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PARTIAL REGULARITY FOR BV MINIMIZERS

FRANZ GMEINEDER AND JAN KRISTENSEN

ABSTRACT. We establish an ε-regularity result for the derivative of a map of bounded variation that
minimizes a strongly quasiconvex variational integral of linear growth, and, as a consequence, the partial
regularity of such BV minimizers. This result extends the regularity theory for minimizers of quasiconvex
integrals on Sobolev spaces to the context of maps of bounded variation. Previous partial regularity results
for BV minimizers in the linear growth set-up were confined to the convex situation.

1. INTRODUCTION

In this paper we investigate the local regularity properties of minimizers for variational integrals
defined on Dirichlet classes of maps of bounded variation. In order to describe more precisely our
set-up and why it is natural we consider a continuous real-valued function defined on N × n matrices,
F : RN×n → R, that we henceforth call an integrand. Assume that F is of linear growth, that is, for
some constant L > 0 we have

(1.1) |F (z)| ≤ L
(
|z|+ 1

)
for all matrices z ∈ RN×n. The reader is referred to Section 2 for undefined notation and terminology.
For a bounded Lipschitz domain Ω in Rn and a given W1,1 = W1,1(Ω,RN ) Sobolev map g : Ω→ RN
as boundary datum we seek to minimize ∫

Ω

F (∇v(x)) dx(1.2)

over v ∈ W1,1
g = W1,1

g (Ω,RN ), the W1,1 Dirichlet class determined by g. Here ∇v denotes the
approximate Jacobi matrix that we recall coincides with the distributional derivative Dv = ∇vL nbΩ
when v is a W1,1 Sobolev map, thus ∇v(x) :=

[
∂vj/∂xi(x)

]
, where j is the row number and i is the

column number whereby ∇v is RN×n-valued. The standard approach to the variational problem (1.2)
is to let the functional set-up be dictated by the coercivity inherent to the problem. Under the linear
growth hypothesis (1.1) the best we can hope for is that all minimizing sequences for (1.2) on W1,1

g

are bounded in the Sobolev space W1,1. Building on [22] we show in Proposition 3.1 below that this is
equivalent to the existence of constants c1 > 0, c2 ∈ R such that

(1.3)
∫

Ω

F (∇v(x)) dx ≥
∫

Ω

(
c1|∇v(x)|+ c2

)
dx

holds for all v ∈ W1,1
g . We express (1.3) by saying that F is mean coercive. In turn, Proposition 3.1

also establishes the equivalence between mean coercivity and the existence of a constant ` > 0 such
that F − `E is quasiconvex at some z0 ∈ RN×n. Here E : RN×n → R is our reference integrand
defined as

(1.4) E(z) =
√

1 + |z|2 − 1.

It is of course a multi-dimensional generalization from n ≥ 2, N = 1 of the area integrand (and of the
curve length integrand when n = 1, N ≥ 1). By quasiconvexity we mean the notion introduced by
MORREY in [59], its definition is recalled in Section 2 below. We emphasize that for n = 1 or N = 1,
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2 F. GMEINEDER AND J. KRISTENSEN

quasiconvexity is just ordinary convexity, whereas in the multi-dimensional vectorial case n, N > 1,
considered in this paper, there exists many nonconvex quasiconvex integrands of linear growth.

The question of existence of minimizers can then be successfully tackled if we assume that (1.3)
holds and allow maps of bounded variation as minimizers. Indeed, a minimizing sequence (uj) for the
problem (1.2) is then bounded in W1,1 and so admits a subsequence (ujk) so that for some u ∈ BV =

BV(Ω,RN ) we have ujk → u in L1 and of course still supk
∫

Ω
|∇ujk |dx < ∞. We express this by

writing ujk
∗
⇀ u in BV and recall that u : Ω → RN is of bounded variation, written u ∈ BV, if it is

L1 and its distributional partial derivatives are measures: Du = [∂ui/∂xj ] is a bounded RN×n-valued
Radon measure on Ω. We must extend the functional (1.2) to such u in a meaningful way, which in the
present context is most conveniently done by semicontinuity following a procedure used by LEBESGUE,
SERRIN and for quasiconvex integrals of anisotropic growth MARCELLINI [52]:

F [u,Ω] := inf

{
lim inf
j→∞

∫
Ω

F (∇uj) dx : (uj) ⊂W1,1
g (Ω,RN ), uj → u in L1(Ω,RN )

}
(1.5)

Building on the works by AMBROSIO & DAL MASO [7] and FONSECA & MÜLLER [32] an integral
representation for the functional F [u,Ω] was found in [49] under the assumptions of quasiconvexity,
linear growth (1.1) and mean coercivity (1.3). For such integrands we define the recession integrand
by

F∞(z) := lim sup
t↗∞

F (tz)

t
, z ∈ RN×n.

Then F∞ is quasiconvex and positively 1-homogeneous [62]. Given u ∈ BV we can write the
Lebesgue–Radon–Nikodým decomposition ofDu into its absolutely continuous and singular parts with
respect to L n as

Du = Dacu+Dsu = ∇uL n + dDsu
d|Dsu| |D

su|,

and have then

F [u,Ω] =

∫
Ω

F (∇u) dx+

∫
Ω

F∞
(

dDsu

d|Dsu|

)
d|Dsu|+

∫
∂Ω

F∞
(
(g − u)⊗ νΩ

)
dHn−1,(1.6)

where νΩ is the outward unit normal on ∂Ω. The last term, akin to a penalization term for failure
to satisfy the Dirichlet boundary condition, must be there because the trace operator is not weak∗

continuous on BV. We shall use the shorthand∫
Ω

F (Du) :=

∫
Ω

F (∇u) dx+

∫
Ω

F∞
(

dDsu

d|Dsu|

)
d|Dsu|

for the first two terms on the right-hand side in (1.6). It turns out that this expression also coincides with
an extension by (area-strict) continuity of the integral (1.2) initially defined on the Sobolev space W1,1

(see [49, Theorem 4] and Lemmas 2.1 and 2.2 below). Let us summarize, under the above assumptions
on F , we have that all minimizing sequences admit a weakly∗ convergent subsequence whose limit
u ∈ BV is a minimizer for the functional defined at (1.6): F [u,Ω] ≤ F [v,Ω] holds for all v ∈ BV.
In particular we have for v ∈ BV so u− v has compact support in Ω that

(1.7)
∫

Ω

F (Du) ≤
∫

Ω

F (Dv)

holds. It is clear that we should not expect that the minimality condition (1.7) under the above assump-
tions on F would entail regularity of u on the Schauder Ck,α scale for a k ≥ 1. For that we must
evidently impose on F a stronger quasiconvexity condition, one that in particular ensures that F cannot
be affine on any open subset of matrix space RN×n. In view of the above discussion it is natural to
require that, for some fixed positive constant ` > 0, F − `E is quasiconvex at all z ∈ RN×n. That this
turns out to be sufficient for regularity is our main result:
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Theorem 1.1. Let `, L > 0 be positive constants and suppose the integrand F : RN×n → R satisfies
the following three hypotheses:

(H0) F is C2,1
loc

(H1) |F (z)| ≤ L(|z|+ 1) ∀ z ∈ RN×n

(H2) z 7→ F (z)− `E(z) is quasiconvex,

where E : RN×n → R is the reference integrand defined in (1.4). Then for each m > 0 there exists
εm = εm(`/L, F ′′) > 0 with the following property. If u ∈ BV(Ω,RN ) is a minimizer in the sense of
(1.7), and B = Br(x0) ⊂ Ω is a ball such that

(1.8) |(Du)B | :=
∣∣∣∣Du(B)

L n(B)

∣∣∣∣ < m and
1

L n(B)

∫
B

E
(
Du− (Du)BL n

)
< εm,

then u is C2,α on Br/2(x0) for each α < 1. More precisely, u is C2 on Br/2(x0) and there exists a
constant c = c(α, `/L, F ′′) such that

(1.9) sup
x,y∈Br/2(x0)

x 6=y

|∇2u(x)−∇2u(y)|2

|x− y|2α
≤ c

rn+2+2α

∫
Br(x0)

E
(
Du− (Du)Br(x0)L

n
)
.

In particular, it follows that the minimizer u is partially regular, in the sense that there exists an open
subset Ωu ⊂ Ω such that L n(Ω \ Ωu) = 0 and u is C2,α

loc on Ωu for each α < 1.

It is important to note that without the smallness condition (1.8) we do not expect the minimizer to
be regular in the sense of (1.9). This is a feature of the multi-dimensional vectorial case n,N ≥ 2 rather
than our assumptions, at least when n ≥ 3, N ≥ 2. Indeed, for dimensions n ≥ 3, N ≥ 2 there exists
a regular variational integrand F : RN×n → R (meaning that F is C∞ smooth, has bounded second
derivative |F ′′| ≤ L and z 7→ F (z) − `|z|2 is convex) that admits a Lipschitz but non-C1 minimizer,
see [58]. In higher dimensions, the minimizers of regular variational integrals can be more singular, for
instance, non-Lipschitz when n ≥ 3, N ≥ 5 and unbounded when n ≥ 5, N ≥ 14, see [70, 71]. When
n = 2,N ≥ 2 it is a result due to MORREY [60] that minimizers of regular variational integrals must be
smooth, but it is not clear precisely how big the singular set Ω\Ωu can be when n ≥ 3, N ≥ 2. Higher
differentiability and GEHRING’s lemma (in the adapted form [37, Proposition 5.1])) yield for regular
variational problems that its Hausdorff dimension is strictly smaller than n−2, see [13, 38, 42, 56] for a
comprehensive discussion of this and related matters. In the quasiconvex p-growth case these methods
do not apply. The only result at present is [48] where it is shown that the singular set will be uniformly
porous (and so in particular of outer Minkowski dimension strictly smaller than n) under the additional
assumption that the minimizer is Lipschitz.

The underlying ideas for the proof of Theorem 1.1 have many sources and it is not easy to give
proper credit. However, the proof strategy can be traced back to at least DE GIORGI [25] and ALM-
GREN [5, 6] in their works on minimal surfaces in the parametric context of geometric measure theory.
The first to adapt their strategy to the nonparametric case seem to be GIUSTI & MIRANDA [43] and
MORREY [61], who proved partial regularity for minimizers to regular variational problems and weak
solutions to certain nonlinear elliptic systems. The key step in these proofs is to establish a so-called
excess decay estimate, which amounts to an integral expression of Hölder continuity. This is achieved
by use of the very robust excess decay estimates that hold for solutions to linear elliptic systems with
constant coefficients. Indeed, these excess decay estimates are then transferred to the minimizer/weak
solution by means of a linearization procedure and Caccioppoli inequalities. In the presence of con-
vexity/monotonicity the required Caccioppoli inequalities are derived by use of the difference-quotient
method in some form. This method cannot be applied in the quasiconvex case. The difficulty was
overcome by EVANS [29] who adapted an argument used by WIDMAN [75] in another context to derive
Caccioppoli inequalities of the second kind. Hereby he proved partial regularity of minimizers under
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controlled quadratic growth conditions (see [42] and [38] for the terminology). Shortly afterwards
FUSCO & HUTCHINSON [34] and GIAQUINTA & MODICA [39] extended the result to minimizers of
variational integrals with general integrands F = F (x, u,∇u) of controlled p-growth in the ∇u vari-
able for p ≥ 2. This was further extended by ACERBI & FUSCO [1] to integrands of natural p-growth
for p ≥ 2. A more direct proof of this result was subsequently obtained by GIAQUINTA [40] who
also established Caccioppoli inequalities for minimizers in the general case F = F (x, u,∇u) with
p-growth for p ≥ 2. Let us remark that the main role of the Caccioppoli inequalities in these proofs
is to provide compactness in some suitable context dependent sense. This is clearly seen in the blow-
up arguments used in for instance [29, 34, 1], and it was noticed by EVANS & GARIEPY [30] that it
is possible to extract the necessary compactness information without explicitly going through a Cac-
cioppoli inequality. Partial regularity in the general subquadratic case was established by CAROZZA,
FUSCO & MINGIONE in [19], and many interesting extensions have followed since then, these include
[2, 3, 21, 33, 35, 23, 26, 28, 27, 44, 45, 66]. The monograph [42] gives a good summary of the situation
around the mid 90s. All the above results concern the case of variational integrals that are coercive on
a Sobolev space W1,p for some p > 1 and do not concern the linear growth case. The only previous
partial regularity results in the multi-dimensional vectorial case for minimizers of variational integrals
of linear growth were based on a method proposed by ANZELLOTTI & GIAQUINTA in [10]. While this
method has been adapted by SCHMIDT [67, 68] to cover also some degenerate convex cases, the method
still crucially relies on convexity, and it cannot work for quasiconvex integrands. Further references on
various interesting aspects of existence and regularity of minimizers in the BV context with a standard
convexity assumption include [12, 14, 15, 36].

