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1 Introduction

In this work we prove a lower semicontinuity result for a functional of linear
growth initially defined in an open set Ω ⊂ Rn by∫

Ω

F

(
dDu

dµ

)
dµ (1.1)

for u ∈ BV(Ω;RN) with Du� µ. The measure µ is merely assumed to be a
positive finite Radon measure that satisfies Ln � µ, where Ln is the Lebesgue
measure. For the integrand F we need somewhat stronger assumptions,
described in detail below. We refer the reader to Section 2 for precise notation
and terminology.

With the choice µ = Ln, this type of result was derived in [4] (see also
[5, Section 5.5]), and later in [10] for integrands depending also on x and
u. The problem was studied without a nonnegativity assumption on F in
[15]. These results relied mostly on blow-up techniques. The result in [15]
was generalized to x-dependent integrands in [14, Theorem 10], relying on
the theory of generalized Young measures, which were first introduced by
DiPerna and Majda in [8]. With a general measure µ, the problem was
studied in the case p > 1 in [3], and also in [13]. In a more general setting of
a metric measure space, the problem was studied in [11].

We first show that the functional (1.1), defined for general u ∈ BV(Ω;RN)
by relaxation, has an integral representation∫

Ω

F

(
dDu

dµ

)
dµ+

∫
Ω

F∞
(
dDs,µu

d|Ds,µu|

)
d|Ds,µu|,

where Ds,µu is the singular part of Du with respect to µ. Here we require
the integrand F : RN×n → R be nonnegative and quasiconvex, with linear
growth m|A| ≤ F (A) ≤M(1 + |A|) for some 0 < m ≤M and all A ∈ RN×n,
and with a continuous recession function F∞.

Our proof will rely heavily on the theory of generalized Young measures,
particularly results derived in [14]. Once we have the above integral repre-
sentation, we can derive Jensen’s inequalities for generalized Young measures
with respect to µ, as was done in [14, Theorem 9] with respect to the Lebesgue
measure. By using these inequalities, we can then prove the following lower
semicontinuity theorem (Theorem 4.4) which is the main result of this work:

Theorem 1.1. Let Ω ⊂ Rn be a bounded Lipschitz domain with inner bound-
ary normal νΩ, let µ be a positive finite Radon measure on Ω with Ln � µ,
and let F : Ω×RN×n → R be a µ×B(RN×n)-measurable integrand with linear
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growth 0 ≤ F (x,A) ≤ M(1 + |A|) for some M ≥ 0, a continuous recession
function F∞, and such that A 7→ F (x,A) is quasiconvex for each fixed x ∈ Ω.
Then the functional

F(u) :=

∫
Ω

F

(
x,
dDu

dµ

)
dµ+

∫
Ω

F∞
(
x,

dDs,µu

d|Ds,µu|

)
d|Ds,µu|

+

∫
∂Ω

F∞
(
x,

u

|u|
⊗ νΩ

)
|u| dHn−1

is weakly* sequentially lower semicontinuous in BV(Ω;RN).

We remark that an easier proof is possible when the Radon–Nikodym
derivative of µ with respect to Lebesgue measure is bounded, and hence that
the main contribution is the proof covering the general case. This proof
seems to require the assumption about existence of a continuous recession
function for the integrand F .

2 Preliminaries

2.1 Notation

For N, n ∈ N, the matrix space RN×n will always be equipped with the

Euclidean norm |A| :=
(∑N

i=1

∑n
j=1A

i
j

)1/2

, where i and j are the row and

column indices, respectively. We denote by B(x, r) the open ball in Rn with
center x and radius r. We denote by Bn the open unit ball in Rn and by ∂Bn
the unit sphere. For a ∈ RN and b ∈ Rn, we can define the tensor product
a⊗ b = abT ∈ RN×n.

We denote the n-dimensional Lebesgue measure by Ln and the s-dimen-
sional Hausdorff measure by Hs. Given any measure ν, the restriction of ν
to a set A is denoted by ν A, that is, ν A(B) = ν(A ∩ B). The Borel
σ-algebra on a set E ⊂ Rn is denoted by B(E). For open sets Ω,Ω′ ⊂ Rn,
by Ω b Ω′ we mean that Ω ⊂ Ω′ and that Ω is compact. We denote by 1E

the characteristic function of a set E.
If X is a locally compact separable metric space (usually an open or closed

subset of Rn), let Cc(X;Rl) be the space of continuous Rl-valued functions
with compact support in X and let C0(X;Rl) be its completion with respect
to the ‖ · ‖∞-norm, l ∈ N. We denote by M(X;Rl) the Banach space
of vector-valued finite Radon measures, equipped with the total variation
norm |µ|(X) < ∞. By the Riesz representation theorem, M(X;Rl) can
be identified with the dual space of C0(X;Rl) through the duality pairing
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〈φ, µ〉 :=
∫
X
φ · dµ :=

∑l
i=1

∫
X
φi dµi. Thus weak* convergence µj

∗
⇁ µ

in M(X) means 〈φ, µj〉 → 〈φ, µ〉 for all φ ∈ C0(X;Rl). We denote the
set of positive measures and probability measures by M+(X) and M1(X),
respectively.

For a vector-valued Radon measure γ ∈M(X;Rl) and a positive Radon
measure µ ∈ M+(X), we can write the Radon-Nikodym decomposition γ =
γa + γs = dγ

dµ
µ+ γs of γ with respect to µ, where dγ

dµ
∈ L1(X,µ;Rl).

We write ∫
Ω

f dµ :=
1

µ(Ω)

∫
Ω

f dµ

for integral averages (whenever they are defined).
For sets E ⊂ Rn, F ⊂ Rl open or closed, a parametrized measure

(νx)x∈E ⊂M(F ) is a mapping from E to the set M(F ) of Radon measures
on F . It is said to be weakly* µ-measurable, for µ ∈M+(E), if x 7→ νx(B) is
µ-measurable for all Borel sets B ∈ B(F ) (it suffices to check this for all rela-
tively open sets). Equivalently, (νx)x∈E is weakly* µ-measurable if the func-
tion x 7→

∫
F
f(x, y) dνx(y) is µ-measurable for every bounded Borel function

f : E × F → R (see [5, Proposition 2.26]). We denote by L∞w∗(E, µ;M(F ))
the set of all weakly* µ-measurable parametrized measures (νx)x∈E ⊂M(F )
with the property that ess supx∈E |νx|(F ) <∞ (the essential supremum with
respect to µ). We omit µ in the notation if µ = Ln.

2.2 Functions of bounded variation

The theory of BV functions presented in this section can be found in e.g. the
monographs [5, 9, 19], and we will give specific references only for a few key
results. Let Ω ⊂ Rn be an open set. A function u ∈ L1(Ω;RN) is a function of
bounded variation, denoted by u ∈ BV(Ω;RN), if its distributional derivative
is a bounded RN×n-valued Radon measure. This means that there exists
a (unique) measure Du ∈ M(Rn;RN×n) such that for all ψ ∈ C1

c (Ω), the
integration-by-parts formula∫

Ω

∂ψ

∂xj
ui dLn = −

∫
Ω

ψ dDuij, i = 1 . . . N, j = 1, . . . , n

holds. We write the Radon-Nikodym decomposition of the variation measure
as Du = ∇uLn Ω +Dsu.

The space BV(Ω;RN) is a Banach space endowed with the norm

‖u‖BV(Ω;RN ) := ‖u‖L1(Ω;RN ) + |Du|(Ω).
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Furthermore, we say that a sequence (uj) ⊂ BV(Ω;RN) converges weakly*

to u ∈ BV(Ω;RN) if uj → u strongly in L1(Ω;RN) and Duj
∗
⇁ Du in

M(Ω,RN×n). A norm-bounded sequence in BV(Ω;RN), i.e.

sup
j∈N

(‖u‖L1(Ω;RN ) + |Duj|(Ω)) <∞,

always has a weakly* converging subsequence. Conversely, a weakly* con-
verging sequence is norm-bounded in BV(Ω,RN), see [5, Proposition 3.13]. If
uj → u in L1(Ω;RN) and |Duj|(Ω)→ |Du|(Ω), we say that the uj converge
to u strictly. If even

〈Duj〉(Ω)→ 〈Du〉(Ω),

where for a measure ν ∈ M(Rn;RN×n) with Radon-Nikodym decomposi-
tion ν = aLn + µs, we define the measure (related to the minimal surface
functional)

〈ν〉(A) :=

∫
A

√
1 + |a|2 dLn + |µs|(A), A ∈ B(Rn),

then we speak of 〈·〉-strict convergence. This notion is stronger than strict
convergence (this follows e.g. from Theorem 2.2 below), and one can show

that it implies that 〈Duj〉
∗
⇁ 〈Du〉 as measures.

