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Abstract

We prove Luzin N - and Morse–Sard properties for mappings v : Rn → Rd of
the Sobolev–Lorentz class Wk

p,1, p = n
k (this is the sharp case that guarantees the

continuity of mappings). Our main tool is a new trace theorem for Riesz potentials
of Lorentz functions in a limiting case. Using these results, we find also some very
natural approximation and differentiability properties for functions in Wk

p,1 with
exceptional set of small Hausdorff content.
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Introduction

In this paper we continue the study of the Luzin N - and Morse–Sard properties for
the Sobolev mappings under minimal integrability assumptions initiated in our previous
papers [9]–[10], [24], see also [22]. Of course, it is in this context very natural to restrict
attention to continuous mappings, and so require from the considered function spaces
that the inclusion v ∈ Wk

p(Rn,Rd) should guarantee at least the continuity of v. For
values k ∈ {1, . . . , n − 1} it is well–known that v ∈ Wk

p(Rn,Rd) is continuous for p > n
k

and could be discontinuous for p ≤ n
k
. So the borderline case is p = p◦ = n

k
. It is

well–known (see for instance [22]) that v ∈ Wk
p◦(R

n,Rd) is continuous if the derivatives of
k-th order belong to the Lorentz space Lp◦,1, we will denote the space of such mappings
by Wk

p◦,1(R
n,Rd). We refer to section 1 for relevant definitions and notation.

∗The author was partially supported by the Russian Foundations for Basic Research and (Grant No. 14-
01-00768-a), by the Grant of the Russian Federation for the State Support of Researches (Agreement No.
14.B25.31.0029), by the Grant of the Russian Federation for the State Support of Researches (Agreement
No. 14.B25.31.0029), and by the Dynasty Foundation.
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In this paper we prove the following Luzin N property with respect to Hausdorff
content:

Theorem 0.1. Let k ∈ {1, . . . , n}, q ∈ [p◦, n], and v ∈ Wk
p◦,1(R

n,Rd). Then for each
ε > 0 there exists δ > 0 such that for any set E ⊂ Rn if Hq

∞(E) < δ, then Hq
∞(v(E)) < ε.

In particular, Hq(v(E)) = 0 whenever Hq(E) = 0.

Here Hq
∞(E) is as usual the q–dimensional Hausdorff content:

Hq
∞(E) = inf

{
∞∑
i=1

(diamEi)
q : E ⊂

∞∪
i=1

Ei

}
.

Note that the case k = 1 was considered in the paper [22], and the case k > 1, q > p◦ in
[24], so we omit them and consider here only the remaining limiting case q = p◦, k > 1.

To study this limiting case, we need a new version of the Sobolev Embedding Theorem
that gives inclusions in Lebesgue spaces with respect to suitably general positive measures.
This result might also be interesting in its own right, and it is the main contribution of
this paper. For β ∈ (0, n) denote by Mβ the space of all nonnegative Borel measures µ
on Rn such that

|||µ|||β = sup
I⊂Rn

ℓ(I)−βµ(I) <∞, (0.1)

where the supremum is taken over all n–dimensional cubic intervals I ⊂ Rn and ℓ(I)
denotes side–length. Recall the following classical theorem proved by D.R. Adams [2]
(see also, e.g., [30, §1.4.1] ).

Theorem A. Let µ be a positive Borel measure on Rn and α > 0, 1 < p < q < ∞,
αp < n. Then for any f ∈ Lp(Rn) the estimate∫ ∣∣Iαf |q dµ ≤ C|||µ|||β · ∥f∥qLp

(0.2)

holds with β = (n− αp) q
p
, where C depends on n, p, q, α only.

Here

Iαf(x) =

∫
Rn

f(y)

|y − x|n−α
dy

is the Riesz potential of order α. The above estimate (0.2) fails for the limiting case q = p.
Namely, there exist functions f ∈ Lp(Rn) such that Iαf(x) = +∞ on some set of positive
(n − αp)–Hausdorff measure1, see, e.g., [23]. Nevertheless, we prove the following result
for this limiting case q = p:

1The above estimate (0.2) remains valid for q = p if the measure µ instead of (0.1) satisfies the
stronger condition µ(K) ≤ CRα,p(K) for all compact sets K ⊂ Rn, where Rα,p is the Riesz capacity:
Rα,p(K) = inf{∥f∥Lp : f ∈ Lp(Rn), Iαf(x) ≥ 1 on K}, see [3]. Another geometric criterion for such an
estimate (without using of Riesz capacity) was found in [23]. A simpler sufficient condition was found
in [19], see also [31, p. 28].
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Theorem 0.2. Let µ be a positive Borel measure on Rn and α > 0, 1 < p <∞, αp < n.
Then for any f ∈ Lp,1(Rn) the estimate

∥Iαf∥Lp(µ) ≤ C|||µ|||
1
p

β · ∥f∥Lp,1 , (0.3)

holds with β = n− αp, where C depends on n, p, α only.

In view of the definition of the Lorentz spaces, it is sufficient to prove the above
assertion for the simpler case when f coincides with the indicator function of some compact
set:

Theorem 0.3. Let µ be a positive Borel measure on Rn and α > 0, 1 < p <∞, αp < n.
Then for any compact set E ⊂ Rn the estimate

∥Iα(1E)∥pLp(µ)
≤ C|||µ|||β meas(E), (0.4)

holds with β = n−αp, where 1E is the indicator function of the set E and C depends on
n, p, α only.

We emphasize that our proof of Theorem 0.3, and hence of Theorem 0.2, is self–
contained, is independent of the previous proofs of this type of results, and uses only very
natural and elementary arguments.

From the definition of the space Wk
p◦,1(R

n,Rd) of Sobolev–Lorentz mappings and the
classical estimate |∇v| ≤ C|Ik−1∇kv|, Theorem 0.2 implies

Theorem 0.4. Let µ be a positive Borel measure on Rn, k ∈ {1, . . . , n}. Then for any
function v ∈ Wk

p◦,1(R
n) the estimate∫ ∣∣∇v|p◦ dµ ≤ C|||µ|||p◦ · ∥∇kv∥p◦Lp◦ ,1

(0.5)

holds, where C depends on n, k only.

From these results we deduce also some new differentiability and approximation prop-
erties of Sobolev–Lorentz mappings v ∈ Wk

p◦,1(R
n). Namely, for m ≤ n the m–order

derivatives ∇mv are well–defined Hmp◦-almost everywhere, a function v is m-times dif-
ferentiable (in the classical Fréchet–Peano sense) Hmp◦-almost everywhere, and, finally,
it coincides with Cm-smooth function on Rn \ U , where the open exceptional set U has
small Hmp◦

∞ -Hausdorff content (see Theorems 2.1, 2.2–2.3 ). Note that for mappings of the
classical Sobolev space Wk

p◦(R
n) the corresponding exceptional set U has small Bessel ca-

pacity Bk−m,p(U) < ε, and, respectively, the gradients ∇mv are well-defined in Rn except
for some exceptional set of zero Bessel capacity Bk−m,p (see, e.g., Chapter 3 in [45] or [7] ).

