∂̄
lAk

i ∂̄
6−lvi

,k,

where Ak
i vi

,k =−divΨv =−(qt + v ·w) by the parabolic equation (1.9a). Thus

−
∫

Ω

µAk
i ∂̄

6vi
,k
(
∂̄

6q+ ∂̄
6
Ψ · v

)
=
∫

Ω

µ∂̄
6(qt +Ψt · v)

(
∂̄

6q+ ∂̄
6
Ψ · v

)
+

6

∑
l=1

cl

∫
Ω

µ∂̄
lAk

i ∂̄
6−lvi

,k
(
∂̄

6q+ ∂̄
6
Ψ · v

)
=

1
2

d
dt

∫
Ω

µ
(
∂̄

6q+ ∂̄
6
Ψ · v

)2
+
∫

Ω

µ(
6

∑
l=1

dl ∂̄
6−l

Ψt · ∂̄ lv− ∂̄
6
Ψ · vt)

(
∂̄

6q+ ∂̄
6
Ψ · v

)

+
6

∑
l=1

cl

∫
Ω

µ∂̄
lAk

i ∂̄
6−lvi

,k
(
∂̄

6q+ ∂̄
6
Ψ · v

)(A.7)

Combining (A.3) - (A.7) we obtain
(A.8)∫

Ω

µ|∂̄ 6v|2 dx+
1
2

d
dt

∫
Γ

(−∂Nq)R2
J |∂̄ 6h|2 dx′+

1
2

d
dt

∫
Ω

µ(∂̄ 6q+ ∂̄
6
Ψ · v)2 dx

=−1
2

d
dt

∫
Γ

(−∂Nq)|
5

∑
a=0

ca∂̄
aR∂̄

6−aN · ñ|2 dx′+
∫

Ω

R0 +
∫

Γ

G0

with the error terms R0 and G0 given by

R0 =µ

5

∑
l=1

cl ∂̄
lAk

i ∂̄
6−lq,k∂̄

6vi +(µq,kAs
i A

k
r),s ∂̄

6
Ψ

r
∂̄

6vi +µ{∂̄ 6,Ak
i }q,k∂̄

6vi

+µAs
i ∂̄

6
Ψ

rAk
rq,k {∂̄ 6,∂s}vi− (µAk

i ),k ∂̄
6q∂̄

6vi

−µAk
i {∂̄ 6,∂k}q∂̄

6vi−µ

6

∑
l=1

(
cl ∂̄

lAk
i ∂̄

6−lvi
,k +dl ∂̄

6−lw · ∂̄ lv− ∂̄
6
Ψ · vt

)(
∂̄

6q+ ∂̄
6
Ψ · v

)
;

(A.9)

(A.10)

G0 =−∂Nq∂̄
6
Ψ · ñ∂̄

6
Ψ · ñt +(−∂Nq)

d
dt

[
RJ ∂̄

6h
(
−RJ +

5

∑
a=0

cJ
a∂̄

ah∂̄
6−aN · (hN−hθ τ)

)]
−∂Nq

d
dt

[(
−RJ +

5

∑
a=0

cJ
a∂̄

ah∂̄
6−aN · (hN−hθ τ)

)2
]
+

6

∑
l=1

al(−∂Nq)∂̄ 6
Ψ · ñ∂̄

6−l(v−w) · ∂̄ l ñ.
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Let now α = (α1,α2) be an arbitrary multi-index of order 6. Applying the operator
(1−µ)∂ α to (1.9b) and multiplying by ∂ αvi, we obtain(

(1−µ)∂ αvi +(1−µ)∂ αAk
i q,k+(1−µ)Ak

i ∂
αq,k , ∂

αvi)
L2(Ω)

=− ∑
0<β≤α

cβ

(
(1−µ)∂ β Ak

i ∂
α−β q,k, ∂

αvi)
L2

In the same way as above we arrive at the following energy identity

(A.11)
∫

Ω

(1−µ)|∂ αv|2 dx+
1
2

d
dt

∫
Ω

(1−µ)(∂ αqt +∂
α

Ψ · v)2 dx =
∫

Ω

R̃0 dx,

where
(A.12)
R̃0 = (1−µ) ∑

0<β<α

cβ ∂
β Ak

i ∂
α−β q,k∂

αvi +(1−µ)
(
(q,kAs

i A
k
r),s ∂

α
Ψ

r
∂

αvi +{∂ α ,Ak
i }q,k∂

αvi
)

