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ON THE SINGULAR SET OF GENERALISED MINIMA IN BV

FRANZ GMEINEDER

Abstract. Assuming a strong convexity condition, we give Hausdorff dimension

bounds on the singular set of generalised minima of functionals of linear growth.
These seem to be the first of their kind. Besides, the first Sobolev regularity results

for generalised minima without the local boundedness hypothesis are established.

1. Introduction

It is a fundamental fact in elliptic regularity theory that minimisers of variational
problems of the type

to minimise F[u,Ω] :=

ˆ
Ω

f(Du) dx within a class D 3 u : Ω→ RN ,(1.1)

where Ω is an open Lipschitz subset of Rn, N > 1 and f : RN×n → R>0 is a convex C2–
function satisfying suitable growth and ellipticity conditions, are not necessarily locally
Hölder continuous unless f has special structure. This phenomenon reveals a fundamental
difference between the scalar (N = 1) and the vectorial (N > 1) case: In fact, if N = 1,
then standard De Giorgi–Nash–Moser theory predicts gradients of minimisers of suitably
regular variational integrals to be locally Hölder continuous, whereas in the vectorial case
the singular set Σ :=

⋃
0<α<1 Singα(u), where

Singα(u) := {x ∈ Ω: Du is not of class C0,α in any neighbourhood of x}, 0 < α < 1,

does not need to be empty. As a consequence, if N > 1, when measuring regularity
in terms of Hölder continuity, one may only expect partial regularity to hold true for
minimisers, that is, Ω \ Σ is open together with L n(Ω \ Σ) = 0. In this situation, it
is natural to attempt to quantify the size of Σ. In this direction, a suitable device is
to derive estimates on the Hausdorff dimension of Σ, and the overall aim of singular set
estimates is to verify that dimH(Σ) < n so that the Hausdorff dimension of Σ indeed is
strictly smaller than that of the ambient space. The aim of this paper – which we shall
describe in detail in the following lines – is to give such Hausdorff dimension bounds for
the singular set for minima of multiple integrals which are of linear growth subject to a
convenient strong convexity condition, which we introduce now:

Definition 1.1 (µ–ellipticity). Let 1 < µ < ∞. A variational integrand f ∈ C2(RN×n)
is called µ–elliptic provided there exist two constants 0 < λ 6 Λ <∞ such that

λ
|Z|2

(1 + |Y|2)
µ
2

6 〈f ′′(Y)Z,Z〉 6 Λ
|Z|2

1 + |Y|
for all Y,Z ∈ RN×n.(1.2)

In what follows, we shall work with a µ–elliptic integrand, 1 < µ <∞, f ∈ C2(RN×n)
so that f in particular is Lipschitz. Under these conditions, it is easy to show that there
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2 FRANZ GMEINEDER

exists a constant c = c(µ) > 0 such that

|f(Z)| 6 c(1 + |Z|) for all Z ∈ RN×n,(1.3)

what precisely is what we understand by functionals of linear growth. Here, µ = 1 is
excluded since 1–elliptic integrands are of L logL–growth and thus do not belong to those
of linear growth. Being of linear growth, it is easy to see by non–reflexivity of W1,1

and the concomitant lack of weak compactness, that minimising sequences of F do not
need to possess subsequences that converge weakly in W1,1. It is thus reasonable to lift
the variational principle (1.1) to the space BV of functions of bounded variation which,
when endowed with weak*–convergence, enjoy fairly better compactness properties. Let
us recall that a measurable function u : Ω → RN belongs to BV(Ω;RN ) provided u ∈
L1(Ω;RN ) and the distributional gradient Du can be represented by a RN×n–valued
Radon measure of finite total variation, in formulae Du ∈ M(Ω;RN×n). Now, given a

minimising sequence (uk) contained in some Dirichlet class Du0
:= u0 + W1,1

0 (Ω;RN ),
all terms F[uk] are meaningful, however, this is not so a priori for a possible limit map
u ∈ BV(Ω;RN ). Thus, the functional F must be relaxed in order to be well–defined for
u ∈ BV(Ω;RN ). A similar concept, which shall prove to be equivalent, is given by that
of generalised minima:

Definition 1.2 (Generalised Minima). Let Ω be an open and bounded Lipschitz subset
of Rn and fix a boundary datum u0 ∈W1,1(Ω;RN ). The set of generalised minima of F
given by (1.1) consists of all those u ∈ BV(Ω;RN ) for which there exists an F–minimising

sequence (uk) ⊂ Du0 := u0 + W1,1
0 (Ω;RN ) such that uk → u strongly in L1(Ω;RN ) as

k →∞. The set of all generalised minima is denoted GM(F).

