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1 Introduction

The homogenization of ferromagnetic spin systems in deterministic or random environ-
ments [3] (see [4] for dilute spin systems), as well as in some aperiodic settings [5], has
been carried over in analogy with the homogenization of surface energies [2]. The compu-
tation of an effective surface energy for such systems relies on the characterization of those
ground states that follow a planar interface, and the related homogenization formulas. For
systems with periodic coefficients it has been shown by Caffarelli and de la Llave that
the energy of such ground states can be confined on a strip of finite width around a plane
(plane-like minimizers) [6]. In this paper we show that this is not the case if the coefficients
are uniformly almost periodic by giving an explicit two-dimensional example where there
is no ground state confined on a strip. In this example the coefficents are the uniform limit
of periodic coefficients (with increasing period).

2 Setting of the problem

We consider a discrete system of nearest-neighbour interactions in dimension two with
coefficients cij ≥ c > 0, i, j ∈ Z2. The corresponding ferromagnetic spin energy is

F (u) =
∑
ij

cij(ui − uj)2, (1)

where u : Z2 → {−1, 1}, ui = u(i), and the sum runs over the set of nearest neighbours or
bonds in Z2, which is denoted by

Z = {(i, j) ∈ Z2 × Z2 : |i− j| = 1}.

Such energies correspond to inhomogeneous surface energies on the continuum [1, 3].
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Definition 1 We say that u is a ground state if we have∑
ij

cij

(
(ui − uj)2 − (vi − vj)2

)
≤ 0 (2)

for all v such that vi = ui except for a finite number of indices (so that actually the sum
runs over a finite set).

Definition 2 We say that u is a plane-like ground state or plane-like minimizer for F
in the direction ν if u is a ground state and there exists a number M such that (up to a
change of sign of all values of u) we have

ui = ±1 if ± 〈i, ν〉 ≥M. (3)

The relevance of this definition lies in a result by Caffarelli and de la Llave, who proved
that if cij is periodic then for all directions ν there exists a plane-like minimizer of F in
the direction ν [6].

If we identify the function u with its piecewise-constant interpolation, then being a
plane-like minimizer can be interpreted as the property that the interface ∂{u = 1} lies
in a strip around a line (or a hyperplane in higher dimension, whence the name plane-like
minimizer). Note that this interface cannot be periodic if ν is an ‘irrational’ direction.

3 The example

This section is devoted to an example of uniformly almost-periodic coefficients cij such that
there exist no plane-like minimizer for the corresponding F for all directions ν.

We consider the following nested sets of bonds: for n ≥ 1 we define

Bn =
{

(i, j) ∈ Z :
i1 + j1

2
or

i2 + j2
2

∈ 1
2

+ 2 · 3n + 4 · 3nZ
}

Since 2 · 3n+1 + 4 · 3n+1Z ⊂ 2 · 3n + 4 · 3nZ we have Bn+1 ⊂ Bn. We set B0 = Z.
For all i, j ∈ Z2 with |i− j| = 1 we set

cij =
1
2

+
1
2n

if (i, j) ∈ Bn \Bn+1, n = 0, 1, . . . (4)

Remark 3 (almost-periodicity) Note that the coefficients cnij defined by

cnij = max
{
cij ,

1
2

+
1
2n
}

are 4 · 3n-periodic and converge uniformly to cij on Z. Hence, the system of coefficients cij
is uniformly almost periodic; more precisely, it is the uniform limit of a family of periodic
coefficients of increasing periods.
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Remark 4 (homogenizability) Note that the set of coefficients cij is homogenizable (in
the terminology of [3]): if we define the family of energies

Fε(u) =
∑
ij

εcij(ui − uj)2 if u : εZ2 → {−1, 1},

where ui = u(εi), then, upon identifying each u with its piecewise-constant interpolation
as a L1-function, Fε Γ-converge to the energy

F0(u) = 4
∫
∂{u=1}

(|ν1|+ |ν2|)dH1 if u ∈ BV (R2; {−1, 1})

where ∂{u = 1} is understood as the reduced boundary of the set {u = 1} and ν its
measure-theoretical normal.

