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1 Introduction

Scope of this paper is twofold: on one hand we continue the study of Lennard-
Jones systems from the standpoint of variational principles, on the other hand
these allow to provide a non-trivial example within the theory of minimizing
movements. In a one-dimensional static setting, Lennard-Jones systems have
been shown to be equivalent to energies of Fracture Mechanics using the notion
of equivalence by Γ-convergence [8, 9]. Here we prove that this equivalence
also holds as gradient-flow type dynamics are concerned. Within the theory of
minimizing movements, the scaled Lennard-Jones energies we consider are an
example of a sequence of non-convex functionals for which Γ-convergence and
gradient-flow dynamics commute.

We start by briefly recalling the minimizing-movement scheme. Typically,
we are given an ‘energy functional’ F , defined on a space X, whose (local)
minimizers provide the stable configurations of the system. As an answer to the
problem of modeling the evolution from a given initial state u0, in [11] (see also
[1, 5]) a general scheme is proposed, based on an iterative-minimization process.
More precisely, in the particular case in which X is a Hilbert space, we fix a
‘time step’ τ > 0 and consider the sequence (ukτ )k recursively defined by letting
u0
τ = u0 and ukτ (k ≥ 1) be a minimizer of the penalized functional

(1.1) v 7→ F (v) +
1
2τ
‖v − uk−1

τ ‖2X ;

the last term tends to constrain the minimizer ukτ on a O(τ)-neighbourhood of
uk−1
τ , thus giving a X-continuous trajectory in the limit. We interpret ukτ as

the state of the system at discrete times t = kτ . Let uτ : [0,+∞) → X be its
piecewise-constant extension for all positive times: uτ (t) = u

bt/τc
τ ; a function

u : [0,+∞)→ X is a minimizing movement for F from u0 if u is the pointwise
limit of a (sub)sequence (uτn). As a standard example we mention the case
X = L2(Ω), with Ω an open subset of Rn, and F (u) =

∫
Ω
|∇u|2 dx on the

Sobolev space H1(Ω), extended with value +∞ otherwise; it turns out that the
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Figure 1 - Potentials of Lennard-Jones type

In this paper we focus the attention on a well-known family of non-convex
energies (defined through a Lennard-Jones potential) and prove the validity of
this commutativity property. More precisely, we consider the family (Fε)ε>0 of
functionals defined on the set of functions u : [0, 1] ∩ εZ → R by (see (2.4))

(1.2) Fε(u) =
Nε−1∑
i=0

ψ

(
ui+1 − ui√

ε

)
, (ui := u(iε), Nε := %1/ε&),

where ψ : (−1, +∞) → R is, up to a translation, a convex-concave potential
of Lennard-Jones type (see Figure 1(b)). We refer to the next section for the
motivation of the ε-scaling considered here, which leads to the prototype free-
discontinuity functional, namely the Mumford-Shah functional

F (u) =
1
2
ψ′′(0)

∫ 1

0

|u′|2 dx + a#S(u)

where a = limz→+∞ ψ(z).
For every ε, τ > 0 we can define the discrete evolution (uk

ε,τ )k from an
initial datum, driven by the functional Fε according to the scheme (1.1). As
above, let uε,τ be the piecewise-constant extension for all positive times: uτ (t) =
u
%t/τ&
ε,τ . In Section 3 we prove a compactness result for sequences

(
uεn,τn

)
; and in

Section 4 we characterize the limit points as weak solutions of the heat equation,
independently of the particular sequences (εn) and (τn).

2 Setting of the problem and preliminary results

Function spaces. Let I = (a, b) be a bounded open interval. We denote by
W k,p(I) and Hk(I) := W k,2(I) the standard Sobolev spaces on I. Moreover,
we say that a function u : I → R is piecewise-W 1,p(I) if there exist a = x0 <
x1 < . . . < xm+1 = b such that

(2.1) u ∈ W 1,p(xk, xk+1) for every k = 0, . . . , m.
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evolution of an initial datum u0 is given by the (weak) solution of the heat
equation ut = ∆xu with initial condition u(·, 0) = u0 and Neumann boundary
conditions.

Consider now the case of an energy Fε which depends on a small parameter
ε, and assume that we know its limit F as ε → 0 (technically, the Γ-limit in
a suitable topology). We cannot expect that the evolution of the system from
an initial state, driven by the functional Fε according to the scheme above, is
close to the evolution ruled by the limit F : indeed two different limit processes
are involved (ε → 0 and τ → 0), that do not commute. In general then we
have a minimizing movement along the sequence Fε that does depend on the
particular ε-τ regime (see [7] Section 8). It is particularly noteworthy when we
can uniquely characterize the limit, independently of the choice of the specific
infinitesimal sequences εn and τn: if this is the case, we say that Γ-convergence
commutes with the minimizing movements method. A simple condition which
guarantees that the two procedures commute is the convexity of the functionals
Fε (see [7] Section 11.1 and [4]): as a heuristic motivation, consider that, in the
convex case, the constraint expressed, for each ε, by the penalization term in
(1.1) does not match with the existence of a nearby local minimizer other than
the global one.

In this paper we focus the attention on a well-known family of non-convex
energies defined through a Lennard-Jones potential, and prove the validity of
this commutativity property. More precisely, we consider the family (Fε)ε>0 of
functionals defined on the set of functions u : [0, 1] ∩ εZ→ R by (see (2.4))

(1.2) Fε(u) =
Nε−1∑
i=0

ψ

(
ui+1 − ui√

ε

)
, (ui := u(iε), Nε := b1/εc),

where ψ : (−1,+∞) → R is, up to a translation, a convex-concave potential of
Lennard-Jones type with minimum in 0 (see Figure 1(b)). We refer to the next
section for the motivation of the ε-scaling considered here, which leads to the
prototypical free-discontinuity functional, namely the Mumford-Shah functional
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(or Griffith fracture energy)

F (u) =
1
2
ψ′′(0)

∫ 1

0

|u′|2 dx+ a#S(u),

with an increasing-jump condition u+ > u−, where a = limz→+∞ ψ(z). It is
known that the minimizing-movement scheme can be applied to the functional
F giving the heat equation with Neumann boundary conditions on the jump set
(and on the boundary), with the constraint that S(u(t)) is decreasing (see, e.g.,
[7] Example 7.3).