Remark 1.2. The main point of Theorem 1.1 is that the smallness condition (1.8) under the hypotheses
(H0), (H1), (H2) yields C1 regularity of the minimizer near the point x0. The fact that we obtain C2,α

regularity on Br/2(x0) for all α < 1 is a standard outcome of this type of proof. In this connection we
emphasize our hypothesis (H0) that is stronger than the usual assumption of C2 that is normally used
in this context. We invite the reader to check that our proof also yields C2 regularity on Br/2(x0) of
minimizers under the smallness condition (1.8) when (H0) is relaxed to

(H0) F is C2,β
loc

for some β > 1 − 1
n . However, the proof does seem to require a local smoothness assumption on the

integrand that is stronger than C2 and it is even unclear if one can relax it beyond (H0).

As indicated above, we prove Theorem 1.1 by adapting the linearization procedure and Caccioppoli
inequalities to the linear growth BV scenario. In doing this there are a number of difficulties that
must be overcome. The main difficulty turns out to be the linearization procedure, where one cannot
work in the natural energy space W1,2 for the linear elliptic system that corresponds to a suitable
second Taylor polynomial of the integrand. This happens already in the case of subquadratic growth
integrands on Sobolev space W1,p, but the situation in the linear growth case is more severe as it by
its very nature must be degenerate at infinity. The usual ways for implementing this step do seem to
require modification. Our variant consists in an explicit construction of a test map that upon use delivers
the required estimate. We believe this approach could be a useful alternative also in the standard
p-growth case, and intend to return to this and other applications in future work. The Caccioppoli
inequality of the second kind is established following the proof given by EVANS [29] and presents
no problem. It is however important to emphasize that in the linear growth case these Caccioppoli
inequalities do not allow us to establish a reverse Hölder inequality for the gradient and so we cannot
prove higher integrability by use of Gehring’s Lemma. Indeed, such higher integrability is ruled out by
a counterexample due to BUCKLEY & KOSKELA [17]. This can also be directly seen from the example
of the sign function on (−1, 1) which does satisfy a Caccioppoli inequality and belongs to BV(−1, 1)\
W1,1(−1, 1). A brief discussion of the compactness that can be inferred from a Caccioppoli inequality
of the second kind is contained in Remark 4.5 below. We refer the interested reader to [41] for more
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details on this, but remark here that it is for this reason that we have so far not been able to treat the
case of minimizers for the general linear growth case F = F (x, u,∇u).

Finally we note that the proof of Theorem 1.1 is fairly robust. However, in view of the failure of
Korn’s inequality in L1, and its consequence, that the space of maps of bounded deformation BD is
strictly larger than BV, the extension of our results to a BD context under natural assumptions is not
immediate. The main difficulty in transferring the proofs is that BD maps do not have an obvious
Fubini property as do BV maps (see Lemma 2.3). Nevertheless this obstacle can be overcome and the
first author has extended some of the results presented here to BD in his DPhil thesis [41].

1.1. Organization of the paper. In Section 2 we fix notation, collect basic facts about BV-functions
and record various auxiliary estimates. We mention here in particular Subsection 2.5 on quasiconvexity
that, besides recalling the relevant definitions and elementary facts, also makes explicit the very flexi-
ble and possibly nonconvex nature of integrands satisfying the hypotheses (H0), (H1), (H2). Section 3
contains the proof of Proposition 3.1 that, as mentioned above, clarifies the role of our strong quasi-
convexity assumption (H2). The subsequent Section 4 is devoted to the proof of Theorem 1.1 that we
have spelled out into 5 steps, each presented in a subsection. Probably the most interesting aspect of
the proof is contained in Subsection 4.3 on approximation by harmonic maps, alas the linearization
procedure. Finally, we end the paper by briefly indicating possible extensions and variants of Theorem
1.1 that can be easily established by variants of the proof given in Section 4.

Acknowledgments. Both authors gratefully acknowledge the hospitality and financial support of the
Max-Planck-Institute for Mathematics in the Natural Sciences during a stay in Leipzig in Spring 2017,
where large parts of this project were concluded. The first author moreover acknowledges financial
support by the EPSRC throughout his doctoral studies at Oxford during 2013–17 and the Hausdorff
Centre of Mathematics in Bonn for his current postdoc position.

2. PRELIMINARIES

2.1. Functions of measures. Here we fix the notation and recall background facts about measures.
Our reference for measure theory is [8] whose notation and terminology we also follow. Let H be a
finite dimensional Hilbert space and let µ be an H–valued Radon measure on the open subset Ω of Rn.
Its total variation measure, denoted |µ| and defined using the norm of H, is a nonnegative (possibly
infinite) Radon measure on Ω. We say that µ is a bounded Radon measure if it has finite total variation
on Ω: |µ|(Ω) <∞. With respect to the n–dimensional Lebesgue measure L n we have the Lebesgue–
Radon–Nikodým decomposition of µ:

µ =
dµ

dL n
L n +

dµ

d|µs|
µs.

For a Borel function f : Ω×H→ R satisfying for some constant c ≥ 0 the linear growth, or 1-growth,
condition |f(x, z)| ≤ c

(
|z|+ 1

)
for all (x, z) ∈ Ω×H we define the (upper) recession function as

(2.1) f∞(x, z) := lim sup
x′→x,z′→z
t→∞

f(x′, tz′)

t
, (x, z) ∈ Ω×H.

Hereby f∞ : Ω × H → R is Borel, satisfies the growth condition |f∞(x, z)| ≤ c|z| for all (x, z) ∈
Ω×H and is positively 1-homogeneous in its second argument: f∞(x, tz) = tf∞(x, z) for t ≥ 0. For
µ, f as above we define the signed Radon measure f(·, µ) by prescribing for each Borel set A whose
closure is compact and contained in Ω that∫

A

f(·, µ) :=

∫
A

f

(
· , dµ

dL n

)
dL n +

∫
A

f∞
(
· , dµ

d|µs|

)
d|µs|.

When µ is a bounded Radon measure the above formula extends to all Borel sets A ⊆ Ω and we easily
check that it hereby defines a bounded Radon measure on Ω. When, in addition to the above, f is
assumed continuous and the limes superior in (2.1) is a limit for all (x, z), then we say that f admits a
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regular recession function. It is then easily seen that f∞ must be continuous too (as a locally uniform
limit of continuous functions). Note that the function f = 1Ω ⊗ E satisfies the above conditions and
admits a regular recession function, f∞ = 1Ω ⊗ | · |. In fact, as is easily seen, any continuous function
f : Ω×H→ R satisfying the above 1-growth condition and so z 7→ f(x, z) is convex, admits a regular
recession function.

We apply in particular the above notation to functions that do not depend explicitly on x, so f : H→
R, and in this case we write interchangably f(µ)(A) and

∫
A
f(µ) for the measure. This notation is

consistent in the sense that for f = | · |, f(µ) is simply the total variation measure of µ and for f = E,
f(µ) + L n is the total variation measure of the H×R-valued measure (µ,L n). It is well-known that
these two functionals give rise to useful notions of convergence for sequences of Radon measures. For
bounded H-valued Radon measures on Ω we say that µj → µ strictly on Ω iff µj

∗
⇀ µ in C0(Ω,H)∗

and |µj |(Ω) → |µ|(Ω). A slightly stronger mode of convergence is E-strict or area-strict convergence
on Ω: µj

∗
⇀ µ in C0(Ω,H)∗ and

∫
Ω
E(µj) →

∫
Ω
E(µ). Any Radon measure can be area-strictly

approximated by smooth maps using mollification and a well-known result of Reshetnyak [64] (and
[49, Appendix]) states that for a continuous function f : Ω × H → R of 1-growth and admitting a
regular recession function we have ∫

Ω

f(·, µj)→
∫

Ω

f(·, µ)

whenever µj → µ area-strictly on Ω. Finally we shall often use the short-hand∫
Ω

f(µ− z) :=

∫
Ω

f
(
µ− zL n

)
for z ∈ H and H-valued Radon measures µ.

2.2. Mappings of bounded variation. Our reference for maps of bounded variation is [8] and we
follow the notation and terminology used there. Here we briefly recall a few definitions and background
results.

Let Ω be a bounded, open subset of Rn. We say that an integrable map u : Ω → RN has bounded
variation if its distributional gradient can be represented by a bounded RN×n–valued Radon measure,
that is, if

|Du|(Ω) := sup

{∫
Ω

udiv(ϕ) dx : ϕ ∈ C1
c(Ω,RN×n), |ϕ| ≤ 1

}
<∞.

Here and in what follows, the divergence operator, div, applied to RN×n–valued distributions is under-
stood to act row–wise. The space of maps of bounded variation is denoted by BV(Ω,RN ) and it is a
Banach space under the norm ‖v‖BV := ‖v‖L1 + |Dv|(Ω). We shall use freely the results from [8] for
such maps, including in particular Poincaré and Sobolev type inequalities.

We stress that we throughout the paper consider integrable maps in terms of their precise representa-
tives that we define as follows. Assume u ∈ L1

loc(Ω,H), where as in the previous subsection H denotes
a finite dimensional Hilbert space. We say that u has approximate limit y ∈ H at x0 ∈ Ω, and write

ap lim
x→x0

u(x) = y

provided that

lim
r↘0
−
∫
Br(x0)

|u(x)− y|dx = 0.

The set Su of points in Ω where no such limit exists is the approximate discontinuity set for u:
Su = {x ∈ Ω : u has no approximate limit at x}. It is an L n negligible Borel set and the precise
representative is defined for each x ∈ Ω \ Su by (a slight abuse of notation):

u(x) := ap lim
x′→x

u(x′).
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Then u : Ω \ Su → H is Borel measurable, and it is not so important for the developments of this
paper how we define the precise representative on the set Su. Note that when (ρε)ε>0 is a standard
smooth mollifier and u ∈ L1

loc(Ω,H), then uε = ρε ∗ u is C∞ on Ωε = {x ∈ Ω : dist(x, ∂Ω) > ε}
and uε(x) → u(x) as ε ↘ 0 for each x ∈ Ω \ Su (as well as locally in L1 on Ω). When u is of
bounded variation the above convergence holds in a stronger sense, though not in the BV norm defined
above. Partly for this reason it is useful to consider other modes of convergence too. We say that a
sequence (uk) in BV(Ω,RN ) converges to u ∈ BV(Ω,RN ) in the weak*–sense if uk → u strongly in
L1(Ω,RN ) and Duk

∗
⇀ Du in C0(Ω,RN×n)∗ as k → ∞. We further say that (uk) converges to u in

the BV strict sense on Ω if uk
∗
⇀ u and |Duk|(Ω) → |Du|(Ω) as k → ∞. Lastly, we say that (uk)

converges to u in the BV area–strict sense on Ω if uk
∗
⇀ u and∫

Ω

E(Duk)→
∫

Ω

E(Du)

as k →∞. We recall that smooth maps are dense in BV(Ω,RN ) in the BV area–strict sense, and more
precisely:

Lemma 2.1. Let B = BR(x0) be a ball and u ∈ BV(B,RN ). Then there exists a sequence (uj) of
C∞ maps uj : B → RN , each of Sobolev class W1,1(B,RN ), satisfying uj |∂B = u|∂B and so uj → u

BV area–strictly on B.

