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1 Introduction

Atomistic energies often take into account pair potentials and the corresponding total
internal energy, of the form ∑

i 6=j
J(|ui − uj |), (1)

where i and j label the pair of atoms, and ui and uj denote the corresponding positions.
Typical interatomic potentials are repulsive at small distances and (mildly) attractive
at long distances, such as Lennard-Jones ones, which takes the form

J(z) =
c2

z12
− c1

z6
,

with c1, c2 > 0. The study of equilibrium configurations for such systems is a challenging
problem. In dimension greater or equal than two even the arrangement of ground states
has been described only for a class of energies (see Gardner and Radin [14], Theil [15]).
In the two-dimensional case, ground states can be parameterized, up to rotations and
translations, as the identity on a triangular lattice. The assumption that this reference
parameterization is maintained under deformations allows to define scaled energies and
prove the existence of a limit macroscopic energy (see e.g. [1, 8, 9]). Moreover, it
also suggests that the effect of long-range interactions (i.e., between points that are
distant in the reference lattice) can be somewhat neglected, and that by taking into
account, e.g., only nearest-neighbour interactions in the lattice parameterization still
gives a meaningful and more explicit approximate macroscopic energy. This can be
done using a discrete-to-continuous approach by Γ-convergence for lattice energies, see
[3, 4]. In order that the restriction to nearest neighbours do not introduce new ground
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states, technical restrictive hypotheses have to be added either on the topology of
the interactions (typically, that the piecewise-affine deformations defined by the value
on the nodes of the triangulation satisfy a positive-determinant constraint as done
by Friesecke and Theil [13]) or on the convergence with respect to which the limit
macroscopic energy is defined. In both cases the assumptions limit the range of the
validity of the resulting macroscopic theory.

In the one-dimensional case monotonicity conditions are in a sense not restrictive,
since indices can always be chosen in such a way that ui ≥ uj (in case of systems with
finite Lennard-Jones energy, indeed ui > uj) if i > j. By scaling the reference lattice as
εZ and interpreting ui − uj as a difference quotient in the reference (unscaled) lattice,
we can consider the nearest-neighbour scaled energies

Fε(u) =
∑
i

J
(ui − ui−1

ε

)
, (2)

where the modulus appearing in (1) may be removed since ui − ui−1 > 0. A ‘lineariza-
tion’ argument around the ground state by Braides, Lew and Ortiz [7], who introduced
a change of variables of the form u = z∗id+

√
εv (z∗ is the minimizer for J), leads to

the energies (with a slight abuse of notation)

Fε(v) =
∑
i

J
(vi − vi−1√

ε
+ z∗

)
.

The limit of Fε as ε → 0 is a Griffith fracture energy, with the possibility of fracture
only in tension, which can be written as

α

∫
|v′|2 dx+ β#(S(v)), v+ > v−, (3)

where S(v) is the set of jump points of v, and v+, v− are the right-hand and left-hand
limits of v. Using Braides and Truskinovsky’s concept of equivalence by Γ-convergence
[11] it can also be proved that Barenblatt’s Fracture energy can be obtained as a first-
order correction of this limit process in such a way that the behavior of local minimum
problems is also accounted for (see [5]). If the monotonicity condition ui > ui−1 is
not imposed then minimizers are all functions with ui − ui−1 = ±εz∗, which give in
the continuum all functions with |u′| ≤ z∗ as minimizers of the limit energy. The
linearization around z∗id is then more arbitrary since this state is not an isolated
minimizer, and it yields a model with no resistance to compression (while it maintains
the form of a Griffith fracture energy in tension).

In this paper we consider the one-dimensional case, in which we do not impose a
monotonicity condition on the parameterization but we keep long-range interactions.
Scope of this analysis is to single out relevant features, in view of the treatment of
higher-dimensional cases when the positive-determinant constraint is removed. The
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limit description is more complex than the one given above when the monotonicity
assumption is added: we do not have only one ground state z∗id around which we
may apply the linearization argument, but we may have varying orientations, and in a
sense, locally we may apply either a linearization around z∗id or −z∗id. The change
in orientation is either due to the appearance of a crack, or of a ‘crease’ where the
two orientations may interchange. In both cases, we have an additional surface energy
which prevents the appearance of many changes of orientation. The limit description
is of the form