For every ε, τ > 0 we can define the discrete evolution (ukε,τ )k from an
initial datum, driven by the functional Fε according to the scheme (1.1). As
above, we denote by uε,τ its piecewise-constant extension for all positive times:
uε,τ (t) = u

bt/τc
ε,τ . In Section 3 we prove a compactness result for sequences(

uεn,τn
)

and in Section 4 we characterize the minimizing movement along Fεn
(with time step τn); namely, we prove that all limit points of

(
uεn,τn

)
are weak

solutions of the heat equation, independently of the particular sequences (εn)
and (τn), with fixed jump set, hence obtaining the minimizing movement for the
Mumford-Shah functional. Note that a similar commutativity result between Γ-
convergence and gradient flow has been obtained for Ginzburg-Landau energies
[13].

It must be noted that part of the results are obtained under the technical
assumption τ << ε2. An assumption on the relation between ε and τ seems in
contrast with the scope of the paper, as commutability between Γ-convergence
and minimizing movements is concerned. It must hence be noted that a general
result (see [7] Section 8.2) ensures that for ε small enough with respect to τ
the minimizing movement along the sequence Fε does converge to a minimizing
movement for the limit F . Hence, a smallness requirement on τ seems only a
technical assumption.

2 Setting of the problem and preliminary results

Function spaces. Let I = (a, b) be a bounded open interval. We denote by
W k,p(I) and Hk(I) := W k,2(I) the standard Sobolev spaces on I. Moreover,
we say that a function u : I → R is piecewise-W 1,p(I) if there exist a = x0 <
x1 < . . . < xm+1 = b such that

(2.1) u ∈W 1,p(xk, xk+1) for every k = 0, . . . ,m.

It is well known that, considering the continuous representative of u in each
interval, the limits

u+(xk) := lim
x→x+

k

u(x), u−(xk) := lim
x→x−k

u(x)

exist and are finite. The minimal set {x1, . . . , xm} for which (2.1) holds coincides
with the discontinuity set S(u) of the function u.

If u ∈ BV (I), i.e. u is a function with bounded variation in I, then its
distributional derivative Du is a measure which can be written as

(2.2) Du = u′dx+Dsu,
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for a suitable function u′ ∈ L1(I) and with Dsu singular with respect to the
Lebesgue measure dx. It is well known that if u ∈ BV (I) then the unilateral
(approximate) limits u±(x) exist and are finite for every x ∈ I.

A relevant subspace of BV (I) is the space SBV (I) (special functions with
bounded variation) determined by the condition that Dsu is concentrated on
the set S(u) of discontinuity points of u (i.e., the points where u± are different).
In this case,

Dsu = (u+ − u−)dH 0 S(u),

(here H 0 denotes the counting measure) and we refer to Dsu as the jump part
Dju of the derivative Du. It turns out that u is piecewise-W 1,p(I) if and only
if u ∈ SBV (I), the set S(u) is finite and u′ ∈ Lp(I). In this case, the density
u′ in the decomposition (2.2) is nothing but the usual weak derivative of u as
a Sobolev function in each interval of the partition determined by S(u). A
crucial property of this space is given by the following compactness and closure
results (see [3], Th. 4.8 and Th. 4.7, where the general n-dimensional setting is
considered; see also [6], Thm 7.3, for the one-dimensional case).

Theorem 2.1 Let (un) be an equibounded sequence of piecewise-H1(I) func-
tions, with

sup
n

(∫ b

a

|u′n(x)|2 dx+ #S(un)
)
< +∞.

Then there exist a subsequence (unk) and a piecewise-H1(I) function u such
that

unk → u, u′nk ⇀ u′ in L2(a, b).

Moreover, Djunk ⇀ Dju weakly∗ in the sense of measures.

For a function u = u(x, t) depending on both a space and a time variable,
if u(·, t) is piecewise-H1(I) we denote by ux(·, t) the (density of the absolutely
continuous part of the) derivative of u(·, t).

Since in this paper we do not make use of any technical result about Γ-
convergence, we refer the interested reader to [6] and [10] for a thorough presen-
tation. In view of the arguments displayed in the next subparagraph, we only
need to recall that the main feature of Γ-convergence for a sequence of function-
als is that, under mild compactness assumptions, it leads to the convergence of
minima and minimizers.

Lennard-Jones potentials. Consider a one-dimensional array of particles whose
mutual interactions can be described by a nearest-neighbour scheme ruled by a
potential of Lennard-Jones type, i.e.:

VLJ(r) = 4a
[(σ

r

)12

−
(σ
r

)6
]

= a

[(rm
r

)12

− 2
(rm
r

)6
]
,

where: r denotes the distance between the particles, a is the depth of the
potential well and rm = 21/6σ is the distance at which the minimum is attained
(see Figure 1(a)). These parameters can be adjusted according to experimental
data.

Assume a reference configuration in which the coordinates of the particles
form the set [0, 1]∩ εZ, where we choose the space step ε = rm. A configuration
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w is a function w : [0, 1] ∩ εZ → R; we denote the value w(iε) simply by wi.
Then the energy corresponding to w is given by

Nε−1∑
i=0

VLJ(wi+1 − wi) ,

with the constraint that wi+1 > wi. The effective configurations under given
boundary data are obtained by minimizing this energy. In terms of the displace-
ment v = w− id, and making the difference quotient (vi+1− vi)/ε explicit, each
term of the sum can be written as VLJ

(
ε(1 + vi+1−vi

ε )
)
. Since the minimizers

are not affected by the addition of a constant in the energy, we equivalently
consider the following functional, whose absolute minimum is zero:

Eε(v) =
Nε−1∑
i=0

ψ
(vi+1 − vi

ε

)
,

where ψ(t) = VLJ(ε(1 + t)) + a (independent of ε): see Figure 1(b)).
When ε is small, the minimizers of Eε can be qualitatively described by

means of the minimizers of the Γ-limit functional for ε → 0. In order to have
the same functional domain for Eε independently of ε, we consider each function
v : [0, 1] ∩ εZ → R as a function in L1(0, 1), defined by v(x) = v(bx/εc). Then
it turns out (see [6], Theorem 11.7) that the Γ-limit of (Eε) with respect to the
L1-convergence is given by

E(v) =

{
a#S(v) if v is piecewise constant on (0, 1)

and v+ > v− on S(v),
+∞ otherwise.