See for instance [14, Lemma B.2] or [50, Lemma 1] for a proof that works on general domains.

Lemma 2.2. Let G : RN×n → R be rank-one convex and of linear growth: |G(z)| ≤ c(|z|+ 1) for all
z ∈ RN×n. If u, uj ∈ BV(Ω,RN ), where Ω is a bounded Lipschitz domain in Rn, and uj → u BV

area–strictly on Ω, then ∫
Ω

G(Duj)→
∫

Ω

G(Du) as j →∞.

We refer to [49, Theorem 4] for a proof.

Lemma 2.3. For a ball B = BR(x0) let u ∈ BV(B,RN ). Then for L 1 almost all radii r ∈ (0, R)

the pointwise restriction u|∂Br coincides with the traces from Br and from B \ Br of u and is BV on
∂Br. Furthermore, given two radii 0 < r < s < R we can find a radius t ∈ (r, s) such that u|∂Bt is
as above and its total variation over ∂Bt is bounded as

(2.2)
∫
∂Bt

|Dτ (u|∂Bt)| ≤
c

s− r

∫
Bs\B̄r

|Du|,

where c = c(n,N) is a constant and Dτ (u|∂Bt) denotes the tangential derivative (see (2.3) below).

Proof. We can assume that x0 = 0. For a standard smooth mollifier (ρε)ε>0 we put uε = ρε ∗ u. Then
uε ∈ C∞(BR−ε,RN ) and we have uε → u BV strictly on Bs′ \ Br′ for any radii r ≤ r′ < s′ ≤ s

with |Du|(∂Bs′ ∪ ∂Br′) = 0. Furthermore, uε(x)→ u(x) for each x ∈ B \ Sū as ε↘ 0.
The tangential derivative of uε at x ∈ ∂Bt on the sphere ∂Bt is given by

(2.3) ∇τ (uε|∂Bt)(x) = ∇uε(x)
(
I − x⊗x

t2

)
so by integration in polar coordinates∫ s

r

∫
∂Bt

|Dτ (uε|∂Bt)|dt =

∫ s

r

∫
∂Bt

|∇τ (uε|∂Bt)|dHn−1 dt

≤
∫ s

r

∫
∂Bt

|∇uε|dHn−1 dt

=

∫
Bs\Br

|∇uε|dx =

∫
Bs\Br

|Duε|.

The set M = {t ∈ (r, s) : Hn−1(Su ∩ ∂Bt) > 0} is L 1 negligible, and for t ∈ (r, s) \M we have
that, as ε↘ 0, uε(x)→ u(x) for Hn−1 a.e. x ∈ ∂Bt and by the trace theorem (see [8] Th. 3.77) also
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in L1(∂Bt,RN ). Next, Fatou’s lemma and the strict convergence give for the radii r ≤ r′ < s′ ≤ s

selected above that ∫ s′

r′
lim inf
ε↘0

∫
∂Bt

|∇τ (uε|∂Bt)|dHn−1 dt ≤
∫
Bs\B̄r

|Du|,

and hence taking r′ ↘ r and s′ ↗ s we get∫ s

r

lim inf
ε↘0

∫
∂Bt

|∇τ (uε|∂Bt)|dHn−1 dt ≤
∫
Bs\B̄r

|Du|.

For each t ∈ (r, s) \M such that

lim inf
ε↘0

∫
∂Bt

|∇τ (uε|∂Bt)|dHn−1 <∞

which is L 1 almost all t, we can find a subsequence εj = εj(t) ↘ 0 such that uεj |∂Bt → u|∂Bt in
L1(∂Bt,RN ) and pointwiseHn−1 a.e., and

lim
j→∞

∫
∂Bt

|∇τ (uεj |∂Bt)|dHn−1 <∞.

This implies that u|∂Bt ∈ BV(∂Bt,RN ). Finally, the last assertion follows because we can select
t ∈ (r, s) \M so

lim inf
ε↘0

∫
∂Bt

|∇τ (uε|∂Bt)|dHn−1 ≤ 2
s−r

∫
Bs\B̄r

|Du|,

and then conclude by selecting a suitable subsequence εj ↘ 0 as above. It follows that the pointwise
restriction of the precise representative u|∂Bt ∈ BV(∂Bt,RN ) coincides Hn−1 a.e. with the traces of
u from Bt and from Bs \Bt and that (2.2) holds. �

For the statement of the next result we recall that for a ball B = BR(x0) in Rn, s ∈ (0, 1) and
p ∈ (1,∞) the Sobolev-Slobodeckiı̆ spaces Ws,p(B,RN ) and Ws,p(∂B,RN ) consist of all integrable
maps u : B → RN , v : ∂B → RN for which the Gagliardo norm

‖u‖Ws,p(B,RN ) =
(
‖u‖p

Lp(B,RN )
+ |u|p

Ws,p(B,RN )

) 1
p

,

‖v‖Ws,p(∂B,RN ) =
(
‖v‖p

Lp(∂B,RN )
+ |v|p

Ws,p(∂B,RN )

) 1
p

is finite, respectively. Here we define the corresponding semi-norms as, respectively,

|u|Ws,p(B,RN ) =

(∫
B

∫
B

|u(x)− u(y)|p

|x− y|n−1+sp
dx dy

) 1
p

.

and

|v|Ws,p(∂B,RN ) =

(∫
∂B

∫
∂B

|v(x)− v(y)|p

|x− y|n−1+sp
dHn−1(x) dHn−1(y)

) 1
p

.

Lemma 2.4. Assume the dimension n ≥ 3. Let B = BR(x0) be a ball and v ∈ BV(∂B,RN ). Then
v ∈W

1
n ,

n
n−1 (∂B,RN ) and(
−
∫
∂B

∫
∂B

|v(x)− v(y)|
n
n−1

|x− y|n−1+ 1
n−1

dHn−1(x) dHn−1(y)

)1− 1
n

≤ cR1− 1
n−
∫
∂B

|Dτv|,

where c = c(n,N) is a constant.
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We refer to [16, Lemma D.2] for a proof that BV(Rn−1) for dimensions n ≥ 3 embeds into
W

1
n ,

n
n−1 (Rn−1). Lemma 2.4 can be recovered from this result by the usual arguments involving local

coordinates and a partition of unity. Note that the embedding fails for dimension n = 2: an indicator
function for a circular arc has bounded variation on ∂B but it is not of class W

1
2 ,2(∂B). In the two-

dimensional case we instead have an embedding into the larger L2 based Nikolskiı̆ space that we in this
context may define as

B
1
2 ,2∞ (∂B,RN ) =

{
v ∈ L2(∂B,RN ) : sup

0<|h|<R/2

∫
∂B

|v
(
x+h
|x+h|

)
− v(x)|2 dH1(x)/|h| <∞

}
.

This definition is easily seen to be equivalent to the one obtained by transferring the usual definition on
the interval (−1, 1) by local coordinates and a partition of unity. A proof of the aforementioned em-
bedding can therefore be inferred from [73, Lemma 38.1]. In combination with a Sobolev embedding
result (see [73, Lemma 22.2, (34.4) and Lemma 36.1] or [74, Theorem 4.6.1(a)]) we then deduce:

Lemma 2.5. Assume the dimension n = 2. Let B = BR(x0) ⊂ R2 be a ball and v ∈ BV(∂B,RN ).
Then v ∈W1− 1

p ,p(∂B,RN ) for each p ∈ (1, 2) and(
−
∫
∂B

∫
∂B

|v(x)− v(y)|p

|x− y|p
dH1(x) dH1(y)

) 1
p

≤ cR
1
p−
∫
∂B

|Dτv|,

where c = c(N, p) is a constant.

When u ∈ C0(Ω,RN ) we denote by TrΩ(u) = u|∂Ω the primitive trace operator of u on ∂Ω, and
when we write TrΩ(v) for more general Sobolev mappings v below we understand as usual this trace
as the extension by continuity of the primitive trace operator to the relevant space. We refer to [73, 74]
for further background on Besov and Sobolev-Slobodeckiı̆ spaces. However, for later reference we
explicitly recall two instances of Gagliardo’s trace theorem here.

Lemma 2.6. For bounded Lipschitz domains Ω in Rn the trace operator u 7→ u|∂Ω extends from
smooth maps on Ω by strict continuity to a well-defined strictly continuous linear surjective operator

TrΩ : BV(Ω,RN )→ L1(∂Ω,RN ).

Furthermore, we already have TrΩ

(
W1,1(Ω,RN )

)
= L1(∂Ω,RN ). In particular we have for a ball

B = BR(x0), writing ū = TrB(u) for u ∈ BV(B,RN ) that

(2.4)
∫
∂B

∣∣∣∣ū−−∫
∂B

ūdHn−1

∣∣∣∣ dHn−1 ≤ c
∫
B

|Du|,

where c = c(n,N) is a constant.

Lemma 2.7. For the unit ball B = B1(0) there exists a bounded linear extension operator

E: Wk− 1
p ,p(∂B,RN )→Wk,p(B,RN ), k ∈ N, 1 < p <∞.

More precisely, E does not depend on k, p and is a bounded linear operator such that TrB ◦ E is the
identity on Wk− 1

p ,p(∂B,RN ).

2.3. Auxiliary estimates for the reference integrand E. We write E(z) for the reference integrand
defined at (1.4) whenever z ∈ H and H is a finite dimensional Hilbert space. Firstly, elementary
estimations yield

(2.5)


(
√

2− 1) min{|z|, |z|2} ≤ E(z) ≤ min{|z|, |z|2}

E(az) ≤ a2E(z) and E(z + w) ≤ 2
(
E(z) + E(w)

)
for all z, w ∈ H and a ≥ 1. For the following, define for a measurable subset A of Rn and a H–valued
Radon measure µ on Rn the mean value µB := µ(B)/L n(B).
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Lemma 2.8. Let φ be a bounded H–valued Radon measure on an open ball B in Rn. Then

(2.6)
∫
B

E(φ− φB) ≤ 4

∫
B

E(φ− z)

for all z ∈ H.

Proof. By mollification we can asssume that φ ∈ L1(B,H). From (2.5) and convexity we find∫
B

E(φ− φB) dx ≤ 2

∫
B

E(φ− z) dx+ 2L n(B)E(φB − z)

≤ 4

∫
B

E(φ− z) dx

as required. �

Lemma 2.9. Let φ be a bounded H–valued Radon measure on an open ball B in Rn. Then

−
∫
B

|φ| ≤
√

E 2 + 2E , where E = −
∫
B

E(φ).

In particular, for E ≤ 1 we have

(2.7) −
∫
B

|φ|dx ≤
√

3E .

Proof. By mollification we can asssume that φ ∈ L1(B,H). From Jensen’s inequality

E

(
−
∫
B

|φ|dx
)
≤ −
∫
B

E(φ) dx = E ,

and hence solving for the L1 norm we easily conclude. �

2.4. Estimates for Legendre-Hadamard elliptic systems. The space of symmetric and real bilinear
forms on RN×n is denoted by

⊙2
(RN×n) and equipped with the operator norm, denoted and defined

for A ∈
⊙2

(RN×n) as |A| = sup{A[z, w] : |z|, |w| ≤ 1}. Observe that the precise meaning of | · |
can be understood from the context, and for a matrix z ∈ RN×n we use it to denote the usual euclidean
norm: |z|2 = trace(ztz). Likewise for vectors in Rk. Fix A ∈

⊙2
(RN×n) and assume it satisfies the

strong Legendre-Hadamard condition

(2.8)
{
α|y|2|x|2 ≤ A[y ⊗ x, y ⊗ x] ∀y ∈ RN , ∀x ∈ Rn
|A| ≤ β,

where α, β > 0 are constants. Any RN -valued distribution u on Ω satisfying

−divADu = 0 in the distributional sense on Ω

where div is understood to act row-wise, is called A-harmonic, or simply harmonic when A is clear
from the context.

