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L1–ESTIMATES AND A–WEAKLY DIFFERENTIABLE
FUNCTIONS

BOGDAN RAITA

Abstract. The present note serves as a technical overview of recent work
done in the study of Sobolev and pointwise regularity for elliptic systems

Au = f,

where the source term f is an L1–map or a measure. Here A denotes a linear,
homogeneous, differential operator with constant coefficients. We are specifi-
cally interested in the vectorial case, i.e., u and f are vector fields. We connect
the results to both elliptic systems and WA,p–spaces, i.e., spaces of maps u ∈ Lp

such that Au ∈ Lp. Some new remarks are presented in the final section.

1. Introduction

The by now classical Calderón–Zygmund theory revolves around describing
quantitative properties of solutions of linear, homogeneous, elliptic systems

Au = f in Rn,(1.1)

for f ∈ Lp, for which the prototypical example is Laplace’s equation. By taking
the Fourier transform, the differential system is reduced to a polynomial system,
which leads to the definition of the characteristic polynomial (also termed Fourier
symbol map). In the simple case when both the solution and the source term are
scalar fields, solvability of the algebraic equation is equivalent to the characteristic
polynomial having no real roots. It is not difficult to formulate computable invert-
ibility conditions for the possibly vector–valued characteristic polynomial, which
constitute the formal definition of ellipticity of a linear differential operator. As-
suming that the algebraic system is solved, the inverse Fourier transform gives
the solution as a convolution of the source term with a negatively homogeneous
kernel.

More technically, the reasoning above implies existence of a solution of (1.1)
which is a tempered distribution. Under a loose smallness condition at infinity,
feasible in physical models, ellipticity also ensures uniqueness of a solution. Since
f is assumed to be an Lp–map, the natural quantitative property that we expect
of u, which is also desirable in numerical approximations, is that of integrability
of its weak derivatives. In particular, if A is of order k, the best possible result
in this direction is that the k–th distributional derivatives of u are also Lp–maps.
If 1 < p < ∞, this can be proved in the positive by an immediate application of
boundedness of singular integrals on Lp, established by Calderón and Zygmund
in the seminal paper [21].
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Instances of their result were known before, such as boundedness of the Hilbert
transform between Lp–spaces for 1 < p <∞, which corresponds to the scalar case
n = 1 and is due to Riesz. A vectorial example is Korn’s inequality, which gives
coercive estimates for problems in linear elasticity and can be stated as

‖∇u‖L2 6 c‖Eu‖L2

for compactly supported, smooth maps u : Rn → Rn. Here Eu denotes the infin-
itesimal linear strain arising from the deformation u, i.e., the symmetric part of
the n × n matrix ∇u. To express the generalization concisely, we introduce the
homogeneous spaces ẆA,p as the closure of compactly supported, smooth maps in
the (semi–)norm u 7→ ‖Au‖Lp . Boundedness of singular integrals implies that

ẆA,p ' Ẇk,p,(1.2)

provided that A is elliptic and 1 < p <∞.
The purpose of this note is to follow later developments of the program initiated

by Calderón and Zygmund. At this stage, we see that the analysis naturally
splits into either considering systems on bounded domains, or the limiting cases
p ∈ {1,∞}. We will not give precise statements in the Introduction; instead, in
Section 2, we will list all results to be discussed later. Despite the author’s best
efforts, the list is far from exhaustive. It is rather a case–by–case streamline leading
to the possible new developments described in Section 5. In each case covered, we
aim to give a similar treatment to the above discussion of elliptic systems (1.1)
with 1 < p < ∞. More precisely, we establish implications, if not equivalences,
between

(a) Regularity results for Au = f (e.g., Dku ∈ Lp).
(b) Embeddings of WA,p (e.g., ẆA,p ' Ẇk,p).
(c) Simplified properties of systems (e.g., if Au = 0 and u is small at infinity,

then u = 0).
(d) Computable algebraic conditions in frequency space (e.g., the characteris-

tic polynomial is invertible away from zero).
The rule of thumb for the theorems presented is that the correspondence (a)–(b)
is often obvious; to link (c)–(d) is a matter of Fourier analysis and algebra. The
heart of the matter is connecting (c) to (b) or (a). To this end, we briefly introduce
the the notions of type (c) that we will use and roughly explain their implications.

The first property we discuss is existence of a fundamental solution for A, by
which we mean that there exists a tempered distribution Φ such that

AΦ = δ0w

for some non–zero vector w. If w is a scalar, it has been noticed for a long time that
one can use fundamental solutions to retrieve solutions of (1.1) by convolution. For
example, the fundamental solutions of the Laplacian operator can be computed
explicitly in all dimensions. In fact, if A is any non–zero scalar operator, the
Malgrange–Ehrenpreis Theorem guarantees existence of fundamental solutions of
A. In contrast, the gradient of scalar fields defined on the plane does not have a
fundamental solution, as δ0v is not curl–free unless v = 0. In fact, it may even
seem difficult to construct a vectorial operator that has fundamental solutions. A
canonical, first order example is given by the elliptic operator (div, curl) on Rn,
which has the fundamental solution Φ(x) := x|x|−n. Should Φ be a map of locally
bounded variation (as would be the case, should (1.2) hold for p = 1), by the
Gagliardo–Nirenberg–Sobolev inequality, Φ would be locally Ln/(n−1)–integrable.
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This, however, is not the case for n > 1, which shows that classical Calderón–
Zygmund theory fails in the limiting case p = 1. Of course, (div, curl) is not the
only example of this failure: ∆u ∈ L1 does not imply D2u ∈ L1

loc, and, more
generally, Ornstein showed in [53] that L1–Calderón–Zygmund estimates fail
unless A is a linear (algebraic) modification of Dk.

On the other hand, non–existence of fundamental solutions is a sufficient condi-
tion for estimates on lower order terms. The first instance of this observation goes
back to the work of Bourgain and Brezis [13, Thm. 25], where an algebraic
condition sufficient for the inequality

‖u‖Ln/(n−1) 6 c‖Au‖L1 , u ∈ C∞c

to hold is formulated for first order operators A. An extensive theory establish-
ing the correlation between estimates on weaker derivatives and non–existence of
fundamental solutions is developed in Van Schaftingen’s work [80], which we
discuss in some detail in Section 3.2. Here we only relate it to a historical fact.
The Sobolev inequality was proved for 1 < p < n by Sobolev [62], whereas
the case p = 1 was covered much later, independently, by Gagliardo [35] and
Nirenberg [52]. Van Schaftingen’s work precisely pins down the phenomenon
due to which a different approach is needed in the limiting case p = 1.

More recently, the author identified the existence of fundamental solutions with
critical pointwise estimates for solutions of (1.1) in the spirit of [22, 28]. These
developments are discussed in Sections 2.3, 4.2.

The other notion of type (c) that we will discuss is that of the operator A having
a finite dimensional null–space, i.e., the solution space of

Au = 0 in Rn

is finite dimensional when u runs over distributions on Rn. In some contrast to
the fact that lack of fundamental solutions implies local critical integrability, we
will see that the finite dimensional null–space property is equivalent to estimates
up to the boundary and trace theorems. To the author’s knowledge, this fact
was first noticed by Smith, in connection to generalizations of Korn’s inequality
on domains. In fact, he introduced an algebraic condition that turns out to be
equivalent to the finite dimensional null–space property. This equivalence was
recently connected to boundary properties of integrable maps u satisfying

Au = f in Ω

for bounded domains Ω and f ∈ L1. Namely, u attains traces in L1 [19] and u has
global higher integrability [38].

This document is organized as follows: Section 2 is a technical extension of the
Introduction, where we introduce notation and list all results to be discussed. In
Section 3, we discuss Smith’s Theorem 2.8 and Van Schaftingen’s Theorem
2.9. In Section 4, we discuss the author’s contributions, Theorem 2.10 (joint with
Gmeineder) and Theorem 2.11. Finally, in Section 5, we make some new remarks
and briefly discuss possible developments concerning inequalities in the absence of
ellipticity and properties of measures satisfying differential constraints.

Acknowledgement. The author thanks Jan Kristensen for his support, mentor-
ship, and welcoming of any new ideas. He also thanks Franz Gmeineder for being
a great collaborator and friend. This work was supported by Engineering and
Physical Sciences Research Council Award EP/L015811/1.
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2. Old and new results

We take a moment to clarify notation. Above, A is a linear, k–th order, homo-
geneous differential operator with constant coefficients on Rn from V to W , where
V,W are finite dimensional Euclidean spaces, i.e.,

Au :=
∑
|α|=k

Aα∂
αu,

defined for maps u : Rn → V . The maps Aα are linear from V to W and fixed for
each multi–index α. We will often prefer the notation

Au := A(Dku),(2.1)

where A ∈ Lin(V �k Rn,W ) is fixed and V �k Rn denotes the space of symmetric,
V –valued, k–linear maps on Rn, i.e., the space of k-th gradients.

The class of Schwartz functions and the space of tempered distributions are
denoted by S , S ′, respectively. For u ∈ S , the Fourier transform is given by

Fu ≡ û : ξ ∈ Rn 7→
ˆ
Rn

u(x)ei ξ·x dx,

extended by duality to tempered distributions, contained in the space of distribu-
tions D ′. The space of bounded measures will be denoted byM.

Ellipticity is defined as one–sided invertibility in frequency space; define the
symbol map (characteristic polynomial) A[ξ] ∈ Lin(V,W ) of A by

A[ξ]û(ξ) := (− i)kÂu(ξ)(2.2)

for all u ∈ C∞c (Rn, V ) and ξ ∈ Rn \ {0}. We say that A is elliptic if and only if

det (A∗[ξ]A[ξ]) 6= 0 for all ξ ∈ Rn \ {0}.(2.3)

Here A∗[ξ] ∈ Lin(W,V ) denotes the adjoint of A[ξ].
We will write L n and H d for Lebesgue and Hausdorff measure, respectively;

in particular, if d = 0, we write δ0 for the Dirac mass at 0.
As explained in the Introduction, the analysis is naturally split in four cases,

depending on whether 1 < p < ∞ or p = 1 and Ω = Rn or Ω = B (an arbitrary
ball in Rn). We rule out the case n = 1, as solving (1.1) in this case essentially
reduces to integration.