−(1−µ) ∑
0<β≤α

(
cβ ∂

β Ak
i ∂

α−β vi
,k +dβ ∂

α−β w ·∂ β v−∂
α

Ψ · vt
)(

∂
αq+∂

α
Ψ · v

)
,

Summing the identities (A.8) and (A.11), with j = 0 we arrive at

∫
Ω

µ|∂̄ 6−2 j
∂

j
t v|2 + ∑

|α|=6−2 j

∫
Ω

(1−µ)|∂ α
∂

j
t v|2 + 1

2
d
dt

∫
Γ

(−∂Nq)R2
J

∣∣∂̄ 6−2 j
∂

j
t h
∣∣2

+
1
2

d
dt

∫
Ω

µ
(
∂̄

6−2 j
∂

j
t q+ ∂̄

6−2 j
∂

j
t Ψ · v

)2
+

1
2

d
dt ∑
|α|=6−2 j

∫
Ω

(1−µ)(∂ α
∂

j
t q+∂

α
∂

j
t Ψ · v)2

=−
∫

Γ

(−∂Nqt)R2
J |∂̄ 6−2 j

∂
j

t h|2 +
∫

Ω

(R j + R̃ j)+
∫

Γ

G j ,

(A.13)

By imitating the same calculation as above we obtain the remaining error terms.
With j = 1,2,3 the formulas for R j, R̃ j, and G j in (A.13) read

R j = ∑
0<a+b<6− j

µdab∂̄
a
∂

b
t Ak

i ∂̄
6−2 j−a

∂
j−b

t q,k∂̄
6−2 j

∂
j

t vi +(µq,kAs
i A

k
r),s ∂̄

6−2 j
∂

j
t Ψ

r
∂̄

6−2 j
∂

j
t vi

+µAs
i ∂̄

6−2 j
∂

j
t Ψ

rAk
rq,k {∂̄ 6−2 j,∂s}∂ j

t vi +µ{∂̄ 6−2 j
∂

j
t ,A

k
i }q,k∂̄

6−2 j
∂

j
t vi

− (µAk
i ),k ∂̄

6−2 j
∂

j
t q∂̄

6−2 j
∂

j
t vi−µAk

i {∂̄ 6−2 j,∂k}∂ j
t q∂̄

6−2 j
∂

j
t vi

−µ ∑
0≤a+b<6− j

(
dab∂̄

6−2 j−a
∂

j−b
t Ak

i ∂̄
a
∂

b
t vi

,k +dab∂̄
a
∂

b
t Ψt · ∂̄ 6−2 j−a

∂
j−b

t v− ∂̄
6−2 j

∂
j

t Ψ · vt
)

×
(
∂̄

6−2 j
∂

j
t q+ ∂̄

6−2 j
∂

j
t Ψ · v

)
;

(A.14)
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G j =−∂Nq∂̄
6−2 j

∂
j

t Ψ · ñ∂̄
6−2 j

∂
j

t Ψ · ñt +∂Nq∂t

[
∂̄

6−2 j
∂

j
t hRJ(−RJ +

5−2 j

∑
a=0

dJ
a ∂̄

a
∂

j
t h∂̄

6−2 j−aN · ñ)
]

+
d
dt

[( 5−2 j

∑
a=0

dJ
a ∂̄

a
∂

j
t h∂̄

6−2 j−aN · ñ
)2
]

+ ∑
0≤a+b<6− j

dab(−∂Nq)∂̄ 6−2 j
∂

j
t Ψ · ñ∂̄

6−2 j−a
∂

j−b
t (v−w) · ∂̄ a

∂
b
t ñ.

(A.15)

R̃ j = (1−µ) ∑
0<β<α

cβ ∂
β Ak

i ∂
α−β q,k∂

αvi +(1−µ)T̃1

− (1−µ) ∑
0<β≤α

(
cβ ∂

β Ak
i ∂

α−β vi
,k +(1−µ)dβ ∂

α−β w ·∂ β v−∂
α

Ψ · vt
)(

∂
αq+∂

α
Ψ · v

)
.

(A.16)

A.2 Identities of the second type
Applying ∂̄ 5∂t to (1.9b) and computing the L2(Ω)-product with µ∂̄ 5vi we ob-

tain(
µ∂̄

5vi
t +µ∂̄

5Ak
i,tq,k+µAk

i ∂̄
5q,kt , ∂̄

5vi)
L2 = ∑

0<a+b<6
a≤5,b≤1

cab
(
µ∂̄

a
∂

b
t Ak

i ∂̄
5−a

∂
1−b
t q,k, ∂̄

5vi)
L2 ,

where cab are constants appearing due to the usage of Leibniz product rule above.
Recalling (2.19), we write