The preceding definition is important as a function u ∈ BV(Ω;RN ) is a generalised
minimiser of F if and only if it is a minimiser of the relaxed functional

F[u] :=

ˆ
Ω

f(∇u) dx+

ˆ
Ω

f∞
(

dDu

d|Dsu|

)
d|Dsu|+

ˆ
∂Ω

f∞((Tr(u)− u0)⊗ ν∂Ω) dHn−1

over BV(Ω;RN ); here Du = Dacu+ Dsu = ∇uL n + dDsu
d|Dsu| |D

su| is the Radon–Nikody̌m

decomposition of the measure Du into its absolutely continuous and singular parts, respec-
tively, f∞ the recession function (see (4.8)) and Tr denotes the boundary trace operator
on BV(Ω;RN ). The importance of generalised minima is that a function u ∈ BV(Ω;RN )
is a generalised minimiser of F if and only if it is a minimiser of F over BV(Ω;RN ). In
this case, we have

F[u] = inf
Du0

F = min
BV(Ω;RN )

F.(1.4)

The fundamental background result we rely on is given by the following

Proposition 1.3 (Anzellotti & Giaquinta, [2], Thm. 1.1). Let f ∈ C2(RN×n) be a
convex function of linear growth such that D2f(z) is positive definite for every z ∈ RN×n.
Let u ∈ BV(Ω;RN ) be a generalised minimiser of F. If (x, z) ∈ Ω× RN×n satisfies

lim
ρ↘0

[ 
B(x,ρ)

|∇u− z|dL n +
|Dsu|(B(x, ρ))

L n(B(x, ρ))

]
= 0,(1.5)

then u is of class C1,α in a neighbourhood of x for any 0 < α < 1.

It needs to be stressed that, when working with µ–elliptic variational integrands, then
the positive definiteness hypothesis is automatically satisfied and hence the preceding
proposition applies to all of what follows. Moreover, we wish to mention that the result
itself applies to autonomous integrands only; indeed, the non–autonomous case seems to
require a higher integrability result in the spirit of Gehring’s lemma which, however, is
hard to achieve in the linear growth setting. We can now state the main results of the
present note:
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Theorem 1.4 (GM(F)∩L∞loc). Let f ∈ (C2 ∩C0,1)(RN×n) be a µ–elliptic integrand with
1 6 µ < 3 and suppose Ω is connected. Then the following holds1:

(a) Regularity. There holds

GM(F) ∩ L∞loc(Ω;RN ) ⊂W
1,4−max{2,µ}
loc (Ω;RN ).(1.6)

and, if µ 6 2,

GM(F) ∩ L∞loc(Ω;RN ) ⊂W1,4−µ
loc (Ω;RN ) ∩ BV2,loc(Ω;RN ),(1.7)

where BV2 is the space of L1–function whose second distributional derivatives are
finite Radon measures on Ω.

(b) Uniqueness. If Ω is connected, then any two elements of GM(F) ∩ L∞loc(Ω;RN )
only differ by a constant.

(c) Dimension Bound. If 1 6 µ 6 2, then

dimH(Σu) 6 n− 1 for all u ∈ GM(F) ∩ L∞loc(Ω;RN ).(1.8)

The dimension bounds given by (c) rely on the classical measure density lemma, Lemma
2.2 below, and extend the dimension bounds for the singular set available in the literature;
see [7, 16, 17, 14, 15] for a comprehensive overview and more background information.
If µ < 1 + 2

n , the quick proof we provide for Theorem 1.4 also overcomes the so–called
local boundedness assumption which seems to be a substantial ingredient for the Sobolev
regularity results available in the literature; see [5, 9]:

Theorem 1.5. Let f ∈ (C2 ∩C0,1)(RN×n) be a µ–elliptic integrand with 1 6 µ < 1 + 2
n .

Then the following holds:

(a) Regularity. There holds

GM(F) ⊂W
1,(2−µ)n/(n−2)
loc (Ω;RN ) if n > 2,

GM(F) ⊂W1,BMO
loc (Ω;RN ) if n = 2.

(1.9)

(b) Uniqueness. If Ω is connected, then any two elements of GM(F) only differ by
a constant.

(c) Dimension Bound.
(a) If n > 3 and 1 6 µ 6 n

n−1 , then dimH(Σu) 6 n− 1.

(b) If n = 2 and 1 6 µ < 2, then dimH(Σu) 6 n− 1.

In proving the previous theorem, we shall tacitly assume that the Dirichlet data sat-
isfy u0 ∈ W1,2(Ω;RN ) for technical simplicity; the statement for general boundary data
follows as outlined in [3, Chpt. 4]. As an interesting sidefact, we obtain that the local
boundedness assumption for generalised minima is obsolete provided n = 2 and µ 6 n

n−1

without any assumption on radial structure, we even have GM(F) ⊂ C0,s(Ω;RN ) for any
0 < s < 1. Finally, a word on the structure of the paper: Section 2 gathers some pre-
liminary definitions and facts, Theorem 1.4 is established in section 3 and Theorem 1.5
in the consecutive section 4. The latter two sections and the approaches to the theo-
rems outlined above differ in that we work with different regularisation procedures; in
fact, working from the local boundedness hypotheses of Theorem 1.4, we may use the
uniqueness theory from [9] which is not so for all generalised minima.

2. Preliminaries

In this section we briefly set up the notation used throughout and record various
definitions and background facts.