For any bounded open set Ω ⊂ Rn and v ∈ BV(Ω;RN), we can define the
Dirichlet class

BVv(Ω;RN) :=
{
u ∈ BV(Ω;RN) : w ∈ BV(Rn;RN) and |Dw|(∂Ω) = 0

}
,

where

w :=

{
u− v in Ω,

0 in Rn \ Ω.

The following lemma is proved in e.g. [14, Lemma 1].

Lemma 2.1. Let Ω ⊂ Rn be a bounded open set, and let u ∈ BV(Ω;RN).
Then there exists (vj) ⊂ BVu(Ω;RN) ∩ C∞(Ω;RN) such that vj → u 〈·〉-
strictly in Ω.

2.3 Generalized Young measures

Most of the theory of generalized Young measures presented in this section
is derived in [14].

The symbol Ω will always denote a bounded open set in Rn. We will
need the following linear transformations mapping C(Ω × Rl) to C(Ω × Bl)
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and back, where Bl was the open unit ball in Rl: for f ∈ C(Ω × Rl) and
g ∈ C(Ω× Bl), define

(Tf)(x, Â) := (1− |Â|)f

(
x,

Â

1− |Â|

)
, x ∈ Ω, Â ∈ Bl, and

(T−1g)(x,A) := (1 + |A|)g
(
x,

A

1 + |A|

)
, x ∈ Ω, A ∈ Rl.

It is an easy calculation to verify that T−1Tf = f and TT−1g = g. We
consider the property

Tf extends to a bounded continuous function on Ω× Bl. (2.1)

In particular, this entails that f has linear growth at infinity, that is, there
exists a constant M ≥ 0 (in fact, M = ‖Tf‖

L∞(Ω×Bl) will do) such that

|f(x,A)| ≤M(1 + |A|) for all x ∈ Ω, A ∈ Rl.

We collect all such integrands into the set

E(Ω;Rl) := {f ∈ C(Ω× Rl) : f satisfies (2.1)}.

For f ∈ E(Ω;Rl), the recession function f∞ : Ω× Rl 7→ R is defined by

f∞(x,A) := lim
x′→x
A′→A
t→∞

f(x′, tA′)

t
, x ∈ Ω, A ∈ Rl. (2.2)

The limit exists since it agrees with Tf on Ω × ∂BN×n, as can be seen by
substituting t = s/(1− s), s ∈ (0, 1), and letting s→ 1. The recession func-
tion is clearly positively 1-homogenous in A, that is, f∞(x, sA) = sf∞(x,A)
for all s ≥ 0, and thus takes finite values.

We also consider a second class of integrands that is larger than E(Ω;Rl)
and (partially) dispenses with continuity in the x-variable. A Carathéodory
function is an Ln × B(Rl)-measurable function f : Ω × Rl → R such that
A 7→ f(x,A) is continuous for almost every x ∈ Ω. In fact, it can be shown
that it suffices to check measurability of x 7→ f(x,A) for all fixed A ∈ Rl

(see for example [5, Proposition 5.6]). With this notion, the representation
integrands are defined as follows:

R(Ω;Rl) := {f : Ω× Rl → R : f Carathéodory with linear growth

at infinity and ∃f∞ ∈ C(Ω× Rl)}.
(2.3)
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A function f : RN×n → R is said to be quasiconvex, which we denote by
f ∈ Q(RN×n), if f is Borel measurable, locally bounded from below, and for
some bounded Lipschitz domain ω ⊂ Rn and every A ∈ RN×n it holds that

|ω|f(A) ≤
∫
ω

f(A+∇ψ(x)) dLn(x) for all ψ ∈ W 1,∞
0 (ω;RN).

This definition does not depend on the particular choice of the Lipschitz do-
main ω (by an exhaustion argument) and it can be shown that quasiconvex
functions are rank one convex, meaning that they are convex along rank one
lines (see for example [5, Proposition 5.41]). See [7] for more on quasicon-
vexity.

A quasiconvex function does not necessarily have a recession function f∞

in the sense of (2.2) (see [16, Theorem 2] for a counterexample), and the
notion can be relaxed in the following way: for f : RN×n → R the generalized
recession function f# : RN×n → R ∪ {±∞} is defined by

f#(A) := lim sup
A′→A
t→∞

f(tA′)

t
, A ∈ RN×n.

Quasiconvex functions are globally Lipschitz continuous (see for example [6,
Lemma 2.2]) and hence for quasiconvex f

f#(A) = lim sup
t→∞

f(tA)

t
, A ∈ RN×n. (2.4)

By rank one convexity, the above holds as a limit for all matrices A of rank
one.

We have the following version of Reshetnyak’s Continuity Theorem, see
the appendix of [15], as well as [17, Theorem 3] or [5, Theorem 2.39] for the
original result stated for 1-homogenous functions f .

Theorem 2.2. Let (γj) ⊂ M(Ω;Rl), γ ∈ M(Ω;Rl) with Radon-Nikodym
decompositions

γj = aj Ln Ω + γsj , γ = aLn Ω + γs.

If γj
∗
⇁ γ in M(Ω;Rl) and 〈γj〉(Ω)→ 〈γ〉(Ω), then for

F(γ) :=

∫
Ω

f(x, a(x)) dLn +

∫
Ω

f∞
(
x,

dγs

d|γs|
(x)

)
d|γs|(x)

with f ∈ E(Ω,Rl), we have F(γj)→ F(γ).
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Let µ ∈M+(Ω), and assume that µ(∂Ω) = 0.
The set of all generalized Young measures Y(Ω, µ;Rl) is defined to be the

set of all triples (νx, λν , ν
∞
x ) such that

(νx)x ∈ L∞w∗(Ω, µ;M1(Rl)), λν ∈M+(Ω),

(ν∞x )x ∈ L∞w∗(Ω, λν ;M1(∂Bl)), x 7→ 〈| · |, νx〉 ∈ L1(Ω, µ).

Under the duality pairing

〈〈f, ν〉〉 :=

∫
Ω

〈f(x, ·), νx〉 dµ(x) +

∫
Ω

〈f∞(x, ·), ν∞x 〉 dλν(x)

=

∫
Ω

∫
RN×n

f(x,A) dνx(A) dµ(x) +

∫
Ω

∫
∂BN×n

f∞(x,A) dν∞x (A) dλν(x),

where f ∈ E(Ω;Rl) and ν ∈ Y(Ω, µ;Rl), the space of Young measures can
be considered a part of the dual space E(Ω;Rl)∗. We say that a sequence of
Young measures (νj) ⊂ Y(Ω, µ;Rl) converges weakly* to ν ∈ Y(Ω, µ;Rl) if
〈〈f, νj〉〉 → 〈〈f, ν〉〉 for every f ∈ E(Ω;Rl).

To every Radon measure γ ∈M(Ω;Rl), with Radon-Nikodym decompo-
sition with respect to µ written as γ = dγ

dµ
µ+γs,µ, we associate an elementary

Young measure εγ ∈ Y(Ω, µ;Rl) by

(εγ)x := δ dγ
dµ

(x), λεγ := |γs,µ|, (εγ)
∞
x := δp(x),

where p := dγs,µ

d|γs,µ| ∈ L
1(Ω, |γs,µ|; ∂Bl).

Crucially, we have the following.