This can be proved using the results in [3] Section 2.1.2, or directly by comparison, on
one hand remarking that, using that cij ≥ 1/2 for all i and j, we have

Fε(u) ≥ 1
2

∑
ij

ε(ui − uj)2 if u : εZ2 → {−1, 1}

and the Γ-limit of the energies of this right-hand side is F0 by [1]. On the other hand, by
Remark 3, for all u we can find a sequences of functions {uε} converging to u and such
that

Fε(uε) ≤
(1

2
+

1
2n
)∑

ij

ε((uε)i − (uε)j)2 ≤
(

4 +
8
2n
)
H1(∂{u = 1})

(the factor 8 comes from the fact that each nearest-neighbour pair is accounted for twice,
and that ((uε)i − (uε)j)2 = 4 for non-zero interactions).

We now show that there exists no plane-like minimizer for the energy F in any direc-
tion ν. We first consider the case when ν is not a coordinate direction. By symmetry it is
sufficient to consider the case

ν1 < 0, 0 < ν2 ≤ −ν1;

i.e., the direction of the strip

SMν := {x ∈ R2 : 〈x, ν〉| ≤M}

is increasing and at an angle not less than 45 degrees (see the one in Fig. 1).
Suppose that such a plane-like minimizer u existed, and let ν, M be given by its

definition. Up to changing the sign to u we may suppose that (3) holds.
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Figure 1: Construction of a competitor v (oblique case)

With fixed n, let kn be the minimal k such that the horizontal line

x2 =
1
2

+ 2 · 3n + 4 · 3nk

intersects
SMν ∩

{
(x1, x2) : x1 >

1
2

+ 2 · 3n
}

;

i.e., the intersection of the strip with the half-plane on the right-hand side of the first
vertical line of Bn.

We consider the function v defined as

vi =


1 if i1 < 1

2 + 2 · 3n and i2 >
1
2 − 2 · 3n + 4 · 3nkn

−1 if i1 > 1
2 + 2 · 3n and i2 <

1
2 + 2 · 3n + 4 · 3nkn

ui otherwise.

(5)

Note that by (3) the set {I : ui 6= vi} is finite and contained in the horizontal strip defined
by

Sn =
{

(x1, x2) :
1
2
− 2 · 3n + 4 · 3nkn < x2 <

1
2

+ 2 · 3n + 4 · 3nkn
}
.

If we identify the discrete function u with its piecewise-constant interpolation

u(x) = u
(⌊
x1 −

1
2

⌋
,
⌊
x2 −

1
2

⌋)
(6)

then u can be pictured through the interface ∂{u = 1}, and likewise v. In Fig. 1 the solid
line represents the interface ∂{v = 1} and the dotted line the part of the interface ∂{u = 1}
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not included in ∂{v = 1}. The vertical and horizontal lines represent the interactions in
Bn

We now compute the variation of the energy∑
ij

cij

(
(ui − uj)2 − (vi − vj)2

)
,

which we estimate separately on the sets

I1 =
{

(i, j) :
i2 + j2

2
=

1
2
− 2 · 3n + 4 · 3nkn, (i1, j1) or (i2, j2) ∈ SMν

}
I2 =

{
(i, j) :

i2 + j2
2

=
1
2

+ 2 · 3n + 4 · 3nkn, (i1, j1) or (i2, j2) ∈ SMν
}

I3 =
{

(i, j) :
i1 + j1

2
=

1
2

+ 2 · 3n, (i1, j1) or (i2, j2) ∈ SMν
}

Iu =
{

(i, j) : i, j ∈ SMν ∩ Sn, (i, j) 6∈ I1 ∪ I2 ∪ I3
}

Iv =
{

(i, j) : vi 6= vj , (i, j) 6∈ I1 ∪ I2 ∪ I3; i or j ∈ Sn
}
.

Note that outside the union of these sets ui = vi and uj = vj ; note moreover that

cij ≤
1
2

+
1
2n

on I1 ∪ I2 ∪ I3 ∪ Iv

cij ≥
1
2

+
1

2n−1
on Iu.

Up to taking a larger M we can suppose that
• ui has the same value of uj if (i, j) ∈ Z and i 6∈ SMν (i.e., we have no interactions on

the boundary of SMν );
• the number of interactions in I1 and I2 (respectively, I3) can be estimated by 4M/|ν1|

(respectively, by 4M/|ν2|). Note that 2M/|ν1| (respectively, 2M/|ν2|) is the length of the
intersection of an horizontal (respectively, vertical) line with SMν .