α

∫
|v′|2 dx+ β#(Sv) + γ#(Pv), (4)

where now Sv is interpreted as the set of fracture points and Pv as the set of crease
points. The underlying changes of orientation are determined by the partition given by
Pv ∪ Sv. The precise definition of v, Sv and Pv is given in Definiton 2 and is justified
by the compactness result in Proposition 4. Note that the surface energy is higher for
cracks than for creases. It is also interesting to note that cracks can be subdivided
into macroscopic cracks and microscopic ones. The latter ones cannot occur at places
where we have a change of orientation. For simplicity we consider only nearest and
next-to-nearest neighbour interactions, for which some homogenization formulas are
more explicit. The analysis mixes the scaling arguments of Braides, Lew and Ortiz,
and the description of internal interfacial energies of Braides and Cicalese [6]. The lack
of formulas to describe surface interactions seems to be the main technical difficulty in
higher dimension, while compactness arguments seem possible to be exported to any
dimension upon some hypothesis on the interactions, in the context of free-discontinuity
problems (see [2]).

2 Statement of the problem

With the Lennard-Jones potential as a model, we consider a interaction potential J :
[0,+∞)→ R ∪ {+∞} with the following properties:
• J(0) = +∞, J is of class C2 in its domain
• lim
z→+∞

J(z) = 0;

• min J = J(1) < 0;
• J is convex in [0, z0] with z0 > 1, concave in [z0,+∞).

Our energies will be the next-to-nearest neighbor analogue of the nearest-neighbour
energies (2); namely,

Eε(u) =
N∑
i=1

(
J
( |ui − ui−1|

ε

)
+ J

( |ui+1 − ui−1|
ε

)
−min Jeff

)
, (5)
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where we assume N = Nε = 1/ε ∈ N, i ∈ Z ∩ [0, N ] and u is identified with a function
on [0, 1] by u(x) = ubx/εc. Moreover, by simplicity we consider the periodic boundary
conditions uN = u0 and uN+1 = u1.

The effective potential Jeff is defined as

Jeff(z) =
1
2

min{J(|z1|) + J(|z2|) : z1 + z2 = 2z}+ J(2|z|). (6)

This potential is obtained by integrating out the effect of nearest-neighbour interactions
optimizing over atomic-scale oscillations. In Fig. 1 we picture an example of such an
effective potential, also highlighting the function H(z) given by the minimum in (6).

J 2z

H z

J eff z

1−1 1/2−1/2

min J

min J /2

2min J

min J eff

Figure 1: The effective potential Jeff

In general, for next-to-nearest neighbour interactions in dimension one the convex
envelope of this potential gives an energy function that describes at first-order the
behaviour of energies Eε (see [10, 3]). However, for our interactions this convex envelope
is a constant, and a higher-order analysis is necessary.

Note that we can write

Eε(u) =
N∑
i=1

(
1
2
J
( |ui+1 − ui|

ε

)
+

1
2
J
( |ui − ui−1|

ε

)
+ J

( |ui+1 − ui−1|
ε

)
−min Jeff

)

≥
N∑
i=1

(
Jeff

( |ui+1 − ui−1|
2ε

)
−min Jeff

)
, (7)

so that Eε ≥ 0.
We make the following assumptions on J and Jeff , which are satisfied by the

Lennard-Jones potential
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• (uniqueness and non degeneracy of an increasing effective minimal state) there
exist a unique minimizer z∗ > 0 for Jeff on [0,+∞). Moreover, J ′′eff(z∗) > 0 and
J ′′(z∗) > 0;
• (uniform Cauchy-Born hypothesis) there exists a neighborhood of z∗ such that

for all z in such neighborhood the unique minimizing pair for the problem Jeff(z) is
z1 = z2 = z.

Under these hypotheses the restriction of the same functional to increasing functions
has been studied by Braides and Cicalese [6], showing that it converges to a Griffith
Fracture energy. Note that the hypotheses on J are not sufficent in general to guarantee
the uniqueness of z∗.

Remark 1. The properties of J and the uniform Cauchy-Born hypothesis ensure the
following estimates.

(1) for z1, z2 in the neighborhood of z∗ given by the uniform Cauchy-Born hypothesis
we have

1
2

(
(J(z1) + J(z2)

)
+ J(z1 + z2) ≥ min Jeff +

λ

2
(z1 − z∗)2 +

λ

2
(z2 − z∗)2 (8)

where λ = min
{
J ′′(z∗)

2 ,
J ′′eff(z∗)

2

}
;

(2) for all z1, z2 with z1z2 < 0 we have

1
2

(
J(|z1|) + J(|z2|)

)
+ J(|z1 + z2|) ≥ C > min Jeff ; (9)

this allows to avoid trivial non-monotone minimizers.
(3) there exists b > 0 such that

1
2

(J(z1) + J(z2)) + J(z1 + z2)−min Jeff ≥
(
λ

2
(
(z1 − z∗)2 + (z2 − z∗)2

))
∧ b (10)

for all z1, z2 > 0.

