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1. INTRODUCTION

Let Ω be a bounded Lipschitz domain in Rn. For a given bounded Borel function H : Rn+1 → R
the corresponding H-system on Ω is the elliptic system

(1.1) −div
(
|∇u|n−2∇u

)
= n

n
2H(u)Ju

where u : Ω → Rn+1 is of Sobolev class W1,n and Ju = ux1 ∧ · · · ∧ uxn is the cross product of the
partial derivatives uxj

of u. Recall that the cross product v1 ∧ · · · ∧ vn of n vectors v1 , . . . , vn in
Rn+1 is defined as the unique vector in Rn+1 satisfying for all w ∈ Rn+1,

w ·
(
v1 ∧ · · · ∧ vn

)
= det


w1 · · · wn+1

v11 · · · vn+1
1

...
...

v1n · · · vn+1
n

 .
where we write vj = (v1j , . . . , v

n+1
j ), w = (w1 . . . , wn+1).

Definition 1.1. A map u ∈ W1,n(Ω,Rn+1) is a weak solution to (1.1) if, for any test map φ ∈
C∞

c (Ω,Rn+1),

(1.2)
∫
Ω

|∇u|n−2∇u · ∇φ dx = n
n
2

∫
Ω

H(u)φ · Ju dx

holds.

Remark 1.2. By approximation it can be easily seen that equation (1.2) can be tested by any map
φ ∈ W1,n

0 (Ω,Rn+1) ∩ L∞(Ω,Rn+1).

It is well-known that if, in addition to (1.1), u is C2 and conformal meaning that for some nonnega-
tive function λ,

uxi · uxj = λδij

holds on Ω for all i, j, then the image u(Ω) is a surface whose mean curvature is H(u(x)) at each point
u(x) where Ju(x) ̸= 0. For n = 2 this observation is the starting point for most existence results for
parametric surfaces of prescribed mean curvature, see [4, 25]. The conformality condition will play no
direct role in the present paper.

The H-system (1.1) is the Euler-Lagrange system for the variational integral

E(u) =
∫
Ω

(
1

n
|∇u|n + n

n
2QH(u) · Ju

)
dx

where QH : Rn+1 → Rn+1 is any vector field such that divQH = H on Rn+1. This has been used to
prove existence of solutions by either constrained minimization (small solutions) or methods based on
Mountain Pass type theorems (large solutions), see for instance [6, 10, 20] and [4], [25, Ch. III.5] for a
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more comprehensive discussion. Existence has also recently been deduced by use of a heat flow for the
H-system [18].

Here we shall focus entirely on the regularity of weak solutions to the H-system (1.1) in dimension
n ≥ 3 under additional assumptions on the function H or the weak solution u. The regularity of (1.1)
in the two dimensional case n = 2 has been well-studied and culminated in Rivière’s solution of the
Heinz conjecture in [21]: under the sole assumption of boundedness of H , the weak solution defined
in Definition 1.1 is continuous. Many authors contributed with important results prior to this, including
[16, 26, 28, 3, 15, 2]. The higher dimensional case n ≥ 3 seems to be more difficult and the results are
far from being conclusive. We refer to [22] for a more comprehensive discussion of the background
literature. In this connection remark that (1.1) is a nonlinear degenerate elliptic system with critical
growth nonlinearity H(u)Ju on the right-hand side that is merely integrable for maps u of class W1,n.
It is well-known that such systems in general admit very singular solutions and that a general regularity
theory is only possible provided the right-hand side nonlinearity has a special structure (see for instance
[1]). As mentioned, this is fully exploited for the system in two dimensions n = 2 by Rivière’s result,
and the hope is that the structure of H(u)Ju remains strong enough to ensure regularity also for n ≥ 3,
at least when backed up by appropriate additional hypotheses onH . We mention the results of Mou and
Yang [20] who proved that solutions of (1.1) are C1, provided that either H is constant or u is weakly
conformal. Closer to our result is that of Wang [27] who proved a higher-dimensional generalization of
Heinz’s result [16] under the assumption

(1.3) sup
y∈Rn+1

(
|H(y)|+

(
1 + |y|

)
|H ′(y)|

)
<∞.