In the last subsection 2.5 we discuss Morse–Sard type theorems for Sobolev–Lorentz
mappings. Namely, for an open set Ω ⊂ Rn and a mapping v ∈ Wk

p◦,1,loc
(Ω,Rd) denote

Zv,m = {x ∈ Ω : v is differentiable at x and rank∇v(x) < m} (recall, that by previous
results v is differentiable Hp◦ a.e.). We state:
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Theorem 0.5. If k,m ∈ {1, . . . , n}, Ω is an open subset of Rn, and v ∈ Wk
p◦,1,loc

(Ω,Rd),
then Hq◦(v(Zv,m)) = 0.

Here

p◦ =
n

k
and q◦ = m− 1 +

n−m+ 1

k
= p◦ + (m− 1)

(
1− k−1

)
. (0.6)

The theorem was proved for Ck-smooth functions by Morse [33] in 1939 for the case
k = n, m = d = q◦ = 1, and subsequently by Sard [37] in 1942 for k = n − m + 1,
m = d = q◦. For arbitrary values k, n,m ∈ N and Ck-smooth functions the result was
proved almost simultaneously by Dubovitskĭı [15] in 1967 and Federer [18, Theorem 3.4.3]
in 19692.

The Morse–Sard Theorem for Sobolev spaces Wk
p(Rn,Rm) with p > n (i.e., when

Wk
p(Rn) ↪→ Ck−1(Rn) ) was obtained in [12] (see also [20] for a simple proof), and for

Lipschitz and Hölder continuous mappings Ck,λ see, e.g., in [5] and [6] respectively. For
further background on these issues the reader is referred to [9], [10], [24], where the above
Theorem 0.5 was proved in the Sobolev context Wk

p◦(R
n) for k,m ∈ {2, . . . , n}. Since the

case k = 1 (i.e., q◦ = n) can be considered folklore (see, e.g., [38]) we shall in the present
paper only consider the cases m = 1, k > 1, q◦ = p◦ =

n
k
.

Let us end this introduction by noting an interesting phenomenon that occurs for
functions of the Sobolev–Lorentz space Wk

p◦,1(R
n,Rd). On the one hand, the order of

integrability of the k–th derivative, Lebesgues index p◦ and Lorentz index 1, is the minimal
one on the Lorentz scale that guarantees continuity of mappings. On the other hand,
these mappings a posteriori have many additional analytical regularity properties: the
Luzin N–property, differentiability and approximation properties, and the Morse–Sard
property (see above).

For instance, if k = n−m+1, then almost all level sets of mappings v ∈ Wk
p◦,1(R

n,Rm)
are C1–smooth manifolds [24]. The result should be contrasted with the fact that map-
pings of class Wk

p◦,1(R
n,Rm) are continuous only and need not to be C1–smooth in general.

This property recently found some applications in mathematical fluid mechanics (see [25] ).

Acknowledgment. We are grateful to Professor Jean Bourgain for very useful interaction
on the subject of this paper. The main part of the paper was written during a visit of
MVK to the Oxford Centre for Nonlinear PDE in May 2015.

1 Preliminaries

By an n–dimensional cubic interval we mean a closed cube in Rn with sides parallel to
the coordinate axes. If Q is an n–dimensional cubic interval then we write ℓ(Q) for its
sidelength.

2Federer announced [17] his result in 1966, this announcement (without any proofs) was sent
on 08.02.1966. For the historical details, Dubovitskĭı sent his paper [15] (with complete proofs) a month
earlier, on 10.01.1966.
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For a subset S of Rn we write Ln(S) for its outer Lebesgue measure. The m–
dimensional Hausdorff measure is denoted by Hm and the m–dimensional Hausdorff con-
tent by Hm

∞. Recall that for any subset S of Rn we have by definition

Hm(S) = lim
α↘0

Hm
α (S) = sup

α>0
Hm

α (S),

where for each 0 < α ≤ ∞,

Hm
α (S) = inf

{
∞∑
i=1

(diamSi)
m : diamSi ≤ α, S ⊂

∞∪
i=1

Si

}
.

It is well known that Hn(S) = Hn
∞(S) ∼ Ln(S) for sets S ⊂ Rn.

To simplify the notation, we write ∥f∥Lp instead of ∥f∥Lp(Rn), etc.
The Sobolev space Wk

p(Rn,Rd) is as usual defined as consisting of those Rd–valued
functions f ∈ Lp(Rn) whose distributional partial derivatives of orders l ≤ k belong to
Lp(Rn) (for detailed definitions and differentiability properties of such functions see, e.g.,
[16], [30], [45], [13]). Denote by ∇kf the vector-valued function consisting of all k–th
order partial derivatives of f arranged in some fixed order. However, for the case of first
order derivatives k = 1 we shall often think of ∇f(x) as the Jacobi matrix of f at x, thus
the d×n matrix whose r–th row is the vector of partial derivatives of the r–th coordinate
function.

We use the norm

∥f∥Wk
p
= ∥f∥Lp + ∥∇f∥Lp + · · ·+ ∥∇kf∥Lp ,

and unless otherwise specified all norms on the spaces Rs (s ∈ N) will be the usual
euclidean norms.

Working with locally integrable functions, we always assume that the precise repre-
sentatives are chosen. If w ∈ L1,loc(Ω), then the precise representative w∗ is defined for
all x ∈ Ω by

w∗(x) =

 lim
r↘0

−
∫
B(x,r)

w(z) dz, if the limit exists and is finite,

0 otherwise,
(1.1)

where the dashed integral as usual denotes the integral mean,

−
∫
B(x,r)

w(z) dz =
1

Ln(B(x, r))

∫
B(x,r)

w(z) dz,

and B(x, r) = {y : |y − x| < r} is the open ball of radius r centered at x. Henceforth we
omit special notation for the precise representative writing simply w∗ = w.

We will say that x is an Lp–Lebesgue point of w (and simply a Lebesgue point when
p = 1), if

−
∫
B(x,r)

|w(z)− w(x)|p dz → 0 as r ↘ 0.
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If k < n, then it is well-known that functions from Sobolev spaces Wk
p(Rn) are con-

tinuous for p > n
k
and could be discontinuous for p ≤ p◦ = n

k
(see, e.g., [30, 45]). The

Sobolev–Lorentz space Wk
p◦,1(R

n) ⊂ Wk
p◦(R

n) is a refinement of the corresponding Sobolev
space that for our purposes turns out to be convenient. Among other things functions
that are locally in Wk

p◦,1 on Rn are in particular continuous.
Given a measurable function f : Rn → R, denote by f∗ : (0,∞) → R its distribution

function
f∗(s) := Ln{x ∈ Rn : |f(x)| > s},

and by f ∗ the nonincreasing rearrangement of f , defined for t > 0 by

f ∗(t) = inf{s ≥ 0 : f∗(s) ≤ t}.