Theorem 2.3. Let µ ∈M+(Ω) with µ(∂Ω) = 0, and let (γj) ⊂M(Ω;Rl) be
a sequence of Radon measures that is bounded in the total variation norm,
that is, supj∈N |γj|(Ω) < ∞. Then there exists a subsequence (not relabeled)
and a generalized Young measure (νx, λν , ν

∞
x ) with

(νx)x ∈ L∞w∗(Ω, µ;M1(Rl)), λν ∈M+(Ω),

(ν∞x )x ∈ L∞w∗(Ω, λν ;M1(∂Bl)), x 7→ 〈| · |, νx〉 ∈ L1(Ω, µ), (2.5)

such that 〈〈f, εγj〉〉 → 〈〈f, ν〉〉, or equivalently

f

(
x,
dγj
dµ

(x)

)
µ+ f∞

(
x,

dγs,µj
d|γs,µj |

(x)

)
|γs,µj |

∗
⇁ 〈f(x, ·), νx〉µ+ 〈f∞(x, ·), ν∞x 〉λν in M(Ω)

(2.6)

for every f ∈ E(Ω;RN×n).
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Proof. This is proved in the case µ = Ln Ω in [14, Lemma 2, Corollary
2, Theorem 7], but the proofs run through also if we replace the Lebesgue
measure by a more general µ.

See also [2, Theorem 2.5] for a proof in the case γsj ≡ 0.

Corollary 2.4. In the above theorem, (2.6) holds also for every µ× B(Rl)-
measurable f ∈ R(Ω;Rl).

In the case µ = Ln, (2.6) also holds for every Carathéodory integrand
f : Ω × Rl → R possessing a recession function f∞ : Ω × Rl → R in the
sense of (2.2) for (x,A) ∈ (Ω \ N) × Rl, and f∞ is jointly continuous in
(Ω \N)× Rl, where N ⊂ Ω is a Borel set with (Ln + λν)(N) = 0.

Note that a Carathéodory function f : Ω × RN → R is by definition
Ln × B(RN)-measurable, but here we need the assumption of µ × B(RN)-
measurability.

Proof. Again, this is proved in the case µ = Ln Ω in [14, Proposition 2],
but the proof runs through also in the general case with the assumption of
µ× B(RN)-measurability.

In particular, given u ∈ BV(Ω;RN), we can associate to its derivative
Du ∈M(Ω;RN×n) the Radon-Nikodym decomposition Du = dDu

dµ
µ+Ds,µu,

and then the elementary Young measure εDu ∈ Y(Ω, µ;RN×n) with

(εDu)x := δ dDu
dµ
, λεDu := |Ds,µu|, (εDu)

∞
x := δp(x),

where p := Ds,µu
|Ds,µu| ∈ L

1(Ω, |Ds,µu|; ∂BN×n).

For a norm-bounded sequence (uj) ⊂ BV(Ω;RN), we say that the deriva-
tives Duj generate the generalized Young measure

ν = (νx, λν , ν
∞
x ) ∈ Y(Ω;RN×n),

if for all f ∈ E(Ω,RN×n) we have that 〈〈f, εDuj〉〉 → 〈〈f, ν〉〉 for all f ∈
E(Ω;RN×n), or equivalently

f

(
x,
dDuj
dµ

)
µ+ f∞

(
x,

dDs,µuj
d|Ds,µuj|

(x)

)
|Ds,µuj|

∗
⇁ 〈f(x, ·), νx〉µ+ 〈f∞(x, ·), ν∞x 〉λν in M(Ω).

(2.7)

We call such a generalized Young measure a gradient Young measure. Since
(uj) is norm-bounded, we have uj

∗
⇁ u for some u ∈ BV(Ω;RN). The

barycenter of a generalized Young measure ν ∈ Y(Ω;RN×n) is defined as the
measure

〈id, νx〉µ+ 〈id, ν∞x 〉λν .
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Note that by choosing f to be the identity on RN×n in (2.7) (componentwise,
to be precise), we obtain that Du is the restriction of the barycenter to Ω.

In the case µ = Ln, we have the following Jensen’s inequalities for gradient
Young measures, which are part of [14, Theorem 9].

Theorem 2.5. Let u ∈ BV(Ω;RN) and let ν ∈ Y(Ω;RN×n), ν = (νx, λν , ν
∞
x )

be a gradient Young measure with barycenter Du and satisfying λ(∂Ω) = 0.
Then the following hold for any quasiconvex f : RN×n → R with linear growth
(that is, |F (A)| ≤M(|A|+ 1) for all A ∈ RN×n and some M ≥ 0):

f(∇u(x)) ≤ 〈f, νx〉+ 〈f#, ν∞x 〉
dλν
dLn

(x) for Ln-almost every x ∈ Ω,

f#

(
dDsu

d|Dsu|

)
|Dsu| ≤ 〈f#, ν∞x 〉λsν as measures.

3 The integral representation

Let F : RN×n 7→ R be quasiconvex, with linear growth

m|A| ≤ F (A) ≤M(1 + |A|) for all A ∈ RN×n,

for some 0 < m ≤ M , such that the recession function F∞ exists in the
sense of (2.2). Let Ω ⊂ Rn be a bounded open set with Ln(∂Ω) = 0, and let
µ ∈M+(Ω) with Ln � µ. We define a Sobolev space with respect to µ by

W 1,1
µ (Ω;RN) := {u ∈ BV(Ω;RN) : Du� µ}.

We consider the functional

F∗(u,Ω) := inf
{

lim inf
j→∞

∫
Ω

F

(
dDuj
dµ

)
dµ, uj ∈ W 1,1

µ (Ω;RN)

uj → u in L1(Ω;RN)
} (3.1)

for u ∈ BV(Ω;RN). Note that the convergence above is in L1(Ω;RN) with
respect to the Lebesgue measure Ln, not µ. We will prove an integral repre-
sentation for the above functional. The representation is∫

Ω

F

(
dDu

dµ

)
dµ+

∫
Ω

F∞
(
dDs,µu

d|Ds,µu|

)
d|Ds,µu| (3.2)

for any u ∈ BV(Ω;RN), where Ds,µu is the singular part of the variation
measure Du with respect to µ.

Initially we will work with a more restricted class of integrands, defined
as follows.
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Definition 3.1. Define the class SQ(RN×n) of special quasiconvex integrands
as quasiconvex functions F : RN×n → R with linear growth |F (A)| ≤M(1 +
|A|) for some M ≥ 0, such that for some parameters i, ri > 0, F (A) =
F∞(A)− i for |A| ≥ ri, and F∞(A) ≥ |A|/i for all A ∈ RN×n.

Note that the existence of the recession function F∞ in the sense of (2.2)
is part of the definition. (We could equally well require above that F (A) =
F#(A)− i for |A| ≥ ri, recall (2.4), as this would imply the existence of F∞.)
Clearly SQ(RN×n) ⊂ E(Ω;RN×n) (constant in the x-variable).

Given F ∈ Q(RN×n) with linear growth 0 ≤ F (A) ≤M(1+ |A|) for some
M ≥ 0, we can define Gi(A) := max{F (A), F#(A) + |A|/i − i} for each
i ∈ N, and then it is shown in [12, Lemma 6.3] that Gi ∈ SQ(RN×n) and
that Gi(A) ↘ F (A) and (Gi)

∞(A) ↘ F∞(A) for every A ∈ RN×n. We will
use this fact on a number of occasions.

3.1 Estimate from below

In order to obtain the integral representation, we first prove the estimate
from below.

Proposition 3.2. Let Ω ⊂ Rn be a bounded open set with Ln(∂Ω) = 0, let
µ ∈M+(Ω) with Ln � µ, let F ∈ R(Ω;RN×n) ∩Q(RN×n) with

m|A| ≤ F (A) ≤M(1 + |A|)

for some 0 < m ≤M , and let u ∈ BV(Ω;RN). Then we have

F∗(u,Ω) ≥
∫

Ω

F

(
dDu

dµ

)
dµ+

∫
Ω

F∞
(
dDs,µu

d|Ds,µu|

)
d|Ds,µu|.

Write the Radon-Nikodym decomposition of µ as µ = aLn + µs, with
a ∈ L1(Ω). We prove the theorem by considering separately the sets where
the absolutely continuous part and the singular part of µ are carried.

3.1.1 The absolutely continuous part

The following lemma gives, in essence, the estimate from below for the set
where the absolutely continuous part of µ is carried. At this point, we make
the extra assumption that F is a special quasiconvex integrand.