His proof is based on the the coarea formula and thus follows to some extent the proof of Bethuel [2]
for the two dimensional case. Here we are able to prove the following result:

Theorem 1.3. Let H : Rn+1 → R be a locally Lipschitz function satisfying the two conditions:

(1.4) y 7→ H(y)y is uniformly continuous on Rn+1

and for some exponent q > 1,

(1.5) sup
y∈Rn+1

(
|H(y)|+ |H ′(y)|

1 + |y|q

)
<∞.

Then any weak solution in the sense of Definition 1.1 is of class C1,α
loc on Ω for some α ∈ (0, 1).

We refer to Section 4 for examples of functions H that fail to satisfy the Heinz-Wang condition (1.3)
but do satisfy our conditions (1.4)-(1.5). The conditions (1.4)-(1.5) serve mainly to ensure that the weak
solutions are locally bounded. Indeed if we assume a priori that the weak solution is locally bounded,
then much weaker conditions on H suffice to conclude higher regularity:

Proposition 1.1. Let H : Rn+1 → R be continuous. Then any locally bounded weak solution to (1.1)
is locally Hölder continuous. Furthermore, if H is locally Lipschitz, then any locally bounded weak
solution to (1.1) is of class C1,α

loc on Ω for some α ∈ (0, 1).

The proofs of Theorem 1.3 and Proposition 1.1 are given in Section 3.

Acknowledgement. N. Fusco, C. Leone and A. Verde are members of the Gruppo Nazionale per
l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di
Alta Matematica (INdAM)

2. PRELIMINARY RESULTS

We start this section by recalling some notions from harmonic analysis that allow us to take advan-
tage of the Jacobian structure on the right-hand side of (1.1). In the process of doing that we also fix
our notation. As regards function spaces and Sobolev functions it is standard and follows [19, 29]. On



ON THE H-SYSTEMS IN HIGHER DIMENSION 3

Rn, Rn+1 and matrix space R(n+1)×n we use standard euclidean inner products and the corresponding
norms. In all cases denoted by X · Y and |X| =

√
X ·X , respectively, the meaning being clear from

the context.
Recall that a function f ∈ L1(Rn) belongs to the Hardy space H1(Rn) if

f∗ := sup
ε>0

|ϕε ∗ f | ∈ L1(Rn),

where as usual we let ϕε(x) := ε−nϕ(x/ε) for a fixed nonnegative function ϕ ∈ C∞
c (B1(0)) with∫

ϕ(y)dy = 1. The definition does not depend on the choice of ϕ and the expression ∥f∥H1 := ∥f∗∥1
defines a norm in H1(Rn). Hereby H1(Rn) is a Banach space whose dual can be identified with the
John-Nirenberg space BMO of functions of bounded mean oscillation. To define BMO(Rn) denote
for g ∈ L1

loc(Rn) and a ball B in Rn the integral mean of g on B by

gB :=
1

L n(B)

∫
B

g dx := −
∫
B

g dx.

Now g ∈ BMO(Rn) provided g ∈ L1
loc(Rn) and

∥g∥BMO := sup
B

−
∫
B

|g − gB | dx

is finite, where the supremum is taken over all balls B in Rn. The importance of BMO here is due to
the elementary fact that any Sobolev function of class W1,n(Rn) in particular is BMO: ∥g∥BMO ≤
c∥∇g∥Ln for a dimensional constant c = c(n) by Poincaré’s inequality.

On the other hand, Coifman, Lions, Meyer and Semmes in [9] established the crucial connection
between the Jacobian determinant of a map in W1,n(Rn,Rn) and the Hardy space H1(Rn) that we
also record here for later reference:

Theorem 2.1. If f ∈ W1,n(Rn,Rn), then det∇f ∈ H1(Rn) and

(2.1) ∥det∇f∥H1 ≤ C∥∇f∥nLn

where C = C(n).

Finally, as already mentioned BMO can be identified with the dual space of H1, and this is conve-
niently expressed through Fefferman’s duality inequality [12]:

(2.2)
∫
Rn

fg dx ≤ c∥f∥H1∥g∥BMO

valid for all f ∈ H1, g ∈ BMO. In general, the integral on the left-hand side of (2.2) does not converge,
but there are a number of ways to give meaning to it [23].

Having disposed of these harmonic analysis tools we turn to the uniform continuity assumption (1.4)
in Theorem 1.3. Define the truncation at level k > 0 by Tk(u) := uψk(|u|), where

(2.3) ψk(t) :=

{
1 if t ≤ k
k

t
if t > k.