2.1. The case 1 < p < ∞. As outlined in the Introduction, standard Calderón–
Zygmund theory [21] implies the following:

Theorem 2.1. Let A be elliptic, 1 < p <∞. Then
(a) If u ∈ S ′(Rn, V )/ kerA and f ∈ Lp(Rn,W ) satisfy Au = f , it follows that

u ∈ Ẇk,p(Rn, V ).
(b) If u ∈ D ′(B, V ), f ∈ Lp(B,W ) satisfy Au = f , then u ∈Wk,p

loc(B, V ).

To prove the second statement, one employs a modification of the Deny–Lions
Lemma to show that u ∈Wk−1,p

loc (B, V ) (see, e.g., [56, Lem. 2.2]), so that A(ρu) =

f̃ ∈ Lp(B,W ) for cut–off functions ρ ∈ C∞c (B) equal to 1 on increasing subsets
of B. From this point of view, the assumption on u in (a) can be replaced with
u ∈ Wk−1,p

loc (Rn, V ) which satisfies a smallness condition at infinity. A standard
such condition would be

L n ({x ∈ Rn : |u(x)| > λ}) <∞(2.4)

for all λ > 0, see, e.g., [47, Ch. 3.2].
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The statement in Theorem 2.1(b) is optimal in the class of elliptic operators.
This can be seen by taking n = 2, V := R2, B := D(1, 1), p := 2, and the Wirtinger
derivative

A1u :=
1

2

(
∂1u1 − ∂2u2

∂2u1 + ∂1u2

)
.(2.5)

Then one takes, in complex notation, u(z) := log z defined, say, on C \ (−∞, 0],
so that A1u = 0 in B, but ∇u(z) = z−1, which is not in L2(B,C).

It is natural to ask under what additional assumptions on A one achieves global
regularity in Theorem 2.1(b). This was proved by Smith in the, perhaps forgotten,
work [61]:

Theorem 2.2. Let A be elliptic, 1 < p <∞. The following are equivalent:
(a) If u ∈ Lp(B, V ), f ∈ Lp(B,W ) satisfy Au = f , then u ∈Wk,p(Ω, V ).
(b) dim{u ∈ D ′(Rn, V ) : Au = 0} < ∞, i.e., the null–space of A is finite

dimensional.

In fact, Smith’s original condition is that of C–ellipticity, i.e.,

det (A∗[ξ]A[ξ]) 6= 0 for all ξ ∈ Cn \ {0}.(2.6)

The fact that (2.6) is equivalent to Theorem 2.2(b) is essentially proved in [61].
For a brief proof, see [38, Prop. 3.1]. We will discuss Theorem 2.2 in Section 3.1.

In light of Theorems 2.1, 2.2, it seems natural to ask the following:

Question 2.3. Is ellipticity sufficient to have that if u ∈ D ′(B, V )/ kerA, f ∈
Lp(B,W ) such that Au = f , is it then always the case that Dku ∈ Lp(B, V �kRn)?

Equivalently, does the Korn–type inequality

inf
Av=0 in B

‖Dk(u− v)‖Lp(B,V�kRn) . ‖Au‖Lp(B,W )(2.7)

hold for elliptic operators A? This statement can be shown to hold for C–elliptic
operators by use of Smith’s inequality (see [38, Lem. 5.5] for the precise version)
coupled with the Poincaré–type inequality [38, Prop. 4.2]. Interestingly, it also
holds for the elliptic, but not C–elliptic operator (2.5) [34]. Unfortunately, the
proof relies crucially on the particular form of the generalized Cauchy formula.

2.2. The case p = 1. In the limiting case p = 1, the analogue of Theorem 2.1
holds only in trivial cases, i.e., if A as in (2.1) is injective; equivalently, there exists
a linear map B ∈ Lin(W,V �kRn) such that Dku = B(Au) for all u ∈ C∞(Rn, V ),
which implies the pointwise estimate |Dku| . |Au|. This result is termed as
Ornstein’s non–inequality [53, 45].

However, one can ask whether estimates on the lower order derivatives hold, such
as the Gagliardo–Nirenberg–Sobolev inequality or the more particular inequality
of Strauss [70] for Au := Eu := 1

2

(
Du+ (Du)T

)
. The first generalization of this

result, for a class first order elliptic operators A, is due to Bourgain and Brezis
in [13, Thm. 25], obtained by duality from the far reaching result [13, Thm. 10],
as a consequence of their work in [10, 11, 12] and, jointly with Mironescu, in
[14, 15, 16].

The generalization to operators of arbitrary order and necessity of the algebraic
assumption are due to Van Schaftingen, who showed in [80, Thm. 1.3] that so-
lutions u ∈ S ′(Rn, V )/ kerA of the elliptic system (1.1) with f ∈ L1(Rn,W ) have
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the Sobolev regularity Dk−1u ∈ Ln/(n−1) if and only if the operator A does not ad-
mit a fundamental solution. It is worth mentioning that, althoughVan Schaftin-
gen’s work is closely related to that of Bourgain, Brezis, and Mironescu, his
approach is independent and self–contained, see [77, 78]. The statement can be re-
fined on the fractional scale [79], giving comprehensive Sobolev regularity in spite
of the L1–non–inequality:

Theorem 2.4 ([80, Thm. 8.1]). Let A be elliptic, s ∈ (0, 1]. The following are
equivalent:

(a) If u ∈ S ′(Rn, V )/ kerA and f ∈ L1(Rn,W ) satisfy Au = f , it follows that
u ∈ Ẇk−s,n/(n−s)(Rn, V ).

(b) If u ∈ D ′(B, V ), f ∈ L1(B,W ) satisfy Au = f , then u ∈W
k−s,n/(n−s)
loc (B, V ).

(c) If u ∈ L1
loc(Rn, V ), w ∈W satisfy Au = δ0w, then w = 0.

Aspects of this Theorem are presented in Section 3.2. Condition (c), termed
cancellation, was introduced in [80, Def. 1.2] as⋂

ξ∈Rn\{0}

A[ξ](V ) = {0},(2.8)

which is obtained by Fourier transforming the equation for fundamental solutions
of A.

In analogy to Question 2.3, one can ask whether the Korn–Sobolev–type in-
equality

inf
Av=0 in B

‖Dk−1(u− v)‖Ln/(n−1)(B,V�k−1Rn) . ‖Au‖L1(B,W )

hold for elliptic and canceling operators A. Again, this is true of C–elliptic opera-
tors [39, Prop. 2.5]. If A is assumed elliptic, then it is easy to see that cancellation
is necessary for the estimate. We do not know of any examples of elliptic and
canceling but not C–elliptic instances of A for which the inequality holds.

The question of identifying conditions that ensure global regularity in Theorem
2.4(b) was tackled by Gmeineder and the author in [38]:

Theorem 2.5. Let A be elliptic, s ∈ (0, 1]. The following are equivalent:
(a) If u ∈ L1(B, V ), f ∈ L1(B,W ) satisfy Au = f , then u ∈Wk−s,n/(n−s)(Ω, V ).
(b) dim{u ∈ D ′(Rn, V ) : Au = 0} <∞.

In view of Theorem 2.2, it does seem plausible that C–ellipticity (2.6) is the right
condition, but it is not a priori evident how does it compare with the canceling
condition (2.8). In [38, Sec. 3] we show that, indeed, C–ellipticity strictly implies
the canceling condition. To provide a counterexample, the elliptic, non–C–elliptic
operator A1 defined in (2.5) cannot be used, as it satisfies

A1

(
(x1,−x2)

x2
1 + x2

2

)
= δ0(π, 0),

thus failing the canceling condition. In fact, to find an elliptic and canceling, first
order operator that is not C–elliptic on Rn, one must require n > 2, as we will
discuss below. In turn, if n = 3, one finds, with V ' R2,

A2u :=


∂1u1 − ∂2u2

∂2u1 + ∂1u2

∂3u1

∂3u2

 .
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We will discuss Theorem 2.5 in Section 4.1. Momentarily, we zoom in on the
difference between the algebraic conditions and show that C–ellipticity implies
a stronger canceling condition. For first order operators, the two conditions are
equivalent.

Proposition 2.6. Let A be as in (2.1). Suppose that A is C–elliptic. Then⋂
ξ∈H\{0}

A[ξ](V ) = {0}(2.9)

for any hyperplane H 6 Rn of dimension at least two.
Conversely, suppose that A is elliptic of order k = 1 and that (2.9) holds for all

H 6 Rn with dimH ≥ 2. Then A is C–elliptic.

The characterization of C–ellipticity by (2.9) only holds for first order operators.
For higher orders k > 1, one considers the operator B := ∇k−1 ◦ A1, where A1 is
given in (2.5). Since n = 2, (2.9) reduces to (2.8). The fact that B is elliptic and
canceling, but not C–elliptic is proved in [38, Counterexample 3.4]. The converse
statement confirms the fact already noticed in [38, Lem. 3.5(b)], that, if n = 2,
the class of first order, elliptic and canceling operators coincides with the class of
C–elliptic operators. We prove Proposition 2.6 and discuss possible refinements of
condition (2.9) and their plausible relation to properties of the singular parts of
measures with differential structure in Section 5.2.

2.3. Pointwise estimates. Apart from Sobolev regularity, one can also consider
pointwise regularity for the elliptic system (1.1), i.e., Au = f . With f ∈ Lp, it is
easy to see that unless A is of high order, there is no hope to obtain any regularity
on the Cl–scale. The notion introduced by Calderón and Zygmund in [22] as
a replacement is that of k-th order Lp–Taylor expansions. To be precise, we say
that u ∈ tk,p(x) if and only if there exists a polynomial P kxu of degree at most k
such that ( 

Br(x)
|u− P kxu|p dy

)1/p

= o(rk) as r ↓ 0.(2.10)

One can use this to define the approximate gradients of u at x as ∇lu(x) :=
DlP kxu(x) for 0 6 l 6 k. Of course, if u ∈ Wk,p, then u ∈ tk,p(x) for L n–a.e. x
[22, Thm. 12], and, moreover, ∇lu = Dlu L n–a.e. for 0 6 l 6 k. If p = ∞, the
left hand side of (2.10) is replaced by the L∞–norm of u−P kxu, in which case u has
k classical derivatives at x. Details on tk,p–spaces and their relation to Sobolev
spaces can be found in Ziemer’s monograph [82, Ch. 3].