Since |f | and f ∗ are equimeasurable, we have for every 1 ≤ p <∞,

(∫
Rn

|f(x)|p dx
)1/p

=

( +∞∫
0

f ∗(t)p dt

)1/p

.

The Lorentz space Lp,q(Rn) for 1 ≤ p <∞, 1 ≤ q <∞ can be defined as the set of all
measurable functions f : Rn → R for which the expresssion

∥f∥Lp,q =



(
q

p

+∞∫
0

(t1/pf ∗(t))q
dt

t

)1/q

if 1 ≤ q <∞

sup
t>0

t1/pf ∗(t) if q = ∞

is finite. We refer the reader to [28], [40] or [45] for information about Lorentz spaces.
However, let us remark that in view of the definition of ∥·∥Lp,q and the equimeasurability of
f and f ∗ we have ∥f∥Lp = ∥f∥Lp,p so that in particular Lp,p(Rn) = Lp(Rn). Further, for a
fixed exponent p and q1 < q2 we have the estimate ∥f∥Lp,q2

≤ ∥f∥Lp,q1
, and, consequently,

the embedding Lp,q1(Rn) ⊂ Lp,q2(Rn) (see [28, Theorem 3.8(a)]). Finally we recall that
∥ · ∥Lp,q is a norm on Lp,q(Rn) for all q ∈ [1, p] and a quasi–norm in the remaining cases
q ∈ (p,∞] (see [28, Proposition 3.3]).

Here we shall mainly be concerned with the Lorentz space Lp,1, and in this case one
may rewrite the norm as (see for instance [28, Proposition 3.6])

∥f∥p,1 =
+∞∫
0

[
Ln({x ∈ Rn : |f(x)| > t})

] 1
p dt. (1.2)

We record the following subadditivity property of the Lorentz norm for later use.
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Lemma 1.1 (see, e.g., [36] or [28]). Suppose that 1 ≤ p < ∞ and E =
∪

j∈NEj, where
Ej are measurable and mutually disjoint subsets of Rn. Then for all f ∈ Lp,1 we have∑

j

∥f · 1Ej
∥pLp,1

≤ ∥f · 1E∥pLp,1
,

where 1E denotes the indicator function of the set E.

Denote by Wk
p,1(Rn) the space of all functions v ∈ Wk

p(Rn) such that in addition the
Lorentz norm ∥∇kv∥Lp,1 is finite.

For a mapping u ∈ L1(Q,Rd), Q ⊂ Rn, m ∈ N, define the polynomial PQ,m[u] of
degree at most m by the following rule:∫

Q

yα (u(y)− PQ,m[u](y)) dy = 0 (1.3)

for any multi-index α = (α1, . . . , αn) of length |α| = α1 + · · ·+ αn ≤ m. Denote PQ[u] =
PQ,k−1[u].

The following well–known bound will be used on several occasions.

Lemma 1.2. Suppose v ∈ Wk
p◦,1(R

n,Rd) with k ∈ {1, . . . , n}. Then v is a continuous
mapping and for any n-dimensional cubic interval Q ⊂ Rn the estimate

sup
y∈Q

∣∣v(y)− PQ[v](y)
∣∣ ≤ C∥1Q · ∇kv∥Lp◦,1 (1.4)

holds, where C is a constant depending on n, d only. Moreover, the mapping vQ(y) =
v(y)−PQ[v](y), y ∈ Q, can be extended from Q to the whole of Rn such that the extension
(denoted again) vQ ∈ Wk

p◦,1(R
n,Rd) and

∥∇kvQ∥Lp◦,1(Rn) ≤ C0∥∇kv∥Lp◦,1(Q), (1.5)

where C0 also depends on n, d only.

Proof. For continuity and the estimate (1.4) see [24, Lemma 1.3]. Because of coordinate
invariance of estimate (1.5), it is sufficient to prove the assertions about extension for the
case when Q is a unit cube: Q = [0, 1]n. Put u(y) = vQ(y) = v(y)− PQ[v](y) for y ∈ Q.

By Peetre theorem (see Theorem 6.5 in [28, page 10]) it is easy to deduce that

∥∇mu∥Lp◦,1(Q) ≤ C∥∇ku∥Lp◦,1(Q) ∀m = 0, 1, . . . , k − 1. (1.6)

Using the standard Extension operator for Sobolev spaces (the well-known ”finite-order
reflection” procedure, see, e.g., [30, §1.1.17]), function u on the unit cube Q = [0, 1]n can
be extended to a function U ∈ Wk

p◦,1(R
n) such that the estimate

∥∇kU∥Lp◦,1(Rn) ≤ C ′
k∑

m=0

∥∇mu∥Lp◦,1(Q)

holds. Taking into account the identity∇ku ≡ ∇kv on Q and (1.6), we obtain the required
estimate (1.5).
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Corollary 1.1 (see, e.g., [24]). Suppose v ∈ Wk
p◦,1(R

n,Rd) with k ∈ {1, . . . , n}. Then v
is a continuous mapping and for any n-dimensional cubic interval Q ⊂ Rn the estimate

diam v(Q) ≤ C

(
∥∇v∥L1(Q)

ℓ(Q)n−1
+∥1Q ·∇kv∥Lp◦,1

)
≤ C

(
∥∇v∥Lp◦ (Q)

ℓ(Q)k−1
+∥1Q ·∇kv∥Lp◦,1

)
(1.7)

holds.

The above results can easily be adapted to give that v ∈ C0(Rn), the space of contin-
uous functions on Rn that vanish at infinity (see for instance [28, Theorem 5.5]).

Analogously, from previous estimates one could deduce

Corollary 1.2. Suppose v ∈ Wk
p◦,1(R

n,Rd) with k ∈ {1, . . . , n}. Then for all m ∈
{1, . . . , k} and for any n-dimensional cubic interval Q ⊂ Rn the estimate

sup
y∈Q

∣∣v(y)− PQ,m−1[v](y)
∣∣ ≤ C

(
∥∇mv∥Lp◦ (Q)

ℓ(Q)k−m
+ ∥1Q · ∇kv∥Lp◦,1

)
(1.8)

holds.

Theorem 1.1 (Boundedness of the maximal operator, see [28]). Let f ∈ Lp,q(Rn), 1 <
p <∞, 1 ≤ q <∞. Then

∥Mf∥Lp,q ≤ C∥f∥Lp,q .

Here

Mf(x) = sup
r>0

r−n

∫
B(x,r)

|f(y)| dy

is the usual Hardy–Littlewood maximal function of f .