A more refined analysis of the displacement v (i.e. of the “correction” term
with respect to the identity) can be obtained by suitably rescaling the state
variable, so as to obtain a non-trivial limit. By letting v =

√
εu we get the

functionals:

Fε(u) =
Nε−1∑
i=0

ψ
(ui+1 − ui√

ε

)
.

In [8] (see also [9]) it is proved that as a Γ-limit we get the well-known Mumford-
Shah functional

F (u) =
1
2
ψ′′(0)

∫ 1

0

|u′|2 dx+ a#S(u),

with the constraint u+ > u−. Note that, in terms of the variable u, the initial
configuration w can be written as w = id+

√
εu.

In this paper we focus on the relationship between the asymptotic bahaviour
of Fε as ε→ 0 and the methods of minimizing movements described below.

Setting of the problem and first results. Let ε > 0 be given. If u is a function
[0, 1] ∩ εZ → R, we denote the value u(iε) simply by ui; therefore, we often
write u as an indexed family (ui)i=0,1,...,Nε where Nε = b1/εc. By u we will also
denote the piecewise-constant extension defined by u(x) = ui with i = bx/εc.
The Lp(0, 1) norms of u are defined taking this extension into account.

Let ψ : (−1,+∞) → [0,+∞) be a C1 function satisfying the following con-
ditions (see the model example in Figure 1(b)):
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A1) there exists z0 > 0 such that ψ is C3 and convex in (−1, z0) and is concave
in (z0,+∞);

A2) lim
z→−1+

ψ(z) = +∞, lim
z→+∞ψ(z) = 1.

A3) ψ(0) = 0, ψ′(0) = 0 and ψ′′(0) > 0.

Remark 2.2 As regards the smoothness assumptions about ψ, we point out
that the requirement that ψ is globally C1 is needed to deduce the optimality
conditions in the form of Proposition 2.9, while the assumption that ψ is C3 on
(−1, z0) is used in the proof of Theorem 3.4; otherwise, C2 suffices.

Note, in particular, that the stated conditions imply that ψ is monotone on
each of the intervals (−1, 0] and [0,+∞); moreover, 0 is a minimum point and
there exists a constant ν > 0 such that

(2.3) ψ(z) ≥ νz2 for z ≤ z0.

On the space of discrete functions u : [0, 1] ∩ εZ → R we consider the func-
tionals

(2.4) Fε(u) =


Nε−1∑
i=0

ψ
(ui+1 − ui√

ε

)
if ui+1 − ui > −

√
ε for all i

+∞ otherwise.

It will be useful to express Fε in an “integral form” with explicit dependence
on the difference quotient:

(2.5) Fε(u) =


Nε−1∑
i=0

εϕε

(ui+1 − ui
ε

)
if ui+1 − ui > −

√
ε for all i

+∞ otherwise,

where

(2.6) ϕε(z) =
1
ε
ψ(
√
εz).

Thus ϕε : (−1/
√
ε,+∞)→ [0,+∞).

For a function u : [0, 1]∩εZ→ R a key role will be played by the “singular set”
of the points i where the discrete gradient (ui+1 − ui)/ε exceeds the threshold
given by the inflection point of ψ. More precisely, we define

(2.7) I+
ε (u) =

{
i ∈ Z : 0 ≤ i ≤ Nε − 1,

ui+1 − ui
ε

>
z0√
ε

}
.

For future reference we state the following lemma.

Lemma 2.3 Let u : [0, 1] ∩ εZ→ R with Fε(u) < +∞. Then

a) #I+
ε (u) ≤ 1

νz2
0

Fε(u);

b) if ζ0 ∈ (−1, 0) is such that ψ(ζ0) ≥ Fε(u), then
ui+1 − ui

ε
>

ζ0√
ε

for every

i = 0, . . . , Nε − 1.
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Proof. Estimate (a) immediately follows from (2.3), since

Fε(u) ≥
∑

i∈I+ε (u)

νz2
0 = νz2

0#I+
ε (u).

As for (b), for every i we have

ψ
(√

ε
ui+1 − ui

ε

)
≤ Fε(u) ≤ ψ(ζ0),

and we conclude by the monotonicity of ψ in (−1, 0]. �

For any given u : [0, 1]∩ εZ→ R we define the extension û on [0, 1] obtained
by linear interpolation outside the set εI+

ε (u):
(2.8)

û(x) =

ui if i := bx/εc ∈ I+
ε (u) or i = Nε

(1− λ)ui + λui+1 otherwise (here, i := bx/εc and λ = x/ε− bx/εc).

Remark 2.4 a) The extension û is right-continuous and

iε ∈ S(û) if and only if i− 1 ∈ I+
ε (u).

Note that û+(x)− û−(x) > 0 for every x ∈ S(û).
b) Recalling that by u we also denote the piecewise-constant function [0, 1]→

R defined by u(x) = ui with i = bx/εc, we have

(2.9) |û(x)− u(x)| ≤ z0

√
ε for every x ∈ [0, 1].

An important compactness property for the extensions û is given by the
following lemma.

Lemma 2.5 Let (εn) be a positive infinitesimal sequence and let (vn) be an
equibounded sequence of functions [0, 1] ∩ εnZ→ R such that

Fεn(vn) ≤M

for some constant M . Let v̂n be the extensions introduced according to (2.8).
Then

(2.10)
∫ 1

0

|v̂′n(x)|2 dx+ #S(v̂n) ≤ M

νmin(z2
0 , 1)

.

In particular, up to a subsequence, there exists a piecewise-H1(0, 1) function v
such that

v̂n → v, v̂′n ⇀ v′ in L2(0, 1).

Moreover, Dj v̂n ⇀ Djv weakly∗ in the sense of measures.

7



Proof. We have:

M ≥ Fεn(vn) =
∑

i/∈I+εn (vn)

εnϕεn

(
(vn)i+1 − (vn)i

εn

)

+
∑

i∈I+εn (vn)

εnϕεn

(
(vn)i+1 − (vn)i

εn

)

≥ ν
∑

i/∈I+εn (vn)

εn

(
(vn)i+1 − (vn)i

εn

)2

+ νz2
0 #I+

εn(vn)

≥ νmin(z2
0 , 1)

[∫ 1

0

|v̂′n(x)|2 dx+ #S(v̂n)
]
.

We conclude by applying Theorem 2.1. �

Remark 2.6 By the uniform estimate (2.9), the Lp(0, 1) convergence of (v̂n)
is equivalent to the Lp(0, 1) convergence of the piecewise-constant functions vn.