The main result in [22, Thm. 1] states that if we fix 1 < p < ∞ and u ∈ Wk,p

solves a k–th order elliptic system Au = f with f ∈ tl,p(x), then u ∈ tk+l,q(x),
with q given by the Sobolev embedding in an obvious way. Should we give a
variant of their Theorem in the case p = 1, by Ornstein’s non–inequality, the
assumption u ∈ Wk,1 is not reasonable. In fact, as showed by the author in [56,
Thm. 1.4] using the results in [41, 3], if Au = f ∈ L1, then u ∈ tk,1(x) for L n–
a.e. x, although the measurable map ∇ku can fail to be locally integrable. More
generally, it is shown that Dlu ∈ tk−l,q(x) a.e. for 0 6 l < k and q strictly less than
the corresponding Sobolev exponent. If k < n, it is shown in [56, Thm. 1.3(a)]
that the Sobolev exponent is attained if and only if the operator A is, in addition,
canceling. Details and precise statements are given in Section 4.2.
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In fact, one can say something about Ck–regularity of solutions of Au = f in L1,
but only up to small sets. Recall the classical Lusin Theorem, stating that if u is
a measurable function defined on a bounded Borel subset Ω of Rn, then u equals a
continuous function ũ up to a set of arbitrary small Lebesgue measure. In fact, as
noticed, e.g., in [3, Sec. 2.4], if u ∈ tk,1(x) for a.e. x ∈ Ω, then ũ can be chosen of
class Ck. In particular, this is true (locally) of solutions of elliptic systems Au = f
with f ∈ L1. It is worth mentioning that the C2–Lusin property for solutions of
∆u = µ, for a bounded measure µ [3, Prop. 4.4], gives sufficient conditions on the
(rough) coefficients of the continuity equation in two dimensions, so that it has
unique bounded solution [2, Thm. 5.2, Sec 2.14(iv)].

2.4. WA,p–spaces. The results stated above can be concisely rephrased in the
language of WA,p–spaces, defined for A as in (2.1), 1 6 p 6∞, and open Ω ⊂ Rn
as

WA,p(Ω) := {u ∈ Lp(Ω, V ) : Au ∈ Lp(Ω,W )},

which are Banach under the obvious norm. Separability, reflexivity and density
of smooth maps (or lack thereof) are obtained analogously to the Sobolev space
Wk,p. Recall from the Introduction that the homogeneous space ẆA,p(Rn) is the
closure of C∞c (Rn, V ) in the (semi–)norm u 7→ ‖Au‖Lp .

Aside from notational convenience, the WA,p–spaces arise naturally as solution
spaces for minimizers of energy functionals of the type

E [u] :=

ˆ
Ω
F (x,Au(x)) dx(2.11)

over deformations u : Ω → V satisfying a boundary condition, when the energy
density F is assumed to have p–growth. Such problems arise in continuum me-
chanics, for instance in geometrically–linear elasticity, elasto–plasticity, plasticity
[59, 60, 33, 42, 7, 69, 48], to mention a few. The set–up of (2.11) can be compared
with the A–free framework introduced by Fonseca and Müller in [32] and later
studied, among others, in [18, 30, 8]. In this later set–up, one seeks to minimize
integrals

G [w] :=

ˆ
Ω
G(x,w(x)) dx(2.12)

over vector fields w of zero mean satisfying a linear differential constraint Aw = 0.
For example, if A = curl, then w is a gradient. In Remark 5.7, we will indicate how
one can algebraically reduce (2.12) to (2.11) under the assumption that the symbol
map of A has constant rank. Little is known concerning lower semi–continuity of
integrals such as G in the absence of this condition; in particular, one can argue
that WA,p–spaces come up naturally from the mathematical point of view as well.

In the linear growth case, in which (2.11) is posed in WA,1(Ω), A–gradients of
minimizing sequences can develop concentrations due to the fact that the natural
coercivity of the energy is insufficient to guarantee weak compactness in L1, phe-
nomenon which is well understood in the gradient case, see [5, 6, 31, 37]. Instead,
minimizing sequences converge weakly–* to generalized minimizers in the space of
maps of bounded A–variation, i.e.,

BVA(Ω) := {u ∈ L1(Ω, V ) : M(Ω,W )},

whereM denotes the space of bounded measures. A typical example is the space
BD of maps of bounded deformation, i.e., A = E , which is the natural solution
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space for problems in plasticity theory [7, 66, 67, 68, 69]. Relaxation results for
linear growth problems such as (2.12) and (2.11) were proved recently in [8, 19].

The remainder of this section will consist of a quite dry list, comprising of
the results mentioned so far, translated in the language of WA,p–spaces. Some
generality will be occasionally lost or gained in translation. All results that hold
in WA,1 are also true in BVA by strict or area–strict approximation [19, Thm. 2.8].

Theorem 2.7 (Theorem 2.1). Let A be as in (2.1), 1 < p <∞. Then A is elliptic
if and only if ẆA,p(Rn) ' Ẇk,p(Rn, V ), i.e.,

‖Dku‖Lp(Rn,V�kRn) . ‖Au‖Lp(Rn,W )

for all u ∈ C∞c (Rn, V ).

Theorem 2.8 (Theorem 2.2). Let A be as in (2.1), 1 < p <∞. Then A has finite
dimensional null–space if and only if WA,p(B) 'Wk,p(B, V ). Equivalently,

‖Dku‖Lp(B,V�kRn) . ‖Au‖Lp(B,W ) + ‖u‖Lp(B,V )(2.13)

for all u ∈ C∞(B̄, V ).

Recall that A having finite dimensional null–space, henceforth abbreviated FDN,
i.e., Theorem 2.2(b), is equivalent to C–ellipticity [38, Prop. 3.1].

Theorem 2.9 (Theorem 2.4). Let A be as in (2.1). Then A is elliptic and can-
celing if and only if ẆA,1(Rn) ↪→ Ẇk−1,n/(n−1)(Rn, V ), i.e.,

‖Dk−1u‖Ln/(n−1)(Rn,V�k−1Rn) . ‖Au‖L1(Rn,W )

for all u ∈ C∞c (Rn, V ).

Theorem 2.10 (Theorem 2.5). Let A be as in (2.1). Then A has FDN if and
only if WA,1(B) ↪→Wk−1,n/(n−1)(B, V ). Equivalently,

‖Dk−1u‖Ln/(n−1)(B,V�k−1Rn) . ‖Au‖L1(B,W ) + ‖u‖L1(B,V )

for all u ∈ C∞(B̄, V ).

Theorem 2.11 ([56, Thm. 1.3(a)]). Let A be as in (2.1), k < n, 1 6 j 6 k. The
following are equivalent:

(a) A is elliptic and canceling.
(b) For all u ∈WA,1

loc , we have that Dk−ju ∈ tj,n/(n−j)(x) for L n–a.e. x.

The necessity of ellipticity for Theorem 2.11 is slightly surprising, as it is not
necessary, in general, for the embedding ẆA,1 ↪→ Ẇk−j,n/(n−j), which is used in
[56] to show that (a) implies (b) (unless j = 1 [80, Sec. 5.1]). The discrepancy is
due to the fact that the statement in (b) is local.

3. Some detail on the proofs

3.1. Smith’s Theorem. This section is devoted to the discussion of Theorem
2.8; we regard (2.13) as a Korn–type inequality on domains. It is well–known that
Korn’s Inequality holds on bounded domains, in the sense that, for 1 < p <∞,

‖Du‖Lp(B) . ‖Eu‖Lp(B) + ‖u‖Lp(B),(3.1)
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for all u ∈ C∞(B̄,Rn), where B ⊂ Rn is a generic ball (recall that Eu = 1
2(Du +

(Du)T). The original argument used to prove (3.1), was to write all second deriva-
tives of a field u as first derivatives of components of Eu, i.e.,

∂2
ijuk = ∂i

(
∂juk + ∂kuj

2

)
− ∂k

(
∂iuj + ∂jui

2

)
+ ∂j

(
∂kui + ∂iuk

2

)
,

and then use Nečas’s Negative Norm Theorem [42]. In his work [61], Smith
characterized operators for which such an approach is possible, i.e., he showed
that there exists a homogeneous operator B and an integer l such that

Dlu = B(Au)(3.2)

if and only if A is C–elliptic (2.6). Sufficiency of C–ellipticity for (3.2) can be
proved by use of the Hilbert Nullstellensatz. Smith then showed that, by integra-
tion by parts of the l–th averaged Taylor polynomial of a map u ∈ C∞(B̄, V ), one
gets that

u(x) = Pu(x) +

ˆ
B
K(x, y)Au(y) dy(3.3)

for all x ∈ B and a smooth kernel K : Rn × Rn \ {y = x} → Lin(W,V ) such

|Dj
yK(x, y)| . |x− y|k−n−j

for j = 0, 1, . . . and any x 6= y. The V –valued polynomials Pu have degree at
most l. To show that (2.13) holds, one then shows that the extension operator

Eu(x) = ρ(x)

(
Pu(x) +

ˆ
B
K(x, y)Au(y) dy

)
is bounded WA,p(B)→WA,p(Rn) by boundedness of singular integrals and Riesz
potentials between Lp spaces. Here ρ is a test function that is equal to 1 in a
neighborhood of B. One then has

‖Dku‖Lp(B) 6 ‖DkEu‖Lp(Rn) . ‖Au‖Lp(B) + ‖u‖Lp(B),

which was desired.
It turns out that C–ellipticity is also necessary for (2.13) to hold. To see this,

we first note that (3.3) implies that, if

Au = 0 in B,(3.4)

then u is a polynomial of degree at most l. One may regard this as an “extreme
boundary regularity” statement, as can be seen by revisiting the example given
in the introduction, i.e., A := A1 being the anti–holomorphic derivative in (2.5).
Then for u(z) = log z in a disc with boundary containing zero, (3.4) holds, but u is
clearly not smooth up to the boundary. We will show that this behavior is in fact
generic of elliptic, non–C–elliptic operators. Indeed, consider such an operator A,
so there exist ξ ∈ Cn \ Rn, v ∈ (V + iV ) \ V such that A[ξ]v = 0. Consider a
holomorphic map f and let u be formally defined by the plane wave

u(x) := f(x · ξ)v.(3.5)

Here the dot product is taken in Cn × Cn, with a slight abuse of notation, since
we still want x ∈ Rn. Then one can show by careful computation that

A<u = 0 = A=u
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in D ′(Rn, V ) [38, Prop. 3.1]. Moreover, by letting f(z) = z−1 and choosing the
ball B ⊂ Rn carefully, one can see that solutions of (3.4) need not be smooth up
to the boundary.