Definition 2 (convergence to a linearized state with jumps and creases). Given a
sequence of periodic functions uε : [0, Nε] → R; we say that uε converge to (v, Sv, Pv)
where Sv and Pv are disjoint finite subsets of [0, 1) and v ∈ H1((0, 1) \ (Sv ∪ Pv)) if

(i) there exists a piecewise-affine u with u′ ∈ BV ((0, 1); {±z∗}) such that uε → u
in L1;

(ii) there exist S = {x1, . . . , xM} ⊂ [0, 1) with x1 < · · · < xM and sequences (cjε)ε
for j = 1, . . . ,M such that

uε − u√
ε
− cjε → vj weakly in H1

loc(xj−1, xj) (11)

where uε is identified with its piecewise-affine interpolation, u is extended by periodicity
and we set x0 = xM − 1.
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Then we define v as

v(x) =

{
vj(x) if x ∈ (xj−1, xj) ∩ (0, 1) for j = 1, . . . ,M
v1(x− 1) if x ∈ (xM , 1),

Pv = S(u′) \ S(u), where S(u) and S(u′) denote the points of essential discontinuity of
u and u′, respectively, in [0, 1) (u and u′ are extended by periodicity to the whole R)
and Sv as the minimal subset of [0, 1) \Pv such that (ii) holds. Note that this is a good
definition since if S and S′ satisfy (ii) then also S ∩ S′ does.

Remark 3. Note that the sequences of constants cjε and their limit are not uniquely
determined. In particular, vj are determined up to addition of a constant. The functions
vj are in a sense obtained as a linearization around the (unknown) function u, just as
in the increasing case we had a linearization around z∗id. Note that in the set Pv ∪ Sv
we have three types of points:
• points in S(u′)\S(u); i.e, points where u is continuous but u′ changes orientation

(creases);
• points in S(u) (macroscopic cracks);
• discontinuity points of vj that are not in S(u′) ∪ S(u) (microscopic cracks).
In principle, vj may develop microscopic cracks also at points in S(u′) \ S(u), but

we will see that energetically such points have to be considered as crease points.

The introduction of the previous definition is justified by the following proposition.

Proposition 4 (compactness). Let (uε) be a sequence such that supε(Eε(uε)+‖uε‖∞) <
+∞. Then, up to subsequences, uε converge in the sense of Definition 2.

Proof. For all w : [0, Nε] ∩ Z→ R set

I+(w) =
⋃
{[ε(i− 1), εi) : wi − wi−1 > 0} (12)

I−(w) =
⋃
{[ε(i− 1), εi) : wi − wi−1 < 0}. (13)

Note that uεi − uεi−1 6= 0 for all i by the assumption J(0) = +∞.
We deduce from (9) that the number of connected components of I+(uε) and I−(uε)

is equibounded.
Let Cε be one of such connected components; e.g., of I+(uε). Up to subsequences,

we may suppose that Cε converge to an interval I ⊂ [0, 1] as ε→ 0.
Since Eε(uε) is uniformly bounded, estimate (10) ensures that except for a finite

number of indices i (
uεi − uεi−1

ε

)2

∨
(
uεi+1 − uεi

ε

)2

≤ 2b
λ
.
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We can then consider intervals where this relation holds for all i. If we set

ṽεi =
1√
ε

(uεi − z∗εi) ,

in such intervals we have, thanks to (8),

λ
∑
i

ε
( ṽεi − ṽεi−1

ε

)2
= λ

∑
i

(uεi − uεi−1

ε
− z∗

)2

≤ λ

2

∑
i

((uεi+1 − uεi
ε

− z∗
)2

+
(uεi − uεi−1

ε
− z∗

)2
)

≤ Eε(uε).

We then deduce that the gradients of the piecewise-affine interpolations of ṽεi are
bounded in L2 on each such interval. Hence there are constants cε depending on the
interval such that, setting

vεi =
1√
ε

(uεi − z∗εi)− cε,

such functions converge weakly in H1
loc.

Considering also the connected components of I−(uε) we deduce that up to subse-
quences there exists a finite subset of [0, 1] of points 0 = x0 < x1 < · · · < xM+1 = 1,
M + 1 sequences {ckε} and M + 1 choices of minimizers of Jeff z

∗
k ∈ {−z∗, z∗} such that,

setting

vεi =
1√
ε

(uεi − z∗kεi)− ckε for εi ∈ (xk−1, xk),

such functions converge to a limit vk in L2
loc(xk−1, xk) (or, equivalently, their piecewise-

affine interpolations weakly converge to vk in H1
loc(xk−1, xk)).