Lemma 2.7 Let (vn) and v be as in Lemma 2.5. Then

a) v+ − v− > 0 on S(v);

b) up to a subsequence, (vn) satisfies the following property: for every x ∈
S(v) there exists a sequence (xn) with

xn ∈ S(v̂n) and lim
n→∞

(
v̂+
n (xn)− v̂−n (xn)

)
> 0.

Proof. a) Since Dj v̂n are positive measures which weakly∗ converge to Djv,
this latter is a positive measure, too.

b) Let x ∈ S(v) and let V be an open neighborhood of x such that S(v)∩V =
{x}. By the weak∗ convergence of the measures Dj v̂n to Djv on V , we have
(see, e.g., [3], Prop. 1.62) Djv(V ) = limn→∞Dj v̂n(V ), i.e.:

(2.11) v+(x)− v−(x) = lim
n→∞

∑
x∈S(v̂n)∩V

(
v̂+
n (x)− v̂−n (x)

)
.

By estimate (2.10) for every n ∈ N, we can define xn1 , . . . , x
n
m, with m indepen-

dent of n, such that
S(v̂n) ⊆ {xni : i = 1, . . . ,m}.

Up to a subsequence we can assume that every sequence (xni )n converges to a
point in [0, 1]: denote by S this set of points. It turns out that S ∩ V 6= ∅,
otherwise v+(x)− v−(x) = 0 by (2.11). By the arbitrariness of V we must have
x ∈ S. Hence, we can choose V such that V ∩ S = {x}. From (2.11) it follows
that there exists a sequence (xni )n converging to x such that

xni ∈ S(v̂n), and lim sup
n→∞

(
v̂+
n (xni )− v̂−n (xni )

)
> 0,

otherwise v+(x)− v−(x) = 0. �
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Minimizing movements along Fε. As mentioned in the introduction, we apply
the method of the minimizing movements to the functionals Fε, but we allow the
spatial-discretization parameter ε to vary as the time-discretization step goes
to zero.

For each ε > 0 let u0
ε : [0, 1] ∩ εZ → R be a given function and let τ > 0

be fixed. We recursively define a sequence uk := ukε,τ (k ∈ N) of real-valued
functions on [0, 1] ∩ εZ, by requiring that u0 is the initial datum u0

ε just fixed,
while for any k ≥ 1, the function uk is a minimizer of

(2.12) Gkε,τ (v) := Fε(v) +
1
2τ

Nε∑
i=0

ε|vi − uk−1
i |2 ,

with respect to all functions v : [0, 1]∩εZ→ R. We state some easy consequences
of this definition.

Proposition 2.8 For every k ∈ N the following properties hold:

a) Fε(uk) ≤ Fε(uk−1),

b)
Nε∑
i=0

ε|uki − uk−1
i |2 ≤ 2τ

[
Fε(uk−1)− Fε(uk)

]
,

c) ‖uk‖∞ ≤ ‖uk−1‖∞ ≤ ‖u0
ε‖∞ .

Proof. The minimality of uk with respect to the test function v = uk−1,
implies that

Fε(uk) +
1
2τ

Nε∑
i=0

ε|uki − uk−1
i |2 ≤ Fε(uk−1).

From this inequality, (a) and (b) follow immediately.
Moreover, if M := ‖uk−1‖∞, then for every u we have

Gkε,τ ((u ∧M) ∨ (−M)) ≤ Gkε,τ (u).

Therefore ‖uk‖∞ ≤ ‖uk−1‖∞. �

Since uk is a solution of a minimum problem in finite dimension we get the
classical optimality conditions.

Proposition 2.9 Let uk be defined recursively by (2.12) Then, the following
equations hold:

− ϕ′ε
(
uk1 − uk0

ε

)
+
ε

τ
(uk0 − uk−1

0 ) = 0

ϕ′ε

(
uki − uki−1

ε

)
− ϕ′ε

(
uki+1 − uki

ε

)
+
ε

τ
(uki − uk−1

i ) = 0 (0 < i < Nε)

ϕ′ε

(
ukNε − ukNε−1

ε

)
+
ε

τ
(ukNε − uk−1

Nε
) = 0.

9



For any given ε > 0 and τ > 0 and for every k ∈ N we interpret the values
(ukε,τ )i (for i = 0, . . . , Nε) as the discrete evolution, at the time t = kτ , of the
initial (discrete) datum u0

ε : [0, 1] ∩ εZ → R. The goal is to detect the limit
evolution as ε, τ → 0.

Remark 2.10 The optimality conditions in the proposition above easily sug-
gest the form of the evolution equation satisfied by a possible limit function u.
Indeed, by dividing the i-th equation by ε and applying the mean-value theorem
to ϕ′ε(z) = ψ′(

√
εz)/
√
ε, we get

uki − uk−1
i

τ
= ψ′′(

√
εξ)

uki+1 − 2uki + uki−1

ε2
,

where ξ is a suitable value between the two difference quotients. Hence, in the
limit we obtain

ut = ψ′′(0)uxx

at the points in which u is twice differentiable (see Theorem 4.1).

On the initial datum u0
ε we make the following assumptions:

B1) (u0
ε)ε is an equibounded set of functions [0, 1] ∩ εZ → R; i.e., we have

sup{(u0
ε)i : 0 ≤ i ≤ Nε, ε > 0} < +∞;

B2) there exists M > 0 such that Fε(u0
ε) ≤M for every ε > 0.

With in view the analysis of the limit, as ε, τ → 0, of the discrete evolu-
tions (ukε,τ )k defined in the previous section, we introduce the piecewise-constant
spatial-time extension uε,τ of these values to [0, 1]× [0,+∞) by defining

uε,τ : [0, 1]× [0,+∞)→ R,
uε,τ (x, t) =

(
ukε,τ

)
i

with k = bt/τc and i = bx/εc.(2.13)

In the following section we give a compactness result (Theorem 3.2) for the
family uε,τ as ε, τ → 0.

3 Compactness

The compactness result contained in Theorem 3.2 follows a standard line in the
theory of minimizing movements (see [1], [2] and [7]). In Theorem 3.4 we prove
a regularity result for the limit function.

Proposition 3.1 For any s, t ≥ 0, with s < t, we have

‖uε,τ (·, t)− uε,τ (·, s)‖2 ≤
(
2Fε(u0

ε)
)1/2√

t− s+ τ .