Another point that is now easy to see, present in Smith’s original work [61], is
that if we take f(z) = exp(jz), we obtain necessity of C–ellipticity for (2.13).

Lastly, we can also extrapolate that C–ellipticity is equivalent to the null–space
of A having finite dimension. This point was used in the recent works [19, 38] to
obtain embeddings in the limiting case p = 1 and motivates the definition:

Definition 3.1. An operator A as in (2.1) is said to have finite dimensional null–
space (FDN) if and only if dim{u ∈ D ′(Rn, V ) : Au = 0} <∞.

We collect the facts described above, to obtain the following extended version
of Smith’s Theorem:

Theorem 3.2. Let A be as in (2.1). The following are equivalent:
(a) A is C–elliptic.
(b) There exist an integer l and a homogeneous, linear differential operator B

such that Dl = B ◦ A holds.
(c) The representation formula (3.3) holds.
(d) There exists an integer l such that distributions satisfying Au = 0 in B are

polynomials of degree at most l.
(e) Distributions satisfying Au = 0 in B are maps in C∞(B̄, V ).
(f) For 1 < p <∞, the Korn–type inequality (2.13) holds.
(g) A has FDN.

In particular, the polynomials in (d) are independent of B.

One can also correlate Wk−1/p,p–regularity of traces of WA,p(B)–maps to the
FDN condition. Somewhat surprisingly, it is known that, for first order operators,
this also covers the case p = 1 [19], although this cannot follow from Theorem
3.2, by Ornstein’s non–inequality. As far as the higher order case is concerned, we
point out the recent work [49] of Mironescu and Russ, where it is shown that the
trace space of Wk,1(Rn+) is given by the Besov space Bk−1

1,1 (Rn−1). Interestingly,
this space is strictly contained in Wk−1,1(Rn−1) in general [20, Rk. A.1]. In view
of [38, Thm. 1.3], we conclude this section with the following:

Question 3.3. Let A as in (2.1) have FDN. Is it the case that there exists a linear,
surjective, continuous trace operator Tr: WA,1(Rn+)→ Bk−1

1,1 (Rn−1)?

3.2. Van Schaftingen’s Theorem. We move on to the discussion of Theo-
rem 2.9, stating that the estimate

‖Dk−1u‖Ln/(n−1)(Rn,V�k−1Rn) . ‖Au‖L1(Rn,W )(3.6)

holds for all u ∈ C∞c (Rn, V ) if and only if A is elliptic and canceling (EC).
The estimate (3.6) contrasts both standard harmonic analysis estimates, which

are often of weak–type in L1, as well as Ornstein’s non–inequality. We aim to
explain why (3.6) holds precisely for EC operators and build a bridge between the
algebraic description (2.8) of the canceling condition for an operator A and the
PDE description in Theorem 2.4(c). To this end, we assume that A is elliptic,
although this is not necessary for the time being, as we will discuss in Section 5.1.

It was shown in [17, Lem. 2.1] that we have a representation

Dk−1u = Dk−1G ∗ Au =: IA1 (Au)(3.7)
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for u ∈ C∞c (Rn, V ), where Dk−1G ∈ C∞(Rn \ {0},Lin(W,V �k−1 Rn)) is (1− n)–
homogeneous. Here G is defined by the standard one–sided inverse

Ĝ(ξ) := (∆A[ξ])−1A∗[ξ](3.8)

for ξ 6= 0, where ∆A := A∗A. Such an inverse exists by ellipticity of A. One
can then show that G extends to a tempered distribution which is L1

loc–integrable
and enjoys the suitable smoothness. The notation IA1 is justified by the fact that,
indeed, by homogeneity and smoothness of G, the Riesz–type potential IA1 , which
can be defined on L1, is indeed bounded pointwisely by the Riesz potential I1, i.e.,

|(IA1 f)(x)| . (I1|f |)(x)(3.9)

for a.e. x ∈ Rn and any f ∈ L1(Rn,W ). We recall that I1g := | · |1−n ∗ g for scalar
valued g ∈ L1(Rn). It is well known that I1 is bounded L1 → L

n/(n−1)
weak [63, Ch. V].

In particular, ellipticity of A is sufficient to give the weak–type estimate

λL n
(
{x : |(IA1 f)(x)| > λ}

)(n−1)/n
. ‖f‖L1(3.10)

for all f ∈ L1(Rn,W ). This estimate cannot in general be improved to a strong
estimate as f can be chosen to approximate the identity, e.g., if f is a sequence of
standard mollifiers.

The reasoning above shows, roughly speaking, that a straightforward harmonic
analysis approach to reduce the estimate (3.6) to boundedness of (essentially
scalar) Riesz potentials is doomed to fail. In turn, if one takes into account
the vectorial structure of the operator A and views IA1 as a map defined from
imA ∩ L1 � L1 into L

n/(n−1)
weak , then perhaps the estimate can be strengthened, as

is the case with the Gagliardo–Nirenberg inequality.
To rule out the counterexample to (3.10), we want to rule out concentrations

fr : x 7→ r−nf(r−1x) as r ↓ 0

for f ∈ C∞c (Rn,W )∩ imA. It is easy to see that fr
∗
⇀ δ0

´
f inM(Rn,W ) as r ↓ 0.

If we more specifically let f = Au for some u ∈ C∞(Rn, V ), with the adjusted
rescaling

ur(x) := r1−nu(r−1x),

we obtain that

Aur
∗
⇀ δ0

ˆ
Rn

Audx.(3.11)

In the absence of ellipticity, it is not clear if one can show that the RHS lies in
imA. This is usually achieved by applying an exact annihilator of A (i.e. analogous
to curl for A = D) to (3.11). Since we assume that A is elliptic, we can use the
projection operator defined by

A[ξ] = det(∆A[ξ])
(
Id−A[ξ](∆A[ξ])−1A∗[ξ]

)
,(3.12)

for ξ ∈ Rn\{0} [80, Rk. 4.1]. Recall that ∆A := A∗A, such that, clearly, kerA[ξ] =
A[ξ](V ) for all non–zero ξ. We apply A to (3.11) and Fourier transform to get
that

´
Au ∈ kerA[ξ] for all ξ 6= 0. Collecting, we expect the following:
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Lemma 3.4 ([80, Prop. 5.5, 6.1]). Let A be elliptic. Then⋂
ξ∈Rn\{0}

A[ξ](V ) = {w ∈W : Au = δ0w for some u ∈ S ′(Rn, V )}

=

{ˆ
Rn

Audx : u ∈ C∞(Rn, V ),Au ∈ C∞c (Rn,W )

}
In particular, the following are equivalent

(a) A is canceling.
(b)

´
Au = 0 for all smooth u such that Au has compact support.

(c) If u ∈ S ′(Rn, V ), w ∈W such that Au = δ0w, then w = 0.
Rephrasing, A is canceling if and only if A admits no fundamental solutions.

Proof. We will regard the three vector spaces in the statement simply as first, sec-
ond, and third. We already showed that the third space is contained in the second.
Conversely, one considers a mollification of the equation for fundamental solutions.
To see that the second space is contained in the first, one simply applies the Fourier
transform to Au = δ0w to get that w = A[ξ]û(ξ) for all ξ 6= 0. Conversely, let w
lie in the first space. Define u := Gw, so that û(ξ) = (∆A[ξ])−1A∗[ξ]w for ξ 6= 0.
By ellipticity, the one–sided inverse of A[ξ] is an isomorphism A[ξ](V ) ↔ V , so
that A[ξ]û = w for ξ 6= 0, hence Au = δ0w. �

We record that ellipticity is not necessary for Lemma 3.4 to hold, as we will
discuss in Section 5.1.

It is clear that for an elliptic, non–canceling operator, we have by Lemma 3.4(c)
the existence of w 6= 0 such that Av = δ0w for some v ∈ S ′ which can be chosen
such that

Dk−1v = Dk−1G ∗ Av = Dk−1G ∗ δ0w = Dk−1Gw.(3.13)

Since Dk−1G is (1− n)–homogeneous, we get that Dk−1v is not locally Ln/(n−1)–
integrable. It is then a matter of cutting–off and truncating suitably to contradict
the embedding (3.6) (see [80, Prop. 5.5] for full detail).

Summarizing, we sketched a proof of necessity of cancellation for the embedding
(3.6), provided that A is elliptic. Ellipticity is also necessary, as can be seen from
[80, Cor. 5.2], where a modification of the plane wave (3.5) (with real ξ, v) is used.
It is worth mentioning that, somewhat surprisingly, ellipticity is not necessary for
Sobolev–type estimates on the weaker derivatives, as is discussed in [80, Sec. 5.1].
To the best of our knowledge, there is no theory describing estimates such as

‖Dk−ju‖Ln/(n−j) . ‖Au‖L1

for u ∈ C∞c (Rn, V ), for non–elliptic operators A as in (2.1) of order k ≥ j; except,
of course, if j = 0, 1, in which case there are none.

It is remarkable that EC is, in fact, sufficient for the estimate. This was proved
by duality at the level of the annihilator A, i.e.,ˆ

Rn

〈f, ϕ〉dx . ‖f‖L1‖Dϕ‖Ln ,(3.14)

for A–free L1–fields f and ϕ ∈ C∞c (Rn,W ). In fact, the estimate (3.14) holds of
all co–canceling operators A, introduced in [80, Def. 1.3] as satisfying⋂

ξ∈Rn\{0}

kerA[ξ] = {0}.(3.15)
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The first instance of (3.14) was proved by Bourgain and Brezis in [12] for
A = div (see also [13, Thm. 1′]). An elementary proof was given in [77, Thm. 1.5],
by a slicing argument, using the Morrey–Sobolev embedding on hyperplanes, an
integration by parts formula, and Hölder’s inequality; see also [81, Direct proof of
Theorem 1.3]. Both proofs have the estimate on circulation along closed curves [16,
Prop. 4] as a starting point (see also [76]). The latter argument was generalized
to the k–th order invariant operator Af :=

∑
|α|=k ∂

αfα in [78, Thm. 4] and
algebraically extended to all co–canceling operators (3.15) in [80, Prop. 2.3]. For
more detail, see the survey [81, Sec. 3.4].