∂̄
5Ak

i,t =−As
i ∂̄

5
Ψ

r
,stA

k
r +{∂̄ 5

∂t ,Ak
i },

where {∂̄ 5∂t ,Ak
i } stands for the lower order commutator defined in (2.19). With

this identity, we obtain
(A.17)(

µ∂̄
5Ak

i,tq,k, ∂̄
5vi)

L2(Ω)
=−

(
µAs

i ∂̄
5
Ψ

r
,stA

k
rq,k, ∂̄ 5vi)

L2(Ω)
+
(
µ{∂̄ 5

∂t ,Ak
i }q,k, ∂̄ 5vi)

L2(Ω)

=−
∫

Γ

q,kAs
i ∂̄

5
Ψ

r
t Ak

r ∂̄
5viNs +

∫
Ω

µAs
i ∂̄

5
Ψ

r
t Ak

rq,k ∂̄
5vi

,s +
∫

Ω

U1

=−
∫

Γ

q,kAs
i ∂̄

5
Ψ

r
t Ak

r ∂̄
5viNs−

∫
Ω

µAs
i ∂̄

5
Ψ

r
t vr

∂̄
5vi

,s +
∫

Ω

U1,

where we have integrated-by-parts with respect to xs in the second equality and we
have also used the identity vr = −Ak

rq,k to write the last line more concisely. The
error term U1 is given by

U1 = (µq,kAs
i A

k
r),s ∂̄

5
Ψ

r
t ∂̄

5vi +µ{∂̄ 5
∂t ,Ak

i }q,k, ∂̄ 5vi +µAs
i ∂̄

5
Ψ

r
t Ak

rq,k {∂̄ 5,∂s}vi.

Furthermore, integrating by parts with respect to xk

(A.18)(
µAk

i ∂̄
5
∂tq,k, ∂̄

5vi)
L2 =

∫
Ω

µAk
i ∂k∂̄

5
∂tq∂̄

5vi +
∫

Ω

µAk
i {∂̄ 5,∂k}qt ∂̄

5vi

=−
∫

Ω

µAk
i ∂̄

5qt ∂̄
5vi

,k−
∫

Ω

(µAk
i ),k ∂̄

5qt ∂̄
5vi +

∫
Ω

µAk
i ∂̄

5qt{∂̄ 5,∂k}vi +
∫

Ω

µAk
i {∂̄ 5,∂k}qt ∂̄

5vi,
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where we have used ∂̄ 5qt = 0 on Γ. Summing (A.17) and (A.18), we obtain
(A.19)(

µ∂̄
5Ak

i,tq,k +µAk
i ∂̄

5q,kt , ∂̄
5vi)

L2(Ω)
=−

∫
Γ

q,kAs
i ∂̄

5
Ψ

r
t Ak

r ∂̄
5viNs−

∫
Ω

µAk
i ∂̄

5vi
,k
(
∂̄

5qt + ∂̄
5
Ψt · v

)
+
∫

Ω

(
U1− (µAk

i ),k ∂̄
5qt ∂̄

5vi +µAk
i ∂̄

5qt{∂̄ 5,∂k}vi +µAk
i {∂̄ 5,∂k}qt ∂̄

5vi).
The first two terms on the right-hand side of (A.19) will be the source of positive
definite quadratic contributions to the energy. To extract the quadratic coercive
contribution from the first integral on the right-hand side of (A.19), note that q,k=
Nk∂Nq on Γ. Thus

−
∫

Γ

q,kAs
i ∂̄

5
Ψ

r
t Ak

r ∂̄
5viNs =

∫
Γ

(−∂Nq)∂̄ 5
Ψ

r
t ñr

∂̄
5viñi =

∫
Γ

(−∂Nq)∂̄ 5
Ψt · ñ∂̄

5v · ñ.

Just like in Section A.1 - as in the identities leading up to (A.6) - we obtain

(−∂Nq)∂̄ 5
Ψt · ñ∂̄

5v · ñ = |∂̄ 5ht |2R2
J + |

4

∑
a=0

cJ
a∂̄

aht ∂̄
5−aN · ñ|2 +2∂̄

5htRJ

4

∑
a=0

cJ
a∂̄

aht ∂̄
5−aN · ñ

+
4

∑
l=1

al(−∂Nq)∂̄ 5
Ψ · ñ∂̄

5v · ñ∂̄
5−l(v−w) · ∂̄ l ñ,

(A.20)

where cJ
a = caJ−1 and ca are some universal constants. As to the second term on

the right-hand side of (A.19), note that

Ak
i ∂̄

5vi
,k = ∂̄

5(Ak
i vi

,k)−
5

∑
l=1

cl ∂̄
lAk

i ∂̄
5−lvi

,k =−∂̄
5(qt + v ·w)−

5

∑
l=1

cl ∂̄
lAk

i ∂̄
5−lvi

,k,

where Ak
i vi

,k =−divΨv =−(qt + v ·w) by the parabolic equation (1.9a). Thus
(A.21)