The next lemma is a standard Weyl-type result and can for instance be proved using the difference-
quotient method (see [38, 42, 57, 60]).

Lemma 2.10. Let A ∈
⊙2

(RN×n) satisfy (2.8). Then there exists a constant c = c(βα , n,N) with the
following propeties. Let B = BR(x0) be a ball in Rn and assume that h ∈W1,1(B,RN ) is harmonic
in B: −divA∇h = 0 in B. Then h is C∞ on B and for any z ∈ RN×n we have

sup
BR

2

|∇h− z|+R sup
BR

2

|∇2h| ≤ c−
∫
BR

|∇h− z|dx.

Finally we state two basic existence and regularity results for inhomogeneous Legendre-Hadamard
elliptic systems that are instrumental for our arguments below.
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Proposition 2.11. Let A ∈
⊙2

(RN×n) satisfy (2.8) and fix exponents p ∈ (1,∞) and q ∈ [2,∞).
Denote B = B1(0), the open unit ball in Rn.

(a) For each g ∈ W
1− 1

p ,p(∂B,RN ) there exists a unique solution h ∈ W1,p(B,RN ) to the elliptic
system

(2.9)
{
−divA∇h = 0 in B
h|∂B = g on ∂B,

and
‖h‖W1,p ≤ c‖g‖

W
1− 1

p
,p

where c = c(n,N, p, αβ ).
(b) For each f ∈ Lq(B,RN ) there exists a unique solution w ∈W2,q(B,RN ) to the elliptic system

(2.10)
{
−divA∇w = f in B
w|∂B = 0 on ∂B,

and
‖w‖W2,q ≤ c‖f‖Lq ,

where c = c(n,N, q, αβ ).

While these results are well-known we have been unable to find a precise reference. They can be
inferred from more general results stated in [60], see in particular Theorems 6.4.8 and 6.5.5 there, and
also from [54], Lemma 3.2 (taking the remark on page 106 into account). The last reference does not
provide details for the general Legendre-Hadamard elliptic case, but the reader can find the nontrivial
calculations and further background in the book [57]. All the above mentioned proofs rely on boundary
layer methods, and the work on these is still ongoing with many interesting open questions remaining,
see for instance [53]. However the proof of Proposition 2.11 need not be so sophisticated. An easier
route goes via the elegant approach exposed by GIUSTI in [42, Chapter 10]. As stated there it builds
on earlier works by STAMPACCHIA [69] and CAMPANATO [18], and derives Lp estimates from simple
L2 estimates and interpolation. For the convenience of the reader we provide a brief sketch along these
lines.

Sketch of Proof. (a): By virtue of Gagliardo’s trace theorem, as stated in Lemma 2.7, we can find an
extension ḡ ∈W1,p(B,RN ) with ḡ|∂B = g and

(2.11) ‖ḡ‖W1,p ≤ c‖g‖
W

1− 1
p
,p

for a constant c = c(n,N, p). If we put h̄ = h− ḡ, then by simple substitution we see that we can shift
attention from (2.9) to the system

(2.12)
{
−divA∇h̄ = −divV in B,
h̄|∂B = 0 on ∂B,

where V = A∇ḡ ∈ Lp(B,RN×n). Now for p ∈ [2,∞) existence, uniqueness and Lp estimate all
follow from [42, Theorem 10.15] and (2.11).

It remains to consider the subquadratic case p ∈ (1, 2). In this situation we take Vj ∈ L2(B,RN×n)

so ‖V − Vj‖Lp → 0, and let h̄j ∈W1,2
0 (B,RN ) be the unique solution to

(2.13)
{
−divA∇h̄j = −divVj in B,
h̄j |∂B = 0 on ∂B.

Note that Wj = |∇h̄j |p−2∇h̄j ∈ Lp
′
(B,RN×n), where p′ ∈ (2,∞) is the Hölder conjugate exponent

of p. Consequently, we infer from the above concluded superquadratic case that the elliptic system

(2.14)
{
−divA∇ϕj = −divWj in B,
ϕj |∂B = 0 on ∂B
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admits a unique solution ϕj ∈W1,p′

0 (B,RN ) with

(2.15) ‖ϕj‖W1,p′ ≤ c‖Wj‖Lp′ = c‖∇h̄j‖p−1
Lp

where c = c(n,N, p′, αβ ). If we test (2.13) with ϕj and use that A is symmetric, then ‖∇h̄j‖Lp ≤
c‖Vj‖Lp results. Now Poincaré’s inequality and (2.11) easily allow us to conclude that there exists
a solution to (2.9) satisfying the Lp estimate. It remains to prove uniqueness in the subquadratic
case. To that end we assume h ∈ W1,p

0 (B,RN ) satisfies −divA∇h = 0 in B. From Lemma 2.10
we know that h ∈ C∞(B,RN ) and so if we for r ∈ (0, 1) define hr(x) = h(rx), then clearly
hr|∂B ∈ W

1
2 ,2(∂B,RN ) and −divA∇hr = 0 in B. By uniqueness of W1,2 solutions it follows

from the above that ‖hr‖W1,p ≤ c‖hr|∂B‖
W

1− 1
p
,p . But clearly hr → h in W1,p(B,RN ) as r ↗ 1, so

‖hr|∂B‖
W

1− 1
p
,p → 0 as r ↗ 1 by the continuity of trace, and thus h = 0.

(b): Since q ∈ [2,∞) the assertion follows directly from [42], see (10.60)–(10.63) on pp. 369–370.
�

2.5. Quasiconvexity. We start by displaying MORREY’s definition of quasiconvexity [59, 60]:

Definition 2.12. A continuous integrand G : RN×n → R is quasiconvex at z0 ∈ RN×n provided

G(z0) ≤
∫

(0,1)n
G(z0 +∇ϕ(x)) dx

holds for all compactly supported Lipschitz maps ϕ : (0, 1)n → RN . It is quasiconvex if it is quasicon-
vex at all z0 ∈ RN×n.

It is well-known (see [24, 60]) that quasiconvexity implies rank-one convexity, and that rank-one
convexity and linear growth, say |G(z)| ≤ L(|z| + 1) for all z ∈ RN×n, yield a Lipschitz bound that
for C1 integrands takes the form

(2.16) |G′(z)| ≤ cL ∀ z ∈ RN×n.

The proof in [11] gives (2.16) with the constant c =
√

min{n,N}.
When a quasiconvex integrand G has linear growth it means that the quasiconvexity inequality can

be tested by more general maps. We have from [49, Proposition 1]:

Lemma 2.13. AssumeG : RN×n → R is quasiconvex and of linear growth. If ω is a bounded Lipschitz
domain in Rn, ϕ ∈ BV(ω,RN ) and a : Rn → RN is affine, then

L n(ω)G(∇a) ≤
∫
ω

G(Dϕ) +

∫
∂ω

G∞
(
(a− u)⊗ νω

)
dH n−1

holds, where νω is the outward unit normal on ∂ω.

As explained in the Introduction our quasiconvexity assumption (H2), that we shall refer to as strong
quasiconvexity, is very natural when compared to the minimal set of conditions that allows one to prove
existence of a BV minimizer by use of the direct method. We emphasize that quasiconvexity is much
more general than convexity and refer to [24] for a long list of examples of nonconvex quasiconvex
integrands. That there exists nonconvex quasiconvex integrands of linear growth is also well-known
(see [62, 76]). Here we shall briefly illustrate the abundance of nonconvex integrands F satisfying the
hypotheses (H0), (H1), (H2). In fact many of these integrands are nonconvex in the sense that also the
functional

v 7→
∫

Ω

F (∇v) dx

is nonconvex on the Dirichlet class W1,1
g .

Proposition 2.14. Let F : RN×n → R be quasiconvex and assume that for some exponent p ∈ (1,∞)

and constant L ≥ 1 we have the p-coercivity-growth condition:

|z|p ≤ F (z) ≤ L
(
|z|p + 1

)
∀ z ∈ RN×n.
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Then there exists a sequence (Fj) of integrands Fj : RN×n → R satisfying for some constants `j ,
Lj > 0,

(0) Fj is C∞

(1) |z| − 1 ≤ Fj(z) ≤ Lj(|z|+ 1) ∀ z ∈ RN×n

(2) z 7→ F (z)− `jE(z) is quasiconvex,

such that Fj(z)↗ F (z) as j ↗∞ pointwise in z ∈ RN×n.

The proof is an easy adaptation of [47, Proposition 1.10]. Observe that nonconvexity of F or the cor-
responding functional must be inherited by elements of the approximating sequence Fj for sufficiently
large values of j. We could therefore for instance apply Proposition 2.14 to the integrands constructed
in [63] to get the required examples. In fact, in view of the flexibility of the constructions in [63] we
could also arrange it so that the Euler-Lagrange system −divF ′j(∇v) = 0 admits, say compactly sup-
ported Lipschitz maps that are nowhere C1 as weak solutions. It is thus clear that all kinds of behaviour
of quasiconvex integrands of p-growth that play out in bounded sets of matrix space can be reproduced
by integrands satisfying the hypotheses (H0), (H1), (H2). In particular, in view of the nonconvex na-
ture of the variational problems it becomes relevant to investigate the regularity of various classes of
local minimizers as done in the p-growth case in [51, 20, 72]. We leave this for future investigations
and focus in the present paper entirely on absolute minimizers in the sense of (1.7).

2.6. Extremality of minimizers. The following result is closely related to [9, Theorem 3.7], but it
concerns more general integrands that are not covered there.

Lemma 2.15. Assume that F : RN×n → R is C1, rank-one convex and that |F (z)| ≤ L(|z| + 1)

holds for all z ∈ RN×n. Then for any local minimizer u ∈ BV(Ω,RN ) of the variational integral
F(v,Ω) =

∫
Ω
F (Dv) we have that F ′(∇u) ∈ L∞(Ω,RN×n) and

(2.17) −
∫

Ω

F∞(Dsϕ) ≤
∫

Ω

F ′(∇u)[∇ϕ] dx ≤
∫

Ω

F∞(−Dsϕ)

holds for all ϕ ∈ BV0(Ω,RN ). In particular, F ′(∇u) is row-wise divergence free.

Proof. First we recall that linear growth and rank-one convexity combine to give Lipschitz continuity
(2.16), hence the matrix valued map F ′(∇u) is bounded. Next, for ϕ ∈ BV(Ω,RN ) with compact
support in Ω and each ε ≥ 0 we put µ := |Ds(u+ εϕ)|+ |Dsu|+ |Dsϕ|. Then we may write

F∞
(
Ds(u+ εϕ)

)
− F∞

(
Dsu

)
=

(
F∞

(
dDsu

dµ
+ ε

dDsϕ

dµ

)
− F∞

(
dDsu

dµ

))
µ.

Here we have according to [4] that

rank

(
dDsϕ

dµ

)
≤ 1 µ–a.e.

and thus from [46, Lemma 2.5] and the assumptions on F we infer that

F∞
(
Ds(u+ εϕ)

)
− F∞

(
Dsu

)
≤ εF∞

(
Dsϕ

)
.

Consequently, by local minimality:

0 ≤
∫

Ω

F
(
(D(u+ εϕ)

)
−
∫

Ω

F
(
Du
)

≤
∫

Ω

∫ 1

0

F ′(∇u+ tε∇ϕ)[ε∇ϕ] dtdx+ ε

∫
Ω

F∞
(
Dsϕ

)
,

and hence, invoking the Lipschitz bound and Lebesgue’s dominated convergence theorem, we arrive at

0 ≤
∫

Ω

F ′(∇u)[∇ϕ] dx+

∫
Ω

F∞
(
Dsϕ

)
.
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Finally, we extend the above inequality by continuity to hold for all ϕ ∈ BV0(Ω,RN ). �

3. BOUNDEDNESS OF MINIMIZING SEQUENCES AND STRONG QUASICONVEXITY

Proposition 3.1. Assume F : RN×n → R is a continuous integrand of linear growth, let Ω ⊂ Rn be
a bounded Lipschitz domain and g ∈ W1,1(Ω,RN ). Then minimizing sequences for the variational
problem

(3.1) inf
u∈W1,1

g (Ω,RN )

∫
Ω

F (∇u) dx

are all bounded in W1,1 if and only if there exist ` > 0 and z0 ∈ RN×n such that F−`E is quasiconvex
at z0.