Corollary 1.3 (Regularization in Lorentz spaces [28]). Let f ∈ Lp,q(Rn), 1 < p < ∞,
1 ≤ q < ∞. Suppose that f ∈ Lp,q(Rn) and ψ ∈ C∞

0 (Rn) is a standard mollifier. Then
ψδ ∗ f → f in Lp,q(Rn) as δ → 0.

Here and henceforth C∞
0 (Rn) denotes the space of C∞ smooth and compactly sup-

ported functions on Rn.

Corollary 1.4 (Regularization in Sobolev–Lorentz spaces). If f ∈ Wk
p,q(Rn), 1 < p <∞,

1 ≤ q < ∞, then there exists a sequence of smooth functions fi ∈ C∞
0 (Rn) such that

∥∇m(f − fi)∥Lp(Rn) → 0 for m = 0, 1, . . . , k, ∥∇k(f − fi)∥Lp,q(Rn) → 0 as i→ ∞.

Remark 1.1. By Sobolev inequality, under conditions of Corollary 1.4, if, in addition
1 ≤ q ≤ p and (k − m)p < n for some m ∈ {0, 1, . . . , k − 1}, then we have also the
convergence ∥∇m(f − fi)∥Lpm,q(Rn) → 0 , where pm is a Sobolev exponent pm = np

n−(k−m)p

(see, e.g., [28, §8] ).
We need also the following important Adams strong-type estimates for maximal func-

tions.
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Theorem 1.2 (see Theorem A, Proposition 1 and its Corollary in [1]). Let β ∈ (0, n).
Then for nonnegative functions f ∈ C0(Rn) the estimates∫ ∞

0

Hβ
∞({x ∈ Rn : Mf(x) ≥ t}) dt ≤ C1

∫ ∞

0

Hβ
∞({x ∈ Rn : f(x) ≥ t}) dt

≤ C2 sup

{∫
f dµ : µ ∈ Mβ, |||µ|||β ≤ 1

}
,

hold, where the constants C1, C2 depend on β, n only.

We need also the following classical fact (cf. with [8] ).

Lemma 1.3 (see Lemma 2 in [13]). Let u ∈ Wm
1 (Rn),m ≤ n. Then for any n–dimensional

cubic interval Q ⊂ Rn, x ∈ Q, and for any j = 0, 1, . . . ,m− 1 the estimate∣∣∇ju(x)−∇jPQ,m−1[u](x)
∣∣ ≤ Cℓ(Q)m−j(M∇mu)(x) (1.9)

holds, where the constant C depends on n,m only.

2 Proofs of the main results

2.1 The trace theorem

Theorem 0.3 plays the key role among other results. Its proof splits into a number of
lemmas. Fix parameters m > 0, 1 < p <∞, 0 < αp < n, and a positive Borel measure µ
on Rn satisfying

µ(B(x, r)) ≤ rn−αp (2.1)

for every ball B(x, r) ⊂ Rn. Fix also a compact set E ⊂ Rn. Denote by IE the corre-
sponding Riesz potential Iα(1E).

It is very easy to check by standard calculation that

0 ≤ IE(x) ≤ C0|E|
α
n , (2.2)

where the constant C0 depends on n, α only.
Denote also tm = 2m (here m ∈ Z),

Em = {x ∈ E : IE(x) ∈ [tm, 2tm]},

E ′
m = {x ∈ E : IE(x) ≤ tm}, E ′′

m = {x ∈ E : IE(x) > tm}.
In this section we will write f ≲ g, if f ≤ Cg, where C depends on n, α, p only (really,

most of the corresponding constants below up to Lemma 2.6 depends on n, α only).

Lemma 2.1. There exists a positive constant m0 ∈ N depending on n, α only such that
for any m ∈ Z and x ∈ Rn if IE(x) ≥ tm, then IE′′

m−m0
(x) ≳ tm.
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Proof. The claim follows from the well-known maximum principle: IE′
m
(x) ≤ 2n−αtm for

every m ∈ Z (see [21, Theorem 5.2]).

Lemma 2.2. For any x, y ∈ Rn if IE(y) = t and |x− y| ≤ (2t)
1
α then IE(x) ≳ t.

Proof. Let IE(y) = t and

|y − x| ≤ (2t)
1
α . (2.3)

Denote r = |y − x|, B = B(y, r) = {z ∈ Rn : |z − y| < r}. Then by construction

t = IE(y) = IE∩B(y) + IE\B(y). (2.4)

Consider two possible situations.
(I). IE∩B(y) ≤ t

2
, then IE\B(y) ≥ t

2
. For any z ∈ E \B we have |z− y| ≥ r = |x− y|,

thus, |x− z| ≤ |x− y|+ |z − y| ≤ 2|z − y|, consequently,

IE(x) ≥ IE\B(x) ≥ 2n−αIE\B(y) ≥ 2n−α−1t. (2.5)

(II). IE∩B(y) ≥ t
2
. Then (2.2) implies t

2
≤ C0|B ∩ E|αn . Since B ∩ E ⊂ B(x, 2r), by

elementary estimates we have

IE(x) ≥
|B ∩ E|
(2r)n−α

≥ C ′ t
n
α

rn−α

(2.3)
≥ C ′′ t

n
α

t
n
α
−1

= C2t.

Denote Fm = {x ∈ Rn : IE(x) ∈ [tm, 2tm]}, µm = µ(Fm), µm(·) = µ ⌞Fm. By
construction,

∥Iα(1E)∥pLp(µ)
∼

∞∑
m=−∞

tpmµm.

So our main purpose below is to estimate tmµm. Of course, tmµm ≤
∫
Rn IE(x) dµm(x).

By Fubini Theorem we have∫
Rn

IE(x) dµm(x) =

∞∫
0

ρ−n+α−1

 ∫
Rn

|E ∩B(x, ρ)| dµm(x)

 dρ

=

∞∫
0

ρ−n+α−1

 ∫
E

µm

[
B(y, ρ)

]
dy

 dρ. (2.6)

Lemma 2.3. The estimate

tmµm ≲
∞∫
0

ρ−n+α−1

 ∫
Rn

|E ′′
m−m0

∩B(x, ρ)| dµm(x)

 dρ (2.7)

holds, where m0 is a constant from Lemma 2.1.
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Proof. By Lemma 2.1, IE′′
m−m0

≥ C1tm on Fm, therefore tmµm ≤ C
∫
Rn IE′′

m−m0
(x) dµm(x),

and the last inequality implies in conjunction with Fubini’s Theorem (2.7).