The duality argument can be formulated by noting that the annihilator A,
defined in (3.12), of and EC operator A is co–canceling, so that (3.14) implies

‖Dk−1u‖Ln/(n−1) . ‖Au‖Ẇ−1,n/(n−1) . ‖Au‖L1

for all u ∈ C∞c (Rn, V ), where the first inequality follows by boundedness of singular
integrals.

We note that for the estimate (3.6), the competitor maps have zero boundary
values. In fact, with appropriate scaling, (3.6) is equivalent to

‖Dk−1u‖Ln/(n−1)(B,V�k−1Rn) . ‖Au‖L1(B,W )(3.16)

for u ∈ C∞c (B, V ) [38, Lem. 5.7]. It is natural to ask the related question: For
u ∈ C∞(B̄, V ), under which conditions on A does the estimate

‖Dk−1u‖Ln/(n−1)(B,V�k−1Rn) . ‖Au‖L1(B,W ) + ‖u‖L1(B,V )(3.17)

hold? As mentioned in Section 2.4, this question was answered byGmeineder and
the author in [38, Thm. 1.3], and generalizes the Gagliardo–Nirenberg inequality
on domains and the Korn–Sobolev inequality of Strang and Temam in [69,
Thm. 2.1]:

‖u‖Ln/(n−1)(B,Rn) . ‖Eu‖L1(B,Rn×n
sym ) + ‖u‖L1(B,Rn)

for all u ∈ C∞(B̄,Rn). We postpone the discussion of (3.17) to Section 4.1, and
discuss another paper pertaining to the difference between (3.16) and (3.17).

For the remainder of this section, we restrict our attention to the case k = 1, of
first order operators. It was shown in [19] that a trace embedding

‖u‖L1(∂ B,V ) . ‖Au‖L1(B,W ) + ‖u‖L1(B,V )(3.18)

holds for all u ∈ C∞(B̄, V ) if and only if A has FDN. The proof of (3.18) in the
case A = D is relatively simple, as one can employ the Fundamental Theorem of
Calculus near the boundary of B. This tool is obviously unavailable in general
and the idea employed in [19, Sec. 4] is to substitute it by replacing u on small
balls Bj near the boundary of B by suitable projections onto the null–space of A
in Bj . FTC is replaced by estimates on chains of balls by use of a Poincaré–type
inequality, reminiscent of the idea in [44, Sec. 2]. The FDN condition crucially en-
ters the estimation when the L1(∂ B∩Bj)–norm of the approximation is bounded
by Hölder’s inequality against the L∞(∂ Bj)–norm, which can be controlled by the
L1(Bj)–norm since the null–space of A in Bj is finite dimensional.

Conversely, if FDN, and, hence, complex–ellipticity, fails, one takes u as in
(3.5) with complex ξ, v and f(z) = z−1 and a ball B ⊂ Rn such that 0 ∈ ∂ B. A
simple computation shows that u ∈ L1(B) \ L1(∂ B). This example has already
been discussed in Section 3.1, from which we recall that Au = 0, so the trace
embedding fails.
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We keep the restriction k = 1 for clarity of exposition and conclude that the
FDN condition is indeed a condition intimately linked to boundary regularity,
since it is equivalent to both

(a) if Au = 0 in B, then u ∈ C∞(∂ B),
(b) if u,Au ∈ L1(B), then u ∈ L1(∂ B).

On the other hand, for elliptic A, cancellation is a condition of interior regularity,
as it is equivalent to both

(a) if Au ∈M(Rn,W ), then u ∈ L
n/(n−1)
loc ,

(b) if Au = δ0w and u satisfies the smallness condition (2.4), then u = 0.
In fact, if we assume that A is elliptic, non–canceling, and, without loss of gen-
erality, that 0 ∈ B, and let u := Gw, so that Au = δ0w for w 6= 0, then clearly
u /∈ C∞(∂ B), so A cannot have FDN. Here G is given by (3.8). This basic idea
will be extended in Section 4.1 to show that FDN (strictly) implies EC.

4. Recent contributions

4.1. The Sobolev–type embedding on domains. We proceed with the overvi-
ew of the answer to the question of identifying computable conditions for (3.17):

Theorem 4.1 ([38, Thm. 1.3]). Let A be as in (2.1). The following are equivalent:
(a) A has FDN.
(b) A is EC and there exists an extension operator E : WA,1(B) →WA,1(Rn)

which is linear and bounded.
(c) WA,1(B) ↪→ Ln/(n−1)(B, V ) holds, i.e.,

‖Dk−1u‖Ln/(n−1)(B,V�k−1Rn) . ‖Au‖L1(B,W ) + ‖u‖L1(B,V )

for all u ∈ C∞(B̄, V ).

We first show that FDN implies EC using Lemma 3.4(c), thereby formalizing
the heuristics at the end of the previous Section. We refer the reader to [38,
Lem. 3.2] for a proof using Lemma 3.4(b).

Lemma 4.2. Let A as in (2.1) have FDN. Then A satisfies EC.

Proof. It is clear from (3.5) that A is elliptic. Let w ∈ W , v ∈ L1
loc(Rn) be such

that Av = δ0w. Consider a ball B ⊂ Rn such that 0 ∈ ∂ B. Then Av = 0 in
B, so that v, and hence Dk−1v, equal a polynomial in B by Theorem 3.2. By
(1 − n)–homogeneity of Dk−1v and geometry of B, it follows that Dk−1v = 0 in
Rn \T 0

B, where T
0
B denotes the tangent plane of B at 0. By smoothness of G away

from 0, we get that Dk−1v = 0, so that 0 = Av = δ0w. We conclude that w = 0,
so A is canceling by Lemma 3.4(c). �

The second step consists of a Jones–type extension [38, Thm. 4.1], which is much
in the spirit of [44, Sec. 3]. We would like to single out as a particularly relevant
modification the Poincaré–type inequality for FDN operators [38, Prop. 4.2]:

inf
Av=0 in B

‖Dj(u− v)‖L1(B) . diam(B)k−j‖Au‖L1(B),

for u ∈ C∞(B̄, V ), j = 0 . . . k − 1. This is a generalization of [19, Thm. 3.3].
With the bounded extension E : WA,1(B) → WA,1(Rn) in place, we can esti-

mate, by use of Lemma 4.2 and (3.6)

‖Dk−1u‖Ln/(n−1)(B) 6 ‖Dk−1Eu‖Ln/(n−1)(Rn) . ‖AEu‖L1(Rn)

. ‖Au‖L1(B) + ‖u‖L1(B),
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which proves (c).
Conversely, assuming that A does not have FDN, the aforementioned example

of Smith (uj(x) := exp(jx · ξ)v for non–zero, complex ξ, v such that A[ξ]v = 0)
can be used to disprove (3.17) provided k > 1. To cover the case k = 1, we showed
that the embedding WA,1(B) ↪→ Lp(B, V ) is compact for 1 6 p < n/(n − 1) [38,
Thm. 4.6]. This fact is itself a generalization of the Theorem of Suquet in the case
A = E [71]. The proof consists of a careful application of the Riesz–Kolmogorov
compactness criterion. It is then easy to conclude that A has FDN by using the
Peetre–Tartar Equivalence Lemma [74, Lem. 11.1].

It remains to confirm that the implication of EC by FDN is strict, otherwise
Theorem 4.1(b) would contain redundancy. We restrict the discussion here to
the case k = 1 and refer the reader to [38, Sec. 3] for a more comprehensive
debate. By Theorem 3.2, we know that it is not difficult to construct an elliptic,
non–FDN operator, since such an operator should have (2.5) as a building block.
Interestingly, if n = 2, it is not possible to build such a canceling operator, as is
shown in [38, Lem. 3.5(a)]. However, as soon as we allow for n = 3, we see that
the operator

A2u :=


∂1u1 − ∂2u2

∂2u1 + ∂1u2

∂3u1

∂3u2

 ,(4.1)

defined for u : R3 → R2, and mentioned in Section 2.2 satisfies EC, but not FDN.
This fact has two somewhat surprising consequences. Let A be an elliptic, first

order operator and recall that (3.6) is equivalent to WA,1
0 (B) ↪→ Ln/(n−1)(B, V ) by

a scaling argument [38, Lem. 5.7]. Here WA,1
0 (B) denotes the closure of C∞c (B, V )

in the (semi–)norm u 7→ ‖Au‖L1 . Then:
(a) If A is in addition canceling, but not FDN, there is no bounded, linear

extension operator E : WA,1(B) → WA,1(Rn). This phenomenon cannot
be observed by looking at W1,1 and indicates that the analysis of vectorial
operators can hide non–obvious phenomena.

(b) If A is not canceling, we still have the embedding WA,1
0 (B) ↪→ Lp(B, V )

for all 1 6 p < n/(n− 1), e.g., by (3.10). If A is canceling, non–FDN, we
have that WA,1

0 (B) ↪→ Ln/(n−1)(B, V ) but there exists u ∈ WA,1(B) such
that Au = 0 but u has no higher integrability [38, Lem. 3.6].

Of course, the map u constructed in (b) lies in L
n/(n−1)
loc (B, V ) by (3.6), which

highlights the connection between the Sobolev–type embedding on domains (3.17)
and the trace embedding (3.18). Although the relation between the two embed-
dings was established indirectly, both being equivalent to A having FDN, we do
not have any direct proof of one implying the other.

4.2. Lp–differentiability of BVA–maps. Apart from embedding theorems, one
can, of course, inquire about pointwise properties of A–weakly differentiable func-
tions. Such properties would be, for instance, the existence a.e. of a k–th order
Lp–Taylor expansion, as introduced by Calderón and Zygmund in [22] as a
generalization on the Lp–scale of classical differentiability. On their scale, classical
differentiability at a point corresponds to the endpoint p = ∞ and weak deriva-
tives equal Lp–derivatives almost everywhere, showing consistency of their notion.
With the risk of redundancy, we recall for the reader’s convenience that u ∈ tk,p(x)
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if and only if there exists a polynomial P kxu of degree at most k such that( 
Br(x)

|u− P kxu|p dy

)1/p

= o(rk) as r ↓ 0.

If k = 1, we abbreviate and say that u is Lp–differentiable at x. If p = ∞, we
replace the quantity on the right hand side by the L∞–norm of u−P kxu, in which
case u is k times differentiable in the classical sense at x.