Proof. The if part follows from [22, Theorem 1.1] and to prove the only if part we must adapt the
proofs from [22]. We proceed in three steps.
Step 1. Let X be a simplex in Rn and z0 ∈ RN×n. We show that if all minimizing sequences for the
variational problem (3.1) in the special case Ω = X and g(x) = z0x are W1,1 bounded, then we can
find constants α > 0, β ∈ R depending only on F , X , z0, so

(3.2)
∫
X

F (z0 +∇ϕ) dx ≥
∫
X

(
α|∇ϕ|+ β

)
dx

holds for all ϕ ∈ W1,1
0 (X,RN ). We express this by saying that F is mean coercive, and recall from

[22, Theorem 1.1] that this is a property of F (so that we have a bound like (3.2) for any bounded
Lipschitz domain Ω and any g ∈W1,1(Ω,RN ) with α, β now depending on F , Ω, g). Following [22]
we consider the auxiliary function

Θ(t) = inf

{
−
∫
X

F (z0 +∇ϕ) dx : ϕ ∈W1,1
0 (X,RN ), −

∫
X

|∇ϕ|dx ≥ t
}

(t ≥ 0)

Because F has linear growth the W1,1 boundedness of minimizing sequences clearly implies that Θ

is a real-valued non-decreasing function. According to [22, Proposition 3.2] it is also convex. Conse-
quently, if Θ is bounded from above, then it must be constant: Θ(t) ≡ θ for all t ≥ 0, where θ ∈ R.
But this is impossible as it leads to the existence of minimizing sequences for (3.1) that are not bounded
in W1,1. Hence Θ is not bounded from above, and so by convexity we conclude that for some constants
α > 0, β ∈ R we must have Θ(t) ≥ αt + β for all t ≥ 0. Unravelling the definitions we have shown
that (3.2) holds.
Step 2. We show that if all minimizing sequences for (3.1) are W1,1 bounded, then F is mean coercive.
For this it is easiest to argue by contradiction: Assume that all minimizing sequences for (3.1) are W1,1

bounded, but that F is not mean coercive. The former, taken together with the linear growth of F ,
means in particular that

m := inf
u∈W1,1

g (Ω,RN )

∫
Ω

F (∇u) dx ∈ R.

The latter allows us by Step 1 to conclude that for any simplex X ⊂ Rn and any z0 ∈ RN×n, the
variational problem (3.1) with Ω = X and g(x) = z0x admits a minimizing sequence that is unbounded
in W1,1. Fix a polygonal open subset Ω′ b Ω and note that since F is continuous and of linear growth,
the functional v 7→

∫
Ω
F (∇v) dx is continuous on W1,1(Ω,RN ). By density of piecewise affine maps

in W1,1 we can therefore find a minimizing sequence (uj) for (3.1) such that each restriction uj |Ω′ is
piecewise affine. Let τj be the regular and finite triangulation of Ω′ so that uj is affine on each simplex
of τj . We apply the existence of W1,1 unbounded minimizing sequences for (3.1) for each Ω = X ∈ τj ,
z0 = ∇uj |X to find ϕj,X ∈W1,1

0 (X,RN ) so

jL n(X) <

∫
X

|∇ϕj,X |dx and
∫
X

F (∇uj +∇ϕj,X) dx ≤
∫
X

(
F (∇uj) +

1

j

)
dx.
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Defining vj := uj +
∑
X∈τj ϕj,X , where we extend each ϕj,X by 0 ∈ RN off X , we have a W1,1

unbounded minimizing sequence for (3.1), a contradiction that finishes the proof of Step 2.
Step 3. Conclusion from (3.2). We may assume that L n(X) = 1. Now E(z) ≤ |z| for z ∈ RN×n, so
if we take ` ∈ (0, α), put c = α− ` and G = F − `E, then (3.2) yields

(3.3)
∫
X

G(∇ϕ) dx ≥ c
∫
X

|∇ϕ|dx+ β

for all ϕ ∈ W1,1
0 (X,RN ). Recalling the Dacorogna formula for the quasiconvex envelope (see [24]

and the discussion in [22]) we take a sequence (ϕj) in W1,1
0 (X,RN ) so∫

X

G(∇ϕj) dx→ Gqc(0),

the quasiconvex envelope of G at 0. Obviously, Gqc(0) ≥ β, so Gqc is a real-valued quasiconvex
integrand satisfying Gqc ≤ G. Because G has linear growth, so does Gqc (see [22]). The probability
measures νj on RN×n defined for Borel sets A ⊂ RN×n by

νj(A) := L n

(
X ∩ (∇ϕj)−1(A)

)
all have centre of mass at 0 and uniformly bounded first moments:

c

∫
RN×n

|z|dνk + β ≤ sup
j

∫
X

G(∇ϕj) dx <∞

for k ∈ N. But then Banach-Alaoglu’s theorem applied in C0(RN×n)∗ yields a subsequence (not
relabelled) and ν ∈ C0(RN×n)∗ such that νj

∗
⇀ ν in C0(RN×n)∗. It is not hard to see that ν must

again be a probability measure on RN×n, and∫
RN×n

|z|dν ≤ lim inf
j→∞

∫
RN×n

|z|dνj <∞.

Since G−Gqc ≥ 0 is continuous we get by routine means that

0 ≤
∫
RN×n

(
G−Gqc

)
dν ≤ lim inf

j→∞

∫
RN×n

(
G−Gqc

)
dνj = 0,

and thus G = Gqc on the support of ν. This completes the proof. �

Remark 3.2. It is not difficult to show that under assumptions (H1), (H2) we have a principle of
convergence of energies in the sense that if uj

∗
⇀ u in BV, uj |∂Ω → u|∂Ω in L1(∂Ω,RN ) and∫

Ω

F (Duj)→
∫

Ω

F (Du),

then uj → u in the area-strict sense in BV. We do not give the details here and intend to return to this
in a more general framework elsewhere.

4. PROOF OF THEOREM 1.1

We split the proof into five steps, each of which is presented in a subsection.

4.1. Bounds for shifted integrands. For a C2 integrand F : RN×n → R we define for each w ∈
RN×n the shifted integrand Fw : RN×n → R by

Fw(z) = F (z + w)− F (w)− F ′(w)[z]

=

∫ 1

0

(1− t)F ′′(w + tz)[z, z] dt(4.1)

We use the same notation for shifted versionsEw of the reference integrandE, and record the following
elementary result for later reference.
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Lemma 4.1. For w, z ∈ RN×n we have (with obvious interpretation for w = 0 or z = 0)

(4.2) E′′(w)[z, z] =
1 + |w|2 − |w|2

(
w
|w| ·

z
|z|

)2

(
1 + |w|2

) 3
2

|z|2

and

(4.3) Ew(z) ≥ 2−4
(
1 + |w|2

)− 3
2E(z).

The proof of this result is straightforward and is omitted here. Next, we record the following ele-
mentary properties that Fw inherits from F :

Lemma 4.2. Suppose F : RN×n → R satisfies (H0), (H1), (H2). For each m > 0 there exists a
constant c = c(m) ∈ [1,∞) with the following properties. Fix w ∈ RN×n with |w| ≤ m. Then

(4.4) |Fw(z)| ≤ cLE(z), |F ′w(z)| ≤ cLmin{|z|, 1},

(4.5) |F ′′w(0)z − F ′w(z)| ≤ cLE(z)

holds for all z ∈ RN×n,

(4.6)
∫
B

Fw(∇ϕ(x)) dx ≥ `
c

∫
B

E(∇ϕ(x)) dx

holds for all ϕ ∈W1,1
0 (B,RN ) and

(4.7) F ′′(w)[y ⊗ x, y ⊗ x] ≥ `
c |y|

2|x|2

holds for all x ∈ Rn, y ∈ RN .

Proof. For the bounds (4.4) and (4.5) we distinguish the cases |z| ≤ 1 and |z| > 1. The bounds in (4.4)
follow then easily from the definition of Fw and (2.16). We leave the details of this to the reader, and
instead focus on (4.5). Here we have for |z| ≤ 1 that

|F ′′w(0)z − F ′w(z)| ≤
∫ 1

0

∣∣F ′′(w)− F ′′(w + tz)
∣∣dt|z|

≤ lip(F ′′, Bm+1(0))|z|2

and the latter is finite for each fixed m by hypothesis (H0). Next, for |z| > 1 we use (2.16) to estimate:

|F ′′w(0)z − F ′w(z)| ≤ |F ′′(w)||z|+ cL

≤
(

sup
|v|≤m

|F ′′(v)|+ cL
)
|z|,

and so we deduce (4.5) from (2.5). Finally we turn to the quasiconvexity condition (4.6). From (H2)
we get ∫

B

Fw(∇ϕ) dx ≥ `
∫
B

Ew(∇ϕ) dx

and so from (4.3) we get (4.6) with c = 24(1 + m2)
3
2 . Finally, since quasiconvexity implies rank one

convexity, (H2) yields in particular that

F ′′(w)[y ⊗ x, y ⊗ x] ≥ `E′′(w)[y ⊗ x, y ⊗ x]

(4.2)

≥ `

(1 +m2)
3
2

|y|2|x|2,

which of course implies (4.7). �
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4.2. Caccioppoli inequality of the second kind. This is an important part of the proof, and in fact it
is the only place where both the quasiconvexity and minimality assumptions are used. However, the
proof in the considered linear growth case does not differ much from the usual ones as it follows that
given by Evans in [29] and relies crucially on Widman’s hole filling trick [75].

Proposition 4.3. Suppose F : RN×n → R satisfies (H0), (H1), (H2) and that u ∈ BV(Ω,RN ) is a
minimizer. Then each m > 0 there exists a constant c = c(m,n,N, L` ) ∈ [1,∞) with the following
property. Let a : Rn → RN be an affine mapping with |∇a| ≤ m and BR(x0) ⊂ Ω. Then we have

(4.8)
∫
BR

2
(x0)

E(D(u− a)) ≤ c
∫
BR(x0)

E

(
u− a
R

)
dx.

Proof. Denote F̃ = F∇a and ũ = u − a. Observe that ũ is minimizing the integral functional corre-
sponding to the shifted integrand F̃ . Fix two radii R2 < r < s < R, and let ρ : Ω → R be a Lipschitz
cut-off function satisfying 1Br ≤ ρ ≤ 1Bs and |∇ρ| ≤ 1

s−r . Put ϕ = ρũ and ψ = (1 − ρ)ũ. For
a standard smooth mollifier (φε) we let ϕε = ρ(φε ∗ ũ), so that ϕε ∈ W1,1

0 (Bs,RN ). Hence by the
consequence (4.6) of the quasiconvexity assumption (H2) we get

`

c

∫
Bs

E(∇ϕε) dx ≤
∫
Bs

F̃ (∇ϕε) dx.

Observe that as ε↘ 0, ϕε → ϕ in L1 and (since ρ = 0 on ∂Bs) that∫
Bs

E(∇ϕε) dx→
∫
Bs

E(Dϕ).

We can therefore employ Lemma 2.2 to find, by taking ε↘ 0 in the above inequality,

`

c

∫
Bs

E(Dϕ) ≤
∫
Bs

F̃ (Dϕ).