1As proved in [5, 9], GM(F)∩L∞
loc(Ω;RN ) ⊂W1,L logL

loc (Ω;RN ) so (a) and (b) of the Theorem remain

valid, too. However, it not clear to us how to establish even dimH(Σv) < n for µ > 2.
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2.1. Notation. Given a ∈ RN , b ∈ Rn, we use a⊗ b := abT for the usual tensor product.
Moreover, L n and Hn−1 denote the n–dimensional Lebesgue and (n − 1)–dimensional
Hausdorff measures, respectively. For a locally integrable function v : Rn → Rm, and an
open set U ⊂ Rn we use the equivalent notation

(u)U :=

 
U

v dx =
1

L n(U)

ˆ
U

v dx.

2.2. Functions of Bounded Variation. Most importantly, given an open subset Ω
of Rn, the space BV(Ω;RN ) is defined as the collection of all v ∈ L1(Ω;RN ) whose
distributional gradients are RN×n–valued Radon measures of finite total variation on Ω.
By the Riesz representation theorem, the latter amounts to requiring

|Dv|(Ω) := sup

{ˆ
Ω

〈v,div(ϕ)〉dx : ϕ ∈ C1
c(Ω;RN×n), |ϕ| 6 1

}
<∞.

Let us say that a sequence (vk) ⊂ BV(Ω;RN ) converges to v ∈ BV(Ω;RN ) in the weak*–

sense if and only if vk → v strongly in L1(Ω;RN ) and Dvk
∗
⇀ Dv in the usual weak*–sense

of matrix–valued Radon measures on Ω as k → ∞; in this sense, we also use the notion
of weak*–convergence in BV. Combined with the Banach–Alaoglu Theorem, the Rellich–
Kondrachov compactness theorem gives the following compactness result: If Ω is an open
and bounded Lipschitz subset of Rn and (vk) is uniformly bounded in BV(Ω;RN ), that
is, supk∈N ‖vk‖BV := supk∈N ‖vk‖L1 + |Dvk|(Ω) < ∞, then there exists a subsequence

(vk(j)) ⊂ (vk) and v ∈ BV(Ω;RN ) such that vk(j)
∗
⇀ v in BV(Ω;RN ) as j →∞.

For more information on BV–spaces, the reader is referred to [1, 10].

2.3. Miscalleneous. As a direct consequence of the arguments given in [9, Prop. 2.6]
and [13, Lem. 2.10, 5.2], we note

Lemma 2.1. Let v ∈ L1(Rn) and let ∆±s,hv(x) := (v(x+ hes)− v(x))/h for |h| > 0 and
s = 1, ..., n. Then the following hold:

(a) ‖∆±s,hv‖(W1,∞
0 )∗ 6 ‖v‖L1 .

(b) Let f : RN×n → R>0 be a convex function such that f − α| · |2 is a positive

function on RN×n for some α > 0 and suppose u0 ∈W1,2(Ω;RN ) is fixed. Then

the functional F : (W1,∞
0 )∗(Ω;RN )→ R given by

F [w] :=

{
F[w] if w ∈ u0 + W1,p

0 (Ω;RN ),

+∞ if w ∈ (W1,∞
0 (Ω;RN )∗ \ (u0 + W1,p

0 (Ω;RN ))

is lower semicontinuous with respect to strong convergence in (W1,∞
0 (Ω;RN ))∗.

We further record an important result due to Giusti which is crucial for the dimension
reduction:

Lemma 2.2 (Measure Density Lemma, [11], Proposition 2.7). Let E ⊂ Rn be an open
subset and µ be a finite Radon measure on E. For any 0 < α < n we then have
dimH(Eα) 6 α, where

Eα :=
{
x0 ∈ E : lim sup

ρ↘0
ρ−αµ(B(x, ρ)) > 0

}
.

3. Proof of Theorem 1.4

The proof we give for Theorem 1.4 relies on various auxiliary facts on which we report
now, most notably the regularity proof of Bildhauer [3] and the uniqueness theorem
due to Beck & Schmidt [9]. Firstly, recalling our assumption u0 ∈W1,2(Ω;RN ) which,
following the arguments outlined in [3, Rem. 2.5] can be suitably weakened to u0 ∈
W1,1(Ω;RN ) without any further efforts, we consider for k ∈ N the minimisation problems

to minimise Fk[v] := F[v] +
1

2k

ˆ
Ω

|Dv|2 dx over D̃ := u0 + W1,2
0 (Ω;RN ).(Pk)
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By strict convexity of F, each problem (Pk) possesses a unique minimiser vk ∈ D̃. Now,
by (1.3) and Fk[vk] 6 F1[u0], it is easily verified that (vk) is a minimising sequence for F.
Invoking the c usual weak*–compactness result on BV, this demonstrates both

vk
∗
⇀ v weak* in BV(Ω;RN ) and

1

k
vk → 0 strongly in L2(Ω;RN )(3.1)

for a non–relabelled subsequence and some limit map v ∈ BV(Ω;RN ). By [3, Lem.