Note that this also implies that, up to subsequences and translations, uε converges
to z∗kx in (xk−1, xk). By the uniform boundedness of uε this implies that uε → u in L1,
for some u with u′ = z∗k in (xk−1, xk), and hence (i) in Definition 2 holds.

The set S = {x1, . . . , xM} ∪ {0} satisfies (ii) in Definition 2, with v defined as vk

on (xk−1, xk).

The following theorem is the main result of the paper, and gives an energetic de-
scription of the energy Eε in terms of the parameters given by Definition 2.

Theorem 5. The sequence (Eε) Γ-converges with respect to the convergence in Defi-
nition 2 to the functional

F (v, Sv, Pv) = α

∫
(0,1)
|v′|2 dx+ β#Sv + γ#Pv (14)
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where

α =
1
2
J ′′eff(z∗) (15)

β = 2 inf
{+∞∑
i=1

(
J(|zi|) + J(|zi + zi+1|)−min Jeff

)
:

zi = z∗ for i ≥ K,K ∈ N
}
− 2 minJeff + J(z∗)

(16)

γ = inf
{ +∞∑
i=−∞

(
J(|zi|) + J(|zi + zi+1|)−min Jeff

)
:

zi = sgn(i)z∗ for |i| ≥ K,K ∈ N
}
.

(17)

Note that the definition of β and γ actually involve only finite sums.

The proof of the theorem is the content of the rest of the paper.
We now prove some properties of β and γ which might be of independent interest.

Remark 6 (surface relaxation). We note that β is not trivially obtained by taking
zi = z∗ for all i; i.e., that

inf
{+∞∑
i=1

(
J(|zi|) + J(|zi + zi+1|)−min Jeff

)
: zi = z∗ for i ≥ K,K ∈ N

}
< 0.

Indeed, take zi = z∗ for i ≥ 2 as a test function. For z1 > 0 we have
+∞∑
i=1

(
J(|zi|) + J(|zi + zi+1|)−min Jeff

)
= G(z1)−min Jeff ,

where G(t) = J(t) + J(t+ z∗). Note that G′(z∗) = J ′(z∗) + J ′(2z∗) = −J ′(2z∗) < 0, so
that there exists τ > z∗ such that G(τ) < G(z∗) = min Jeff . Choosing z1 = τ we get
the estimate.

The next result allows to relax the boundary condition as a condition at infinity in
the definition of β and γ.

Proposition 7. We have

β = 2 inf
{+∞∑
i=1

(
J(|zi|) + J(|zi + zi+1|)−min Jeff

)
: lim
i→+∞

zi = z∗
}

−2Jeff(z∗) + J(z∗),

(18)

γ = inf
{ +∞∑
i=−∞

(
J(|zi|) + J(|zi + zi+1|)−min Jeff

)
: lim
i→±∞

sgn(i) zi = z∗
}
. (19)

Note that the infinite sums are well defined since they involve only non-negative terms.
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Proof. We only treat the formula for γ, the formula for β being dealt with in the
same way. Let zi be a test function for (19). With fixed η > 0, let Kη be such that
|zi − sign(i)z∗| < η for |i| ≥ Kη, and define

zηi =

{
zi if |i| ≤ Kη

sign(i)z∗ if |i| > Kη.

Then we have

+∞∑
i=−∞

(
J(|zηi |) + J(|zηi + zηi+1|)−min Jeff

)
=

+∞∑
i=−∞

(
1
2

(J(|zηi |) + J(|zηi+1|)) + J(|zηi + zηi+1|)−min Jeff

)

=
Kη∑

i=−Kη−1

(
1
2

(J(|zηi |) + J(|zηi+1|)) + J(|zηi + zηi+1|)−min Jeff

)

=
Kη−1∑
i=−Kη

(
1
2

(J(|zi|) + J(|zi+1|)) + J(|zi + zi+1|)−min Jeff

)
+

1
2

(J(|zKη |) + J(|z∗|)) + J(|zKη + z∗|)−min Jeff

+
1
2

(J(| − z∗|) + J(|z−Kη |)) + J(| − z∗ + z−Kη |)−min Jeff

≤
+∞∑
i=−∞

(
1
2

(J(|zi|) + J(|zi+1|)) + J(|zi + zi+1|)−min Jeff

)
+ 2ω(η),

where

ω(η) := max
{1

2
(J(|z|) + J(|z∗|)) + J(|z + z∗|)−min Jeff : |z − z∗| ≤ η

}
is infinitesimal as η → 0. This proves that the value of γ is not greater than the one in
(19). Since the converse inequality is trivial, we have the thesis.