10



Proof. Let x ∈ [0, 1] and 0 ≤ s < t be fixed; set h = bs/τc and k = bt/τc.
For every i it turns out that:

|(ukε,τ)i − (uhε,τ)i| ≤ k−1∑
j=h

|(uj+1
ε,τ

)
i
− (ujε,τ)i|

≤ √
k − h

√√√√k−1∑
j=h

|(uj+1
ε,τ

)
i
− (ujε,τ)i|2 .

Therefore, by Proposition 2.8, we have

Nε∑
i=0

ε|(ukε,τ)i−(uhε,τ)i|2 ≤ (k − h)
Nε∑
i=0

k−1∑
j=h

ε|(uj+1
ε,τ

)
i
− (ujε,τ)i|2

≤ 2τ(k − h)
k−1∑
j=h

(
Fε(ujε,τ )− Fε(uj+1

ε,τ )
)

≤ 2τ(k − h)(Fε(uhε,τ )− Fε(ukε,τ )
) ≤ 2(t− s+ τ)Fε(u0

ε). �

Theorem 3.2 Under the assumptions (B1) and (B2), let (εn) and (τn) be pos-
itive infinitesimal sequences, and let vn = uεn,τn be the piecewise-constant func-
tions defined in (2.13). For every t ≥ 0 denote by v̂n(·, t) the piecewise-affine
extension of vn(·, t) according to (2.8). Then there exist a subsequence (not
relabelled) of (vn) and a function u ∈ C1/2([0,+∞);L2(0, 1)) such that

vn → u, v̂n → u in L∞([0, T ];L2(0, 1)) and a.e. in (0, 1)× (0, T )

for every T ≥ 0. Moreover, for every t ≥ 0,

u(·, t) is piecewise-H1(0, 1)

(v̂n)x(·, t) ⇀ ux(·, t) in L2(0, 1).

Finally, every x ∈ S(u(·, t)) can be approximated by jump points of v̂n(·, t) as
in Lemma 2.7 (b).

Proof. Let t ≥ 0 be fixed. By Proposition 2.8(a) we have that Fεn
(
vn(·, t))

is a bounded sequence. Thus, we can apply Lemma 2.5 to the functions vn(·, t):
the sequence (v̂n(·, t))n is pre-compact with respect to the L2(0, 1) convergence;
moreover, the limit is piecewise-H1(0, 1), and we have weak-L2 convergence
of (v̂n)x(·, t). Note that, by the uniform estimate (2.9), the L2(0, 1) (or a.e.)
convergence of (v̂n) is equivalent to the corresponding convergence of (vn).

By a diagonalization argument we can assume that, up to a subsequence,
v̂n(·, t) converge in L2(0, 1) for every t ∈ Q+: let u(·, t) be the limit function.
The estimate in Proposition 3.1 allows to get the L2(0, 1) convergence for every
t ≥ 0 (hence, u(·, t) is well defined for every t ≥ 0). Moreover

(3.1) ‖u(·, t)− u(·, s)‖2 ≤ C
√
t− s,

for any s, t ≥ 0, with s < t and for a suitable constant C, independent of s
and t. Thus u ∈ C1/2([0,+∞);L2(0, 1)). Furthermore, by the uniqueness of
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the L2 limit, the compactness result of Theorem 2.1 guarantees that u(·, t) is
piecewise-H1(0, 1) and that (v̂n)x(·, t) weakly converges to ux(·, t) in L2(0, 1)
for every t ≥ 0.

We now prove the convergence of (vn) to u in L∞([0, T ];L2(0, 1)) (from
which the analogous convergence of (v̂n) follows as well). Let T > 0 be fixed.
For any given S ∈ N, define tj = jT/S for j = 0, . . . , S; then, for every t ∈ [0, T ]
there exists j = 0, . . . , S−1 with tj ≤ t ≤ tj+1. By Proposition 3.1 and estimate
(3.1), we have:

‖vn(·, t)− u(·, t)‖2 ≤ ‖vn(·, t)− vn(·, tj)‖2 + ‖vn(·, tj)− u(·, tj)‖2
+‖u(·, tj)− u(·, t)‖2

≤ 2C
√
t− tj + τn + ‖vn(·, tj)− u(·, tj)‖2 .

Fix σ > 0 and let nσ ∈ N be such that

‖vn(·, tj)− u(·, tj)‖2 ≤ σ for every n ≥ nσ and j = 0, . . . , S − 1.

Then

sup
t∈[0,T ]

‖vn(·, t)− u(·, t)‖2 ≤ 2C
√

(T/S) + τn + σ for every n ≥ nσ,

and this yields

lim sup
n→+∞

sup
t∈[0,T ]

‖vn(·, t)− u(·, t)‖2 ≤ 2C
√

(T/S) + σ.

By the arbitrariness of S and σ we deduce the convergence in L∞([0, T ];L2(0, 1)).
In particular, we have the convergence in L2((0, 1)× (0, T )), and hence the con-
vergence a.e. (up to a subsequence).

Finally, if x ∈ S(u(·, t)) then we can apply Lemma 2.7 (b) to the sequence
vn = vn(·, t). �

Remark 3.3 The weak-L2(0, 1) convergence of the sections (v̂n)x(·, t) and their
uniform boundedness in L2(0, 1) (see Lemma 2.5) allow to deduce the weak-
L2
(
(0, 1)× (0, T )

)
convergence of (v̂n)x.

Theorem 3.4 Let vn = uεn,τn be a sequence converging to a function u as in
Theorem 3.2. Then ux(·, t) ∈ H1(0, 1) for a.e. t ≥ 0. Moreover, for a.e. t ≥ 0,
we have ux(0, t) = ux(1, t) = 0 and ux(·, t) = 0 on S

(
u(·, t)).

For future reference it is useful to isolate from the proof a technical lemma.
Let vn = uεn,τn be a sequence converging to u according to Theorem 3.2. In

the sequel we will drop the index n and simply write ε and τ in place of εn and
τn. By (2.13) we have

(3.2) vn(x, t) =
(
ukε,τ

)
i

with k = bt/τc and i = bx/εc.
We extend this definition by setting

(
ukε,τ

)
i

=

{(
ukε,τ

)
0

if i ∈ Z, i < 0,(
ukε,τ

)
Nε

if i ∈ Z, i > Nε .
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Thus, for every x ∈ R and t ≥ 0 we can define the piecewise-constant function

(3.3) wn(x, t) = ϕ′ε

(
(ukε,τ )i+1 − (ukε,τ )i

ε

)
, with

i = bx/εc
k = bt/τc.