Lemma 2.4. There exists a constant m1 ∈ N such that

tmµm ≲
∞∫

t
1
α
m−m1

ρ−n+α−1

 ∫
Rn

|E ′′
m−m0

∩B(x, ρ)| dµm(x)

 dρ. (2.8)

Proof. Let m1 ∈ N, its exact value will be specified below. We have |E ∩B(x, ρ)| ≤ ωnρ
n,

where ωn is a volume of a unit ball in Rn. Thus

t
1
α
m−m1∫
0

ρ−n+α−1

 ∫
Rn

|E ∩B(x, ρ)| dµm(x)

 dρ ≤ ωnµm

t
1
α
m−m1∫
0

ρα−1 dρ =
ωn

α
µmtm−m1 =

ωn

α
2−m1µmtm.

So the target estimate (2.8) follows from (2.7) provided that 1
α
ωn2

−m1 is sufficiently small.

Lemma 2.5. There exists a constant i0 ∈ N such that for all i ≥ m−m1 the equality

t
1
α
i+1∫

t
1
α
i

ρ−n+α−1

 ∫
Rn

|E ′′
m−m0

∩B(x, ρ)| dµm(x)

 dρ

=

i+i0∑
j=m−m0

t
1
α
i+1∫

t
1
α
i

ρ−n+α−1

 ∫
Rn

|Ej ∩B(x, ρ)| dµm(x)

 dρ (2.9)

holds, where m0, m1 are the constants from Lemma 2.1, 2.4 respectively.

Proof. Let i ≥ m−m1,

ρα ≤ ti+1, (2.10)

and y ∈ Ej ∩B(x, ρ), x ∈ Fm = suppµm. Then by definitions of these sets

IE(x) ≤ 2tm (2.11)

and IE(y) ≥ tj. Suppose j ≥ i + 1. Then (2.10) implies |x − y|α ≤ ti+1 ≤ tj, therefore,
by Lemma 2.2 (applying for t = tj) we have IE(x) ≥ C2tj. Thus by (2.11) we obtain
j ≤ m+m2 for some constant m2 depending on α, n only.

Finally we have j ≤ max(i+1,m+m2) ≤ max(i+1, i+m1 +m2) finishing the proof
of the Lemma.
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Lemma 2.6. The estimate

tmµm ≲
∞∑

j=m−m0

|Ej|t1−p
j−i0

(2.12)

holds for all m ∈ Z, where m0, i0 are the constants from Lemmas 2.1, 2.5, respectively.

Proof. We have

tmµm

(2.8)
≲

∞∑
i=m−m1

t
1
α
i+1∫
t
1
α
i

ρ−n+α−1

[ ∫
Rn

|E ′′
m−m0

∩B(x, ρ)| dµm(x)

]
dρ ≲

(2.9)
≲

∞∑
i=m−m1

i+i0∑
j=m−m0

t
1
α
i+1∫
t
1
α
i

ρ−n+α−1

[ ∫
Rn

|Ej ∩B(x, ρ)| dµm(x)

]
dρ =

Fubini
=

∞∑
i=m−m1

i+i0∑
j=m−m0

t
1
α
i+1∫
t
1
α
i

ρ−n+α−1

[ ∫
Ej

µm

[
B(y, ρ)

]
dy

]
dρ ≲

(2.1)
≲

∞∑
i=m−m1

i+i0∑
j=m−m0

t
1
α
i+1∫
t
1
α
i

ρ−n+α−1+(n−αp)|Ej| dρ ≲

≲
∞∑

i=m−m1

i+i0∑
j=m−m0

|Ej|(ti)1−p
changing order of summation i↔j

≤
∞∑

j=m−m0

|Ej|
∞∑

i=j−i0

(ti)
1−p ≲

geometric progression

≲
∞∑

j=m−m0

|Ej|(tj−i0)
1−p.

(2.13)

Lemma 2.7. The estimate

∞∑
m=−∞

tpmµm ≲ |E| (2.14)

holds.
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Proof. We have

∞∑
m=−∞

tpmµm

(2.12)
≲

∞∑
m=−∞

∞∑
j=m−m0

|Ej|
(

tm
tj−i0

)p−1 ≲

changing order of summation m↔j

≤
∞∑

j=−∞
|Ej|

j+m0∑
m=−∞

(
tm

tj−i0

)p−1 ≲

geometric progression

≲
∞∑

j=−∞
|Ej|

( tj+m0

tj−i0

)p−1 definition of tj
=

∞∑
j=−∞

|Ej|2(m0+i0)(p−1) ≲ |E|.

(2.15)

2.2 On approximation of Sobolev–Lorentz mappings

Using the established Theorem 0.2 and Adam’s estimate from Theorem 1.2 with β =
n− (k − l)p, we obtain the following estimates, which are key ingredients in the proof of
N–property.

Corollary 2.1. Let p ∈ (1,∞), k, l ∈ {1, . . . , n}, l ≤ k, (k − l)p < n. Then for any
function f ∈ Wk

p,1(Rn) the estimates

∥∇lf∥pLp(µ)
≤ C|||µ|||β∥∇kf∥pLp,1

∀µ ∈ Mβ, (2.16)∫ ∞

0

Hβ
∞({x ∈ Rn : M

(
|∇lf |p

)
(x) ≥ t}) dt ≤ C∥∇kf∥pLp,1

(2.17)

hold, where β = n− (k − l)p and the constant C depends on n, k, p only.

The main result of this subsection is the following

Theorem 2.1. Let p ∈ (1,∞), k, l ∈ {1, . . . , n}, l ≤ k, (k − l)p < n. Then for any
f ∈ Wk

p,1(Rn) and for each ε > 0 there exist an open set U ⊂ Rn and a function
g ∈ Cl(Rn) such that

(i) Hn−(k−l)p
∞ (U) < ε;

(ii) each point x ∈ Rn \ U is an Lp-Lebesgue point for ∇jf , j = 0, . . . , l;

(iii) f ≡ g, ∇jf ≡ ∇jg on Rn \ U for j = 1, . . . , l.

Note that in the analogous theorem for the case of Sobolev mappings f ∈ Wk
p(Rn) the

assertion (i) should be reformulated as follows:
(i’) Bk−l,p(U) < ε if l < k, where Bα,p(U) denotes the Bessel capacity of the set U (see,

e.g., Chapter 3 in [45] or [7] ).
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Recall that for 1 < p < ∞ and 0 < n − αp < n the smallness of Hn−αp
∞ (U) implies

the smallness of Bα,p(U), but that the opposite is false since Bα,p(U) = 0 whenever
Hn−αp(U) <∞. On the other hand, for 1 < p <∞ and 0 < n−αp < β ≤ n the smallness
of Bα,p(U) implies the smallness of Hβ

∞(U) (see, e.g., [4]). So the usual assertion (i’) is
essentially weaker than (i).

Proof of Theorem 2.1. Let the assumptions of the Theorem be fulfilled. By Theorem 1.1
and Corollary 1.4, we can choose the sequence of mappings fi ∈ C∞

0 (Rn) such that
∥∇kf −∇kfi∥Lp,1(Rn) < 4−i. Denote f̃i = f − fi. Then by Corollary 2.1

Hn−(k−l)p
∞

(
{x ∈ Rn : M

(
|∇lf̃i|p

)
(x) ≥ 2−i}

)
< C 2−i.