3 Proof of Theorem 5

In this section we will prove Theorem 5 by making use of some arguments close to
those of Braides, Lew and Ortiz [7] and Braides and Cicalese [6]. In particular, we use
a result from [7] that we state in our notation as follows.
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Theorem 8 (Braides, Lew and Ortiz). Let (vε) be a sequence of functions such that
z∗id +

√
εvε are increasing on a subset (a, b) of (0, 1) and such that, if we set

Fε(v, (a, b)) =
∑
i

(
J
(
z∗ +

√
ε
vi − vi−1

ε

)
+ J

(
2z∗ +

√
ε
vi+1 − vi−1

ε

)
−min Jeff

)
, (20)

where the sum is taken over all i with εi ∈ (a, b), then we have supε Fε(v, (a, b)) <
+∞. Suppose furthermore that vε(a) and vε(b) converge. Then the sequence vε weakly
converges up to a subsequence to a piecewise-H1(a, b) function v and we have

lim inf
ε→0

Fε(vε, (a, b)) ≥ α
∫ b

a
|v′|2 dx+ β#S(v).

The following proposition will allow us to distinguish energetically between points
in Sv and points in Pv.

Proposition 9. We have 0 < γ < β.

Proof. With fixed η > 0 let {zηi } be an η-minimizer for the problem defining β. With
fixed M > 0, we may take as a test function in the minimum problem defining γ the
function

zMi =


zηi for i ≥ 1
M for i = 0
−zη−i for i ≤ −1.

We then have

+∞∑
i=−∞

(
J(|zMi |) + J(|zMi + zMi+1|)−min Jeff

)
=

K−1∑
i=1

(
J(|zMi |) + J(|zMi + zMi+1|)−min Jeff

)
+J(|zM0 |) + J(|zM−1 + zM0 |)−min Jeff

+
−2∑

i=−K

(
J(|zMi |) + J(|zMi + zMi+1|)−min Jeff

)
+J(|zM−1|) + J(|zM−1 + zM0 |)−min Jeff

= 2
K−1∑
i=1

(
J(|zηi |) + J(|zηi + zηi+1|)−min Jeff

)
− 2 minJeff + J(|zηk |)

+J(|M |) + J(|M − zη1 |) + J(|zη1 +M |)
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= 2
∞∑
i=1

(
J(|zηi |) + J(|zηi + zηi+1|)−min Jeff

)
− 2 minJeff + J(z∗)

+J(|M − zη1 |) + J(M) + J(|M + zη1 |)
≤ β + η + J(|M − zη1 |) + J(M) + J(|M + zη1 |).

Note that zη1 remain bounded; hence, for M large enough independent of η we have
J(|zη1 +M |) < 0 and J(|M − zη1 |) < 0; then, by the arbitrariness of η,

γ ≤ β + J(M) < β.

The estimate γ > 0 follows immediately from the fact that the unique minimizers
in the definition of Jeff are the pairs (z∗, z∗) and (−z∗,−z∗).

The following remark will be useful in the construction of recovery sequences.

Remark 10. For all η we may construct functions wβ,ηi such that

wβ,ηi = z∗i

for i ≥ T β,η, and
zi = wβ,ηi − wβ,ηi−1

is an η-minimizer for the problem defining β. This is just a translation argument, upon
noticing that, if zi is admissible for the problem defining β, then we have

Mz∗ −
M∑
i=1

zi = c

constant for M ≥ K.
Similarly, we may construct functions wγ,ηi such that

wγ,ηi = z∗|i|

for |i| ≥ T γ,η large enough, and

zi = wγ,ηi − w
γ,η
i−1

is an η-minimizer for the problem defining γ. Indeed a translation argument as above
gives a function {wi} with wi = z∗i for i ≥ K and wi = −z∗i + c for i ≤ −K. For
M ∈ N fixed, we can then define

wγ,ηi =


wi for i ≥ −K
wi + c

M (i+K) for −K −M ≤ i < −K − 1
z∗|i| for i ≤ −K −M − 1.