Lemma 2.2. If y 7→ H(y)y is uniformly continuous and H is bounded, then there exists an increasing
concave modulus of continuity ω : [0,∞) → [0,∞) such that

|H(y1)Tk(y1)−H(y2)Tk(y2)| ≤ ω(|y1 − y2|)
holds for all y1, y2 ∈ Rn+1 and all k > 0.

Proof. Let θ denote a modulus of continuity for y 7→ H(y)y. We can assume that θ is concave and
increasing. We get for y1, y2 ∈ Rn+1, |y2| ≤ |y1|, k > 0:

|H(y1)Tk(y1)−H(y2)Tk(y2)| ≤ |H(y1)y1 −H(y2)y2|ψk(|y1|)
+|H(|y2|)y2||ψk(|y1|)− ψk(|y2|)|

≤ θ(|y1 − y2|) + C|y2||ψk(|y1|)− ψk(|y2|)|.
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If |y1|, |y2| ≤ k we get |ψk(|y1|)− ψk(|y2|)| = 0. If |y1|, |y2| > k, then the last term becomes

C|y2|
∣∣∣ k|y1| − k

|y2|

∣∣∣ = C|y2|k
||y1| − |y2||
|y1||y2|

≤ c|y1 − y2|.

If |y1| > k and |y2| ≤ k, then the last term can be estimated as

C|y2|
∣∣∣ k|y1| − 1

∣∣∣ = C
|y2|
|y1|

|k − |y1|| ≤ C[|y1| − k] ≤ C||y1| − |y2|| ≤ C|y1 − y2|.

Thus we have shown that we may take ω(t) = θ(t) + C|t|, concluding the proof. □
Lemma 2.3. For u ∈ W1,n

loc (Ω,Rn+1) we have for any ball B ⋐ Ω and any k > 0 that

−
∫
B

|Tk(u)H(u)− (Tk(u)H(u))B |dx ≤ c ω

((∫
B

|∇u|n dx
) 1

n
)
,

where c = c(n) is a constant, ω is determined in Lemma 2.2 and | · | denotes standard euclidean norm
(in Rn+1 and in R(n+1)×n, respectively).

Proof. We simply estimate:

−
∫
B

|Tk(u)H(u)− (Tk(u)H(u))B | dx ≤ 2−
∫
B

|Tk(u)H(u)− Tk(uB)H(uB)| dx

Lemma 2.2
≤ 2−

∫
B

ω
(
|u− (u)B |

)
dx

Jensen
≤ 2ω

(
−
∫
B

|u− (u)B| dx
)

Poincaré-Wirtinger
≤ 2ω

(
C

(∫
B

|∇u|n dx
) 1

n)
.

Finally since C ≥ 1 (without loss of generality) and ω is concave we have for each t > 0 that
ω(Ct)/Ct ≤ ω(t)/t and therefore ω(Ct) ≤ Cω(t), thus concluding the proof. □

The next result is well-known, but as we require it in a special form we prefer to state and derive it
explicitly:

Lemma 2.4. There exists a dimensional constant Cn with the following property. For each u ∈
W 1,n(Br(x0)) there exists ū ∈ W1,n

loc (Rn) such that ū = u on Br(x0) and

(2.4)
∫
Rn

|∇ū|n dx ≤ Cn

∫
Br(x0)

|∇u|n dx.

Furthermore we can arrange that

(2.5) sup
x∈Rn\Br(x0)

|ū(x)| ≤ |uBr(x0)|+ sup
x∈∂Br(x0)

|u(x)|

where the right-hand side could be infinite (making the bound vacuous).

Proof. Considering the function x 7→ u(x0 + rx)/r instead of u we may assume that Br(x0) =

B1(0) =: B, the open unit ball in Rn. For Lipschitz v : B → R we put m = sup∂B |v| and

V (x) =

 v(x) if x ∈ B

Tm

(
v
(

x
|x|2

)
(2− |x|)+

)
if x ∈ Rn \B,

where Tm : R → R is the 1-dimensional version of the truncation map defined above (so Tm(t) :=

max{min{t,m},−m}). Then V : Rn → R is Lipschitz, V = v on B, V = 0 on Rn \ 2B and
|V | ≤ m on Rn \B. For 1 < |x| < 2 with |v