2.6], (vk) ⊂ D̃ ⊂ u0 + W1,1
0 (Ω;RN ) is F–minimising, and passing to a suitable subse-

quence, we may assume that vk → v strongly in L1(Ω;RN ) as k → ∞; in consequence,
v ∈ GM(F). Due to the presence of the dominating quadratic and radially symmet-
ric leading term in the definition of Fk, it follows as a consequence of [21, Thm.] that

vk ∈ (W1,∞
loc ∩W2,2

loc)(Ω;RN ) and hence, it follows from [3, Lem. 4.19], where the Euler–
Lagrange equation of vk is suitably tested by ϕ := ∂j(ρ

2∂jvk) for j = 1, ..., n, we deduce
that for every relatively compact subset U of Ω there exists c = c(U, µ) such that if f is
µ–elliptic, then there holds with Γk := 1 + |Dvk|2

sup
k∈N

ˆ
U

|∂j Dvk|2

(1 + |Dvk|2)
µ
2

Γsk dx 6 c sup
k∈N

ˆ
U

|Duk|2

1 + |Dvk|
Γsk dx,(3.2)

where s > 0 is allowed to be an arbitrary non–negative number given f is radially sym-
metric and s = 0 otherwise; see section 4 for the derivation of a similar bound with a
slightly different regularisation.

It is the previous inequality (3.2) for s > 0 where the Uhlenbeck structure enters the
argument of Bildhauer. Whereas it is explicitely asserted in [3, Thm 4.25] that a radially
symmetric µ < 3–elliptic integrand produces at least one generalised minimiser of class
W1,p

loc for all 1 6 p < ∞, it is only mentioned that in absence of radial symmetry of the
integrands, integrability can be improved up to some p = p(µ) > 1 without determining
this value explicitely; see [3, Rem. 4.27]. Unfortunately, it is a bit tiresome to extract the
precise higher integrability out of the proof, and hence we briefly revisit the argument for
the convenience of the reader to prove

Dv ∈ L
4−max{2,µ}
loc (Ω;RN×n)(3.3)

Proof of (3.3). Let 1 6 µ1 6 µ2; then any µ1–elliptic integrand is µ2–elliptic. Given
1 < µ < 3, we put

µ̃ := max{2, µ}.

so that every µ–elliptic integrand is µ̃–elliptic. Following [5] and letting µ < 3, we test the

Euler–Lagrange equation satisfied by vk with ϕ := ρ2Γ
(3−µ̃)/2
k vk, where ρ ∈ C1

c(BR; [0, 1])
is a cut–off function with 1BR/2 6 ρ 6 1BR for a given ball BR := B(x0, R) b Ω. Note

that ϕ is an admissible choice as a test function because vk ∈ (W1,∞
loc ∩W2,2

loc)(Ω;RN ). We
consequently obtain by use of |f ′| 6 C after rearranging terms

Ik :=

ˆ
Ω

〈f ′(Dvk), ρ2Γ
(3−µ̃)/2
k Dvk〉dx+

1

k

ˆ
Ω

〈Dvk, ρ2Γ
(3−µ̃)/2
k Dvk〉dx

.
ˆ

BR

|ρ∇ρ|Γ(3−µ̃)/2
k dx+

1

k

ˆ
Ω

|ρ∇ρ|Γ
4−µ̃
2

k dx

+

ˆ
Ω

ρ2Γ
2−µ̃
2

k |D2vk|dx+
1

k

ˆ
Ω

ρ2Γ
3−µ̃
2

k |D2vk|dx

=: II
(1)
k + ...+ II

(4)
k ,

where the constants implicit in ’.’ do not depend on k. It is at the last estimate
where the local boundedness hypotheses enters in a crucial way; note that we have
used supk∈N ‖vk‖L∞(spt(ρ);RN ) < ∞. By [3, Rem. 4.2], there exists c > 0 such that
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〈f ′(ξ), ξ〉 > c(1 + |ξ|2)
1
2 − c for all ξ ∈ RN×n, and thus Ik can be estimated from below byˆ

Ω

ρ2Γ
4−µ̃
2

k dx−
ˆ

Ω

ρ2Γ
3−µ̃
2

k dx+
1

k

ˆ
Ω

ρ2Γ
5−µ̃
2

k dx− 1

k

ˆ
Ω

ρ2Γ
3−µ̃
2

k dx . Ik.

On the other side, to estimate IIk conveniently, we use Young’s inequality with free
parameter θ > 0 to deduce (with constant implicit in ’.’ now depending on θ)

IIk
3−µ̃61

. 1 +
1

θk

ˆ
Ω

|ρ|2 Γ
5−µ̃
2

k dx+
θ

k

ˆ
Ω

Γ
(3−µ̃)/2
k dx+ θ

ˆ
Ω

|ρ|2|D2vk|2Γ
−µ2
k dx

+
C

θ

ˆ
Ω

|ρ|2Γ
4−µ̃
2

k dx+
1

2k

ˆ
Ω

|ρ|2|D2vk|2 dx+
1

2k

ˆ
Ω

|ρ|2Γ3−µ̃
k dx

so that, for sufficiently large θ we obtain after absorbance and rearrangingˆ
Ω

ρ2Γ
4−µ̃
2

k dx . 1 +
(

1 +
θ

k

) ˆ
Ω

Γ
(3−µ̃)/2
k dx+ θ

ˆ
Ω

|ρ|2|D2vk|2Γ
−µ2
k dx

+
1

2k

ˆ
Ω

|ρ|2|D2vk|2 dx+
1

2k

ˆ
Ω

|ρ|2Γ3−µ̃
k dx.