Then one could repeat almost word by word the proof of Theorem 3.1 in [10]. Since there
are no essential differences, we omit the detailed calculations here.

2.3 On differentiability properties of Sobolev–Lorentz mappings

We start with the following simple technical observation.

Lemma 2.8 (see, e.g., Lemma 4.1 in [24]). If l, k ∈ {1, . . . , n}, l < k, and v ∈ Wk
p◦,1(R

n,Rd),
then for any ε > 0 there exists an open set U ⊂ Rn such that Hlp◦

∞ (U) < ε and the uniform
convergence

r−l∥1B(x,r) · ∇kv∥Lp◦,1 → 0 as r ↘ 0

holds for x ∈ Rn \ U .

Proof. The proof of the Lemma follows standard arguments, we reproduce it here for
reader’s convenience. Fix σ > 0. Let {Bα} be a family of disjoint balls Bα = B(xα, rα)
such that

∥1Bα · ∇kv∥Lp◦,1 ≥ σrlα

and supα rα < δ for some δ > 0, where δ is chosen small enough to guarantee that
supα ∥1Bα · ∇kv∥Lp◦,1 < 1. Then by Lemma 1.1 we have∑

α

rlp◦α ≤ σ−p◦
∑
α

∥1Bα · ∇kv∥p◦Lp◦,1
≤ σ−p◦∥1∪

α Bα · ∇kv∥p◦Lp◦,1
. (2.18)

Since the last term tends to 0 as Ln(
∪

αBα) → 0, and Ln(
∪

αBα) ≤ c δn−lp◦
∑

α r
lp◦
α , we

get easily that
∑

α r
lp◦
α → 0 as δ ↘ 0. Using this fact and some standard covering lemmas

we infer in a routine manner that for a set

Aσ,δ := {x ∈ Rn : ∃r ∈ (0, δ] r−l∥1B(x,r) · ∇kv∥Lp◦,1 > σ}

the convergence
Hlp◦

∞
(
Aσ,δ

)
→ 0 as δ ↘ 0

holds for any fixed σ > 0. The rest part of the proof of the lemma is straight forward, so
we omit it here.
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From the last lemma (for l = 1), Theorem 2.1 (ii) and estimate (1.7) we obtain the
following result:

Theorem 2.2. Let k ∈ {1, . . . , n} and v ∈ Wk
p◦,1(R

n,Rd). Then there exists a Borel set
Av ⊂ Rn such that Hp◦(Av) = 0 and for any x ∈ Rn \ Av the function v is differentiable
(in the classical Fréchet sense) at x, furthermore, the classical derivative coincides with
∇v(x) (x is a Lebesgue point for ∇v ).

The case k = 1, p◦ = n is a classical result due to Stein [39] (see also [22]), and for
k = n, p◦ = 1 the result is also proved in [13].

We have the following extension of Theorem 2.2.

Theorem 2.3. Let k, l ∈ {1, . . . , n}, l ≤ k, and v ∈ Wk
p◦,1(R

n,Rd). Then there exists
a Borel set Av ⊂ Rn such that Hlp◦(Av) = 0 and for any x ∈ Rn \ Av the function v is
l-times differentiable (in the classical Fréchet–Peano sense) at x, i.e.,

lim
r↘0

sup
y∈B(x,r)\{x}

∣∣v(y)− Tv,l,x(y)
∣∣

|x− y|l
= 0,

where Tv,l,x(y) is the Taylor polynomial of order l for v centered at x (which is well defined
Hlp◦-a.e. by Theorem 2.1).

Proof. We consider only the case l < n; for l = n the arguments are similar and becomes
even simpler. Below we follow methods of [9, proof of Lemma 5.5] and [10, proof of
Theorem 3.1]. By Theorem 2.1 of the present paper, there exists a set Al such that
Hlp◦(Al) = 0 and the derivatives ∇jv(x) are well-defined for all x ∈ Rn \ Al and j =
0, 1, . . . , l. Further, by Lemma 2.8 there exists a sequence of open sets Ui ⊂ Rn such that
Ui ⊃ Ui+1, Hlp◦

∞ (Ui) < 2−i and the uniform convergence

r−l∥1B(x,r) · ∇kv∥Lp◦,1 → 0 as r ↘ 0

holds for x ∈ Rn \ Ui. It means that there exists a function ωi : (0,+∞) → (0,+∞) such
that ωi(r) → 0 as r ↘ 0 and

r−l∥1B(x,r) · ∇kv∥Lp◦,1 ≤ ωi(r) ∀x ∈ Rn \ Ui. (2.19)

Take a sequence of mappings vi : Rn → Rd from Corollary 1.4, i.e., vi ∈ C∞
0 (Rn) and

∥∇k(v − vi)∥Lp◦,1(Rn) < 4−i. Denote ṽi = v − vi and

Bi =
{
x ∈ Rn : M

(
|∇lṽi|p◦

)
(x) ≥ 2−ip◦

}
, Gi = Al ∪ Ui ∪

(∞∪
j=i

Bj

)
.

Then by estimate (2.17) we have

Hlp◦
∞ (Bi) ≤ c2−i, (2.20)
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therefore,

Hlp◦
∞ (Gi) ≤ C2−i. (2.21)

By construction,

|∇lṽj(x)|p◦ ≤ M
(
|∇lṽj|p◦

)
(x) ≤ 2−jp◦ (2.22)

for all x ∈ Rn \Gi and all j ≥ i. Moreover, since vj ∈ C∞
0 (Rn), there exists constants Mj

such that |∇kvj(x)| ≤Mj ∀x ∈ Rn, this fact and (2.19) implies

r−l∥1B(x,r) · ∇kṽj∥Lp◦,1 ≤ ωi(r) +Mjr
n−l ∀x ∈ Rn \Gi. (2.23)

We start by estimating the remainder term ṽj(y)−Tṽj ,l,x(y). Fix y ∈ Rn, x ∈ Rn \Gi,
j ≥ i, and an n–dimensional cubic interval Q such that x, y ∈ Q, |x − y| ∼ ℓ(Q). By
construction and Lemma 1.3, for any multi–index α with |α| ≤ l we have

∣∣∂αṽj(x)− ∂αPQ,l−1[ṽj](x)
∣∣ ≤ Cℓ(Q)l−|α|(M∇lṽj)(x)

(2.22)
≤ Crl−|α|2−j, (2.24)

where r = |x− y|. Consequently,

|ṽj(y)− Tl,ṽj ,x(y)| ≤ |ṽj(y)− PQ,l−1[ṽj](y)|+ |PQ,l−1[ṽj](y)− Tl,ṽj ,x(y)|
(1.8), (2.22), (2.23)

≤
[
C2−jrl + ωi(r)r

l +Mjr
n
]

+
∑
|α|≤l

1

α!