Lemma 3.5 For every t ≥ 0

wn(·, t) ⇀ ψ′′(0)ux(·, t) in L2(0, 1).

Moreover, the sequence (wn) is bounded in L1
(
(0, 1)× (0, T )

)
for every T > 0.

Proof. Let t ≥ 0 be fixed. Denote by χn the characteristic function of the
set
⋃
i∈I+ε ε[i, i+ 1), where I+

ε = I+
ε

(
vn(·, t)). Consider the decomposition

wn(·, t) = χnwn(·, t) + (1− χn)wn(·, t).
By Lemma 2.3 and the decreasing monotonicity of Fε(uk) with respect to k (see
Lemma 2.8), it turns out that∫ 1

0

|χnwn(x, t)|2 dx =
∑
i∈I+ε

ε|wn(iε, t)|2

≤ ε(#I+
ε )ϕ′ε

( z0√
ε

)2

≤ M

νz2
0

ψ′(z0)2 ,

so that
(
χnwn(·, t)) is bounded in L2(0, 1). By the same argument we get

(3.4)
∫ 1

0

|χnwn(x, t)|dx ≤ ε(#I+
ε )ϕ′ε

( z0√
ε

)
≤ √ε M

νz2
0

ψ′(z0)→ 0

as n→ +∞. We conclude that χnwn(·, t) ⇀ 0 weakly in L2(0, 1).
Let us now consider (1− χn)wn(·, t). Note that, in the notation of (3.3), if

i /∈ I+
ε and x ∈ [iε, (i+ 1)ε) we have

(ukε,τ )i+1 − (ukε,τ )i
ε

= (v̂n)x(x, t),

where v̂n(·, t) is the extension of vn(·, t) according to (2.8). If we take into
account that (v̂n)x(x, t) = 0 in

(
iε, (i+ 1)ε

)
if i ∈ I+

ε , then

(1− χn)wn(·, t) = ϕ′ε
(
(v̂n)x(·, t)).

Consider now the Taylor expansion of ϕ′ε at 0; for every x ∈ [iε, (i + 1)ε),
with i /∈ I+

ε , we have

ϕ′ε
(
(v̂n)x(x, t)

)
= ϕ′ε(0) + ϕ′′ε (0)(v̂n)x(x, t) +

1
2
ϕ′′′ε (ξn)

(
(v̂n)x(x, t)

)2
with ξn between 0 and (v̂n)x(x, t); hence,

(3.5) ϕ′ε
(
(v̂n)x(x, t)

)
= ψ′′(0)(v̂n)x(x, t) +

1
2
√
εrn
(
(v̂n)x(x, t)

)2
with rn = ψ′′′(

√
εξn). From Lemma 2.3 we deduce that

ζ0√
ε
< (v̂n)x(x, t) ≤ z0√

ε
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where ζ0 ∈ (−1, 0) is such that ψ(ζ0) ≥M . Then (rn) is a bounded sequence.
Note that (3.5) holds for i ∈ I+

ε , too, with rn = 0 as a possibile choice
(indeed (v̂n)x(x, t) = 0 for such indices).

By a similar argument, through a first-order expansion, we get the equi-
boundedness of the L2-norms of ϕ′ε

(
(v̂n)x(·, t)), hence the weak convergence of

the left-hand side of (3.5). Now we can deduce the weak-L2 convergence of
wn(·, t) by the weak-L2 convergence of (v̂n)x(·, t) to u(·, t), which implies the
weak-L1 convergence of the right-hand side of (3.5).

Finally, by (3.4) and (3.5) we get the boundedness of the L1 norms of wn in
(0, 1)× (0, T ), for every T > 0. �

Proof of Theorem 3.4. By Proposition 2.8

Nε∑
i=0

ε
∣∣(ukε,τ)i − (uk−1

ε,τ

)
i

∣∣2 ≤ 2τ
[
Fε
(
uk−1
ε,τ

)− Fε(ukε,τ)].
Let T > 0 be fixed, and Mτ = bT/τc. Then

Mτ∑
k=1

Nε∑
i=0

τε
∣∣(ukε,τ)i − (uk−1

ε,τ

)
i

∣∣2 ≤ 2τ2Fε(u0
ε) ≤ 2τ2M

(where M is given in assumption (B2)). By Proposition 2.9 and the extension,
defined above, of

(
ukε,τ

)
i

for i < 0 and i > Nε, this estimate can be written as

Mτ∑
k=1

τ
∑
i∈Z

ετ2

[
ε−1

(
ϕ′ε
( (ukε,τ )i+1 − (ukε,τ )i

ε

)
−ϕ′ε

( (ukε,τ )i − (ukε,τ )i−1

ε

))]2

≤ 2τ2M .

Let w̃n(·, t) be the function obtained as the piecewise-affine extension of the
values wn(·, t) on the nodes εZ. By the previous estimate we have

Mτ∑
k=1

τ

∫
R

[
(w̃n)x(x, kτ)

]2 dx ≤ 2M,

and therefore, for every δ > 0 and τ < δ:∫ T

δ

dt
∫

R

[
(w̃n)x(x, t)

]2 dx ≤ 2M.

By Fatou’s Lemma

(3.6)
∫ T

δ

(
lim inf
n→+∞

∫
R

[
(w̃n)x(x, t)

]2 dx
)

dt ≤ 2M.

We deduce that

lim inf
n→+∞

∫
R

[
(w̃n)x(x, t)

]2 dx < +∞ for a.e. t > 0.

We now fix t satisfying this condition; then, we can assume that, up to a sub-
sequence,

(3.7)
∫

R

[
(w̃n)x(x, t)

]2 dx ≤ C

14



for a suitable constant C independent of n.
The functions wn(·, t) in (3.3) take the value 0 outside the interval [0, εNε].

Therefore, the weak convergence stated in Lemma 3.5 yields

wn(·, t) ⇀ w(·, t) :=
{
ψ′′(0)ux(·, t) in (0, 1),
0 otherwise in R

in L2(R).

By (3.7) this implies the weak convergence in L2(R) of the piecewise-affine
functions w̃n(·, t). Indeed,

∑
i ε
∣∣wn((i+ 1)ε, t

)− wn(iε, t)
∣∣2 ≤ ε2C. Thus

(3.8) w̃n(·, t) ⇀ w(·, t) in L2(R).