(
x

|x|2
)
|(2− |x|) < m we have almost everywhere

∇V (x) = (2− |x|)∇v
(

x
|x|2

)I − 2x⊗x
|x|2

|x|2
− v

(
x

|x|2
) x
|x|
,
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while if |v
(

x
|x|2

)
|(2− |x|) ≥ m we have ∇V (x) = 0 almost everywhere. Thus after a routine estima-

tion, involving also a change of variables, we find

(2.6)
∫
Rn

|∇V |n dx ≤ c

∫
B

(
|∇v|n + |v|n

)
dx

for some dimensional constant c = c(n). It follows by approximation that the above construction and
listed properties extend by continuity to functions v ∈ W1,n(B): there exists V ∈ W1,n(Rn) so V |B =

v, V |Rn\2B = 0, supRn\B |V | ≤ sup∂B |v| and (2.6) hold. To complete the proof let u ∈ W1,n(B) and
put v = u− uB , where uB is the integral mean of u over B. Then ū = V + uB belongs to W1,n

loc (Rn)

and the desired bounds follow by combination of the above and Poincaré’s inequality. □

A useful feature of the determinant expression Ju on the right-hand side of (1.1) involves also the
truncation maps Tk defined above and is summarized in the next

Lemma 2.5. For φ ∈ C1
c(Ω), u ∈ W1,n

loc (Ω,Rn+1) and k > 0

φnTk(u) · Ju = Tk(u) · Jφu.

Proof. By definition the right-hand side equals

Tk(u) · Jφu =


Tk(u)

1 · · · Tk(u)
n+1

φx1u
1 + φu1x1

· · · φx1u
n+1 + φun+1

x1

...
...

φxnu
1 + φu1xn

· · · φxnu
n+1 + φun+1

xn

 .
Here the vectors Tk(u(x)) and φxj (x)u(x) are proportional for a.e. x and each 1 ≤ j ≤ n, so by
elementary properties of the determinant the result follows. □

3. PROOF OF THE THEOREM 1.3

We start by proving the local boundedness of a solution, which as mentioned in the Introduction is the
main content of Theorem 1.3.

Theorem 3.1. Under the assumptions of Theorem 1.3 any weak solution is locally bounded.

Proof. We can split the proof in three principal steps.

Step 1. Let Br(x0) be such that B2r(x0) ⋐ Ω and

(3.1)
∫
B2r(x0)

|∇u|n dx ≤ ε0,

where ε0 > 0 will be chosen in the course of the proof. Without loss of generality we can assume
x0 = 0 and denote Br(x0) and B2r(x0) simply by Br and B2r, respectively. Let us denote by ū the
extension of u from B2r, given in Lemma 2.4.

Let φ ∈ W1,n
0 (B2r) ∩ L∞(B2r), extended by 0 outside B2r and still denoted by φ, φ ≥ 0, such

that
∫
B2r

|∇u|n−1|∇φ||u| dx < ∞ and
∫
B2r

|∇φ|n|u|n dx < +∞. We observe that Tk(u)φn ∈
W1,n

0 (Ω,Rn+1)∩L∞(Ω,Rn+1) and so we can use it as test function in the equation satisfied by u and
write the integrals on the whole Rn using the extensions of u and φ outside B2r, respectively. We get∫

Rn

|∇ū|n−2∇ū · ∇(Tk(ū))φ
n dx + n

∫
Rn

|∇ū|n−2∇ū · (Tk(ū)⊗∇φ)φn−1 dx

= n
n
2

∫
Rn

H(ū)φnTk(ū) · Jū dx

= n
n
2

∫
Rn

H(ū)Tk(ū) · Jφū dx,
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where the last equality follows by Lemma 2.5. Using (2.2), (2.1) and Lemma 2.3, we can estimate the
last term as ∫

Rn

H(ū)Tk(ū) · Jφū dx ≤ C∥H(u)Tk(ū)∥BMO∥∇(φū)∥nLn(Rn)

≤ C ω
(∫

Rn

|∇ū|n
) 1

n ∥∇(φū)∥nLn(Rn)

≤ C ω

(∫
B2r

|∇u|n dx
) 1

n

∥∇(φu)∥nLn(B2r)

≤ C ω(ε0)∥∇(φu)∥nLn(B2r)
.