Consequently, we have using minimality of ũ, (4.4), convexity of E and (2.5):

`

c

∫
Br

E(Dũ) ≤
∫
Bs

F̃ (Dũ) +

∫
Bs

F̃ (Dϕ)−
∫
Bs

F̃ (Dũ)

≤
∫
Bs

F̃ (Dψ) +

∫
Bs

F̃ (Dϕ)−
∫
Bs

F̃ (Dũ)

≤ cL

∫
Bs\Br

E(Dũ) + cL

∫
Bs\Br

E(ρDũ+ ũ⊗∇ρ)

+cL

∫
Bs\Br

E((1− ρ)Dũ− ũ⊗∇ρ)

≤ 5cL

∫
Bs\Br

E(Dũ) + 4cL

∫
Bs

E

(
ũ

s− r

)
dx.

We fill the hole whereby on denoting θ = 5cL/(5cL+ `
c ) ∈ (0, 1) we arrive at∫

Br

E(Dũ) ≤ θ

∫
Bs

E(Dũ) + θ

∫
Bs

E

(
ũ

s− r

)
dx

≤ θ

∫
Bs

E(Dũ) + θ

∫
BR

E

(
ũ

s− r

)
dx.

The conclusion now follows in a standard way from the iteration Lemma 4.4 below. �

Lemma 4.4. Let θ ∈ (0, 1), A ≥ 1 and R > 0. Assume that Φ, Ψ: (0, R] → R are nonnegative
functions, that Φ is bounded, Ψ is decreasing with Ψ( t2 ) ≤ AΨ(t) for all t ∈ (0, R] and that

(4.9) Φ(r) ≤ θΦ(s) + Ψ(s− r)
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holds for all r, s ∈ [R2 , R] with r < s. Then there exists a constant C = C(θ,A) > 0 such that

(4.10) Φ
(
R
2

)
≤ CΨ(R).

The proof follows closely that of, for instance, [42, Lemma 6.1] and so we leave the details to the
reader.

As mentioned in the Introduction it is not possible to use the Poincaré-Sobolev inequality to get a
reverse Hölder inequality from which higher integrability can be deduce by use of Gehring’s Lemma.
However, the Caccioppoli inequality (4.8) still encodes some compactness as can be seen from the
following remark that is stated in terms of Young measures and where we use the terminology from
[50]. The reader can get a good overview of this general formalism and other developments in the
calculus of variations context in the recent monograph [65].

Remark 4.5. Let (uj) be a sequence in BV(Ω,RN ) satisfying the Caccioppoli inequality (4.8) above
uniformly: for each m > 0 there exists a constant cm (independent of j) such that for any affine map
a : Rn → RN with |∇a| ≤ m and any ball BR = BR(x0) ⊂ Ω we have

(4.11)
∫
BR

2
(x0)

E(D(uj − a)) ≤ cm
∫
BR(x0)

E

(
uj − a
R

)
dx.

If (uj) is bounded in BV(Ω,RN ), then (any subsequence) admits a subsequence (not relabelled) that
converges weakly∗ in BV to a map u ∈ BV(Ω,RN ) and whose derivatives Duj generate a Young
measure ν =

(
(νx)x∈Ω, λ, (ν

∞
x )x∈Ω

)
. The compactness encoded in (4.11) amounts to

νx = δ∇u(x) L n-a.e. and |Dsu| ≤ λbΩ ≤ c|Dsu|,

where c = c(n)c0.

Proof. The existence of the subsequence with the asserted properties follows from [50, Theorem 8].
Thus we have for some subsequence (not relabelled), u ∈ BV(Ω,RN ) and Young measure ν that

uj
∗
⇀ u in BV and Duj

Y→ ν.

By a result of Calderón and Zygmund [8, Theorem 3.83], u is approximately differentiable L n almost
everywhere. Let x0 ∈ Ω be such a point and take a(x) = u(x0)+∇u(x0)(x−x0). Withm = |∇u(x0)|
we get from (4.11) on a ball B2r = B2r(x0) ⊂ Ω after taking j ↗∞:∫

Br

∫
RN×n

E
(
· − ∇u(x0)

)
dνx dx+ λ(Br) ≤ cm

∫
B2r

E

(
u− a
r

)
dx.

Divide by L n(Br) and take r ↘ 0 to get by Lebesgue’s differentiation theorem∫
RN×n

E
(
· − ∇u(x0)

)
dνx0 +

dλ

dL n
(x0) ≤ 0

for L n almost all such x0. But then both terms on the left-hand side must be 0, and so, using the strict
convexity of E for the first term, we conclude that

νx0
= δ∇u(x0) for L n-a.e. x0 and λ ⊥ L n.

We always have |Dsu| ≤ λbΩ (see for instance [50]). For the upper bound we fix an arbitrary ball
B2r ⊂ Ω take a = uB2r

above and pass to the limit whereby∫
Br

E
(
∇u
)

dx+ λ(Br) ≤ c0
∫
B2r

E

(
u− uB2r

r

)
dx

results. Using that E(z) ≤ |z| for all z and Poincaré’s inequality on the right-hand side we get∫
Br

E
(
∇u
)

dx+ λ(Br) ≤ c0c|Du|(B2r).
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Put µ = c0c|Du|; then λ(B) ≤ µ(2B) for any ballB for which 2B ⊂ Ω. We reformulate this bound in
terms of cubes as follows. For a closed ballB we letQ denote the largest closed cube with sides parallel
to the coordinate axes that is contained in B and we let Q̂ denote the smallest such cube that contains
sB for some fixed s > 2. Then Q and Q̂ are concentric and the sidelengths satisfy `(Q̂) = s

√
n`(Q).

Clearly given a cube Q with sides parallel to the coordinate axes, the cube Q̂ just described is uniquely
determined and we must in particular have λ(Q) ≤ µ(Q̂) for all cubes Q with Q̂ ⊂ Ω. Now fix a
closed cube Q ⊂ Ω and consider the system of its Q-dyadic subcubes at level k ∈ N:

Q =

2k⋃
j=1

Q
(k)
j .

For k sufficiently large we have that each Q̂(k)
j ⊂ Ω since `(Q̂(k)

j ) = s
√
n2−k`(Q),Q(k)

j ⊂ Q̂(k)
j ∩Q b

Ω, and so λ(Q
(k)
j ) ≤ µ(Q̂

(k)
j ), hence

λ(Q) ≤
2k∑
j=1

µ(Q̂
(k)
j ) =

∫ 2k∑
j=1

1
Q̂

(k)
j

dµ ≤ c(n, s)µ(Qk),

whereQk =
⋃
j Q̂

(k)
j and we used that the family of cubes satisfies a uniform bounded overlap property.

Taking k ↗ ∞ we arrive at λ(Q) ≤ c(n, s)µ(Q). Now since the cube Q ⊂ Ω was arbitrary and λ is
singular the proof is complete. �

4.3. Approximation by harmonic maps. We turn to the announced approximation by harmonic maps.
This step, where the minimizer is compared with the solution to a suitably linearized problem, is stan-
dard fare in partial regularity proofs and goes back to the works [5, 6, 25]. However, due to the L1

set-up the usual ways of implementing this linearization (such as for instance [1, 2, 19, 28, 26, 42, 44])
do seem to require modification. Fortunately, our variant is quite straightforward and proceeds by ex-
plicit construction of a test map that yields the required estimate. In fact, we believe that when this
construction is applied in the cases covered previously in the literature, it also offers a useful alternative
argument there.

Because the approximation result is achieved by a linearization argument it is more natural if we also
replace the key assumptions (H2) and minimality by their corresponding linearizations. More precisely,
we shall replace the quasiconvexity hypothesis (H2) on the integrand F by its linearization, namely the
corresponding weaker rank-one convexity hypothesis:

(H2W) z 7→ F (z)− `E(z) is rank-one convex.

Instead of assuming that u is a minimizer, we assume that u ∈ BV(Ω,RN ) satisfies the extremality
condition (2.17). We then have the following:

Proposition 4.6. Let F : RN×n → R satisfy (H0), (H1) and (H2W) and assume that u ∈ BV(Ω,RN )

satisfies (2.17). Fix a number m > 0. For any affine map a : Rn → RN with |∇a| ≤ m and each ball
B = BR(x0) ⊂ Ω so that u|∂B ∈ BV(∂B,RN ) and |Du|(∂B) = 0 the elliptic system

(4.12)
{
−divF ′′(∇a)∇h = 0 in B
h = u|∂B on ∂B,

admits a unique solution h ∈W1,1(B,RN ). This solution h satisfies

(4.13)
(
−
∫
B

|∇h−∇a|p dx

) 1
p

≤ c−
∫
∂B

|Dτ (u− a)|

for exponents p ∈ (1, 2) when n = 2 and p ∈ (1, n
n−1 ] when n ≥ 3 and a corresponding constant

c = c(n,N,m, p, L` ). Moreover, for each exponent q ∈ (1, n
n−1 ),

(4.14) −
∫
B

E

(
u− h
R

)
dx ≤ C

(
−
∫
B

E
(
D(u− a)

))q
,
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where C = C(m,n,N, q, L, `).

Proof. We give the details for the case n ≥ 3 only and leave it to the reader to check that the same
proof applies for n = 2, where the only difference is that Lemma 2.5 is used instead of Lemma 2.4.

Let x0 ∈ Ω and fix a number m > 0. By virtue of Lemma 2.3 L 1 a.e. radii R ∈ (0,dist(x0, ∂Ω))

have the property that u|∂B ∈ BV(∂B,RN ) and |Du|(∂B) = 0, where we wrote B = BR(x0). We
fix such a radius R and write as already indicated B = BR(x0). For an affine map a : Rn → RN with
|∇a| ≤ mwe put as in the previous subsection F̃ = F∇a and ũ = u−a. Clearly, ũ|∂B ∈ BV(∂B,RN )

remains true. From (H0) and (H2W) we infer that

(4.15) F̃ ′′(0)[y ⊗ x, y ⊗ x] ≥ `
c |y|

2|x|2 ∀y ∈ RN , ∀x ∈ Rn and |F̃ ′′(0)| ≤ c,

where c = c(m) > 0 is a constant that as indicated depends on m.
As is customary in this context, we make use of (2.17) in a linearized form by rewriting it for

ϕ ∈ C∞c (B,RN ) as∫
B

F̃ ′′(0)[Dũ,∇ϕ] =

∫
B

F̃ ′′(0)[Dsũ,∇ϕ]

+

∫
B

〈F̃ ′′(0)∇ũ− F̃ ′(∇ũ),∇ϕ〉dx

(4.5)

≤ c

∫
B

|Dsũ||∇ϕ|

+cL

∫
B

E(∇ũ)|∇ϕ|dx

≤ c

∫
B

E(Dũ)|∇ϕ|.

It is at this stage we take advantage of the particular choice of radius R whereby ũ|∂B is BV on ∂B
and |Dũ|(∂B) = 0. The latter ensures that we may extend the above bound by continuity to hold for
all ϕ ∈ (W1,∞

0 ∩C1)(B,RN ). The former gives in combination with the embedding result of Lemma
2.4 that ũ|∂B ∈W

1
n ,

n
n−1 (∂B,RN ) and(

−
∫
∂B

∫
∂B

|ũ(x)− ũ(y)|
n
n−1

|x− y|n−1+ 1
n−1

dHn−1(x) dHn−1(y)

)1− 1
n

≤ cR1− 1
n−
∫
∂B

|Dτ ũ|

for a dimensional constant c = c(n,N). In view of (4.15) and Theorem 2.11 we can then find a unique
solution h̃ ∈W1, n

n−1 (B,RN ) to the boundary value problem

(4.16)
{
−divA∇h̃ = 0 in B
h̃ = ũ on ∂B,

where A = F̃ ′′(0). In particular we record that

(4.17)
∫
B

A[∇h̃,∇ϕ] dx = 0

holds for all ϕ ∈W1,n
0 (B,RN ) and also that the integral estimate (4.13) holds.