Lemma 3.3. Let Ω ⊂ Rn be a bounded open set with Ln(∂Ω) = 0, let
µ ∈ M+(Ω) with Ln � µ, and let F ∈ SQ(RN×n) with parameters i, ri > 0,

11



and with linear growth 0 ≤ F (A) ≤ M(1 + |A|). Then for any open U ⊂ Ω
and any sequence (uj) ⊂ W 1,1

µ (Ω;RN) with uj → u in L1(Ω;RN) and

lim inf
j→∞

∫
Ω

F

(
dDuj
dµ

)
dµ <∞, (3.3)

we have

lim inf
j→∞

∫
U

F

(
dDuj
dµ

)
dµ

≥
∫
U

F

(
∇u
a

)
a dLn +

∫
U

F∞
(
dDsu

d|Dsu|

)
d|Dsu| − (Mri + i)µs(U).

(3.4)

Proof. Since Ln � µ, we can assume that a > 0 everywhere in Ω. Pick
a subsequence of (uj) (not relabeled) that gives the limit in (3.4). Since
F (A) = F∞(A) − i ≥ |A|/i − i for all |A| ≥ ri, we have by (3.3) that (uj)

is a norm-bounded sequence in BV(Ω;RN). Thus uj
∗
⇁ u in BV(Ω;RN).

By Theorem 2.3, the derivatives Duj generate a generalized Young measure
(νx, λν , ν

∞
x ) with respect to the Lebesgue measure, with λν ∈M+(Ω) and

(νx)x ∈ L∞w∗(Ω;M1(RN×n)), (ν∞x )x ∈ L∞w∗(Ω, λν ;M1(∂BN×n)).

This means that for every representation integrand f ∈ R(Ω;RN×n) and
every integrand satisfying the conditions of the latter part of Corollary 2.4,
we have

f(x,∇uj(x))Ln Ω + f∞
(
x,

dDsuj
d|Dsuj|

)
|Dsuj|

∗
⇁ 〈f(x, ·), νx〉 Ln Ω + 〈f∞(x, ·), ν∞x 〉λν in M(Ω).

(3.5)

First assume that Ln(∂U) = λν(∂U) = 0. Let us start computing∫
U

F

(
dDuj
dµ

)
dµ =

∫
U

F

(
dDuj
d(aLn)

)
a dLn +

∫
U

F

(
dDuj
dµs

)
dµs

=

∫
U

F

(
∇uj
a

)
a dLn +

∫
U

F

(
dDsuj
dµs

)
dµs

=: Ij + IIj.

(3.6)

We wish to analyze the term Ij by using the fact that Duj generates a
generalized Young measure. However, the function

(x,A) 7→ F

(
A

a(x)

)
a(x)1U(x)

12



does not necessarily satisfy the conditions of the latter part of Corollary
2.4: while it is a Carathéodory function, its recession function need not be
continuous as required. To overcome this problem, we define the super-level
sets of a:

Em := {x ∈ Ω : a(x) > m}, m ∈ N.

Recall that a(x) > 0 for every x ∈ Ω. Denoting the minimum of a and m by
a ∧m, by the fact that F (A) = F∞(A) − i for all |A| ≥ ri we have for any
x ∈ U and A ∈ ∂BN×n

lim sup
x′→x
A′→A
t→∞

F
(

tA′

a(x′)∧m

)
t

a(x′) ∧m = lim sup
A′→A
t→∞

F (tA′)

t

= lim sup
A′→A
t→∞

F∞(tA′)− i
t

= lim sup
A′→A
t→∞

tF∞(A′)

t
= lim sup

A′→A
F∞(A′) = F∞(A)

by the (Lipschitz) continuity of F∞. Note that the first equality is not
necessarily true unless we take the minimum of a with m. Also, we now see
that all of the limit superiors above are in fact limits. We conclude that

(x,A) 7→ F

(
A

(a ∧m)(x)

)
(a ∧m)(x)1U(x) (3.7)

satisfies the conditions of the latter part of Corollary 2.4. Fix m ∈ N. By
the fact that F (A) = F∞(A)− i for all |A| ≥ ri, we can write

Ij −
∫
U

F

(
∇uj
a ∧m

)
a ∧mdLn =

∫
U∩Em

F

(
∇uj
a

)
a− F

(
∇uj
m

)
mdLn

=

∫
U∩Em∩{|∇uj |<ari}

F

(
∇uj
a

)
a− F

(
∇uj
m

)
mdLn

+

∫
U∩Em∩{|∇uj |≥ari}

F∞
(
∇uj
a

)
a− F∞

(
∇uj
m

)
m− i(a−m) dLn

=

∫
U∩Em∩{|∇uj |<ari}

F

(
∇uj
a

)
a− F

(
∇uj
m

)
mdLn

−
∫
U∩Em∩{|∇uj |≥ari}

i(a−m) dLn

:= εm.

13



We have by the linear growth of F∣∣∣∣ ∫
U∩Em∩{|∇uj |<ari}

F

(
∇uj
a

)
a− F

(
∇uj
m

)
mdLn

∣∣∣∣
≤
∫
U∩Em∩{|∇uj |<ari}

F

(
∇uj
a

)
a+ F

(
∇uj
m

)
mdLn

≤
∫
U∩Em

M(1 + ri)a+M(1 + ari/m)mdµ

≤
∫
U∩Em

2Ma(1 + ri) dµ.

Clearly this last quantity converges to zero as m → ∞, as does the second
term of εm, so in total εm → 0 as m→∞.

By the fact that the derivatives Duj generate a generalized Young mea-
sure (recall (3.5)) and the fact that the integrand (3.7) satisfies the conditions
of the latter part of Corollary 2.4 and has recession function F∞ in U , we
have

Ij +

∫
U

F∞
(
dDsuj
d|Dsuj|

)
d|Dsuj| − εm

=

∫
U

F

(
∇uj
a ∧m

)
a ∧mdLn +

∫
U

F∞
(
dDsuj
d|Dsuj|

)
d|Dsuj|

→
∫
U

∫
RN×n

F

(
A

a ∧m

)
a ∧mdνx(A) dLn +

∫
U

∫
∂BN×n

F∞(A) dν∞x (A) dλν

(3.8)

as j →∞. Recalling (3.6), let us then consider the term IIj. Since F (A) =

14



F∞(A)− i for all |A| ≥ ri, we estimate

IIj −
∫
U

F∞
(
dDsuj
d|Dsuj|

)
d|Dsuj|

=

∫
U

F

(
dDsuj
dµs

)
dµs −

∫
U

F∞
(
dDsuj
dµs

)
dµs

=

∫
U∩{|dDsuj/dµs|<ri}

F

(
dDsuj
dµs

)
dµs − iµs(U ∩ {|dDsuj/dµ

s| ≥ ri})

−
∫
U∩{|dDsuj/dµs|<ri}

F∞
(
dDsuj
dµs

)
dµs

≥ −iµs(U ∩ {|dDsuj/dµ
s| ≥ ri})−

∫
U∩{|dDsuj/dµs|<ri}

F∞
(
dDsuj
dµs

)
dµs

≥ −iµs(U)−
∫
U∩{|dDsuj/dµs|<ri}

M

∣∣∣∣dDsuj
dµs

∣∣∣∣ dµs
≥ −iµs(U)−Mriµ

s(U).