At this point we have proved that for a.e. t ≥ 0 both (3.7) and (3.8) hold,
up to a subsequence possibly depending on t. Therefore, for any open interval
J ⊃ [0, 1] we have w ∈ H1(J); in particular, ux(·, t) ∈ H1(0, 1) and ux(0, t) =
ux(1, t) = 0 for a.e. t ≥ 0. Moreover, for such values of t, by the compact
injection of H1(0, 1) into C([0, 1]), we deduce that

w̃n(·, t)→ ψ′′(0)ux(·, t) in C([0, 1]).

Let x be a jump point of u(·, t); on account of Lemma 2.7(b) we can assume
that there exist a sequence (xn) converging to x and a value γ > 0 such that
for every n

xn ∈ S(v̂n(·, t)), v̂+
n (xn, t)− v̂−n (xn, t) ≥ γ > 0.

Recall that xn can be expressed as inε, for a suitable in. By Remark 2.4(a),
xn = inε ∈ S

(
v̂n(·, t)) if and only if in − 1 ∈ I+

ε

(
v̂n(·, t)). Then

w̃n
(
(in − 1)ε, t

)
= wn

(
(in − 1)ε, t

)
= ϕ′ε

( v̂+
n (xn, t)− v̂−n (xn, t)

ε

)
≤ ϕ′ε

(γ
ε

)
=

1√
ε
ψ′
( γ√

ε

)
.

Note now that limz→+∞ zψ′(z) = 0; indeed, for every z ≥ 2z0 there exists a
value ξz ∈ (z/2, z) such that

ψ(z)− ψ(z/2)
z/2

= ψ′(ξz) ≥ ψ′(z) ≥ 0,

from which 0 ≤ zψ′(z) ≤ 2
(
ψ(z)− ψ(z/2)

)→ 0 as z → +∞. Therefore,

lim
n→+∞ w̃n((in − 1)ε, t) = 0,

and the uniform convergence of w̃n(·, t) to ψ′′(0)ux(·, t) imply that ux(x, t) =
0. �

4 Limit equation and evolution of the singular
set.

Limit equation. Assume that (u0
ε)ε>0 is an indexed family of functions satisfying

conditions (B1) and (B2) and converging a.e. (as piecewise-constant functions)
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to a function u0. By the estimate of Lemma 2.5 we have that u0 is piecewise-
H1(0, 1). For any fixed time step τ let uε,τ be the discrete evolution of the
initial datum u0

ε as in (2.13).

Theorem 4.1 Let vn = uεn,τn be a sequence converging to a function u as in
Theorem 3.2 (thus ux(·, t) ∈ H1(0, 1) for a.e. t ≥ 0 by Theorem 3.4). Then

ut = ψ′′(0)(ux)x

in the distributional sense in (0, 1)× (0,+∞), and

u(·, 0) = u0 a.e. in (0, 1);

ux(·, t) = 0 on S
(
u(·, t)) ∪ {0, 1} for a.e. t ≥ 0.

Proof. As above, we will drop the index n and simply write ε and τ in place
of εn and τn.

Taking Theorem 3.2 and Theorem 3.4 into account, we only have to prove
that u satisfies the equation ut = ψ′′(0)(ux)x in the distributional sense and that
u(·, 0) = u0. Note that u(·, 0) is well defined since u ∈ C1/2([0,+∞);L2(0, 1)).
As to the latter, we have:

‖u(·, 0)− u0‖L2(0,1) ≤ ‖u(·, 0)− uε,τ (·, 0)‖2 + ‖uε,τ (·, 0)− u0‖2
= ‖u(·, 0)− uε,τ (·, 0)‖2 + ‖u0

ε − u0‖2 .
Both terms on the right-hand side tend to 0 since for every T > 0 we have
uε,τ → u in L∞

(
[0, T ];L2(0, 1)

)
(see Theorem 3.2), and (u0

ε) is an equibounded
sequence converging a.e. to u0.

We now address the evolution equation. Fix T > 0 and let Mτ = bT/τc.
Let φ ∈ C∞c

(
(0, 1)× (0, T )

)
be fixed, and define

φki = φ(iε, kτ) with k, i ∈ Z.

Recall the summation by parts formula:

l−1∑
j=0

aj(bj+1 − bj) = albl − a0b0 −
l−1∑
j=0

(aj+1 − aj)bj+1 .

Then (l = Mτ ) we have:

A : =
Nε∑
i=0

Mτ−1∑
k=0

ετ(ukε,τ )i
φk+1
i − φki

τ

= ε

Nε∑
i=0

[
(uMτ
ε,τ )iφMτ

i − (u0
ε,τ )iφ0

i −
Mτ−1∑
k=0

(
(uk+1
ε,τ )i − (ukε,τ )i

)
φk+1
i

]
.

Since φ has compact support in (0, 1) × (0, T ) we have φ0
i = φk0 = 0 and, for ε

and τ sufficiently small we can assume that φMτ
i = φkNε = 0.

The optimality conditions now yield:

A = −τ
Nε∑
i=0

Mτ−1∑
k=0

[
ϕ′ε

(
(uk+1
ε,τ )i+1 − (uk+1

ε,τ )i
ε

)
− ϕ′ε

(
(uk+1
ε,τ )i − (uk+1

ε,τ )i−1

ε

)]
φk+1
i .
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Apply again the summation by parts formula, with

aj = φk+1
j , bj = ϕ′ε

(
(uk+1
ε,τ )j − (uk+1

ε,τ )j−1

ε

)
;

then

A = τ

Nε∑
i=0

Mτ−1∑
k=0

(
φk+1
i+1 − φk+1

i

)
ϕ′ε

(
(uk+1
ε,τ )i+1 − (uk+1

ε,τ )i
ε

)
.

We conclude that

Nε∑
i=0

Mτ−1∑
k=0

ετ(ukε,τ )i
φk+1
i − φki

τ

=
Nε∑
i=0

Mτ−1∑
k=0

ετ
φk+1
i+1 − φk+1

i

ε
ϕ′ε

(
(uk+1
ε,τ )i+1 − (uk+1

ε,τ )i
ε

)
.