Put ψ = ũ− h̃ so that ψ ∈ BV0(B,RN ) and

(4.18)
∫
B

A[∇ψ,∇ϕ] dx ≤ c
∫
B

E(Dũ)|∇ϕ|

holds for all ϕ ∈ (W1,∞
0 ∩C1)(B,RN ), where c = c(m,L). We extract information from (4.18) by

constructing a suitable test map ϕ. It is convenient to change variables and refer everything to the open
unit ball as follows: Put for x ∈ B := B1(0)

Ψ(x) =
1

R
ψ(x0 +Rx), Φ(x) =

1

R
ϕ(x0 +Rx), U(x) =

1

R
ũ(x0 +Rx).
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Then (4.18) becomes

(4.19)
∫
B
A[DΨ,∇Φ] dx ≤ c

∫
B
E(DU)|∇Φ| ∀Φ ∈ (W1,∞

0 ∩C1)(B,RN ).

Denote by T : RN → RN the truncation mapping defined by

T (y) =

{
y if |y| ≤ 1
y
|y| if |y| > 1,

and consider the elliptic system

(4.20)
{
−divA∇Φ = T (Ψ) in B
Φ = 0 on ∂B.

Evidently the right-hand side is bounded and we have a unique solution Φ ∈ W1,2
0 (B,RN ). From

Proposition 2.11 it follows that Φ is of Sobolev class W2,p(B,RN ) for each exponent p ∈ (1,∞) with
bound

(4.21)
∫
B
|∇2Φ|p dx ≤ C

∫
B
|T (Ψ)|p dx

where C = C(m,n,N, p, L, `) is a constant. If we take p > n, then we have that Φ ∈ C1,1−np (B,RN )

and since (∇Φ)B = 0 it follows from Morrey’s inequality (see for instance [31, Sect. 4.5, Th. 3]) that

‖∇Φ‖L∞ ≤ c‖∇2Φ‖Lp ≤ c‖T (Ψ)‖Lp .

In particular, Φ ∈ (W1,∞
0 ∩C1)(B,RN ) so that Φ indeed qualifies as a test map in (4.19) and then, in

turn, by approximation, Ψ ∈ BV0(B,RN ) qualifies as a test map in (4.20). We also note that a simple
estimation using (2.5) yields

‖T (Ψ)‖Lp ≤ c
(∫

B
E(Ψ) dx

) 1
p
,

and consequently

(4.22) ‖∇Φ‖L∞ ≤ c
(∫

B
E(Ψ) dx

) 1
p

holds for exponents p ∈ (n,∞) and corresponding constants c = c(m,n,N, p, L, `). We plug this Φ

into (4.19); recalling that Ψ can be used to test (4.20) and that A is symmetric the following string of
inequalities results:∫

B
min{|Ψ|2, |Ψ|}dx =

∫
B
〈Ψ, T (Ψ)〉dx

(4.20)
=

∫
B
〈A∇Φ,∇Ψ〉dx

=

∫
B
〈A∇Ψ,∇Φ〉dx

(4.19),(4.22)

≤ c

∫
B
E(DU)

(∫
B
E(Ψ) dx

) 1
p

,

and thus (using again (2.5)) (∫
B
E(Ψ) dx

)1− 1
p

≤ c
∫
B
E(DU).

Hence we have shown that

(4.23)
∫
B
E(Ψ) dx ≤ C

(∫
B
E(DU)

)q
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where q = p/(p − 1) ∈ (1, n
n−1 ) is the dual exponent and C = C(m,n,N, q, L, `) is a constant.

Finally, we change back variables x 7→ x0 + Rx and recall that ψ = ũ − h̃ whereby (4.23) turns into
(4.14) thus completing the proof. �

4.4. Excess decay estimate. For a map u ∈ BV(Ω,RN ) and a ball Br(x0) ⊂ Ω the relevant excess
functional is

E (x0, r) =

∫
Br(x0)

E
(
Du− (Du)Br(x0)

)
.

The goal of this subsection is the following excess decay estimate:

Proposition 4.7. Suppose F : RN×n → R satisfies (H0), (H1), (H2) and that u ∈ BV(Ω,RN ) is a
minimizer. Then each m > 0 and q ∈ (1, n

n−1 ) there exists a constant c = c(m, q, n,N, L` ) with the
following property. For a ball BR = BR(x0) ⊂ Ω such that

(4.24) |(Du)BR | < m

and

(4.25) −
∫
BR

|Du− (Du)BR | ≤ 1

we have that

(4.26) E (x0, σR) ≤ c

(
σn+2 +

(
E (x0, R)

L n(BR(x0))

)q−1
)

E (x0, R)

holds for all σ ∈ (0, 1).

Proof. We give the details for the case n ≥ 3 only and leave it to the reader to check that the same proof
applies for n = 2, where the only difference is that Lemma 2.5 is used instead of Lemma 2.4. As in
the previous subsections we put ũ = u− a and F̃ = F∇a and remark that by virtue of our assumptions
both results from subsections 3.2 and 3.3 are now available.

In view of Lemma 2.3 we can select r ∈ ( 9
10R,R) such that ũ|∂Br ∈ BV(∂Br,RN ) and

(4.27)
∫
∂Br

|Dτ (ũ|∂Br )| ≤
20

R

∫
BR

|Dũ|.

Now the harmonic map h̃ determined at (4.16) satisfies (4.13) and (4.14). Let A : Rn → RN be the
affine mapA(x) = h̃(x0)+∇h̃(x0)(x−x0) and put a0 = a+A. Then a0 is clearly affine and in order
to estimate |∇a0| we note that according to Lemma 2.10 we have for a constant c = c(n,N,m, L` ):

|∇h̃(x0)| ≤ sup
B r

2

|∇h̃| ≤ c−
∫
Br

|∇h̃|dx

≤ c

(
−
∫
Br

|∇h̃|
n
n−1 dx

)n−1
n

(4.13)

≤ c−
∫
∂Br

|Dτ (ũ|∂Br )|

(4.27)

≤ c

Rrn−1

∫
BR

|Dũ|

≤ c−
∫
BR

|Dũ|.

In view of (4.25) we therefore have that

|∇a0| ≤ |(Du)BR |+ c−
∫
BR

|Du− (Du)BR |

< m+ c(m) =: Cm
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holds. For σ ∈ (0, 1
5 ) we have by (2.6)∫

BσR

E(Du− (Du)BσR) ≤ 12

∫
BσR

E(D(u− a0)).

Next, we apply the Caccioppoli inequality (4.2) on the ball B2σR = B2σR(x0) and with the affine map
a0 defined above: ∫

BσR

E(D(u− a0)) ≤ c
∫
B2σr

E

(
u− a0

2σr

)
dx

where c = c(m) is a constant obtained from Proposition 4.3 and estimation of the right-hand side using
R ∈ ( 9

10r, r) and (2.5). We combine these bounds and use (2.5) again twice:∫
BσR

E(Du− (Du)x0,σR) ≤ C

∫
B2σR

(
E

(
ũ− h̃
σR

)
+ E

(
h̃−A
2σR

))
dx

≤ c

σ2

∫
Br

E

(
ũ− h̃
r

)
dx+ c

∫
B2σR

E

(
h̃−A
2σR

)
dx.

Here we have for the first term according to (4.14) for each exponent q ∈ (1, n
n−1 ) andC = C(m,n,N, q, L, `)

that ∫
Br

E

(
ũ− h̃
r

)
dx ≤ C

(
−
∫
Br

E(Dũ)

)q
L n(BR).

The second term is estimated using Lemma 2.10. Accordingly we have for x ∈ B2σR ⊂ B r
2

and in
view of our choice of the affine map A:

|h̃(x)−A(x)|
σR

≤ c sup
x∈B r

2

(
|∇2h̃(x)| |x− x0|2

σR

)
Lemma 2.10
≤ c−

∫
Br

|∇h̃|dxσ

(4.13),(4.27)

≤ c−
∫
BR

|Du− (Du)BR |σ

(4.25),(2.7)

≤ cσ

(
−
∫
BR

E(Du− (Du)BR)

) 1
2

.

Consequently we have∫
B2σR

E

(
h̃−A
2σR

)
dx ≤ c(σR)nE

(
σ

(
−
∫
BR

E(Du− (Du)BR)

) 1
2

)

≤ cσn+2

∫
BR

E(Du− (Du)BR),

and hence we arrive upon collection of the bounds at (4.26). Increasing the constant c if necessary we
see that the bound actually extends to hold for σ ∈ [ 1

5 , 1) too. The proof is complete. �

4.5. Iteration and conclusion. With the excess decay result of Proposition 4.7 at hand we can con-
clude in a standard manner. The first step is obtained by an iteration argument and is in terms of the
normalized excess:

Φ(x0, r) =
E (x0, r)

L n(Br(x0))
= −
∫
Br(x0)

E
(
Du− (Du)Br(x0)

)
.
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Proposition 4.8. Suppose F : RN×n → R satisfies (H0), (H1), (H2) and that u ∈ BV(Ω,RN ) is
a minimizer. Let α ∈ (0, 1) and m > 0. Then there exist positive constants c = c(n,N, L` ,m) and
ε = ε(n,N, L` ,m, α) with the following property. If a ball BR(x0) ⊂ Ω satisfies

(4.28) |(Du)BR(x0)| < m

and

(4.29) Φ(x0, R) < ε,

then

(4.30) Φ(x0, r) ≤ c
( r
R

)2α

Φ(x0, R)

for all r ∈ (0, R).

Proof. For ease of notation we write Br = Br(x0) and Φ(r) = Φ(x0, r). First recall from Lemma 2.9
that for Φ(r) ≤ 1 we have

(4.31) −
∫
Br

|Du− (Du)Br | ≤
√

3Φ(r)

Consequently, if for a ball Br ⊂ Ω we have |(Du)Br | < m and Φ(r) ≤ 1
3 , then Proposition 4.7 yields

Φ(σr) ≤ c
(
σ2 + σ−nΦ(r)q−1

)
Φ(r)

for q ∈ (1, n
n−1 ), c = c(n,N, L` ,m, q) and σ ∈ (0, 1). Fix q ∈ (1, n

n−1 ) and denote

(4.32) C = c(n,N, L` ,m+ 1, q)

where we emphasize that we take the constant corresponding to m + 1 rather than to m. With this
choice we then select σ ∈ (0, 1) satisfying Cσ2 < 1

2σ
2α. For definiteness we fix

(4.33) σ = (3C)−
1

2(1−α) .

Next, take an ε0 ∈ (0, 1
3 ) so Cσ−nεq−1

0 < 1
2σ

2α, say

(4.34) ε0 =

(
σn+2α

3C

) 1
q−1

.

Observe that with these choices we have for any ball Br ⊂ Ω satisfying |(Du)Br | < m + 1 and
Φ(r) < ε0 that

(4.35) Φ(σr) ≤ σ2αΦ(r).

We iterate this as follows. Let ε ∈ (0, ε0], further restrictions will be imposed below. For the remainder
of the proof we fix a ball BR = BR(x0) ⊂ Ω satisfying (4.28)–(4.29). We then have in particular that
Φ(σR) ≤ σ2αε ≤ ε0. Also, in a standard manner we can estimate

|(Du)BσR | ≤ |(Du)BR |+ |(Du)BσR − (Du)BR |

< m+−
∫
BσR

|Du− (Du)BR |

≤ m+ σ−n−
∫
BR

|Du− (Du)BR |

(2.7)

≤ m+ σ−n
√

3ε.

We require that σ−n
√

3ε ≤ 1, that is,

(4.36) ε ≤ σ2n

3
.

Thus in view of (4.35) we have shown that

(4.37) Φ(σjR) ≤ σ2αjΦ(R)



PARTIAL REGULARITY FOR BV MINIMIZERS 25

holds for j = 1, 2. Let k ∈ N and suppose that (4.37) holds for j ∈ {1, . . . , k}. Then Φ(σjR) ≤
σ2αjΦ(R) < σ2αjε < ε0 for each j ≤ k and as above we estimate

|(Du)BσR | ≤ m+

k∑
j=1

σ−n
√

3Φ(σj−1R)

≤ m+

k∑
j=1

σ−n
√

3σ2α(j−1)ε

< m+

√
3ε

σn
1

1− σα
.