If 1 6 p < ∞, Lp–Taylor expansions of Wk,p–maps are completely described
in the original paper [22, Thm. 12]. Since Theorem 2.1(b) holds under the mild
assumption of ellipticity, in the case of WA,p, we are only interested in p = 1.
In fact, ellipticity is always necessary for Lq–differentiability of WA,p–maps [56,
Lem. 4.2]. Interestingly, even though by Ornstein’s Non–inequality, for u ∈ BVAloc,
Dku need not be a Radon measure, one can still show that, for elliptic A, the k–th
approximate differential of u at x (defined as ∇ku(x) := DkP kxu(x)) exists for a.e.
x ∈ Rn. Of course, the measurable map x 7→ ∇ku(x) fails to be locally integrable
in general.

The question of Lp–differentiability of BVA–maps is treated in the author’s
work [56]. In analogy with boundedness of Riesz–type potentials, as discussed in
Section 3.2, it was shown that ellipticity of A is equivalent to existence of Lp–Taylor
expansions with sub–critical exponents:

Theorem 4.3 ([56, Thm. 1.4]). Let A be as in (2.1). Then A is elliptic if and
only if either of the following holds:

(a) If 1 6 j 6 min{k, n− 1}, 1 < p < n/(n− j), we have that

Dk−ju ∈ tj,p(x) for L n–a.e. x ∈ Rn.

for all u ∈ BVAloc.
(b) If j = n 6 k, 1 < p <∞, we have that

Dk−ju ∈ tj,p(x) for L n–a.e. x ∈ Rn.

for all u ∈ BVAloc.
(c) If n < k, we have that

Dk−n−1u ∈ tn+1,∞(x) for L n–a.e. x ∈ Rn.

for all u ∈ BVAloc.
In particular, for any ball B ⊂ Rn and any ε > 0, there exists E ⊂ B and
ũ ∈ Ck(Rn, V ) such that L n(B \E) < ε and u = ũ in E. Also, in (c), u is k times
differentiable a.e. (in the classical sense).

This Theorem is a simple consequence of the main result [3, Thm. 3.4] (built
on the work in [41]), coupled with the iteration of [22, Thm. 11]. See [56,
Sec. 2, Lem. 4.2] for the complete proof. The Ck–Lusin property follows directly
from the fact that u ∈ tk,1(x) for a.e. x, as explained in Section 2.3. It is quite
interesting that this property survives, although for a general BVA–map u it may
well be that Dku /∈Mloc and even ∇ku /∈ L1

loc.
The physically relevant case BD, covered by (a), was singled out by Alberti,

Bianchini, and Crippa in [3, Prop. 4.2], where it is shown that maps of bounded
deformation are Lp–differentiable a.e. for all 1 6 p < n/(n− 1). Previous work on
this topic has been done in [4, Sec. 7], where Theorem 4.3(a) with p = 1 has been
shown to hold in BD.
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It is natural to ask under which additional conditions on A can the critical
exponents in Theorem 4.3 be reached. To the author’s knowledge, this was pre-
viously known only in the case A = Dk, from the works [23, 28]. A first step in
this direction was made recently by Gmeineder and the author in [39, Thm. 1.1],
where we showed that if k = 1 and A has FDN, then, indeed, any u ∈ BVAloc is
such that u ∈ t1,n/(n−1)(x) for a.e. x ∈ Rn.

It does not, however, seem plausible that an assumption describing boundary
regularity should describe a statement resembling interior critical higher integra-
bility. Indeed, the author recently showed in [56, Thm. 1.3], that, at least for (a),
critical exponents are equivalent to EC:

Theorem 4.4 ([56, Thm. 1.3]). Let A be as in (2.1). Then

(a) If k < n, j = 1 . . . k, A is EC if and only if for all u ∈ BVAloc we have that
Dk−ju ∈ tj,n/(n−j)(x) for L n–a.e. x ∈ Rn.

(b) If k ≥ n and A is canceling, then A is elliptic if and only if for all u ∈
BVAloc, we have that Dk−nu ∈ tn,∞(x) for L n–a.e. x ∈ Rn.

In particular, in the former case, u has a k–th order Ln/(n−k)–Taylor expansion
a.e.; in the latter case u is k times differentiable a.e. (in the classical sense).

The proof of sufficiency of EC follows from applying [17, Thm. 1.1, 1.3] to
ρr(u − P kxu), where χBr(x) 6 ρr 6 χB2r(x) is a smooth cut–off function. The
problem is then reduced to Theorem 4.3, which also guarantees existence of P kxu
for a.e. x.

Necessity of ellipticity is proved using a “rough” plane wave (3.5) that is locally
integrable, but nowhere Lp–integrable for some p > 1. We thus obtain necessity
of ellipticity, although, as mentioned in Section 3.2, ellipticity is not necessary for
[17, Thm. 1.1], which is crucially used to prove the sufficiency part of Theorem
4.4. The reason for the discrepancy is, loosely speaking, that when we consider
pointwise statements, we do not capture the behavior of the plane wave at infinity.

Necessity of cancellation for Theorem 4.4(a) is proved as follows: it is easy to
see that Dk−jv /∈ tj,n/(n−j)(0) for j = 1, . . . k and v ∈ BVAloc as defined by (3.13).
This is due to the fact that Dk−jv is not Ln/(n−j)–integrable in any neighborhood
of 0. A Baire Category argument shows existence of ṽ ∈ BVAloc such that Dk−j ṽ is
not Ln/(n−j)–integrable in any neighborhood of any point in a dense subset of Rn.

It would be interesting to obtain a sharp statement in Theorem 4.4(b) as well.
We have already seen that, for k < n, a Sobolev–type embedding is equivalent
to the pointwise a.e. property of existence of critical Lp–Taylor expansions. It
seems that the right problem to tackle would be to specify additional conditions
for elliptic A as in (2.1) with k ≥ n such that the inequality

‖Dk−nu‖L∞ . ‖Au‖L1(4.2)

for u ∈ C∞c (Rn, V ). This would generalize the embedding Wn,1(Rn) ↪→ C0
0(Rn)

and would complement the analysis of Bousquet and Van Schaftingen in [17,
Thm. 1.3], where it is shown that EC is sufficient for (4.2). Conversely, there
are elliptic, non–canceling operators for which the embedding holds (Au = u′ for
n = 1), but there are also vectorial examples:

Let B := (div, curl) on R3 from R3 to R3, and define A := B ◦ ∆, which is
elliptic (as composition of elliptic operators) and non–canceling, which can be
easily checked by computation. One can then also check that B∗ ◦A = ∆2, so that
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for u ∈ C∞c (R3,R3) we have

u = B∗∆−2Au.
Since in three dimensions the bilaplacian operator has fundamental solution pro-
portional to x 7→ |x|, it follows that its derivative and, hence, the Green’s function
for A is bounded. This is to say that u = G ∗ Au, for bounded (0–homogeneous)
G. The inequality (4.2) follows by Young’s convolution inequality. The conclusion
extends immediately to Ad := B◦∆d on R2d+1 from R2d+1 to R2d+1, showing that
in all odd dimensions, there are elliptic, non–canceling operators for which (4.2)
holds.

It is also not the case that (4.2) holds for all elliptic operators, as can be seen
by looking at the fundamental solution of A = ∆ if n = 2.

This and Lemma 3.4 suggest that, in order to determine for which elliptic op-
erators (4.2) holds, one should obtain better understanding of understand funda-
mental solutions for operators of order k ≥ n. Even in the scalar case dimV = 1 =
dimW , this is significantly more difficult than if k < n, as can be seen from [43,
Thm. 7.1.20]. In view of this, we conclude the section with the following, perhaps
optimistic, conjecture:

Conjecture 4.5. Let A be elliptic of order k ≥ n. The embedding

‖Dk−nu‖L∞ . ‖Au‖L1

holds for u ∈ C∞c (Rn, V ) if and only if A is canceling or n is odd.

5. Some new ideas

5.1. Constant–rank operators. In this section we sketch a proof of the following
new estimate, the details of which will make the object of future work:

Theorem 5.1. Let A as in (2.1) be a canceling operator of constant rank. Then
the estimate

inf
Av=0 in Rn

‖Dk−1(u− v)‖Ln/(n−1) . ‖Au‖L1(5.1)

holds for all u ∈ L1
loc ∩S ′(Rn, V ) such that Au ∈ L1(Rn,W ).

We say that an operator A is of constant rank if there exists an integer r such
that rankA[ξ] = r for all ξ ∈ Rn \ {0}. For example, elliptic operators are of
constant rank r = dimV .

A few remarks are in order. Firstly, the constant rank condition appears in the
study of compensated compactness [72, 51, 75] and in the study of A–quasiconvex
integrals [32, 30, 18, 8]. In fact, except for examples [50, 73, 72], there is no
theory of lower semi–continuity for integrals depending on vector fields satisfying
differential constraints that do not satisfy the constant rank condition.

To prove Theorem 5.1, we construct an exact annihilator A of A which general-
izes (3.12) and enables us to use (3.14). As a by–product, we obtain the algebraic
fact that variational problems under differential constraints with constant rank
symbol have an associated potential.

It will also become apparent from the proof that, if A is elliptic, the inequality
(5.1) reduces to

‖Dk−1u‖Ln/(n−1) . ‖Au‖L1(5.2)

for u ∈ C∞c (Rn, V ), which was discussed in Section 3.2. On the other hand, an
inequality such as (5.2) cannot hold for constant rank operators in general. To see
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this, let A := curl act on vector fields u : R3 → R3. By letting u = ∇φ for any
non–zero scalar field φ ∈ C∞c (R3), it is clear that (5.2) fails. This behaviour can
be shown to be generic for non–elliptic operators of constant rank, see Remark
5.7. This indicates that the class of non–elliptic operators for which the weaker
estimates

‖Dk−ju‖Ln/(n−j) . ‖Au‖L1 if 1 < j 6 k < n

‖Dk−nu‖L∞ . ‖Au‖L1 if k ≥ n

hold is contained in the class of operators that do not have constant rank. Indeed,
for the estimates [54] and [80, Prop. 5.4], the constant rank condition fails.