Now note that since µ̃ > 2, (3 − µ̃)/2 6 1/2, and so the second term on the right is
uniformly bounded in k. Moreover, by (3.2), the third and fourth term is also bounded
uniformly in k, and so the uniform boundedness of the left side with respect to k follows
from uniform boundedness of the last term. In fact, since 3− µ̃ 6 1, the last term can be
majorised by (C/k) + (C/k)

´
Ω
|Dvk|2 dx which is also uniformly bounded.

Since µ̃ < 3, (4− µ̃)/2 > 1
2 and hence for each U b Ω, (Dvk) is uniformly bounded in

the reflexive space L4−µ̃(U ;RN×n) and so, by passing to a a non–relabelled subsequence,

we may not only assume that vk
∗
⇀ v in BV(Ω;RN ) but Dvk ⇀ w ∈ L4−µ̃

loc (Ω;RN×n) too.
Letting ϕ ∈ Cc(Ω;RN ) be arbitrary, we see by

〈Dv, ϕ〉M×C = lim
k→∞

〈Dvk, ϕ〉M×C = lim
k→∞

ˆ
Ω

〈Dvk, ϕ〉dx =

ˆ
Ω

〈w,ϕ〉dx

that Dv = w in Ω indeed. The proof is complete. �

Remark 3.1 (Additional Iterations). As demonstrated in [3, Thm. 4.25], it is possible

to iterate the above argument to deduce W1,p
loc–regularity of generalised minima given f

is of Uhlenbeck structure. We believe that the exponent p = 4 −max{2, µ} for µ < 3 is
optimal in the absence of Uhlenbeck structure. Indeed, in the setting of the proof of [3,

Thm. 4.25], we would know Γ
(1+α0)/2
k ∈ L1 locally uniformly in k for α0 := 3 − µ̃ and

thus the proof would continue with α := α0 + 3− µ̃ = 6− 2µ̃. However, in this situation,

[3, Eq. (32), Chapt. 4.2] produces a term of the form
´

Ω
ρ2Γ

(α−3)/2
k |D2vk|2 dx. In order

to control this term, we have to use (3.2) with s = 0, which is possible if and only if
3− α > µ̃, that is, µ̃ > 3, thereby contradicting our assumption of µ < 3.

We can now complete the

Proof of Theorem 1.4. Starting with (b), we remark that by [9, Thm. 1.10], generalised
minima of µ = 3–elliptic variational integrals are unique up to constants on connected
domains. Since every µ–elliptic variational integrand with µ < 3 is 3–elliptic, we thereby
deduce uniqueness of generalised minima up to constants. This settles (b), and as a
consequence we deduce from (a) that every locally bounded generalised minimiser of
a µ–elliptic variational integral shares the same regularity as the particular generalised

minimiser constructed above, i.e, GM(F)∩L∞loc(Ω;RN ) ⊂W
1,4−max{2,µ}
loc (Ω;RN ) by (3.3).

To conclude the proof, we turn to (c) and note that since (Dvk) is uniformly bounded in

L4−max{2,µ}(U ;RN×n) for all U b Ω, we obtain by Young’s inequalityˆ
U

|D2vk|dx 6 c
ˆ
U

|D2vk|2

(1 + |Dvk|2)
µ
2

dx+ c

ˆ
U

(1 + |Dvk|2)
µ
2 =: Ik + IIk.(3.4)
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The terms Ik are uniformly bounded in k due to (3.2) with s = 0 (note that the right
side of (3.2) can be uniformly estimated against a multiple of 1 + |Dv|(Ω)). On the other
hand, IIk is certainly bounded if µ 6 4−max{2, µ} which in turn is the case if and only

if µ 6 2. We hence deduce by (3.4) that (Dvk) is uniformly bounded in W1,1
loc(Ω;RN×n).

Hence, again invoking the weak*–compactness theorem in BV, we deduce that there

exists a non–relabelled subsequence and w ∈ BVloc(Ω;RN×n) such that DvkLU
∗
⇀ w. In

conclusion, v ∈ BV2,loc(Ω;RN ). Since Dsv ≡ 0 in Ω by (a) and (b), the characterisation
of the regular set, cf. (1.5), that if x0 ∈ Σv, then by Poincaré’s Inequality in BV (cf. [10,
Thm. 5.6.1])

lim sup
r↘0

|D2v|(B(x0, r))