Then, thanks to the hypotheses on φ, we can pass to the limit as k → ∞ to get∫
B2r

|∇u|nφn dx+ n

∫
B2r

|∇u|n−2∇u · (u⊗∇φ)φn−1 dx ≤ C ω(ε0)

∫
B2r

|∇(φu)|n dx.

Step 2. Now we can choose φ = Tk(|u|)pη , where p ≥ 1 and η ∈ C∞
c (B2r) is a cut off function

between Br and B2r, in the previous estimate. Then we find∫
B2r

|∇u|nTk(|u|)pnηn dx + np

∫
{|u|≤k}∩B2r

|∇u|n−2∇u · (u⊗ (u∇u))|u|pn−2ηn dx

+ n

∫
B2r

|∇u|n−2∇u · (u⊗∇η)Tk(|u|)pnηn−1 dx

≤ C ω(ε0)

[∫
B2r

(
|∇u|nTk(|u|)pnηn + |∇η|nTk(|u|)pn|u|n

)
dx(3.2)

+pn
∫
{|u|≤k}∩B2r

|u|(p−1)n|u∇u|nηn dx

]

≤ C ω(ε0)

[∫
B2r

|∇u|nTk(|u|)pnηn dx+

∫
B2r

|∇η|n|u|pn+n dx

]
,

where now the constant C also depends on p. Observe that the second term in the left-hand side is
nonnegative while the third one on the left-hand side, can be estimated by means of Young’s inequality,

n

∫
B2r

|∇u|n−2∇u · (u⊗∇η)Tk(|u|)pnηn−1 dx ≥ −1

2

∫
B2r

|∇u|nTk(|u|)pnηn dx

−c
∫
B2r

|∇η|n|u|pn+n dx.

The first term can be absorbed in the left hand side of (3.2). Likewise with the first term in the right-hand
side of (3.2), provided ε0 > 0 is suitably small. At last we gain∫

Br

|∇u|nTk(|u|)pn dx ≤ C

∫
Br

|∇η|n|u|pn+n dx,

so that in particular, after letting k tend to infinity, |∇u|n|u|pn ∈ L1(Br).

Step 3. The main ingredient is the construction of a suitable test function, and our argument is mod-
elled on [3, 8]. It is well-known that, working with precise representatives, we have for the pointwise
restrictions, u|∂Br ∈ W1,n(∂Br,Rn+1) hold for almost all radii r ∈ (0,dist(x0, ∂Ω)). By Morrey’s
embedding we then in particular have for such radii that u|∂Br is bounded. We fix such a radius r
which is simultaneously so small that also

∫
Br

|∇u|n dx < ε0. Fix R0 ≥ ∥u∥L∞(∂Br). Let R ≥ R0

and α ∈ (0, 1]. Choose a map Φ ∈ C1 such that Φ(s) = 0 for s ≤ R, Φ(s) = 1 for s ≥ (1 + α)R,
Φ′ ≥ 0 and Φ(s) + sΦ′(s) ≤ 2/α. We get Φ(|u|) ∈ W1,n

0 (Br) ∩ L∞(Br) and may extend this map to
all of Rn \Br by 0.
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Let us note that Φ(|u|) satisfies the required conditions for the function φ in Step 1, therefore arguing
as in the proof of Step 1, the use of Φ(|u|)n+1u to test the equation can be justified and we hereby
estimate using also (2.1) and (2.2):∫

Br

|∇u|nΦ(|u|)n+1 dx + (n+ 1)

∫
Br

|∇u|n−2∇u ·
(
u⊗

(
u∇u
|u|

))
Φ′(|u|)Φ(|u|)ndx

≤ C∥H(u)uΦ(|u|)∥BMO∥∇(Φ(|u|)u)∥nLn(Rn).

Observe that the second term on the left-hand side is nonnegative. To estimate the BMO norm we
proceed using Poincaré’s inequality:

∥H(u)uΦ(|u|)∥BMO ≤ C
(∫

Br∩{|u|>R}
|∇(H(u)uΦ(|u|))|n dx

) 1
n

.

Here H(u)uΦ(|u|) is in W1,n
0 (Br,Rn+1) by virtue of Step 2 since

|∇(H(u)uΦ(|u|))|n ≤c|H ′(u)|n|∇u|nΦ(|u|)n|u|n + c|Φ′(|u|)u|n|∇u|n|H(u)|n+

+ c|H(u)|nΦ(|u|)n|∇u|n ≤ C

αn
|∇u|n(|u|n+nq + 1)χBr∩{|u|>R}.