We record separately the result for A = curl, as we could not find the explicit
statement in the literature:

inf
φ∈W1,1

loc(R3)
‖u−∇φ‖L3/2 . ‖ curlu‖L1

for all u ∈ L1
loc ∩S ′(R3,R3) such that curlu ∈ L1(R3,R3). This estimate can be

used to prove the inequality

‖u‖L3/2 . ‖ curlu‖L1(5.3)

for vector fields u ∈ C∞c (R3,R3) such that div u = 0, which was proved by Bour-
gain and Brezis in [12, Thm. 2]. Of course, this only shows consistency of our
work, since we implicitly use [77, Cor. 1.4], which can be used to prove (5.3) di-
rectly [77, Sec. 1]. For contrast, the divergence operator is of constant rank, but
not canceling (cp. [13, Rk. 5]).

The main technical tool that we will use is the Moore–Penrose generalized in-
verse of a matrix, to which we will refer simply as the pseudo–inverse, although
this terminology is not standard. This will enable us to define suitable convolu-
tion operators and exact annihilators of constant rank operators. For simplicity of
exposition, we will make no distinction between linear transformations and their
matrices.

Following [24], we write M † ∈ RN×m for the the pseudo–inverse of a matrix
M ∈ Rm×N . Note that the restriction M : (kerM)⊥ → imM is an isomorphism.
Then M † is defined as the inverse of this isomorphism on imM and by zero on
(imM)⊥. As a consequence, the compositions MM † and M †M are orthogonal
projections onto imM and (kerM)⊥, respectively. This geometric property, in
fact, characterizes M †. For consistency with (3.12), we note that if M has full
rank N 6 m, then M † = (M∗M)−1M∗.

The upshot of using pseudo–inverses to invert matrix–valued fields, such as
the symbol map A[·], is that they locally preserve smoothness, provided that the
matrix fields have constant rank.

With the remarks above in mind, the first fact that we establish is that Lemma
3.4 holds for constant rank operators.

Lemma 5.2. Let A as in (2.1) have constant rank. Then⋂
ξ∈Rn\{0}

A[ξ](V ) = {w ∈W : Au = δ0w for some u ∈ S ′(Rn, V )}

=

{ˆ
Rn

Audx : u ∈ C∞(Rn, V ),Au ∈ C∞c (Rn,W )

}
The arguments used to prove Lemma 3.4 extend, provided that:
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(a) we can Fourier invert the definition û(ξ) := A†[ξ]w for ξ 6= 0 to obtain a
fundamental solution Au = δ0w (here w lies in the intersection of A[ξ](V )).

(b) A admits an exact annihilator.
The fact (b) is proved in Lemma 5.6 below; the fact (a) follows almost immediately,
from the following extension of [17, Lem. 2.1]:

Lemma 5.3. Let A as in (2.1) have constant rank. Then there exists a kernel
G ∈ C∞(Rn \ {0},Lin(W,V )) that is locally integrable in Rn such that

u = πu+G ∗ Au,(5.4)

where u, πu ∈ S ′(Rn, V ) and A(πu) = 0. In particular, Dk−jG is (j − n)–
homogeneous for j = 0, . . .min{k, n− 1}.

We stress that the projection on the kernel of A cannot be dropped even if
the representation formula (5.4) is considered over test functions only. As in the
example A = curl above, if u is the gradient of a non–zero scalar test function,
then πu = u 6= 0.

The proof of Lemma 5.3 follows the same lines as the proof of [17, Lem. 2.1],
with the modification that A†[·] : Rn \ {0} → Lin(W,V ) extends to a tempered
distribution on Rn. This follows since A[·] is (−k)–homogeneous, by definition,
and smooth away from zero, by [29, Cor. 3.2]. We stress that the latter follows
from the constant rank condition. One then checks that Ĝ := − ik A†[·] satisfies
the required properties. In particular, if w ∈ A[ξ](V ), for all ξ 6= 0, we get that
A(Gw) = δ0w, so the fact (a) follows.

The use of the pseudo–inverse in connection with the constant rank condition
for first order operators appeared in [40, Thm. 3.5], where a Korn–type inequality
is proved. The proof in [40] can be adjusted to cover operators of arbitrary order;
alternatively, one can use Lemma 5.3 and boundedness of singular integrals to get:

Proposition 5.4. Let A as in (2.1) have constant rank, 1 < p <∞. Then

inf
Av=0 in Rn

‖Dk(u− v)‖Lp(Rn,V�kRn) . ‖Au‖Lp(Rn,W )

holds for all u ∈ L1
loc ∩S ′(Rn, V ) such that Au ∈ Lp(Rn,W ).

Note that Proposition 5.4 is the full space variant of (2.7). However, the in-
equality on bounded domains requires a different idea to construct a projection
operator, which should cancel out the singularities at the boundary. Proposition
5.4 suggests that the ellipticity assumption may needlessly complicate the under-
standing of (2.7). We ask the following:

Question 5.5. Let A as in (2.1) have constant rank, 1 < p < ∞. Is it then the
case that

inf
Av=0 in B

‖Dk(u− v)‖Lp(B,V�kRn) . ‖Au‖Lp(B,W )

holds for all u ∈ L1
loc(B, V ) such that Au ∈ Lp(B,W )?

We remark that the answer is well–known to be positive in the case of the
divergence operator [36, Ch. III.1], as shown by Bogovskĭi in [9].

We turn to statement in (b):

Lemma 5.6. Let A as in (2.1) have constant rank. Then there exists a homoge-
neous, constant rank, linear differential operator A such that

kerA[ξ] = imA[ξ]
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for all ξ ∈ Rn \ {0}.

Proof. The idea is to show, in analogy with (3.12), that

A[ξ] := P (ξ)(Id−A[ξ]A†[ξ])(5.5)

defines a differential operator for some (scalar–valued) polynomial P ; this is to say
that A[·] is itself aW–valued polynomial. This is the true in the elliptic case (3.12)
since we obtain A[ξ] = det(∆A[ξ]) Id−A[ξ]adj(∆A[ξ])A∗[ξ], where the entries of
the adjugate matrix are minors of ∆A[ξ], hence polynomials. The exactness of the
annihilator (5.5) follows from the fact that A[ξ]A†[ξ] is orthogonal projection onto
imA[ξ].

We will give a computable formula for P (ξ). It was shown in [25] that, for a
matrix M ∈ Rm×N for which the characteristic polynomial of MM∗ is given by

Q(λ) := λm + a1λ
m−1 + . . .+ am−1λ+ am,

then the pseudo–inverse of M is given by

M † = −a−1
r M∗

[
(MM∗)r−1 + a1(MM∗)r−2 + . . .+ ar−2MM∗ + ar−1 Id

]
,

where r is the largest integer such that ar 6= 0. By considering a singular value
decomposition of M , it is easy to show, in addition, that r = rankM . This simple
general observation will guarantee sufficiency of the constant rank condition for
existence of P (ξ).

Assume now that A has constant rank r, write N := dimV , m := dimW , and
let the characteristic polynomial of A[ξ]A∗[ξ] be given by

Qξ(λ) := λr
(
λN−r + a1(ξ)λN−r−1 + . . .+ ar−1(ξ)λ+ ar(ξ)

)
,

for ξ 6= 0. We then have that

A[ξ]† =− ar(ξ)−1A[ξ]∗
[
(A[ξ]A∗[ξ])r−1 + a1(ξ)(A[ξ]A∗[ξ])r−2 + . . .

. . .+ ar−2(ξ)A[ξ]A∗[ξ] + ar−1(ξ) Id] ,

whenever ξ 6= 0. It is crucial to note that aj are polynomials in ξ, as they are linear
combinations of minors of A[ξ]A∗[ξ], and that r is independent of ξ by the constant
rank condition. One can also check carefully that aj are suitably homogeneous. It
remains to choose P (ξ) := ar(ξ) in (5.5) to conclude. �

Remark 5.7. The construction can easily be reversed, to construct potentials for
constant rank differential constraints. Let A be a homogeneous, linear differential
operator of constant rank r. One can consider

A[ξ] := br(ξ)(Id−A†[ξ]A[ξ]),

where br arises from A just as ar arises from A in the proof of Lemma 5.6. The
0–homogeneous part Id−A† ◦ A[·] was essentially defined in [32, Sec. 2], while its
smoothness away from zero was proved using the theory of pseudo–inverses in [55].
Of course, if A is elliptic, the potential thus constructed is identically zero.

Despite the fact that Lemma 5.6 gives a computable method to obtain anni-
hilators, it may be very inefficient. This was already observed in [80, Sec. 4] in
the elliptic case in connection with annihilators defined by (3.12). Of course, in
general, the situation is the same as can be seen by computing the annihilator of
A := curl on R3 from R3 to R3, for which one can easily check that div is an exact
annihilator. With the notation as in the proof of Lemma 5.6, we can compute to
get that r = 2 and a2(ξ) = |ξ|4, so that A[ξ] = (A[ξ]A∗[ξ]− |ξ|2 Id)2 = (ξ⊗ ξ)2. It
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then follows that A = ∆ Ddiv, which is clearly over–complicated. We will seek to
refine the construction in Lemma 5.6.

We turn to the proof of the main result of this section:

Proof of Theorem 5.1. Since A has an exact annihilatorA by Lemma 5.6, it follows
that A is co–canceling, so that, we have by Van Schaftingen’s inequality (3.14)
and Lemma 5.3 that

‖Dk−1(u− πu)‖Ln/(n−1) . ‖Au‖Ẇ−1,n/(n−1) . ‖Au‖L1 ,

where the first inequality follows from boundedness of singular integrals, just as
in [80, Prop. 4.1]. �

Again, we do not know if a similar estimate can hold on domains, although
intuition suggests that this should be the case:

Question 5.8. Let A as in (2.1) be of constant rank and canceling. Is it then the
case that

inf
Av=0 in B

‖Dk−1(u− v)‖Ln/(n−1)(B,V�k−1Rn) . ‖Au‖L1(B,W )

holds for all u ∈ L1
loc(Rn, V ) such that Au ∈ L1(B,W )?

We conclude this section with the question of necessity of assumptions on A for
Theorem 5.1. We seem to lack the handles to deal with necessity of the constant
rank condition, as its failure is, at least at the algebraic level, significantly more
difficult to exploit than failure of ellipticity. What seems in reach and plausible is
necessity of cancellation, given the constant rank condition.

Question 5.9. Let A be a constant rank operator such that (5.1) holds. Is A
necessarily canceling?

The passage to the next Section may seem abrupt, and, to some extent, it is. The
common theme is that Van Schaftingen’s estimate (3.14) implies that A–free
measures µ have Ẇ−1,n/(n−1)–regularity if A is co–canceling. This can empirically
be viewed as a quantitative restriction on the singular part of µ, qualitatively
studied by De Philippis and Rindler in [26, 27]. In the final Section of this
work, we will, very tentatively, suggest a correlation between the two results.