(3.9)

Combining (3.6), (3.8), and (3.9), we get by Jensen’s inequalities for gener-
alized Young measures given in Theorem 2.5,

lim inf
j→∞

∫
U

F

(
dDuj
dµ

)
dµ = lim inf

j→∞
(Ij + IIj)

≥
∫
U

∫
RN×n

F

(
A

a ∧m

)
a ∧mdνx(A) dLn +

∫
U

∫
∂BN×n

F∞(A) dν∞x (A) dλν

+ εm − (Mri + i)µs(U)

≥
∫
U

F

(
∇u
a ∧m

)
a ∧mdLn +

∫
U

F∞
(
dDsu

d|Dsu|

)
d|Dsu|

+ εm − (Mri + i)µs(U)

≥
∫
U

F

(
∇u
a

)
a ∧mdLn +

∫
U

F∞
(
dDsu

d|Dsu|

)
d|Dsu|

+ εm − (Mri + i)µs(U)

→
∫
U

F

(
∇u
a

)
a dLn +

∫
U

F∞
(
dDsu

d|Dsu|

)
d|Dsu| − (Mri + i)µs(U)

as m → ∞, by the monotone convergence theorem. Finally, if U does not
satisfy λν(∂U) = 0 or Ln(∂U) = 0, we define

Uκ := {x ∈ U : dist(x, U c) > κ}, κ > 0,
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and then λν(∂Uκ) = 0 and Ln(∂Uκ) = 0 for all but at most countably many
κ > 0 by the fact that these are finite measures on U . For such values of κ
we write

lim inf
j→∞

∫
U

F

(
dDuj
dµ

)
dµ

≥ lim inf
j→∞

∫
Uκ

F

(
dDuj
dµ

)
dµ

≥
∫
Uκ

F

(
∇u
a

)
a dLn +

∫
Uκ

F∞
(
dDsu

d|Dsu|

)
d|Dsu| − (Mri + i)µs(Uκ)

→
∫
U

F

(
∇u
a

)
a dLn +

∫
U

F∞
(
dDsu

d|Dsu|

)
d|Dsu| − (Mri + i)µs(U)

as κ→ 0, by the monotone convergence theorem.

3.1.2 The singular part

Let us then consider the set where µs is carried. We prove the following
lemma.

Lemma 3.4. Let Ω ⊂ Rn be a bounded open set, let µ ∈ M+(Ω), and let
F ∈ SQ(RN×n) with F ≥ 0. Then for any sequence (uj) ⊂ W 1,1

µ (Ω;RN) with
uj → u in L1(Ω;RN) and

lim inf
j→∞

∫
Ω

F

(
dDuj
dµ

)
dµ <∞,

we have for any ball B(y, r) ⊂ Ω∫
B(y,r)

F

(
dDsu

dµs

)
dµs ≤ lim inf

j→∞

∫
B(y,r)

F

(
dDuj
dµ

)
dµ. (3.10)

Proof. Note again that it is enough to prove the result for a subsequence.
Let i, ri > 0 be the parameters of F , see Definition 3.1. Since F (A) =

F∞(A)− i ≥ |A|/i− i for all |A| ≥ ri, the sequence
dDuj
dµ

is norm-bounded in

L1(Ω, µ;RN×n), implying that (uj) is a norm-bounded sequence in BV(Ω;RN).
By Theorem 2.3 we know that with respect to µ, a subsequence of Duj
(not relabeled) generates a generalized Young measure (νx, λν , ν

∞
x ), with

λν ∈M+(Ω) and

(νx)x ∈ L∞w∗(Ω, µ;M1(RN×n)), (ν∞x )x ∈ L∞w∗(Ω, µ;M1(∂BN×n)).
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This means in particular that for every integrand f ∈ E(Ω;RN×n),

f

(
dDuj
dµ

)
µ
∗
⇁ 〈f, νx〉µ+ 〈f∞, ν∞x 〉λν

=

(
〈f, νx〉a+ 〈f∞, ν∞x 〉

dλν
dLn

)
Ln + 〈f, νx〉µs + 〈f∞, ν∞x 〉λsν

(3.11)

in M(Ω). By Alberti’s rank one theorem, see [1], we have µs-almost every-
where that

dDuj
dµs

= ξj ⊗ η,
dDu

dµs
= ξ ⊗ η, (3.12)

where ξj, ξ ∈ RN and η ∈ ∂Bn. Note that η does not depend on j. We show
that for µs-almost every x ∈ Ω, the measure νx is carried on the hyperplane
RN ⊗ η(x). For this, fix ε > 0 and fix a point x0 ∈ Ω. Excluding a µs-
negligible set, we can assume by the Besicovitch differentiation theorem (see
e.g. [5, Theorem 2.22]) that for some radius r > 0, we have B(x0, r) ⊂ Ω
and∫

B(x0,r)

|η − η(x0)| dµs < ε and

∫
B(x0,r)

a dLn < εµ(B(x0, r)). (3.13)

Fix R ≥ 1 and define

f(A) := min{1, dist(A, (RN ⊗ η(x0)) ∪B(0, R)c)};

note that there is no x-dependence, and f ∈ E(Ω;RN×n). Since f(ξ⊗ η) = 0
for |ξ| ≥ R and |η| = 1 and since f is 1-Lipschitz,∣∣∣∣∫

B(x0,r)

f (ξj ⊗ η) dµs −
∫
B(x0,r)

f (ξj ⊗ η(x0)) dµs
∣∣∣∣

≤ R

∫
B(x0,r)

|η − η(x0)| dµs < Rε

(3.14)

by (3.13). Since 〈f, νx〉 ∈ L1(Ω, µ) by (2.5), excluding a further µs-negligible
set and possibly making r > 0 smaller, we can also assume that∫

B(x0,r)

|〈f, νx〉 − 〈f, νx0〉| dµ < ε. (3.15)

Clearly f∞ ≡ 0 and then by (3.11), we have

f

(
dDuj
dµ

)
µ
∗
⇁ 〈f, νx〉aLn + 〈f, νx〉µs in M(Ω).
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Now by (3.15),

〈f, νx0〉 ≤
∫
B(x0,r)

〈f, νx〉 dµ+ ε

≤ lim inf
j→∞

∫
B(x0,r)

f

(
dDuj
dµ

)
dµ+ ε

f≤1

≤ lim inf
j→∞

∫
B(x0,r)

f

(
dDuj
dµs

)
dµs +

∫
B(x0,r)

a dLn

µ(B(x0, r))
+ ε

(3.13)

≤ lim inf
j→∞

∫
B(x0,r)

f

(
dDuj
dµs

)
dµs + 2ε

(3.12)
= lim inf

j→∞

∫
B(x0,r)

f (ξj ⊗ η) dµs + 2ε

(3.14)

≤ lim inf
j→∞

∫
B(x0,r)

f (ξj ⊗ η(x0)) dµs +Rε+ 2ε

≤ 3Rε,

since f is zero on the hyperplane RN⊗η(x0). Letting ε→ 0, we get 〈f, νx0〉 =
0, implying that νx0 is carried on the set (RN ⊗ η(x0)) ∪ B(0, R)c. Letting
R→∞, we obtain that νx0 is carried on the hyperplane RN ⊗ η(x0).

By choosing f to be the identity mapping on RN×n in (3.11) (compo-

nentwise, to be precise), and noting that Duj
∗
⇁ Du in M(Ω) (the fact

that (uj) is a norm-bounded sequence in BV(Ω;RN) implies that uj
∗
⇁ u in

BV(Ω;RN)), we get for the singular parts

Dsu = 〈id, νx〉µs + 〈id, ν∞x 〉λsν (3.16)

in Ω. Using the fact that 〈id, νx〉 ∈ RN ⊗ η(x) for µs-almost every x ∈ Ω, we
get

〈id, ν∞x 〉
dλsν
dµs

=
dDsu

dµs
(x)− 〈id, νx〉 = ξ(x)⊗ η(x)− 〈id, νx〉 ∈ RN ⊗ η(x)

for µs-almost every x ∈ Ω. Since F∞ is quasiconvex and 1-homogenous,
we have F∞(A) = (F∞)c(A) for all rank one A ∈ RN×n, where the convex
envelope is defined by

Gc(A) := sup {H(A) : H convex, H ≤ G} ,

see [12, Corollary 1.2]. According to [2, Lemma 5.5 (i)], for any convex
function g : RN×n → R we have

g(A1 + A2) ≤ g(A1) + g∞(A2) (3.17)
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for all A1, A2 ∈ RN×n. Note that in (3.16), all three terms belong to RN⊗η(x)
for µs-almost every x ∈ Ω. Since ξ 7→ F (ξ⊗η(x)) is convex for a fixed x ∈ Ω
by the rank one convexity of F , we get by (3.17)

F

(
dDsu

dµs
(x)

)
≤ F (〈id, νx〉) + F∞ (〈id, ν∞x 〉)

dλsν
dµs

= F (〈id, νx〉) + (F∞)c (〈id, ν∞x 〉)
dλsν
dµs

Jensen

≤ 〈F, νx〉+ 〈(F∞)c, ν∞x 〉
dλsν
dµs

≤ 〈F, νx〉+ 〈F∞, ν∞x 〉
dλsν
dµs

for µs-almost every x ∈ Ω. Combining this with (3.11) — note that F ∈
SQ(RN×n) ⊂ E(Ω;RN×n) — we get for any ball B(y, r) ⊂ Ω∫

B(y,r)

F

(
dDsu

dµs

)
dµs ≤ lim inf

j→∞

∫
B(y,r)

F

(
dDuj
dµ

)
dµ.