11



Taking into account the Cauchy-Born hypothesis on J , the extra energy due to the
correction for −K −M ≤ i ≤ −K − 1 can be estimated by

(M − 1)
(
J
(
z∗ − c

M

)
+ J

(
2z∗ − 2

c

M

)
−min Jeff

)
+2
(1

2
J
(
z∗ − c

M

)
+

1
2
J(z∗) + J

(
2z∗ − c

M

))
−min Jeff

)
= (M − 1)

(
Jeff

(
z∗ +

c

M

)
−min Jeff

)
+ o(1)M→∞

=
1
2
J ′′eff(z∗)

c2(M − 1)
M2

+ o
( 1
M

)
M→∞

+ o(1)M→∞,

which gives the thesis for M large enough.
The same argument above shows that we may require that wγ,ηi satisfy

wγ,ηi = z∗i+ cη+, wγ,ηi = −z∗i+ cη−

for i ≥ T γ,η and i ≤ −T γ,η, respectively. Here cη± are any two constants that remain
bounded with η.

Proof of Theorem 5. We first prove the lower bound. Let (uε) be a sequence converging
to (v, Sv, Pv) in the sense of Definition 2. By the periodicity condition, we may assume,
without loss of generality, that 0 6∈ Sv ∪ Pv.

We fix η > 0 and subdivide the contribution of uε inside each xj + (−η, η) and
outside their union. Setting

vε =
uε − u√

ε
− cjε

on (xj−1+η, xj−η), we have vε → vj in H1(xj−1+η, xj−η). Upon further subdivinding
our interval, we may suppose that z∗id +

√
εvε are increasing on (xj−1 + η, xj − η) (or

−z∗id +
√
εvε are decreasing). We can then apply Theorem 8 with (a, b) = (xj−1 +

η, xj − η) to get

lim inf
ε→0

Fε(vε, (xj−1 + η, xj − η)) ≥ α
∫

(xj−1+η,xj−η)
|(vj)′|2 dt. (21)

Let x ∈ Pv. We suppose without loss of generality that limx→x+ u′(x) = z∗. Up to
changing the functions uε sufficiently far from x, we may also suppose that

uεi − uεi−1

ε
= z∗

for εi ≥ x+ 3η
4 and

uεi − uεi−1

ε
= −z∗
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for εi ≥ x− 3η
4 . Indeed, for any i we set

wεi =
vεi − vεi−1

ε

where vε is defined as above; since vε weakly converges in H1
(
x+ η

4 , x+ 3η
4

)
, it follows

that there exists an index i(ε) with x + η
4 < εi(ε) < x + 3η

4 such that (wεi(ε))
2 ≤ C/η

with C independent on ε. Then, setting for εi ∈ (x, x+ η)

zεi =


uεi − uεi−1

ε
if i ≤ i(ε)

z∗ if i > i(ε)

we have, since limε→0
√
εwεi(ε) = 0, that the extra energy due to the modification of uεi

is negligible; that is,

lim
ε→0

(
1
2

(
J(zεi(ε)+1) + J(zεi(ε))

)
+ J(zεi(ε)+1 + zεi(ε))−min Jeff

)
= lim

ε→0

(
1
2

(
J(z∗) + J(z∗ +

√
εwεi(ε))

)
+ J(2z∗ +

√
εwεi(ε))−min Jeff

)
= 0.

The corresponding construction for εi ∈ (x− η, x) gives a sequence {zεi } admissible
for the problem defining γ, so that we get that

lim inf
ε→0

Eε(uε, (x− η, x+ η)) ≥ γ.

We now consider x = xj ∈ Sv. Note that there are indices iε such that εiε → xj

and

lim inf
ε→0

|uεiε+1 − uεiε |
ε

= +∞. (22)

This is trivial if xj ∈ S(u). Otherwise, since xj 6∈ S(u′), we may suppose that u′ = z∗

on (xj − η, xj + η). If (22) does not hold then the L2-norm of the gradient of the
piecewise-affine interpolation of vε is bounded, and, upon translation by constants, we
have that

vεi =
1√
ε

(uεi − z∗εi)

weakly converge in H1(xj−η, xj +η). This contradicts the minimality of Sv. The same
argument shows that we can suppose that

lim inf
ε→0

|uεiε+1 − uεiε−1|
ε

= lim inf
ε→0

|uεiε+2 − uεiε |
ε

= +∞. (23)

13



We now estimate the energy as follows. If xj 6∈ S(u′), we can modify uε as in the
case x ∈ Pv obtaining ũε such that

ũεi − ũεi−1

ε
= z∗ (24)

holds outside (xj− 3η
4 , x

j + 3η
4 ). We can then take as test functions for the computation

of the minimum problem in β

z+
i =

ũεi+iε+1 − ũεi+iε
ε

,

and

z−i =
ũεiε−i − ũ

ε
iε−i+1

ε
.