L n(B(x0, r))
n−1
n

> lim sup
r↘0

 
B(x0,r)

|Dv − (Dv)x0,r|dx > 0(3.5)

and thus by Lemma 2.2, dimH(Σv) 6 n− 1. The proof is complete. �

4. Proof of Theorem 1.5

4.1. Regularisation. The regularisation we invoke here is a minor modification of that
invoked by Beck & Schmidt [9]. Let v ∈ GM(F) be arbitrary. By area–strict approx-
imation, we find (uk) ⊂ W1,1(Ω;RN ) such that uk → v area–strictly as k → ∞ and
Tr(uk) = Tr(v) Hn−1–a.e. on ∂Ω for all k ∈ N. We hence obtain as a merger of Reshet-
nyak’s theorem, Lemma 4.4, F[uk]→ F[v] = infD F so that (uk) is a minimising sequence
for F indeed and thus, passing to a suitable subsequence if necessary, we can assume with-
out loss of generality that F[uk] 6 infD F + 1/(2Lk2) for all k ∈ N; here, L > 0 denotes
the Lipschitz constant of f (recall that being convex and of linear growth, f is Lipschitz).
We infer

F[v] 6 F[w] + L‖D(v − w)‖L1(Ω;RN×n) for all v, w ∈W1,1(Ω;RN ).(4.1)

By denseness of u0 + W1,2
0 (Ω;RN ) in D for the L1–gradient metric, there holds

inf
D

F = inf
u0+W1,2

0 (Ω;RN )
F

and hence we find ṽk ∈ u0 +W1,2
0 (Ω;RN ) with ‖D(vk−uk)‖L1 6 1/(2Lk2) for any k ∈ N.

Hence, by (4.1), F[ṽk] 6 F[uk] + L‖D(ṽk − uk)‖L1 6 (...) 6 infD F + 1/k2. Let us now
put for w ∈W1,2(Ω;RN )

Fk[w] := F[w] +
1

βk

ˆ
Ω

|w|2 dx, with βk := 2k2

ˆ
Ω

1 + |Duk|2 dx

and consequently define on (W1,∞
0 (Ω;RN ))∗ functionals Fk by

Fk[w] :=

{
F[w] if w ∈ u0 + W1,2

0 (Ω;RN ),

∞ if w ∈ (W1,∞
0 (Ω;RN ))∗ \ (u0 + W1,2

0 (Ω;RN )).

By Lemma 2.1(b), each Fk is lower semicontinuous with respect to norm convergence in

(W1,∞
0 (Ω;RN ))∗ and thus we are in position to apply Ekeland’s variational principle [11,

Thm. 5.6] to each Fk, hence providing us with (vk) ⊂ (W1,∞
0 (Ω;RN ))∗ such that for all

k ∈ N and all w ∈ (W1,∞
0 (Ω;RN ))∗ we have

‖vk − ṽk‖(W1,∞
0 (Ω;RN ))∗ 6

1

k
and Fk[vk] 6 Fk[w] +

1

k
‖w − vk‖(W1,∞

0 (Ω;RN ))∗ .(4.2)

Testing the second inequality of (4.2) with w = ṽk, we easily deduce by definition of

Fk[vk] that vk ∈ u0 + W1,2
0 (Ω;RN ) and hence, testing the second inequality of (4.2)

with w := vk ± εϕ for arbitrary ε > 0 and ϕ ∈ W1,2
0 (Ω;RN ), we obtain after a routine

estimation and sending ε↘ 0∣∣∣∣ˆ
Ω

〈f ′k(Dvk),Dϕ〉dx
∣∣∣∣ 6 1

k
‖ϕ‖(W1,∞

0 (Ω;RN×n))∗ for all ϕ ∈W1,2
0 (Ω;RN ).(4.3)
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for all k ∈ N. Now we have

Lemma 4.1. Let U b Ω with dist(U, ∂Ω) > 0. If f ∈ C2(RN×n) is a µ–elliptic integrand
with µ 6 3, then there exists a constant C = C(U, µ) > 0 such that the sequence (vk) ⊂
W1,2(Ω;RN ) as constructed above satisfies (vk) ⊂W2,2

loc(Ω;RN ) together withˆ
U

|∆s,h Dvk|2

(1 + |Dvk|2)
µ
2

dx 6 C for all k ∈ N.(4.4)

Proof. Recall that (vk) ⊂ W1,2(Ω;RN ). Let B := B(x0, R) b Ω be a ball, let 0 <
r < R and pick ρ ∈ C1

c(B; [0, 1]) with 1B(x0,r) 6 ρ 6 1B. For s = 1, ..., n and 0 <

|h| < dist(∂Ω; B), ϕ := ∆−s,h(ρ2∆s,hvk) is admissible in (4.3). Inserting ϕ into (4.3) and
rearranging terms givesˆ

Ω

〈∆s,hf
′(Dvk), ρ2∆s,h Dvk〉dx+

1

βk

ˆ
Ω

|ρ∆s,h Dvk|2 dx 6
1

k
‖∆−s,h(ρ2∆s,hvk)‖(W1,∞

0 )∗

+

ˆ
Ω

〈∆s,hf
′(Dvk), 2ρ∇ρ⊗∆s,hvk〉dx+

1

βk

ˆ
Ω

〈∆s,h Dvk, 2ρ∇ρ⊗∆s,hvk〉dx

Let us now put

B
(k)
x,h[ξ, η] :=

ˆ 1

0

f ′′(Dvk(x) + th∆s,h Dvk(x))[ξ, η] dt, ξ, η ∈ RN×n

so that for all x, h, k, B
(k)
x,h is a positive definite bilinear form on RN×n. In consequence,

applying Young’s inequality to these bilinear forms and suitably absorbing terms, the
previous inequality translates yieldsˆ