3.1.3 Combining the estimates

Now we combine the previous two lemmas to prove Proposition 3.2.

Proof of Proposition 3.2. We keep assuming that F ∈ SQ(RN×n) with pa-
rameters i, ri ≥ 1 and linear growth 0 ≤ F (A) ≤ M(1 + |A|). Let (uj) ⊂
W 1,1
µ (Ω;RN) be a sequence with uj → u in L1(Ω;RN), and we can also

assume that (3.3) holds, so that the assumptions of both Lemma 3.3 and
Lemma 3.4 are satisfied.

Fix ε > 0. Let H ⊂ Ω be a Borel set with Ln(H) = 0 and µs(Ω \H) = 0.
Also, let D ⊂ Ω be a Borel set with µ(D) = 0 and |Ds,µu|(Ω \D) = 0. Take
an open set G ⊂ Ω with G ⊃ H \D and

|Ds,µu|(G) +

∫
G

M(a+ |∇u|) dLn < ε. (3.18)

Consider the fine cover {B(x,R)}x∈H\D of the set H \ D, with the balls
B(x,R) contained in G and satisfying µs(∂B(x,R)) = 0. By Vitali’s covering
theorem, we can pick a countable, disjoint collection {Bi}i∈N := {B(xi, Ri)}i∈N
with

µs

(
(H \D) \

∞⋃
i=1

Bi

)
= 0 and thus µs

(
Ω \

∞⋃
i=1

Bi

)
= 0. (3.19)
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Pick also m ∈ N such that

µ

(
∞⋃
i=m

Bi

)
+M

∫
⋃∞
i=mBi

(
1 +

d|Dsu|
dµs

)
dµs < ε. (3.20)

By (3.10) we have

lim inf
j→∞

∫
⋃m
i=1Bi

F

(
dDuj
dµ

)
dµ ≥

∫
⋃m
i=1Bi

F

(
dDsu

dµs

)
dµs

≥
∫

Ω

F

(
dDsu

dµs

)
dµs − ε

(3.21)

by (3.20) and the linear growth of F .
By combining (3.19) and (3.20), we get

µs

(
Ω \

m⋃
i=1

Bi

)
< ε. (3.22)

Moreover, we can write (3.4) with the choice U = Ω \
⋃m
i=1 Bi:

lim inf
j→∞

∫
Ω\

⋃m
i=1Bi

F

(
dDuj
dµ

)
dµ

≥
∫

Ω\
⋃m
i=1Bi

F

(
∇u
a

)
a dLn +

∫
Ω\

⋃m
i=1Bi

F∞
(
dDsu

d|Dsu|

)
d|Dsu|

− (Mri + i)µs

(
Ω \

m⋃
i=1

Bi

)
(3.22)

≥
∫

Ω\
⋃m
i=1Bi

F

(
∇u
a

)
a dLn +

∫
Ω\

⋃m
i=1Bi

F∞
(
dDs,µu

d|Ds,µu|

)
d|Ds,µu|

− (Mri + i)ε

(3.18)

≥
∫

Ω\
⋃m
i=1Bi

F

(
∇u
a

)
a dLn +

∫
Ω

F∞
(
dDs,µu

d|Ds,µu|

)
d|Ds,µu|

−Mε− (Mri + i)ε

(3.18)

≥
∫

Ω

F

(
∇u
a

)
a dLn +

∫
Ω

F∞
(
dDs,µu

d|Ds,µu|

)
d|Ds,µu|

− ε−Mε− (Mri + i)ε.
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Combining this with (3.21), we get

lim inf
j→∞

∫
Ω

F

(
dDuj
dµ

)
dµ

≥
∫

Ω

F

(
∇u
a

)
a dLn +

∫
Ω

F∞
(
dDs,µu

d|Ds,µu|

)
d|Ds,µu|

+

∫
⋃m
i=1Bi

F

(
dDsu

dµs

)
dµs − 3(Mri + i)ε

(3.20)

≥
∫

Ω

F

(
∇u
a

)
a dLn +

∫
Ω

F∞
(
dDs,µu

d|Ds,µu|

)
d|Ds,µu|

+

∫
Ω

F

(
dDsu

dµs

)
dµs − 4(Mri + i)ε.

By letting ε→ 0, we get the estimate from below.
Finally, we remove the assumption F ∈ SQ(RN×n). By [12, Lemma 6.3],

we can find a sequence Fi ∈ SQ(RN×n) with Fi(A) ↘ F (A) and F∞i (A) ↘
F∞(A) pointwise for every A ∈ RN×n as i→∞, and by making M slightly
larger, if necessary, we can also assume that m|A| ≤ Fi(A) ≤M(1 + |A|) for
every i ∈ N.

As before, let (uj) ⊂ W 1,1
µ (Ω;RN) with uj → u in L1(Ω;RN). We can

again assume that (3.3) holds, and by the coercivity m|A| ≤ F (A), this
implies that (uj) is a norm-bounded sequence in BV(Ω;RN). Thus by Theo-
rem 2.3, a subsequence of Duj (not relabeled) generates a generalized Young
measure (νx, λν , ν

∞
x ) with respect to µ. Thus we have for any i ∈ N∫

Ω

F

(
dDu

dµ

)
dµ+

∫
Ω

F∞
(
dDs,µu

d|Ds,µu|

)
d|Ds,µu|

≤
∫

Ω

Fi

(
dDu

dµ

)
dµ+

∫
Ω

F∞i

(
dDs,µu

d|Ds,µu|

)
d|Ds,µu|

≤ lim inf
j→∞

∫
Ω

Fi

(
dDuj
dµ

)
dµ

=

∫
Ω

〈Fi, νx〉 dµ+

∫
Ω

〈F∞i , ν∞x 〉 dλν .

(3.23)

On the other hand, by Lebesgue’s dominated convergence theorem, as well
as the fact that F ∈ Q(RN×n) ∩R(Ω;RN×n) ⊂ E(Ω;RN×n),

lim
i→∞

(∫
Ω

〈Fi, νx〉 dµ+

∫
Ω

〈F∞i , ν∞x 〉 dλν
)

=

∫
Ω

〈F, νx〉 dµ+

∫
Ω

〈F∞, ν∞x 〉 dλν

= lim
j→∞

∫
Ω

F

(
dDuj
dµ

)
dµ.

(3.24)
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By combining (3.23) and (3.24), we get the desired estimate from below.

3.2 Estimate from above

Recall from (3.1) the definition of the functional F∗ by relaxation. We prove
that the estimate from above holds for the integral representation of F∗. Here
our proof is not based on the theory of Young measures, so we can allow for
somewhat weaker assumptions on F .

Proposition 3.5. Let Ω ⊂ Rn be a bounded open set, let µ ∈ M+(Ω) with
Ln � µ, let F ∈ Q(RN×n) with

0 ≤ F (A) ≤M(1 + |A|), A ∈ RN×n

for some M ≥ 1, and let u ∈ BV(Ω;RN). Then we have

F∗(u,Ω) ≤
∫

Ω

F

(
dDu

dµ

)
dµ+

∫
Ω

F∞
(
dDs,µu

d|Ds,µu|

)
d|Ds,µu|.

Proof. Again, by Definition 3.1 and [12, Lemma 6.3] we can find a sequence
Fi ∈ SQ(RN×n) with parameters i ∈ N, ri > 0 such that Fi(A)↘ F (A) and
F∞i (A) ↘ F∞(A) pointwise for every A ∈ RN×n as i → ∞. Moreover, by
making M slightly larger, if necessary, we have that 0 ≤ Fi(A) ≤M(1 + |A|)
for all i ∈ N and A ∈ RN×n. Fix i ∈ N.