We then obtain

Eε(ũε, (xj − η, xj + η))

=
iε−1∑
i=−∞

(
1
2
J
( |ũεi+1 − ũεi |

ε

)
+

1
2
J
( |ũεi − ũεi−1|

ε

)
+ J

( |ũεi+1 − ũεi−1|
ε

)
−min Jeff

)

+
iε+1∑
i=iε

(
1
2
J
( |ũεi+1 − ũεi |

ε

)
+

1
2
J
( |ũεi − ũεi−1|

ε

)
+ J

( |ũεi+1 − ũεi−1|
ε

)
−min Jeff

)

+
+∞∑

i=iε+2

(
1
2
J
( |ũεi+1 − ũεi |

ε

)
+

1
2
J
( |ũεi − ũεi−1|

ε

)
+ J

( |ũεi+1 − ũεi−1|
ε

)
−min Jeff

)

=
+∞∑
i=1

(1
2

(J(|z−i+1|) + J(|z−i |)) + J(|z−i + z−i+1|)−min Jeff

)
+

1
2
J
( |ũεiε+1 − ũεiε |

ε

)
+

1
2
J
( |ũεiε − ũεiε−1|

ε

)
+ J

( |ũεiε+1 − ũεiε−1|
ε

)
−min Jeff

+
1
2
J
( |ũεiε+2 − ũεiε+1|

ε

)
+

1
2
J
( |ũεiε+1 − ũεiε |

ε

)
+ J

( |ũεiε+2 − ũεiε |
ε

)
−min Jeff

+
+∞∑
i=1

(1
2

(J(|z+
i+1|) + J(|z+

i |)) + J(|z+
i + z+

i+1|)−min Jeff

)
=

+∞∑
i=1

(1
2

(J(|z−i+1|) + J(|z−i |)) + J(|z−i + z−i+1|)−min Jeff

)
+

1
2
J(|z−1 |)− 2 minJeff

+
+∞∑
i=1

(1
2

(J(|z+
i+1|) + J(|z+

i |)) + J(|z+
i + z+

i+1|)−min Jeff

)
+

1
2
J(|z+

1 |) + o(1)ε→0

14



=
+∞∑
i=1

(
J(|z−i |) + J(|z−i + z−i+1|)−min Jeff

)
+ J(|z∗|)− 2 minJeff

+
+∞∑
i=1

(
J(|z+

i |) + J(|z+
i + z+

i+1|)−min Jeff

)
+ o(1)ε→0,

from which we deduce that

lim inf
ε→0

Eε(uε, (xj + η, xj − η)) ≥ β.

The case xj ∈ S(u′) can be treated in a completely similar way, by considering a
modified sequence with

ũεi − ũεi−1

ε
= −z∗

for εi ≤ xj − 3η
4 and by defining

z−i =
ũεiε−i+1 − ũεiε−i

ε
.

We take now (v, Pv, Sv) as in Definition 2, and construct a recovery sequence for the
upper bound. As above, we may assume, without loss of generality, that 0 6∈ Sv ∪ Pv.

By a density and translation argument we may suppose that v ∈ C2[0, 1] and that
v is 0 on a neighbourhood of Pv ∪ Sv. We then choose any function u such that
u′ ∈ BV ((0, 1); {±z∗}), that S(u) ⊂ Sv and that Pv = S(u′) \ S(u) (for example we
may take a function u′ ∈ BV ((0, 1); {±z∗}) with S(u) = ∅ and S(u′) = Pv). The result
will be independent of this choice.

Note that by the periodicity of u there exists x ∈ S(u) ∪ S(u′) 6= ∅, and we define
uε by setting

Duε = Du+
∑

x∈Sv\S(u)

√
ε sgn(u′(x))δx −

∑
x∈Sv\S(u)

√
ε sgn(u′(x))δx.

In this way we have inserted small jumps on the points of Sv where u does not jump,
that preserve the monotonicity of u. We have also modified u at x in order to preserve
the periodicity of uε. Note that this modification may insert a jump of vanishing size at
a crease point. This point must nevertheless be regarded as a crease point at a slightly
misplaced location xε. The situation is the one pictured in Fig. 2. For simplicity of
notation we will suppose that xε = x.