∣∣(∂αṽj(x)− ∂αPQ,l−1[ṽj](x)
)
· (y − x)α

∣∣
(2.24)
≤

(
C12

−j + ωi(r) +Mjr
n−l
)
rl. (2.25)

Finally from the last estimate and equality v = ṽj + vj we have

|v(y)− Tl,v,x(y)| ≤ |ṽj(y)− Tl,ṽj ,x(y)|+ |vj(y)− Tl,vj ,x(y)|

≤
(
C12

−j + ωi(r) +Mjr
n−l
)
rl + ωvj(r)r

l

=
(
C12

−j + ωi(r) +Mjr
n−l + ωvj(r)

)
rl,

where ωi(r) → 0 and ωvj(r) → 0 as r → 0 (the latter holds since vj ∈ C∞
0 (Rn) ). We

emphasize that the last inequality is valid for all y ∈ Rn, j ≥ i, and x ∈ Rn\Gi. Therefore

|v(y)− Tl,v,x(y)|
|x− y|l

→ 0 as y → x

uniformly for all x ∈ Rn \ Gi. This means, that v is uniformly l-times differentiable (in
the classical Fréchet–Peano sense) at every x ∈ Rn \Gi. Then the estimate (2.21) finishes
the proof.
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2.4 Proof of the N–property

In this subsection we aim to prove the assertion of Theorem 0.1, namely the Luzin N–
property for Wk

p◦,1–mappings with respect to Hausdorff content Hp◦
∞ (i.e., when q = p◦ =

n
k
). Let us for emphasis restate the result:

Theorem 2.4. Let k ∈ {1, . . . , n}, and v ∈ Wk
p◦,1(R

n,Rd). Then for each ε > 0 there
exists δ > 0 such that for any set E ⊂ Rn if Hp◦

∞(E) < δ, then Hp◦
∞(v(E)) < ε. In

particular, Hp◦(v(E)) = 0 whenever Hp◦(E) = 0.

Recall that for the case k = 1 this assertion was proved in [22], and for k = n it was
proved in [10], so we omit these cases. Our proof here for the remaining cases follows and
expands on the ideas from [10].
For the remainder of this section we fix k ∈ {2, . . . , n−1}, and a mapping v in Wk

p◦,1(R
n,Rd).

To prove Theorem 2.4, we need some preliminary lemmas that we turn to next.
Applying Corollary 2.1 for the case p = p◦ =

n
k
, l = 1, we obtain

∥∇v∥p◦Lp◦ (µ)
≤ C|||µ|||p◦∥∇kv∥p◦Lp◦,1

∀µ ∈ Mp◦ , (2.26)

where C depends on n, p◦, d only.
By a dyadic interval we understand a cubic interval of the form [ k1

2m
, k1+1

2m
]×· · ·×[ kn

2m
, kn+1

2m
],

where ki,m are integers. The following assertion is straightforward, and hence we omit
its proof here.

Lemma 2.9. For any n–dimensional cubic interval J ⊂ Rn there exist dyadic intervals
Q1, . . . , Q2n such that J ⊂ Q1 ∪ · · · ∪Q2n and ℓ(Q1) = · · · = ℓ(Q2n) ≤ 2ℓ(J).

Let {Qα}α∈A be a family of n-dimensional dyadic intervals. We say that the family
{Qα} is regular, if for any n-dimensional dyadic interval Q the estimate

ℓ(Q)p◦ ≥
∑

α:Qα⊂Q

ℓ(Qα)
p◦ (2.27)

holds. Since dyadic intervals are either nonoverlapping or contained in one another,
(2.27) implies that any regular family {Qα} must in particular consist of nonoverlapping
intervals.

Lemma 2.10 (see Lemma 2.3 in [10]). Let {Qα} be a family of n–dimensional dyadic
intervals. Then there exists a regular family {Jβ} of n–dimensional dyadic intervals such
that

∪
αQα ⊂

∪
β Jβ and ∑

β

ℓ(Jβ)
p◦ ≤

∑
α

ℓ(Qα)
p◦ .

Lemma 2.11. For each ε > 0 there exists δ = δ(ε, v) > 0 such that for any regular family
{Qα} of n–dimensional dyadic intervals we have if∑

α

ℓ(Qα)
p◦ < δ, (2.28)
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then ∑
α

∥1Qα · ∇kv∥p◦Lp◦,1
< ε (2.29)

and ∑
α

1

ℓ(Qα)n−p◦

∫
Qα

|∇v|p◦ < ε. (2.30)

Proof. Fix ε ∈ (0, 1) and let {Qα} be a regular family of n–dimensional dyadic intervals
satisfying (2.28), where δ > 0 will be specified below.

Let us start by checking (2.29). We have∑
α

∥1Qα · ∇kv∥p◦Lp◦,1

Lemma 1.1
≤ ∥1∪

α Qα · ∇kv∥p◦Lp◦,1
.

Using (1.2), we can rewrite the last estimate as

∑
α

∥1Qα · ∇kv∥p◦Lp◦,1
≤
( +∞∫

0

[
Ln({x ∈

∪
α

Qα : |∇kv(x)| > t})
] 1

p◦ dt

)p◦

. (2.31)

Since
+∞∫
0

[
Ln({x ∈ Rn : |∇kv(x)| > t})

] 1
p◦ dt <∞,

it follows that the integral on the right–hand side of (2.31) tends to zero as Ln(
∪

αQα)
tends to zero. In particular, it will be less than ε if the condition (2.28) is fulfilled with a
sufficiently small δ. Thus (2.29) is established for all δ ∈ (0, δ1], where δ1 = δ1(ε, v) > 0.

Next we check (2.30). By virtue of Corollary 1.4, applied coordinate–wise, we can find
a decomposition v = v0 + v1, where ∥∇v0∥L∞ ≤ K = K(ε, v) and

∥∇kv1∥Lp◦,1 < ε. (2.32)

Assume that δ ∈ (0, δ1] and∑
α

ℓ(Qα)
p◦ < δ < 1

Kp◦+1
ε. (2.33)

Define the measure µ by

µ =

(∑
α

1

ℓ(Qα)n−p◦
1Qα

)
Ln, (2.34)

where 1Qα denotes the indicator function of the set Qα.
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Claim. The estimate

sup
J

{
ℓ(J)−p◦µ(J)

}
≤ 2n+p◦ (2.35)

holds, where the supremum is taken over all n–dimensional cubic intervals.
Indeed, write for a dyadic interval Q

µ(Q) =
∑

α:Qα⊂Q

ℓ(Qα)
p◦ +

∑
α:Qα⊈Q

ℓ(Q ∩Qα)
n

ℓ(Qα)n−p◦
.