Ω

B
(k)
x,h[ρ∆s,h Dvk, ρ∆s,h Dvk] dx+

1

βk

ˆ
Ω

|ρ∆s,h Dvk|2 dx .
1

k
‖∆−s,h(ρ2∆s,hvk)‖(W1,∞

0 )∗

+

ˆ
Ω

B
(k)
x,h[ρ∇ρ⊗∆s,hvk, ρ∇ρ⊗∆s,hvk] dx+

1

βk

ˆ
Ω

|ρ∇ρ⊗∆s,hvk|2 dx,

with the constants implicit in ’.’ independent of k. Now, a routine estimation using the
definition of µ–ellipticity, Definition 1.1, givesˆ

Ω

|ρ∆s,h Dvk|2

(1 + |Dvk|2)
µ
2

dx+
1

βk

ˆ
Ω

|ρ∆s,h Dvk|2 dx .
1

k
‖∆−s,h(ρ2∆s,hvk)‖(W1,∞

0 )∗

+

ˆ
Ω

|ρ∇ρ⊗∆s,hvk|2

1 + |Dvk|
dx+

1

βk

ˆ
Ω

|ρ∇ρ⊗∆s,hvk|2 dx . 1 +
1

k
‖ρ2∆s,hvk‖L1(Ω;RN ) . 1,

with all constants implicit in ’.’ do not depend on k (also recall that supk∈N ‖Dvk‖L1 <

∞). For fixed k we therefore obtain vk ∈W2,2
loc(Ω;RN×n), and using positivity of the term

(1/βk)
´

Ω
|ρ∆s,h Dvk|2 dx, estimate (4.4) follows at once. �

4.2. Conclusion. Based on the Ekeland–type regularisation, we finally come to the

Proof of Theorem 1.5. Let us firstly assume that n > 3. We define the following variant
of a V –function, 1 < µ < 2:

Vµ(ξ) := (1 + |ξ|2)
2−µ
4 , ξ ∈ RN×n.

Given w ∈W2,2
loc(Ω;RN ), we consequently obtain for k ∈ {1, ..., n}

∂

∂xk
Vµ(Dw) =

2− µ
2

(1 + |Dw|2)
−µ−2

4 Dw
∂

∂xk
Dw(4.5)

and thus∣∣∣∣ ∂∂xk Vµ(Dw)

∣∣∣∣2 6 c(µ)(1 + |Dw|2)
−µ−2

2 |Dw|2
∣∣∣∣ ∂∂xk Dw

∣∣∣∣2 6 c(µ)(1 + |Dw|2)−
µ
2

∣∣∣∣ ∂∂xk Dw

∣∣∣∣2
which is non–vacuous provided 1 < µ < 2. As a consequence, we obtain by Lemma 4.1
that (Vµ(Dvk)) is uniformly bounded in W1,2

loc(Ω). By the Sobolev embedding W1,2
loc(Ω) ↪→
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L
2n
n−2

loc (Ω), we thus find that Vµ(Dvk)
2n
n−2 is locally uniformly bounded and hence obtain

for any ball B b Ωˆ
B

|Dvk|
(2−µ)n
n−2 dx 6

ˆ
B

Vµ(Dvk)
2n
n−2 dx 6 c(B) <∞.

Since µ < 1 + 2
n by assumption, (2− µ)n/(n− 2) > 1 and hence we conclude similarly as

in the proof of Theorem 1.4 that the gradient satisfies Dv ∈ L
(2−µ)n/(n−2)
loc (Ω;RN×n). If

n = 2, then W1,2
loc(Ω;RN ) ↪→ BMOloc(Ω;RN ), where a measurable function v : Ω → RN

belongs to BMOloc(Ω;RN ) if and only if

sup
x∈K

sup
r>0: B(x,r)⊂Ω

 
B(x,r)

|v − (v)x,r|dy <∞.

for every compact subset K of Ω. By arbitrariness of the generalised minimiser v as
assumed in the beginning of this section, Theorem 1.5(a) follows. The uniqueness part
(b) is established in a similar vein as that of [9, Thm. 1.10]; namely, if u, v ∈ GM(F)
satisfy ∇u 6= ∇v on a set of positive Lebesgue measure, then we obtain by strict convexity
of f and convexity of v that F[(u+v)/2] < 1

2 (F[u]+F[v]) = minBV(Ω;RN ) F, a contradiction.
Therefore Du = Dv and by the regularity part (a) as established before, Dsu = Dsv ≡ 0.
By connectedness of Ω, this gives u = v + c for some c ∈ RN , and (b) is proven. To
establish (c), note thatˆ

B

|D2vk|dx 6 C
ˆ

B

|D2vk|2

(1 + |Dvk|)µ
dx+

ˆ
B

(1 + |Dvk|)µ dx.(4.6)

By (a), the second term on the right side is bounded uniformly in k provided

µ 6
2− µ

2

2n

n− 2
, i.e., µ 6

n

n− 1
.(4.7)