Note that we may suppose that x/ε ∈ Z, upon taking its integer part. For any fixed
η > 0, we consider sequences (wγ,ηi )i∈Z and (wβ,ηi )i≥0 given by Remark 10 satisfying
the following properties

15
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u
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0 1

Figure 2: Perturbation of the function u

• wγ,ηi = z∗|i| for |i| ≥ T γ,η and (zγ,ηi )i∈Z = (wγ,ηi − wγ,ηi−1)i∈Z is an η-minimizing
sequence for the problem defining γ;
• wβ,ηi = z∗i for i ≥ T β,η and (zβ,ηi )i≥1 = (wβ,ηi − wβ,ηi−1)i≥1 is an η-minimizing

sequence for the problem defining β.
We can then define the recovery sequence (uε) in a neighborhood of x ∈ Pv by

setting

uεi = uε(x) + ε
u′(x+)− u′(x−)

2z∗
wγ,ηi−x/ε if |i− x/ε| ≤ T γ,η;

for x ∈ S(uε) we define, for |i− x/ε| ≤ T γ,η

uεi =


uε(x+) + ε

u′(x+)
z∗

wβ,ηi−x/ε−1 if 1 ≤ i− x/ε ≤ T β,η

uε(x−)− εu
′(x−)
z∗

wβ,ηx/ε−i if − T β,η ≤ i− x/ε ≤ 0.

Moreover we set
uεi = uεi +

√
εvi otherwise,

where vi = v(εi). Note that the sequence (uε) converges to (v, Pv, Sv) in the sense of
Definition 2.

Recalling that v vanishes in a neighborhood of Pv, we obtain for any x ∈ Pv∑
|i−x/ε|≤T γ,η

(
1
2
J

( |uεi+1 − uεi |
ε

)
+

1
2
J

( |uεi − uεi−1|
ε

)
+ J

( |uεi+1 − uεi−1|
ε

)
−min Jeff

)
≤ γ + η.

For any x ∈ Sv it follows that, setting sε = uε(x+)− uε(x−)∑
|i−x/ε|≤Tβ,η

(
1
2
J

( |uεi+1 − uεi |
ε

)
+

1
2
J

( |uεi − uεi−1|
ε

)
+ J

( |uεi+1 − uεi−1|
ε

)
−min Jeff

)
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= 2
Tβ,η∑
k=1

(
J(|zβ,ηk |) + J(|zβ,ηk + zβ,ηk+1|)−min Jeff

)
+ J(|z∗|)− 2 minJeff

+J
(∣∣∣u′(x+) + u′(x−)

z∗
wβ,η0 +

sε
ε

∣∣∣)+ J
(∣∣∣u′(x+) + u′(x−)

z∗
wβ,η1 +

sε
ε

∣∣∣)
+J
(∣∣∣u′(x−)

z∗
wβ,η1 +

u′(x+)
z∗

wβ,η0 +
sε
ε

∣∣∣)
≤ β + η + o(1)ε→0

since |sε/ε| ≥ 1/
√
ε and v vanishes in a neighborhood of Pv.

We now consider the set Iηε of the indices i such that εi lie between xj + η and
xj+1− η with η small enough so that v vanishes in the η-neighbourhood of Sv ∪Pv and
ε small enough so that εT β,η and εT γ,η are smaller than η.

Since v′ is C1 we can write
vi+1 − vi−1

2ε
=
vi+1 − vi

ε
+O(ε)ε→0.

Noting that J is Lipschitz continuous on a neighbourhood of z∗, using the Taylor
expansion of Jeff at z∗, we then deduce that∑

i∈Iηε

(
1
2
J

( |uεi+1 − uεi |
ε

)
+

1
2
J

( |uεi − uεi−1|
ε

)
+ J

( |uεi+1 − uεi−1|
ε

)
−min Jeff

)

=
∑
i∈Iηε

(1
2
J

(
z∗ +

√
ε
vi+1 − vi

ε

)
+

1
2
J

(
z∗ +

√
ε
vi − vi−1

ε

)

+J
(

2z∗ +
√
ε
vi+1 − vi−1

ε

)
−min Jeff

)
=
∑
i∈Iηε

(
1
2
J

(
z∗ +

√
ε
vi+1 − vi

ε

)
+

1
2
J

(
z∗ +

√
ε
vi − vi−1

ε

)

+J
(

2z∗ + 2
√
ε
vi+1 − vi

ε

)
−min Jeff

)
+ o(1)ε→0

=
∑
i∈Iηε

(
J

(
z∗ +

√
ε
vi+1 − vi

ε

)
+ J

(
2z∗ + 2

√
ε
vi+1 − vi

ε

)
−min Jeff

)
+ o(1)ε→0

=
∑
i∈Iηε

(
J ′′eff(z∗)

2
ε
(vi+1 − vi

ε

)2
+ o(ε)ε→0

)
+ o(1)ε→0

= α

∫
Iη

|v′|2 dx+ o(1)ε→0,

where Iη = (xj + η, xj+1 − η).
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We then have

lim sup
ε→0

Eε(uε) ≤ F (v, Pv, Sv) + η#(Pv ∪ Sv),

and the limsup inequality by the arbitrariness of η.
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