We require that
√

3ε
σn

1
1−σα ≤ 1. This is acheived if we take

(4.38) ε = min{ε0,
(σn − σn+α)2

3
}.

Thus with these choices we have for balls BR(x0) ⊂ Ω that satisfy (4.28)–(4.29) shown that (4.37)
holds for all j ∈ N. The conclusion follows in a standard manner from this. �

Using the excess decay estimate of Proposition 4.8 we conclude in a routine way with the follow-
ing ε-regularity result that in view of Lebesgue’s differentiation theorem also implies the last part of
Theorem 1.1.

Theorem 4.9. Suppose F : RN×n → R satisfies (H0), (H1), (H2) and that u ∈ BV(Ω,RN ) is a
minimizer. Then for each m > 0 there exists εm = εm(F ) ∈ (0, 1] with the following property. If the
ball BR(x0) ⊂ Ω satisfies

(4.39) |(Du)BR(x0)| < m

and

(4.40) Φ(x0, R) < εm,

then u is C2,α
loc on BR

2
(x0) for each α < 1, and

(4.41) sup
x,y∈BR/4(x0)

x 6=y

|∇2u(x)−∇2u(y)|2

|x− y|2α
≤ cΦ(x0, R)

R2+2α

where c = c(n,N, L` ,m, α) is a constant.

Proof. We merely sketch the proof as it is essentially standard once the excess decay estimate from
Proposition 4.8 has been established. Fix m > 0 and consider the corresponding

ε̃ = ε(n,N, L` ,m+ 1, 1
2 ) > 0

that was determined in Proposition 4.8. Note that we take the number that corresponds to m+ 1 rather
than to m. Let ε ∈ (0, ε̃] and assume that BR(x0) ⊂ Ω is a ball so that (4.28)–(4.29) hold. We shall
determine ε in the course of the proof. Let x ∈ BR/2(x0) and note that the ball BR/2(x) ⊂ BR(x0)

satisfies

Φ(x, R2 )
Lemma 2.8
≤ 4 · 2nΦ(x0, R) < 2n+2ε

and, proceeding as above,

|(Du)BR
2

(x)| < m+ 2n−
∫
BR(x0)

|Du− (Du)BR(x0)|

(2.7)

≤ m+ 2n
√

3Φ(x0, R)

< m+ 2n
√

3ε.
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Thus if we take ε = min{ ε̃
2n+2 ,

1
3·22n }, then Proposition 4.8 yields the bound

Φ(x, r) ≤ c r
R

Φ(x, R2 ) ≤ c1
Φ(x0, R)

R
r with c1 = 2n+2c

valid for all x ∈ BR/2(x0) and all r ∈ (0, R2 ). In view of Lemma 2.9 we can deduce a more familiar
looking excess decay estimate:(

−
∫
Br(x)

|Du− (Du)Br(x)|

)2

≤ Φ(x, r)2 + 2Φ(x, r)

≤ c21
(
r
R

)2
Φ(x0, R)2 + 2c1

r
RΦ(x0, R)

≤ c
Φ(x0, R)

R
r

for all x ∈ BR/2(x0) and r ∈ (0, R/2). (Here c = c21 + 2c1 and we used that Φ(x0, R) ≤ 1.) Using
the Campanato-Meyers integral characterization of Hölder continuity we conclude that u is C1, 12 on
BR/2(x0) and that we have

sup
x,y∈BR/2(x0)

x 6=y

|∇u(x)−∇u(y)|2

|x− y|
≤ cΦ(x0, R)

R

for some constant c = c(n,N, L` ,m). Finally, in order to boost the regularity of u we employ the
difference-quotient method and elliptic Schauder estimates for linear Legendre-Hadamard elliptic sys-
tems. Put B = BR/2(x0), let δ > 0 be small and denote for increments h ∈ R with |h| < δR

the finite difference of ∇u in the j-th coordinate direction by ∆j,h∇u(x) = ∇u(x + hej) − ∇u(x),
x ∈ B′ := B(1−δ)R/2(x0). Define the x-dependent symmetric bilinear forms (for x ∈ B′, |h| < δR

and 1 ≤ j ≤ n) by

Q(x)[z, w] = Qj,h(x)[z, w] =

∫ 1

0

F ′′(∇u(x) + t∆j,h∇u(x))[z, w] dt (z, w ∈ RN×n)

From (H0) and the above follows that Q ∈ C0,
1
2 (B′,

⊙2
(RN×n)) with the corresponding Schauder

norm of Q bounded uniformly in |h| < δR and 1 ≤ j ≤ n. By virtue of Lemma 4.2 the form Q is uni-
formly strongly Legendre-Hadamard elliptic: there exists a positive constant c = c(n,N, L` ,m,diamΩ)

such that for all x ∈ B′ and a ∈ RN , b ∈ Rn,

Q(x)[a⊗ b, a⊗ b] ≥ 1
c |a|

2|b|2 and |Q(x)| ≤ c

hold. Freezing coefficients and using a partition of unity we establish the following Gårding inequality
(α, β > 0) ∫

B′
Q(x)[∇ϕ,∇ϕ] dx ≥

∫
(B′

(
α|∇ϕ|2 − β|ϕ|2

)
dx

valid for all ϕ ∈ W1,∞
0 (B′,RN ), |h| < δR, 1 ≤ j ≤ n. Using these bounds for the form Q and

testing the Euler-Lagrange system by ϕ = ∆j,−h
(
ρ2∆j,hu

)
for a suitable cut-off function ρ we find in

a standard manner that u ∈W2,2
loc(B,RN ) and that for each direction 1 ≤ j ≤ n,

(4.42)
∫
B

F ′′(∇u)[∇Dju,∇ϕ] dx = 0 ∀ϕ ∈ C1
c(B,RN )

It follows by Schauder estimates, see [38, Theorem 3.2], that Dju is C
1,1/2
loc on B, and hence that u is

C
2,1/2
loc on B. But then the coefficients F ′′(∇u) in the linear elliptic system (4.42) are locally Lipschitz

and the desired regularity and bound (4.41) follow using Schauder estimates again (see [38, Theorem
3.3]). The proof is complete. �
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5. EXTENSIONS

Let F : RN×n → R be an integrand of linear growth (1.1) which is mean coercive (1.3), but possibly
non-quasiconvex. Then for v ∈ BV(Ω,RN ) and a Lipschitz subdomain O ⊂ Ω we define as in (1.5)
the relaxation from W1,1:

F [v,O] = inf

{
lim inf
j→∞

∫
O

F (∇vj) dx : (vj) ⊂W1,1
v (O,RN ), vj → v in L1(O,RN )

}
.

The integral representation (1.6) remains valid provided we replace F by its quasiconvex envelope F qc,
see [49].

In [6] ALMGREN extended the elliptic regularity theory in the parametric context for minimizers to
also cover various classes of almost minimizers. This allowed him to treat also variational problems
with constraints. In the nonparametric context of quasiconvex variational integrals of p-growth for
p > 1 this has been done by DUZAAR, GROTOWSKI & KRONZ in [28]. Here we extend Theorem 1.1
to almost minimizers in the BV case of linear growth and at the same time localize the result in the
spirit of ACERBI & FUSCO [2] (and [10] in the convex case).

For an increasing continuous function ω : [0,∞) → R with ω(0) = 0 we say that u ∈ BV(Ω,RN )

is a ω-almost minimizer for F provided for each ball Br(x0) ⊂ Ω we have

(5.1) F [u,Br(x0)] ≤ F [v,Br(x0)] + ω(r)

∫
Br(x0)

(
|Dv|+ L n

)
whenever v ∈ BV(Ω,RN ) and u− v is supported in Br(x0).

Theorem 5.1. Let F : RN×n → R be globally Lipschitz and mean coercive (1.3). Suppose u ∈
BV(Ω,RN ) satisfies (5.1) for some function ω verifying lim supr↘0 ω(r)/r2α <∞, where α ∈ (0, 1).
Let z0 ∈ RN×n and assume that

−
∫
Br(x0)

E(Du− z0L
n)→ 0 as r ↘ 0.

If F is C2,1 near z0 and if for some ` > 0 the integrand z 7→ F (z)− `E(z) is quasiconvex at z0, then
u is C1,α near x0.

We are not giving the detailed proof for Theorem 5.1 here since it follows closely the proof from Section
4 of Theorem 1.1. In order to execute the modified proof one requires the following observation that is
closely related to [2, Lemma 2.2]:

Lemma 5.2. Let F : RN×n → R be globally Lipschitz and mean coercive (1.3), and fix z0 ∈ RN×n.
If F is C2 near z0 and for some ` > 0 the integrand z 7→ F (z)− `E(z) is quasiconvex at z0, then the
quasiconvex envelope F qc of F is real-valued, satisfies (1.3), lip(F qc) = lip(F ), z 7→ F qc(z)− `E(z)

is quasiconvex at z0 and F qc = F near z0.

Proof. Since F ≥ F qc ≥ (F − `E)qc + `E and equality holds at z0 we infer that F qc − `E is
quasiconvex at z0. In particular, F qc is then a real-valued quasiconvex integrand. From [22, Lemma
3.1] we deduce that F qc satisfies (1.3) with the same constants as F . That lip(F qc) = lip(F ) is a
consequence of [55, Lemma 5.1, Corollary 5.2]. Finally, ifF is C2 on the ball Br(z0) and we assume,
as we may, that F (z0) = 0, F ′(z0) = 0, then

(5.2) |F (z)| ≤ cΘ
(
|z − z0|

)
E
(
|z − z0|

)
∀z ∈ RN×n

for some constant c and modulus of continuity Θ. We can arrange that Θ: [0,∞)→ [0, 1] is continuous,
increasing, concave and Θ(0) = 0, Θ(1) = 1. The proof of (5.2) is implicit in the proof of Lemma 2.2
in [2] that we may also follow to conclude that F qc = F on Br/2(z0). �

As we have dealt with the case of autonomous integrands in the main part of this paper, let us finish
by briefly addressing the case of x-dependent integrands and explain how these can be handled. From
a technical perspective, the way in which functions are applied to vectorial Radon measures is equally
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covered by Section 2.1. We focus here on a special case and merely state a result that can be made to
follow from Theorem 5.1.

Corollary 5.3. Let F : Ω × RN×n → R be continuous and assume that for some constants `, L > 0

and α ∈ (0, 1) we have for x, x1, x2 ∈ Ω and z ∈ RN×n,
`|z| ≤ F (x, z) ≤ L(|z|+ 1),

|F (x1, z)− F (x2, z)| ≤ Lmin{1, |x1 − x2|2α}(|z|+ 1),

z 7→ F (x, z) is C3 and ∂3F (x, z)/∂z3 is jointly continuous in (x, z)

z 7→ F (x, z)− `E(z) is quasiconvex.

Suppose that u ∈ BV(Ω,RN ) is a minimizer in the sense that∫
Ω

F (x,Du) ≤
∫

Ω

F (x,Dv)

holds for all v ∈ BV(Ω,RN ) for which v − u has compact support in Ω. Then there exists an open
subset Ωu ⊂ Ω such that L n(Ω \ Ωu) = 0 and u is C1,α

loc on Ωu.

Finally we remark that all the above stated regularity results would extend if instead of the integrand
F = F (Du) (orF = F (x,Du)) we considered the integrandF (Du)+f(x, u), where f : Ω×RN → R
is Carathéodory and satisfies the growth condition

0 ≤ f(x, y) ≤ c
(
|y|

n
n−1 + 1

)
∀(x, y) ∈ Ω× RN ,

where c > 0 is a constant (see [44] for general results in this spirit in the p-growth context). We could
also cover the more general notions of almost minimizers considered in [67] for the purpose of treating
some image restoration problems.
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