The proof is based on mollifying the function u in a small set. Take a
Borel set D ⊂ Ω with |Ds,µu|(Ω \D) = 0 and µ(D) = 0. Then take an open
set G ⊃ D with Ln(G) and µ(G) so small that∫
G

M(1 + |∇u|) dLn +

∫
G

M

∣∣∣∣dDsu

dµ

∣∣∣∣ dµ+M(ri + i)Ln(G) +M(1 + ri)µ(G)

(3.25)
is less than 1/i; this is possible by the absolute continuity of integrals. By
Lemma 2.1 we can pick a sequence (vj) ⊂ BVu(G;RN) ∩ C∞(G;RN) (note
boundary values) that converges to u 〈·〉-strictly in BV(G;RN). Fix also
j ∈ N.

Using the linear growth of Fi, we estimate∫
G

F

(
dDvj
dµ

)
dµ ≤

∫
G

Fi

(
dDvj
dµ

)
dµ =

∫
G

Fi

(
∇vj
a

)
a dLn

≤
∫
G∩{|∇vj/a|>ri}

Fi

(
∇vj
a

)
a dLn +M(1 + ri)µ(G),
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where by the fact that F (A) = F∞(A) − i for |A| ≥ ri, the last integral
equals∫

G∩{|∇vj/a|>ri}

(
F∞i

(
∇vj
a

)
− i
)
a dLn ≤

∫
G∩{|∇vj/a|>ri}

F∞i

(
∇vj
a

)
a dLn

=

∫
G∩{|∇vj/a|>ri}

F∞i (∇vj) dLn

≤
∫
G

F∞i (∇vj) dLn

≤
∫
G∩{|∇vj |>ri}

F∞i (∇vj) dLn +MriLn(G)

=

∫
G∩{|∇vj |>ri}

(Fi (∇vj) + i) dLn +MriLn(G)

≤
∫
G

Fi (∇vj) dLn +M(ri + i)Ln(G).

Now, since Fi ∈ SQ(RN×n) ⊂ E(G;RN×n) (constant in the x-variable) and
vj → u 〈·〉-strictly in BV(G;RN), we can apply Reshetnyak’s continuity
theorem, Theorem 2.2, to obtain

lim inf
j→∞

∫
G

F

(
dDvj
dµ

)
dµ

≤ lim inf
j→∞

∫
G

Fi (∇vj) dLn +M(ri + i)Ln(G) +M(1 + ri)µ(G)

=

∫
G

Fi(∇u) dLn +

∫
G

F∞i

(
dDsu

d|Dsu|

)
d|Dsu|

+M(ri + i)Ln(G) +M(1 + ri)µ(G)

≤
∫
G

M(1 + |∇u|) dLn +

∫
G

M

∣∣∣∣dDsu

dµ

∣∣∣∣ dµ
+

∫
G

F∞i

(
dDs,µu

d|Ds µu|

)
d|Ds,µu|+M(ri + i)Ln(G) +M(1 + ri)µ(G)

≤
∫
G

F∞i

(
dDs,µu

d|Ds µu|

)
d|Ds,µu|+ 1/i

by (3.25). Then define for each j ∈ N

uj :=

{
vj in G,

u in Ω \G.

The fact that vj ∈ BVu(G;RN) implies by definition (given before Lemma
2.1) that Duj = Du Ω \G+Dvj G. Thus it is clear that uj ∈ W 1,1

µ (Ω;RN),
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and also uj → u in L1(Ω;RN), so that uj is an admissible sequence for
F∗(u,Ω). In total, we obtain

F∗(u,Ω) ≤ lim inf
j→∞

∫
Ω

F

(
dDuj
dµ

)
dµ

= lim inf
j→∞

∫
G

F

(
dDvj
dµ

)
dµ+

∫
Ω\G

F

(
dDu

dµ

)
dµ

≤
∫
G

F∞i

(
dDs,µu

d|Ds µu|

)
d|Ds,µu|+

∫
Ω\G

F

(
dDu

dµ

)
dµ+ 1/i

≤
∫

Ω

Fi

(
dDu

dµ

)
dµ+

∫
Ω

F∞i

(
dDs,µu

d|Ds µu|

)
d|Ds,µu|+ 1/i.

Letting i → ∞, by Lebesgue’s monotone or dominated convergence we get
the desired estimate from above.

3.3 Some examples

Let us briefly consider why it is necessary to assume that Ln � µ, at least
in order to obtain the integral representation (3.2). The reason is that the
estimate from above may be violated without this assumption. We note that
the integral representation (3.2) always takes a value at most

Mµ(Ω) +M |Du|(Ω),

which is finite for a BV function u ∈ BV(Ω;RN). On the other hand, if
it is not true that Ln � µ, then there can be a large set not ”seen” by
the measure µ, and as a result it may simply be impossible to approximate
certain BV functions in the L1-sense by functions in the class W 1,1

µ (Ω;RN).
Consider the following examples.

Example 3.6. Suppose that there is an open set B ⊂ Ω (which we can
assume to be a ball) with µ(B) = 0 but of course Ln(B) > 0. Take a
nonconstant u ∈ C1

c (B), and note that all functions uj ∈ W 1,1
µ (Ω) satisfy

|Duj|(B) = 0 and are thus constant in the ball B. Thus there is no se-
quence of functions uj ∈ W 1,1

µ (Ω) with uj → u in L1(Ω), and consequently
F∗(u,Ω) =∞.

Even if the support of µ is the whole of Ω, the estimate from above may
fail.

Example 3.7. Take Ω to be the open unit square on the plane, and let
A ⊂ Ω be a ”fat” Sierpinski carpet, with L2(A) = 1/2. Then define the
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weight w = 1Ω\A, and µ := wL2. Clearly the absolute continuity assumption
L2 � µ is violated, but the support of µ is the whole of Ω. By using the
properties of BV functions restricted to lines, see e.g. [5, Section 3.11], we
obtain that any function v ∈ W 1,1

µ (Ω) is constant almost everywhere in A. If
we define a BV function u ∈ BV(Ω) e.g. as u(x, y) := x, there is no sequence
uj ∈ W 1,1

µ (Ω) for which uj → u in L1(Ω), and consequently F∗(u,Ω) =∞.

However, it is not clear to us whether the assumption Ln � µ, or the
assumption on the integrand F ∈ R(Ω;RN×n), are necessary in our main
result, Theorem 1.1.

4 The lower semicontinuity theorem

From the integral representation, we obtain the following lower semicontinu-
ity result.

Proposition 4.1. Let Ω ⊂ Rn be a bounded open set with Ln(∂Ω) = 0, let
µ ∈M+(Ω) with Ln � µ, and let F ∈ R(Ω;RN×n) ∩Q(RN×n) with

m|A| ≤ F (A) ≤M(1 + |A|)

for some 0 < m ≤M . Then the functional

F(u) :=

∫
Ω

F

(
dDu

dµ

)
dµ+

∫
Ω

F∞
(
dDs,µu

d|Ds,µu|

)
d|Ds,µu|, u ∈ BV(Ω;RN),

is lower semicontinuous with respect to convergence in L1(Ω;RN).

Proof. The relaxed functional F∗(u,Ω) given in (3.1) is obviously lower semi-
continuous with respect to convergence in L1(Ω;RN), and by Proposition
3.2 and Proposition 3.5 it equals the functional F(u) given in this proposi-
tion.

We recall Jensen’s inequalities for gradient Young measures with respect
to the Lebesgue measure Ln, given in Theorem 2.5. We can now partially
generalize these inequalities to the case of a general measure µ.