(4.1)

Let now φ
(0,1)
ε,τ and φ

(1,0)
ε,τ be the piecewise-constant functions on R2 defined by

φ(0,1)
ε,τ (x, t) =

φk+1
i − φki

τ
, φ(1,0)

ε,τ (x, t) =
φki+1 − φki

ε

where i = bx/εc and k = bt/τc. Then, we can write the left-hand side of (4.1)
in the following form (as φ = 0 in a neighborhood of ∂([0, 1]× [0, T ])):∫ 1

0

∫ T

0

uε,τ (x, t)φ(0,1)
ε,τ (x, t) dxdt.

In the limit as n→ +∞ we get∫ 1

0

∫ T

0

u(x, t)
∂φ

∂t
(x, t) dxdt.

We now examine the right-hand side of (4.1). By means of the functions wn
introduced in equation (3.3), this term can be written as∫ 1

0

dx
∫ T

0

φ(1,0)
ε,τ (x, t)wn(x, t) dt.

By Lemma 3.5, in the limit as n→ +∞ we get

ψ′′(0)
∫ 1

0

dt
∫ T

0

∂φ

∂x

∂u

∂x
dx ,

which concludes the proof. �

Evolution of the singular set. Let ukε,τ (k = 0, 1, 2, . . .) be the discrete evolution
of the initial datum u0

ε as introduced in Section 2 through the minimization
of the functional in (2.12). In what follows we analyse the evolution of the
singular set I+

ε (ukε,τ ) (see (2.7)) with respect to the index k. The key tool will
be estimate (4.3) below and the subsequent lemma, which are a discrete version
of the argument applied in [12] (Lemma 4.10 and Proposition 4.11); this will
require a condition on the ratio τ/ε2.
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We simply write uki in place of
(
ukε,τ

)
i
. Fix 0 ≤ i < Nε and define

vk :=
uki+1 − uki

ε

(for the sake of simplicity we do not write the dependence of vki on i). If
0 < i < Nε − 1, then by the optimality conditions in Proposition 2.9 we have

vk+1 − vk =
1
ε

(
uk+1
i+1 − uk+1

i − uki+1 + uki

)
=

1
ε

(uk+1
i+1 − uki+1)− 1

ε
(uk+1
i − uki )

=
τ

ε2

[
ϕ′ε

(
uk+1
i+2 − uk+1

i+1

ε

)
+ ϕ′ε

(
uk+1
i − uk+1

i−1

ε

)
− 2ϕ′ε

(
uk+1
i+1 − uk+1

i

ε

)]
.

Hence,

(vk+1 − vk)+2
τ

ε2
ϕ′ε

(
uk+1
i+1 − uk+1

i

ε

)
=

τ

ε2

[
ϕ′ε

(
uk+1
i+2 − uk+1

i+1

ε

)
+ ϕ′ε

(
uk+1
i − uk+1

i−1

ε

)]
,

(4.2)

and

(vk+1 − vk) + 2
τ

ε2
ϕ′ε

(
uk+1
i+1 − uk+1

i

ε

)
≤ 2

τ

ε2
maxϕ′ε.

We introduce the function
g(z) = 2

τ

ε2
ϕ′ε(z).

Then, the previous inequality can be re-written in the form

(4.3) (vk+1 − vk) + g
(
vk+1

) ≤ max g.

Note that in case i = 0 or i = Nε − 1, only one of the two terms on the right-
hand side of equation (4.2) remains. Since maxϕ′ε is positive, estimate (4.3)
still holds unchanged for i = 0 and i = Nε − 1.

Lemma 4.2 Let g : R → R be a Lipschitz function with Lipschitz constant
L < 1. Let (ak)k≥0 be a sequence of real numbers, and let C ∈ R be such
that

ak+1 − ak + g(ak+1) ≤ g(C) for every k.

Then
a0 ≤ C ⇒ (

ak ≤ C for every k
)
.

Proof. If we set ãk = ak − C e g̃(z) = g(C + z) − g(C) then we can argue
with C = 0 and g(0) = 0. Therefore, for every k

ak+1 − ak ≤ −g(ak+1) ≤ L|ak+1|.
The inequality ak ≤ 0 now yields

ak+1 ≤ L|ak+1|,

18



hence ak+1 ≤ 0 if L < 1. �

We would like to apply the previous lemma with C = z0/
√
ε, i.e. with the

maximizer of g. The Lipschitz constant of g involves the second derivative
ϕ′′ε (z) = ψ′′(

√
εz). Now recall the boundedness of

(
Fε(u0

ε)
)
ε

(see assumption
(B2)), hence the uniform boundedness of Fε(ukε,τ ) with respect to ε, τ and k
by Proposition 2.8. Thus, if ζ0 ∈ (−1, 0) is such that ψ(ζ0) > M , then (see
Lemma 2.3)

ukj+1 − ukj
ε

>
ζ0√
ε

for every k ∈ N and j = 0, . . . , Nε − 1.

Therefore, the relevant domain for the function g in (4.3) is [ζ0/
√
ε,+∞). Hence,

we meet the requirement that the Lipschitz constant of g is less than 1 if

(4.4) 2
τ

ε2
max

[ζ0,+∞)
ψ′′ < 1.

The application of Lemma 4.2 to the sequence (vk) now gives the following
result.

Proposition 4.3 If condition (4.4) holds, then

I+
ε (uk+1

ε,τ ) ⊆ I+
ε (ukε,τ )

for every k ≥ 0.

By the estimate of Lemma 2.5 we have u0
ε ∈ SBV (0, 1), and we can define

m points xε1 ≤ xε2 ≤ . . . ≤ xεm (not necessarily distinct, and with m independent
of ε), such that for every ε > 0 we have

I+
ε (u0

ε) ⊆ {xεj : j = 1, . . . ,m}.
Therefore, up to a subsequence, we can assume that

(4.5) lim
ε→0

xεj = xj for every j = 1, . . . ,m.

Denote by S this set of limit points.
Since, for every t ≥ 0, each jump point of u(·, t) is the limit of a sequence of

jump points of the piecewise-linear functions v̂n(·, t) (see Theorem 3.2), if (4.4)
holds then, by Proposition 4.3

S
(
u(·, t)) ⊆ S for every t ≥ 0.

Taking into account this condition and Theorem 4.1, we characterize the
limit motion as the heat equation with Neumann boundary conditions on (0, 1)\
S(u0); that is, the same as the minimzing movement of the Mumford-Shah
energy as described in [7] Section 8.3. This characterization is valid until the
first collision time, for which #S

(
u(·, t+)

)
< #S

(
u(·, t−)

)
= #(S(u0)).
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