−
∫

Ω

µAk
i ∂̄

5vi
,k
(
∂̄

5qt + ∂̄
5
Ψt · v

)
=
∫

Ω

µ∂̄
5(qt +Ψt · v)

(
∂̄

5qt + ∂̄
5
Ψt · v

)
+

5

∑
l=1

cl

∫
Ω

µ∂̄
lAk

i ∂̄
5−lvi

,k
(
∂̄

5qt + ∂̄
5
Ψt · v

)
=
∫

Ω

µ
(
∂̄

5qt + ∂̄
5
Ψt · v

)2
+

5

∑
l=1

dl

∫
Ω

µ∂̄
5−l

Ψt · ∂̄ lv
(
∂̄

5qt + ∂̄
5
Ψt · v

)
+

5

∑
l=1

cl

∫
Ω

µ∂̄
lAk

i ∂̄
5−lvi

,k
(
∂̄

5qt + ∂̄
5
Ψt · v

)
Combining (A.19) - (A.21) we obtain
(A.22)

1
2

d
dt

∫
Ω

µ|∂̄ 5v|2 dx+
∫

Γ

(−∂Nq)|∂̄ 5
Ψt · ñ|2 dx′+

∫
Ω

µ(∂̄ 5qt + ∂̄
5
Ψt · v)2 dx

=
∫

Γ

∂Nq|
4

∑
a=0

cJ
a∂̄

aht ∂̄
5−a

ξ · ñ|2 +
∫

Ω

S1 +
∫

Γ

H1
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with the error terms S j and H j given by:

S j = ∑
0<a+b<6− j
a≤7−2 j,b≤ j

dabµ∂̄
a
∂

b
t Ak

i ∂̄
7−2 j−a

∂
j−b

t q,k∂̄
7−2 j

∂
j−1

t vi +(µq,kAs
i A

k
r),s ∂̄

7−2 j
∂

j
t Ψ

r
∂̄

7−2 j
∂

j−1
t vi

+µ{∂̄ 7−2 j
∂

j
t ,A

k
i }q,k, ∂̄ 7−2 j

∂
j−1

t vi +µAs
i ∂̄

7−2 j
∂

j
t Ψ

rAk
rq,k {∂̄ 7−2 j,∂s}∂ j−1

t vi

− (µAk
i ),k ∂̄

7−2 j
∂

j
t q∂̄

7−2 j
∂

j−1
t vi +µAk

i ∂̄
7−2 j

∂
j

t q{∂̄ 7−2 j,∂k}∂ j−1
t vi

+µAk
i {∂̄ 7−2 j,∂k}∂ j

t q∂̄
7−2 j

∂
j−1

t vi−
(
∂̄

7−2 j
∂

j
t q+ ∂̄

7−2 j
∂

j
t Ψ · v

)
× ∑

0≤a+b<6− j
dab
(
µ∂̄

a
∂

b
t Ψt · ∂̄ 7−2 j−a

∂
j−1−b

t v+µ∂̄
7−2 j−a

∂
j−1−b

t Ak
i ∂̄

a
∂

b
t vi

,k
)
.

(A.23)

H j =2∂Nq∂̄
7−2 j

∂
j

t hRJ ∑
0≤a+b<7− j

cJ
ab∂̄

a
∂

b
t h∂̄

7−2 j−a
∂

j−b
t N · ñ

+(−∂Nq)∂̄ 7−2 j
∂

j
t Ψ · ñ ∑

0≤a+b<6− j
dab∂̄

7−2 j−a
∂

j−1−b
t (v−w) · ∂̄ a

∂
b
t ñ.(A.24)

Note that the first line of (A.24) appears as an expanded difference between two
positive definite expressions (−∂Nq)|∂̄ 7−2 j∂

j
t Ψ · ñ|2 and (−∂Nq)|∂̄ 7−2 j∂

j
t h|2. We

do this just like after (A.5) using the formula ñ = J−1(N + hN − hθ τ) and the
parametrization Ψ(t,ξ ) = (1+ h(t,ξ ))N. Let now α = (α1,α2) be an arbitrary
multi-index of order 5. Applying the operator (1−µ)∂ α∂t to (1.9b) and multiply-
ing by ∂ αvi, we obtain(

(1−µ)∂ αvi
t +(1−µ)∂ αAk

i,tq,k+(1−µ)Ak
i ∂

αq,kt , ∂
αvi)

L2(Ω)

=− ∑
0<|β |+b<5
β≤α;b≤1

cβb
(
(1−µ)∂ β

∂
b
t Ak

i ∂
α−β

∂
1−b
t q,k, ∂

αvi)
L2 .