By regularity of {Qα} the first sum is bounded above by ℓ(Q)p◦ . If the second sum is
nonzero then there must exist an index α such that Qα ⊈ Q and Qα, Q overlap. But as
the intervals {Qα} are nonoverlapping and dyadic we must then precisely have one such
interval Qα and Qα ⊃ Q. But then the first sum is empty and the second sum has only
the one term ℓ(Q)n/ℓ(Qα)

n−p◦ , hence is at most ℓ(Q)p◦ . Thus the estimate µ(Q) ≤ ℓ(Q)p◦

holds for every dyadic Q. The inequality (2.35) in the case of a general cubic interval J
follows from the above dyadic case and Lemma 2.9. The proof of the claim is complete.

Now return to (2.30). By properties (2.26), (2.32) and (2.33) (applied to the map-
ping v1 ), we have∑

α

1

ℓ(Qα)n−p◦

∫
Qα

|∇v|p◦ ≤ 2p◦−1Kp◦

Kp◦ + 1
ε+

∑
α

2p◦−1

ℓ(Qα)n−p◦

∫
Qα

|∇v1|p◦

≤ C ′
(
ε+

∫
|∇v1|p◦ dµ

)
≤ C ′′ε.

Since ε > 0 was arbitrary, the proof of Lemma 2.11 is complete.

Proof of Theorem 2.4. Fix ε > 0 and take δ = δ(ε, v) from Lemma 2.11. Then by
Corollary 1.1 for any regular family {Qα} of n–dimensional dyadic intervals we have
if
∑

α ℓ(Qα)
p◦ < δ, then

∑
α

(
diam v(Qα)

)p◦
< Cε. Now we may conclude the proof of

Theorem 2.4 by use of Lemmas 2.9 and 2.10. Indeed they allow us to find a δ0 > 0 such
that if for a subset E of Rn we have Hp◦

∞(E) < δ0, then E can be covered by a regular
family {Qα} of n– dimensional dyadic intervals with

∑
α ℓ(Qα)

p◦ < δ.

Remark 2.1. Note that the order of integrability p◦ is sharp: for example, the Luzin N–
property fails in general for continuous mappings v ∈ W1

n(Rn,Rn) (here k = 1, q = p◦ =
n), see, e.g., [27].

2.5 Morse–Sard–Dubovitskĭı–Federer theorem for Sobolev map-
pings

Let k,m ∈ {1, . . . , n} and v ∈ Wk
p◦,1,loc

(Ω,Rd), where Ω is an open subset of Rn. Then,
by Theorem 2.1 (ii), there exists a Borel set Av such that Hp◦(Av) = 0 and all points of
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the complement Ω \ Av are Lp◦-Lebesgue points for the gradient ∇v(x). Moreover, v is
differentiable (in the classical Fréchet sense) at every point of Ω \ Av.

Denote Zv,m = {x ∈ Ω\Av : rank∇v(x) < m}. The purpose of this section is to prove
the assertion of Theorem 0.5:

Hq◦(v(Zv,m)) = 0. (2.36)

The exponents occurring in the theorem are the critical exponents that were defined
in (0.6):

p◦ =
n

k
and q◦ = m− 1 +

n−m+ 1

k
.

By an easy calculation, assumptions n ≥m ≥ 1, k ≥ 1 imply

p◦ ≤ q◦ ≤ n. (2.37)

Note that in the double inequality (2.37) we have equality in the first inequality iff m = 1
or k = 1, while in the second inequality equality holds iff k = 1. In particular,

p◦ < q◦ < n for k,m ∈ {2, . . . , n}.

By results obtained in the previous papers [9]–[10], [24] (see commentary to the Theo-
rem 0.5 in the Introduction), we need only consider the case

m = 1, q◦ = p◦ =
n

k
.

Before embarking on the detailed proof let us make some preliminary observations that
will enable us to make some convenient additional assumptions. Namely because the
result is local we can without loss in generality assume that Ω = Rn. For the remainder
of the section we fix k ∈ {2, . . . n} and a mapping v ∈ Wk

p◦,1(R
n,Rd). In view of the

definition of critical set we have for m = 1

Zv = Zv,1 = {x ∈ Rn \ Av : ∇v(x) = 0}.

The following lemma provides the main step in the proof of Theorem 0.5.

Lemma 2.12. For any n-dimensional dyadic interval Q ⊂ Rn the estimate

Hp◦
∞(v(Zv ∩Q)) ≤ C ∥∇kv∥p◦Lp◦,1(Q) (2.38)

holds, where the constant C depends on n,m, k, d only.

Proof. By virtue of (1.5) it suffices to prove that

Hp◦
∞(v(Zv ∩Q)) ≤ C∥∇kvQ∥p◦Lp◦,1(Rn) (2.39)

for the mapping vQ defined in Lemma 1.2, where C = C(n,m, k, d) is a constant. To
establish (2.39) it is possible to repeat almost verbatim the proof of Lemma 3.2 in [24]. One
must observe the following minor changes: first q◦ = p◦, and next, instead of Corollary 1.8
from [24] one must use Corollary 2.1 established above. Note that in the present situation
the calculations simplify since for m = 1 many of terms from [24, proof of Lemma 3.2]
disappear.
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Corollary 2.2. For any ε > 0 there exists δ > 0 such that for every subset E of Rn

we have Hp◦
∞(v(Zv ∩ E)) ≤ ε provided Ln(E) ≤ δ. In particular, Hp◦(v(Zv ∩ E)) = 0

whenever Ln(E) = 0.

Proof. Let Ln(E) ≤ δ, then we can find a family of nonoverlapping n-dimensional dyadic
intervals Qα such that E ⊂

∪
αQα and

∑
α

ℓn(Qα) < Cδ. Of course, for sufficiently small

δ the estimate ∥∇kv∥Lp◦,1(Qα) < 1 is fulfilled for every α. Then in view of Lemma 1.1 we
have ∑

α

∥∇kv∥p◦Lp◦,1(Qα)
≤ ∥∇kv∥p◦Lp◦,1(

∪
Qα)

(2.40)

This estimate together with Lemma 2.12 allow us to conclude the required smallness of∑
α

Hp◦
∞(Zv ∩Qα) ≥ Hp◦

∞(Zv ∩ E).

Invoking Dubovitskĭı–Federer’s Theorem (see commentary to the Theorem 0.5 in the
Introduction) for the smooth case g ∈ Ck(Rn,Rd), Theorem 2.1 (iii) (applied to the case
l = k ) implies

Corollary 2.3 (see, e.g., [12]). There exists a set Z̃v of n-dimensional Lebesgue measure

zero such that Hp◦(v(Zv \ Z̃v)) = 0. In particular, Hp◦(v(Zv)) = Hp◦(v(Z̃v)).

From Corollaries 2.2 and 2.3 we conclude that Hp◦(v(Zv)) = 0, and this ends the proof
of Theorem 0.5.
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