Theorem 4.2. Let Ω ⊂ Rn be a bounded open set with Ln(∂Ω) = 0, let
µ ∈ M+(Ω) with Ln � µ, let F ∈ R(Ω;RN×n) ∩ Q(RN×n) with F ≥ 0,
let u ∈ BV(Ω;RN), and let ν ∈ Y(Ω, µ;RN×n) be a gradient Young measure
with λν(∂Ω) = 0 and with barycenter Du. Then the following hold:

F

(
dDu

dµ

)
≤ 〈F, νx〉+ 〈F∞, ν∞x 〉

dλν
dµ

(x) for µ-almost every x ∈ Ω, (4.1)

F∞
(
dDs,µu

d|Ds,µu|

)
|Ds,µu| ≤ 〈F∞, ν∞x 〉λs,µν as measures. (4.2)
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Proof. Take a sequence (uj) ⊂ BV(Ω;RN) that generates ν. We know

that uj
∗
⇁ u in BV(Ω;RN), see the discussion after (2.7). Note that F ∈

R(Ω;RN×n) ∩Q(RN×n) ⊂ E(Ω;RN×n) (constant in the x-variable), so that
F necessarily has linear growth F (A) ≤M(1 + |A|) for some M ≥ 0. Let us
first also assume that F has the coercivity property m|A| ≤ F (A) for some
m > 0 and all A ∈ RN×n. By combining our lower semicontinuity result,
Proposition 4.1, with the fact that F ∈ E(Ω;RN×n), we obtain∫

Ω

F

(
dDu

dµ

)
dµ+

∫
Ω

F∞
(
dDs,µu

d|Ds,µu|

)
d|Ds,µu|

≤ lim inf
j→∞

(∫
Ω

F

(
dDuj
dµ

)
dµ+

∫
Ω

F∞
(
dDs,µuj
d|Ds,µuj|

)
d|Ds,µuj|

)
=

∫
Ω

〈Fi, νx〉 dµ+

∫
Ω

〈F∞i , ν∞x 〉 dλν .

We can equally well write the above inequality in any open U ⊂ Ω (in
particular, a ball) with λν(∂U) = 0. Thus we can differentiate the inequality
with respect to µ, and obtain (4.1) by the Besicovitch differentiation theorem
(see e.g. [5, Theorem 2.22]). By writing the above inequality for balls from
a suitable Vitali covering of Ω, we obtain (4.2).

The general case can be obtained by writing (4.1) and (4.2) for integrands

Fi(A) := max{F (A), |A|/i}, i ∈ N,

and letting i→∞.

Corollary 4.3. With Ω, µ, u, and ν as in the previous theorem, there exist
sets E1, E2 ⊂ Ω with µ(E1) = 0 and |Ds,µu|(E2) = 0 such that for every
F ∈ R(Ω;RN×n) ∩Q(RN×n) with F ≥ 0, we have

F

(
dDu

dµ

)
≤ 〈F, νx〉+ 〈F∞, ν∞x 〉

dλν
dµ

(x) for every x ∈ Ω \ E1, (4.3)

F∞
(
dDs,µu

d|Ds,µu|

)
≤ 〈F∞, ν∞x 〉

dλs,µν
d|Ds,µu|

for every x ∈ Ω \ E2. (4.4)

The point is that we can find exceptional sets that do not depend on the
integrand F .

Proof. Again, we note that R(Ω;RN×n)∩Q(RN×n) ⊂ E(Ω;RN×n) (constant
in the x-variable). Recalling the transformation T given in Section 2.3, we
have that

{T (F ) : F ∈ R(Ω;RN×n) ∩Q(RN×n), F ≥ 0}
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contains a countable dense subset {Gi}i∈N, since it is contained in the sep-
arable space C(BN×m). Then (4.3) and (4.4) hold for some choice of sets
E1, E2 ⊂ Ω with µ(E1) = 0 and |Ds,µu|(E2) = 0, and with F = T−1Gi for
any i ∈ N. It is easy to see for any F ∈ R(Ω;RN×n)∩Q(RN×n), F ≥ 0 that

Fk

(
dDu

dµ
(x)

)
− F

(
dDu

dµ
(x)

)
→ 0

for every x ∈ Ω \E1, for a sequence (Fk) ⊂ {T−1Gi}i∈N with T (Fk)→ T (F )
in C(BN×m). The other terms are handled similarly, and so we get the desired
inequalities.

Now we can prove our semicontinuity result, where we also allow for
x-dependence of the integrand. The result could also be given without a
boundary term, but its inclusion simplifies our proof. In the case µ = Ln, an
analogous result was given in [14, Theorem 10].

Theorem 4.4. Let Ω ⊂ Rn be a bounded Lipschitz domain with inner bound-
ary normal νΩ, let µ ∈ M+(Ω) with Ln � µ, and let F ∈ R(Ω;RN×n) be
nonnegative and µ × B(RN×n)-measurable such that A 7→ F (x,A) is quasi-
convex for each fixed x ∈ Ω. Then the functional

F(u) :=

∫
Ω

F

(
x,
dDu

dµ

)
dµ+

∫
Ω

F∞
(
x,

dDs,µu

d|Ds,µu|

)
d|Ds,µu|

+

∫
∂Ω

F∞
(
x,

u

|u|
⊗ νΩ

)
|u| dHn−1

is weakly* sequentially lower semicontinuous in BV(Ω;RN).

Note that in the last term, u is a boundary trace, see e.g. [5, Section 3.7].

Proof. Let uj
∗
⇁ u in BV(Ω;RN). Take a bounded Lipschitz domain Ω′ c Ω,

and denote by uej , u
e the zero extensions of uj, u to Ω′ \ Ω. Since Ω is a

bounded Lipschitz domain, we can use standard gluing theorems for BV
functions, see e.g. [5, Proposition 3.21, Theorem 3.84, Theorem 3.86], to
obtain that uej ∈ BV(Ω′;RN) with

Duej = ∇uj Ln Ω +Dsuj + uj ⊗ νΩHn−1 ∂Ω

and ‖uj‖L1(∂Ω;RN ) ≤ C‖uj‖BV(Ω;RN ) with C depending only on Ω; and simi-
larly for ue. By the weak* convergence, uj is a norm-bounded sequence in
BV(Ω;RN), so we have that uej is a norm-bounded sequence in BV(Ω′;RN)

and that uej → ue in L1(Ω′;RN). This implies that uej
∗
⇁ ue in BV(Ω′;RN).
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Since F ∈ R(Ω,RN×n), F∞(x,A) is continuous on Ω × ∂BN×n, which
is a compact set. By the Tietze extension theorem, we can extend F∞

to Ω′ × ∂BN×n as a continuous nonnegative function (F e)∞. If we define
F e(x, tA) := t(F e)∞(x,A) for any t ≥ 0, A ∈ RN×n, and x ∈ Ω′, we see
that our notation is consistent in that the recession function of F e is indeed
(F e)∞. We also extend µ by µe := µ Ω + LN (Rn \ Ω). Then we see that
F e ∈ R(Ω′;RN×n) is nonnegative and µe × B(RN×n)-measurable. We write

F e(uej) : =

∫
Ω′
F e

(
x,
dDuej
dµe

)
dµe +

∫
Ω′

(F e)∞
(
x,

dDs,µeuej
d|Ds,µeuej |

)
d|Ds,µeuej |

=

∫
Ω

F

(
x,
dDuj
dµ

)
dµ+

∫
Ω

F∞
(
x,

dDs,µuj
d|Ds,µuj|

)
d|Ds,µuj|

+

∫
∂Ω

F∞
(
x,

uj
|uj|
⊗ νΩ

)
|uj| dHn−1

= F(uj),

and similarly for ue. We conclude that we need to prove that F e(ue) ≤
lim infj→∞F e(uej). Pick first a subsequence (not relabeled) that gives this
limit, and then by Theorem 2.3 and Corollary 2.4 we can pick a further sub-
sequence (not relabeled) such that the sequence Duej generates a generalized
Young measure ν = (νx, λν , ν

∞
x ), with respect to µe. Clearly λν(∂Ω′) = 0,

and then the barycenter of ν is Due, see the discussion after (2.7). Note that
for any fixed x ∈ Ω, F e(x, ·) ∈ R(Ω,RN×n)∩Q(RN×n), so that we can apply
Corollary 4.3 to obtain

lim inf
j→∞

F e(uej) =

∫
Ω′
〈F e(x, ·), νx〉 dµe +

∫
Ω′
〈(F e)∞(x, ·), ν∞x 〉 dλν(x)

≥
∫

Ω′
F e

(
x,
dDue

dµe

)
dµe +

∫
Ω′

(F e)∞
(
x,

dDs,µeue

d|Ds,µeue|

)
d|Ds,µeue|

= F e(ue).
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