In the same way as above we arrive at the following energy identity

(A.25)
1
2

d
dt

∫
Ω

(1−µ)|∂ αv|2 dx+
∫

Ω

(1−µ)(∂ αqt +∂
α

Ψt · v)2 dx =
∫

Ω

S̃1 dx,

where
(A.26)
S̃1 = ∑

0<|β |+b<5
β≤α;b≤1

cβb(1−µ)∂ β
∂

b
t Ak

i ∂
α−β

∂
1−b
t q,k∂

αvi +(1−µ)
(
(q,kAs

i A
k
r),s ∂

α
Ψ

r
t ∂

αvi +{∂ α
∂t ,Ak

i }q,k∂
αvi
)

−(1−µ) ∑
0<β≤α

cβ µ∂
α−β

Ψt · ∂̄ lv
(
∂̄

αqt + ∂̄
α

Ψt · v
)
− (1−µ) ∑

β≤α

clµ∂
β Ak

i ∂̄
α−β vi

,k
(
∂̄

αqt + ∂̄
α

Ψt · v
)
,



GLOBAL STABILITY FOR THE STEFAN PROBLEM 57

For a general j ∈ {1,2,3} we have
(A.27)

S̃ j = ∑
0<|β |+b<7−2 j

β≤α;b≤ j

dβb(1−µ)∂ β
∂

b
t Ak

i ∂
α−β

∂
j−b

t q,k∂
αvi +(1−µ)Ũ1

−(1−µ) ∑
0≤|β |+b<|α|

dβbµ∂
β

∂
b
t Ψt ·∂ α−β

∂
j−1−b

t v
(
∂̄

α
∂

j
t q+ ∂̄

α
∂

j
t Ψ · v

)
−(1−µ) ∑

0≤|β |+b<|α|
dβbµ∂

α−β
∂

j−1−b
t Ak

i ∂̄
β

∂
b
t vi

,k
(
∂̄

α
∂

j
t q+ ∂̄

α
∂

j
t Ψ · v

)
.

Summing the identities (A.22) and (A.25) we arrive at
(A.28)

1
2

d
dt

{∫
Ω

µ|∂̄ 7−2 j
∂

j
t v|2 + ∑

|α|=7−2 j

∫
Ω

(1−µ)|∂ α
∂

j
t v|2

}
+
∫

Γ

(−∂Nq)R2
J

∣∣∂̄ 7−2 j
∂

j
t h
∣∣2

+
∫

Ω

µ
(
∂̄

7−2 j
∂

j
t q+ ∂̄

7−2 j
∂

j
t Ψ · v

)2
+ ∑
|α|=7−2 j

∫
Ω

(1−µ)(∂ α
∂

j
t q+∂

α
∂

j
t Ψ · v)2

=
∫

Ω

(S j + S̃ j)+
∫

Γ

H j, j = 1,2,3.

Summing the identities (A.13) for j = 0,1,2,3 and (A.28) for j = 1,2,3, we con-
clude the proof of Proposition 3.1.

Appendix B: Proof of the inequality (3.5)

We use the comparison function P defined in (4.18) with the same κ2 and κ1.
Note that κ1 = C∗εc1 is defined as a multiple of c1 for some constant C∗ > 0.
Using (4.20) and upon possibly enlarging C∗, we infer (∂t−ai j−bi)(−qt +P)≤ 0.
Theorem 1 from [41] guarantees

(B.1) −qt +P≤C0c1ρe(−λ1+Cε)t ,

where ρ(r) = 1− r stands for the distance function to the boundary Γ. Note that
the constant κ1 in the definition (4.18) is chosen right after (4.22). It is in particular
proportional to Eβ (0)1/2≤‖q0‖4. By definition of K we have that ‖q0‖4≤K‖q0‖0.
Since however ‖q0‖0 ≤ Kc1, we obtain P/ρ ≤CK2c1e−3λ1t/2. Similarly, the con-
stant C0 is proportional to the L∞-norm of the initial datum for−qt +P, wherefrom
we again obtain C0 ≤K2c1 by the same argument as above. Dividing by ρ in (B.1),
from the above inequality, we infer that

|∂Nqt |∞ ≤CK2c1e(−λ1+Cε)t .

This proves the inequality (3.5).
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