If n = 2, then by the John–Nirenberg Lemma (see [11, Cor. 2.2]), BMOloc ↪→ Lqloc for
every 1 6 q < ∞ and we obtain that the last term in (4.6) is bounded uniformly in k
provided

µ 6
2q

2 + q

for arbitrary 1 6 q < ∞. Sending q ↗ ∞, we obtain that (D2vk) is bounded in L1

uniformly in k provided µ < 2. Now we may argue as in the proof of Theorem 1.4(c) to
conclude the claim. The proof is complete. �

Remark 4.2 (1–elliptic integrands). Suppose f is a 1–elliptic integrand, thus typically of
L log L–growth. In this situation, by the classical De Valleé–Poussin Lemma, minimisers
belong to W1,L log L(Ω;RN ). Albeit not of linear growth, Theorem 1.5(a) applies to such
integrands too and consequently yields, e.g., for n = 3 that minima automatically belong
to W1,3

loc(Ω;RN ) ↪→ BMOloc(Ω;RN ).

Remark 4.3 (Non–autonomous Integrands). As a variation of the theme of the present
paper, we might also study regularity, uniqueness and dimension bounds for the singular
set of minima of variational integrals of the form (1.1), where f additionally depends on x,
f = f(x, ·). Given that partial regularity holds for generalised minima and the dependence
on x is Hölder regular, then a merger of the above arguments with the fundamental work of
Mingione [18] is very likely to yield higher fractional differentiability of gradients, hence
implying dimension bounds in a similar vein as Theorems 1.4 and 1.5; note, however, that
here the singular set would possibly have a slightly different characterisation, see, e.g.,
[17, 18]. However, as outlined in [12], the non–availability of a suitable reverse Hölder
inequality unfortunately complicates matters in that until now no partial regularity result
is available for generalised minima of such variational integrals but hopefully can be
tackled in a future publication.
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To conclude with, let us remark that both Theorems 1.4 and 1.4 stick to a parameter
range µ 6 2 with respect to higher differentiability and it is not clear to us how to extend
it to µ > 2. In particular, as the usual area–integrand f(ξ) :=

√
1 + |ξ|2 is 3–elliptic,

it would be desirable to extend both Theorems to µ 6 3 (without radial structure). To
the best of our knowledge, there is no higher integrability result for generalised minima
provided µ > 3 and hence a higher differentiablity estimate seems equally hopeless in
this case. Also, very recently Schmidt [20] investigated degenerated problems of linear
growth which the assumptions of the partial regularity theorem, Prop. 1.3, do not apply
to and could establish a partial regularity result. However, as our results are restricted
to strongly convex integrands that automatically match the conditions of Prop. 1.3, a
generalisation to degenerate problems as studied in [20] requires different tools.

Appendix

In this appendix we complement the main part by recalling lower semicontinuity prop-
erties of the relaxed functional. Let f : RN×n → R be a convex C2–variational integrand
such that λ|Z| 6 f(Z) 6 Λ(1 + |Z|) holds for all Z ∈ RN×n and two fixed constants
0 < λ 6 Λ <∞. In this situation, it is easy to verify that the recession function

f∞(Z) := lim
r↘0

rf

(
Z

r

)
, Z ∈ RN×n(4.8)

exists and is both continuous and convex. It is also easy to see that f∞ is 1–homogeneous.
Therefore, given a measure µ ∈ M(Ω;RN×n) for an open set Ω ⊂ Rn and denoting
its Radon–Nikody̌m decomposition with respect to Lebesgue measure µ = µac + µs =

dµ
dLnL n + dµ

d|µs| |µ
s|, we define a functional F[µ] by

F[µ] :=

ˆ
Ω

f

(
dµ

dL n

)
dL n +

ˆ
Ω

f∞
(

dµ

d|µs|

)
d|µs|.

We note that this is a well–posed definition indeed due to homogeneity of f∞. The
following (semi–)continuity theorem is due to Reshetnyak [19]:

Lemma 4.4 (Reshetnyak (Semi–)Continuity Theorem). Let m ∈ N and let Ω be an open
and bounded subset of Rn and let (µk) ⊂M(Ω;Rm) be a sequence that converges to some
µ ∈ M(Ω;Rm) in the weak*–sense as k → ∞. Moreover, asssume that alll µ, µ1, µ2, ...
take values in some closed convex cone K ⊂ Rm. Then the following hold:

(a) (Lower Semicontinuity Part.) If f : K → [0,∞] is a lower semicontinuous, convex
and 1–homogeneous function, then there holdsˆ

Ω

f
( dµ

d|µ|

)
d|µ| 6 lim inf

k→∞

ˆ
Ω

f
( dµk

d|µk|

)
d|µk|.

(b) (Continuity Part.) If (µk) converges strictly to µ in the sense that µk
∗
⇀ µ

and |µk|(Ω) → |µ|(Ω) as k → ∞ and f : K → [0,∞) is continuous and 1–
homogeneous, then there holdsˆ

Ω

f
( dµ

d|µ|

)
d|µ| = lim

k→∞

ˆ
Ω

f
( dµk

d|µk|

)
d|µk|.
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