We then have∑
(i,j)∈I1∪I2

cij

(
(ui − uj)2 − (vi − vj)2

)
≥ −

∑
(i,j)∈I1∪I2

cij(vi − vj)2

≥ −
(1

2
+

1
2n
)

4 · 8M
|ν1|

(7)

∑
(i,j)∈I3

cij

(
(ui − uj)2 − (vi − vj)2

)
≥ −

∑
(i,j)∈I3

cij(vi − vj)2

≥ −
(1

2
+

1
2n
)

4 · 4M
|ν2|

(8)
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∑
(i,j)∈Iu

cij

(
(ui − uj)2 − (vi − vj)2

)
=

∑
(i,j)∈Iu

cij(ui − uj)2

≥
(1

2
+

1
2n−1

)(
4 · 3n + 4 · 3n |ν2|

|ν1|
+

8M
|ν2|

)
(9)

∑
(i,j)∈Iv

cij

(
(ui − uj)2 − (vi − vj)2

)
= −

∑
(i,j)∈Iv

cij(vi − vj)2

≥ −
(1

2
+

1
2n
)(

4 · 3n − 4M
|ν2|

+ 4 · 3n |ν2|
|ν1|
− 8M
|ν2|

)
.

(10)

From estimates (7)–(10) we obtain∑
(i,j)∈Iu

cij

(
(ui − uj)2 − (vi − vj)2

)
≥ 3n

2n
· 4
(

1 +
|ν2|
|ν1|

)
− 32M

( 1
|ν1|

+
1
|ν2|

)
. (11)

If n is large enough the right-hand side of this expression is positive, contradicting (2).

It remains the case when ν1ν2 = 0. By symmetry it suffices to consider the case ν1 = 0;
i.e., when we suppose that u is a ground state such that there exists M such that

ui = 1 if i2 > M, ui = −1 if i2 < −M.

Let SM = {x : |x1| ≤M}, and let n be such that

2 · 3n > M + 2. (12)

In this case there is no pair (i, j) ∈ Bn∩SM with i2 = j2 (i.e., there is no ‘horizontal’ bond
in Bn lying in the strip SM ).

With fixed k ∈ N we define a test function v as follows:

vi =
{
−1 if 2 · 3n < i1 ≤ 2(1 + 2k)3n, i2 < 2 · 3n
ui otherwise.

We can picture the functions u and v through the interfaces related to their piecewise-
constant interpolations as done in the oblique case above. In Fig.2 the boldface solid line
represents the interface related to v, the boldface dotted line represents the part of the
interface related to u not included in that of v, the other solid lines represent the location
of the bonds in Bn.

Let
I1 =

{
(i, j) ∈ Z ∩Bn :

i1 + j1
2

=
1
2

+ 2 · 3n
}

6



Figure 2: Construction of a competitor v (horizontal case)

I2 =
{

(i, j) ∈ Z ∩Bn :
i1 + j1

2
=

1
2

+ 2(1 + 2k)3n
}

I3 =
{

(i, j) ∈ Z ∩Bn :
i2 + j2

2
=

1
2

+ 2 · 3n
}

Iu =
{

(i, j) ∈ Z ∩Bn : i, j ∈ SM , 2 · 3n < min{i1, j1}, max{i1, j1} ≤ 2(1 + 2k)3n
}

We can then estimate∑
ij

cij

(
(ui − uj)2 − (vi − vj)2

)
=

∑
(i,j)∈I1∪I2∪I3∪Iu

cij

(
(ui − uj)2 − (vi − vj)2

)
(13)

≥ −
∑

(i,j)∈I1∪I2∪I3

(1
2

+
1
2n
)

(vi − vj)2 +
∑

(i,j)∈Iu

(1
2

+
1

2n−1

)
(ui − uj)2

≥ −8
(1

2
+

1
2n
)

#(I1 ∪ I2 ∪ I3) + 8
(1

2
+

1
2n−1

)
#I3, (14)

where in the estimate for the sum on Iu we have taken into account only horizontal bonds
where ui 6= uj (whose number is greater than #I3). We can then estimate∑

ij

cij

(
(ui − uj)2 − (vi − vj)2

)
≥ −8

(1
2

+
1
2n
)

(8 · 3n + 4k 3n) + 8
(1

2
+

1
2n−1

)
4k 3n

≥ −64 · 3n + 4k
3n

2n
. (15)

By taking k large enough (recall that now n is fixed by (12)) the last expression is positive,
again contradicting (2).
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