Thus we get

∥H(u)uΦ(|u|)∥BMO ≤ C

α

(∫
Br∩{|u|>R}

|∇u|n−1|∇u|(|u|n+nq + 1)dx
) 1

n

≤ C

α

(∫
Br∩{|u|>R}

|∇u|ndx
)n−1

n2
(∫

Br

|∇u|n(1 + |u|n
2+n2q)dx

) 1
n2

.

Finally, since

∥∇(Φ(|u|)u)∥nLn(Rn) ≤
C

αn

∫
Br∩{|u|>R}

|∇u|n dx,

we obtain ∫
Br∩{|u|>(1+α)R}

|∇u|n dx ≤ C

αn+1

(∫
Br∩{|u|>R}

|∇u|n dx
)1+

n−1
n2

where we used the fact that |∇u|n|u|n2+n2q ∈ L1(Br) by Step 2 (and we incorporated this integral
into the constant). Now if we define

Λ(R) :=

∫
{|u|>R}

|∇u|n dx,

we obtain

Λ((1 + α)R) ≤ C

αn+1
Λ(R)1+

n−1
n2 .

Choosing αk = 2−k and defining by recurrence a bounded increasing sequence Rk+1 = Rk(1+2−k),
we get

Λ(Rk+1) ≤ CAkΛ(Rk)
1+β ,

where A = 2n+1 and β = n−1
n2 . If Λ(R0) ≤ C

− 1
βA

− 1
β2 , then it follows by induction that Λ(Rk) ≤

A
− k

βΛ(R0) holds for all k (see for instance [14, Lemma 7.1]). Recall that
∫
Br

|∇u|n dx < ε0, so
obviously Λ(R0) < ε0 too. Hence if we choose ε0 suitably small, then we have shown that

Λ(R∞) ≤ lim
k

Λ(Rk) = 0 and therefore |u(x)| ≤ R∞ a.e. in Br,

where R∞ = lim
k→+∞

Rk. □
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Proof of Proposition 1.1. We will first prove a Caccioppoli inequality and fix a ball B0 ⋐ Ω so small
that

(3.3)
∫
B0

|∇u|n dx ≤ ε0

holds for an ε0 > 0 that will be chosen in the course of the proof. As before, let Br = Br(x0) be such
that B2r = B2r(x0) ⋐ B. By our assumption R := ∥u∥L∞(B0) is finite. Denote by ū the extension of
u from B2r given by Lemma 2.4.

Let η be a cut-off function betweenBr andB2r, choose the function ηn(u−u2r), where u2r = uB2r ,
as test in (1.1) (see also Remark 1.2) and write the integrals in the right-hand side of the equation on
the whole of Rn. We gain:

(3.4)
∫
B2r

|∇u|n−2∇u · ∇(ηn(u− u2r)) dx = n
n
2

∫
Rn

H(ū)ηn(ū− u2r) · Jū dx =: I.

Here the left-hand side is∫
B2r

|∇u|n−2∇u·∇(ηn(u−u2r)) dx =

∫
B2r

|∇u|nηn dx+n
∫
B2r

|∇u|n−2∇u·(ηn−1(u−u2r)⊗∇η) dx,

and the second term on the right-hand side can be estimated by means of Young’s inequality,

n

∫
B2r

|∇u|n−2∇u · ηn−1(u− u2r)⊗∇η dx ≥ −1

2

∫
B2r

|∇u|nηn dx−C

∫
B2r

|∇η|n|u− u2r|ndx.

Thus returning to (3.4) we get

(3.5)
∫
B2r

|∇u|nηn dx ≤ C

∫
B2r

|∇η|n|u− u2r|ndx+ 2I.