5.2. Properties of measures satisfying differential constraints. In Section
2.4, we began the discussion of the variational problems (2.12) (the A–framework)
and (2.11) (the A–framework) in the linear growth case. In the classical case
A = D, the study of lower semi–continuity relied on a qualitative property of
gradient–measures nowadays referred to as Alberti’s rank–one theorem [1], which
states that the (matrix–valued) polar of the singular part of a gradient measure
Du has rank at most one except on a Dus–negligible set. More precisely, we have
that for all u ∈ BVloc(Rn,RN ),

dDus

d|Dus|
(x) ∈ {a⊗ b : a ∈ RN , b ∈ Rn} for |Dus|–a.e. x ∈ Rn,

where Dus is the singular part of Du with respect to L n–measure, i.e., Du =
∇uL n + Dus for ∇u ∈ L1

loc(Rn,RN×n) and Dus ⊥ L n.
In the absence of Alberti’s rank–one theorem, lower semi–continuity results are

substantially more difficult to achieve; we refer the reader to the introduction of
[58] for detail. By Ornstein’s non–inequality, it is only more difficult to tackle
the semi–continuity problem for (2.11) or (2.12) in BVA, where results have been
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obtained for the first time in [57], in the case A = E . The lower semi–continuity
result in [57, Thm. 1.1] was improved to an integral representation of the lower
semi–continuous envelope in [8, Cor. 1.9], facilitated by the outstanding general-
ization of Alberti’s rank–one theorem to the A–framework by De Philippis and
Rindler in [26]. To introduce their result, we first note that if we consider the
prototypical jump functions χHw, where H is a hyperplane of co–dimension one
with normal ξ, then A(χHw) = 0 if and only if A[ξ]w = 0. This indicates that
the density along a jump across a smooth (n − 1)–dimensional surface should be
valued in the wave cone

ΛA :=
⋃

ξ∈Rn\{0}

kerA[ξ],

introduced in [74, 51] in the context of compensated compactness. The main result
[26, Thm. 1.1] states that this is true of the entire singular part of of an A–free
measure. More precisely, for any linear, homogeneous, differential operator A with
constant coefficients1 and any bounded measure µ such that Aµ = 0, having the
Radon–Nikodým decomposition µ = fL n + µs with µs ⊥ L n, then

dµ

d|µ|
(x) ∈ ΛA for |µ|s–a.e. x ∈ Rn.

Apart from this remarkable result, little is known about the singular parts
of measures satisfying general differential constraints. For the remainder of this
section, we will launch some, hopefully not too wild, speculations that may link
this topic to the canceling condition (2.8). We begin with a sharpened proof of
Lemma 4.2.

Proof of Proposition 2.6. Suppose that A as in (2.1) is C–elliptic, H 6 Rn has
dimH = d ≥ 2 and w ∈

⋂
ξ∈H\{0}A[ξ](V ). We consider coordinates t, y in H,H⊥

respectively. We define

û := (H d H)A†[·]w(5.6)

where A†[·] = (A∗ ◦ A[·])−1A∗[·] as A is elliptic. Moreover, A†[·] extends to a
tempered distribution in H by the same reasoning as in [17, Lem. 2.1]. By a simple
modification of [43, Thm. 7.1.25] (see also the remark thereafter), we obtain that
û is well–defined, i.e., a tempered distribution on Rn given by

u(t, y) = F−1
H (A†[·])(t)w for t ∈ H, y ∈ H⊥,

where FH denotes the Fourier transform in H. Note also that Au is classically
differentiable, except when the H–variable t = 0, and is independent of y, so Âu
will concentrate on H. By bijectivity of A†[ξ] : V ↔ A[ξ](V ) for ξ ∈ Rn \ {0}
and by definition of w, it follows that Âu = (H d H)w. Inverting the Fourier
transform and using [43, Thm. 7.1.25] again gives

Au = (H n−d H⊥)w.(5.7)

In particular, Au = 0 in Rn \ H, which is connected since dimH ≥ 2. By the
assumption of C–ellipticity and Theorem 3.2(d), we get that u equals a polynomial
in Rn \H. Hence Au = 0 in Rn, so w = 0, and (2.9) follows.

Conversely, let A be elliptic of order k = 1 and suppose that A is not C–elliptic.
This implies existence of a complex plane waves (3.5) given by u(x) = f(x ·η)v for

1The result in [26] holds for inhomogeneous operators with variable coefficients as well; we do
not include this here to keep consistency with the general notation of the present work.
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all x ∈ Rn and some complex η, v such that Au = 0 if f is holomorphic. Moreover,
by ellipticity of A, it is easy to show that if η = η1 + i η2 for real ηj , then ηj are
linearly independent over R. The analogous statement is true for v = v1 + i v2 .
One defines H := span{η1, η2} and lets f(z) = z−1. Since A1f = πδ0, where A1 is
the Wirtinger derivative (2.5), it follows that Au = πδ0A[η1]v1 in D ′(H,V ). If we
write t for the H–coordinate and denote by y the H⊥–coordinate, we have that
u(t, y) = u(t), so that

Au = (H n−2 H⊥)πA[η1]v1.

Fourier transforming this equality contradicts (2.9) since A[η1]v1 ∈ A[ξ](V ) for all
ξ ∈ H \ {0} (of course, A[η1]v1 6= 0 by ellipticity of A). �

The idea of the proof of the direct implication is that in (5.6) we essentially
construct a fundamental solution for Au = δ0w for u : H → V ; this is, of course,
exactly the construction in [17, Lem. 2.1] and is made possible by the definition
of w (note that H intimately depends on A, otherwise it would be impossible
to fruitfully apply A to maps restricted to H, e.g., if A = D and H contains no
coordinate axes). We then extend u trivially in the H⊥ directions, to obtain a
map defined on Rn that satisfies Au = 0 except when the H–coordinate t = 0.
This turns A(u H) = δ0w into Au = (H n−d H⊥)w. We also remark that the
connectedness argument is crucial. If H would be 1–dimensional, then (5.7) would
just imply existence of a constant jump across H⊥. As for the converse, we refer
the reader to [38, Sec. 3], where some related computations are performed in more
detail. To concretely illustrate (5.7) in an example, we will explicitly construct an
operator in (5.8).

We record the construction performed in the proof of Proposition 2.6 separately,
as the following variant of Lemma 5.2:

Lemma 5.10. Let A as in (2.1) have constant rank, H 6 Rn, d = dimH. Then⋂
ξ∈H⊥\{0}

A[ξ](V ) = {w ∈W : ∃u ∈ S ′(Rn, V ) s.t. Au = (H d H)w}.

The result in Lemma 5.10 can easily be used to give simple estimates on the
Hausdorff dimensions of negligible sets of A–measures. To see this, we define
C(A) ∈ {0, 1, . . . n − 1} as the least number d such that there exists a subspace
H 6 Rn such that dimH = d and⋂

ξ∈H⊥\{0}

A[ξ](V ) 6= {0}.

The integer C(A) can be thought as a measure of how canceling an operator is.
Non–canceling operators have C(A) = 0, whereas for FDN operators we have that
C(A) = n− 1 by Proposition 2.6 and Theorem 3.2.

To connect this with fine properties of A–measures, define

M(A) := inf{dimAu : u ∈ BVAloc(Rn)},
where the dimension dimµ of a measure µ is the largest lower bound on the
Hausdorff dimension of negligible sets of µ. Lemma 5.10 then implies that

C(A) ≥M(A)

for all constant rank operators A.
To the author’s best knowledge, the opposite inequality is known only in the

cases A = D [6, Lem. 3.76], A = E [4, Eq. (3.10)] (attributable to Kohn [46]),
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and when Au = (∂mj u)nj=1 is a collection of all pure derivatives [65] (to be precise,
the result covers the anisotropic case Au = (∂

mj

j u)nj=1, mj > 0 for all j = 1 . . . n).
All the operators listed have M(A) = n − 1 and they have FDN, so, indeed,
C(A) = M(A). Of course, the equality is also true of non–canceling operators of
constant rank by Lemma 5.2.

So far, we have mostly seen examples of operators for which C(A) = 0, e.g.,
∆, (div, curl), or with C(A) = n − 1, e.g., Dk, E . To ensure that we do not work
towards a vacuous statement, we modify the example in (4.1) to construct first
order, elliptic operators A such that C(A) = d for each 0 6 d 6 n−1. To this end,
we write Rn = Rn−d ⊕ Rd with (t, y)–coordinates and write At for the (div, curl)
operator on Rn−d; in particular, At(t|t|d−n) = δ0(t)e1 for t ∈ Rn−d. By a minor
abuse of notation, we say that e1 = (1, 0, . . . 0), irrespectively of the space where
e1 lies. We define

Au := (Atu, ∂jui)i>n−d or j>n−d for u : Rn−d ⊕ Rd → Rn−d ⊕ Rl,(5.8)

so that

u(t, y) :=
(t, 0Rl)

|t|n−d
implies Au = (H d {0Rn−d} ⊕ Rd)e1,

which is also an explicit instance of (5.7). In fact, it is not difficult to see that
M(A) = d as well, since the system Au = µ can be decoupled in three simple
sub–systems.

Motivated by the considerations above, the duality between the A–framework
and the A–framework established for constant rank operators in Lemma 5.6 and
Remark 5.7, and by the recent achievement in [26, Thm. 1.1], we conclude the
present work with the following:

Question 5.11. Let A be a homogeneous, linear, differential operator on Rn with
constant coefficients that satisfies the constant rank condition and let 0 6 d 6 n−1.
Does the following statement hold?

Suppose that d is the least integer l such that⋂
ξ∈H⊥\{0}

kerA[ξ] 6= {0} for some H 6 Rn such that dimH = l.

Then for all bounded measures µ such that Aµ = 0 we have that

H d(S) = 0 implies µ(S) = 0,

where S ⊂ Rn denotes a Borel set.

Note that having d = 0 is equivalent with failure of the co–canceling condition
(3.15) and that, in this case, the statement of Question 5.11 is vacuous. On the
other hand, this is no contradiction since, if d = 0, then A(δ0w) = 0 for some
w 6= 0, as is shown in [80, Prop. 2.1].
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