Let us now estimate I. We first observe

I = n
n
2

∫
Rn

H(u)ηn(u− u2r) · Ju−u2r dx = n
n
2

∫
Rn

H(u)(u− u2r) · J(u−u2r)η dx,

by Lemma 2.5. We aim to use the bounds (2.1), (2.2) and must argue that the first factor is in BMO.
To that end we note that y 7→ H(y)(y − u2r) is continuous, and so in particular uniformly continuous
for |y| ≤ 2R. We can therefore find a modulus of continuity ω = ωR : [0,∞) → [0,∞) (an increasing,
continuous and concave functions with ω(0) = 0) such that∣∣H(y)(y − u2r)−H(y′)(y′ − u2r)

∣∣ ≤ ω
(
|y − y′|

)
for all y, y′ with |y|, |y′| ≤ 2R. Observe that ω only depends on the L∞ bound for u on the fixed ball
B0 and that |ū| ≤ 2R a.e. in Rn by our assumptions and Lemma 2.4. Now for any ball B ⊂ Rn we
estimate as in Lemma 2.3, using also the integral bound from Lemma 2.4 and (3.1), to get

−
∫
B

∣∣H(ū)(ū− u2r)− (H(ū)(ū− u2r))B
∣∣dx ≤ cω(ε0)

for some dimensional constant c = c(n). Consequently, ∥H(ū)(ū− u2r)∥BMO ≤ cω(ε0) and we may
continue with

I ≤ C∥J(u−u2r)η∥H1∥H(u)(u− u2r)∥BMO

≤ C

∫
B2r

|∇((u− u2r)η)|ndx
(
cω(ε0)

) 1
n

≤ cω(ε0)
1
n

∫
B2r

(
|∇u|nηn + |∇η|n|u− u2r|n

)
dx.

If ε0 is suitable small (depending on the fixed ball B0 and the data) the first term can be absorbed
in the left-hand side of (3.5). Summarising we have therefore established the following Caccioppoli
inequality: ∫

Br

|∇u|n dx ≤ C

rn

∫
B2r

|u− uB2r |n dx,
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where the constant C = C(B0) and Br = Br(x0) is any ball with B2r(x0) ⊂ B0. Now using
Poincaré-Sobolev’s inequality and Gehring’s Lemma (see for instance [17]) we find in a routine manner
that ∇u ∈ Ln+δ

loc (Ω,R(n+1)×n) for some δ > 0. By Morrey’s embedding theorem this implies that u is
C0,β

loc (Ω,Rn+1) for some β < 1.
It is well-known that the asserted C1,α regularity follows from this when H is locally Lipschitz. A

streamlined approach can be obtained following [11, Lemma 5] to get that u is C0,s
loc(Ω,Rn+1) for each

s < 1, and then finally [11, Lemma 6] to conclude that u is C1,α
loc (Ω,Rn+1) for some α ∈ (0, 1). □

The proof of Theorem 1.3 follows by combination of Theorem 3.1 and Proposition 1.1.

4. EXAMPLE

The condition of Heinz and Wang on the C1 function H : Rn+1 → R is

sup
y∈Rn+1

(
|H(y)|+ |H ′(y)|(1 + |y|)

)
<∞.

We can rewrite this and split it into two assumptions as{
H Lipschitz
y 7→ H(y)(|y|+ 1) Lipschitz continuous.

Here we give an example of a C1 function H that does not satisfy the assumptions of Heinz and Wang
but is such that our Theorem 1.3 in particular applies to it:{

H Lipschitz
y 7→ H(y)(|y|+ 1) uniformly continuous.

Example: Let θ : R → R be even and

θ(t) :=


1 0 ≤ t ≤ 1

t2(t− 2)2 1 ≤ t ≤ 2

0 t ≥ 2.

Then θ ∈ C1, 0 ≤ θ(t) ≤ 1(−2,2)(t), sup |θ′(t)| = |θ′(±t0)| = θ0, where t0 = (3 +
√
3)/3 ∈ (1, 2)

and θ0 = 8
9

√
3. Fix an increasing function ω : (0, 1] → (0, 1] with ω(0+) = 0. Note that the intervals

[2j −21−j , 2j +21−j ] are pairwise disjoint and that none of them contains 0 when j ∈ N. The function

H(y) :=
∞∑
j=1

ω(2−j)
θ(2j |y| − 22j)

1 + |y|
, y ∈ Rn+1,

is therefore easily seen to be C1 and 0 ≤ H(y)(1 + |y|) ≤ 1 for all y ∈ Rn+1.
Now if ω is superlinear at 0, then F (y) := H(y)(1 + |y|) cannot be Lipschitz since for yℓ ∈ Rn+1

with |yℓ| = 2ℓ+ 3+
√
3

3 2−ℓ we have that |F ′(yℓ)| = θ0ω(
1
2ℓ
)2ℓ which is unbounded for ℓ ∈ N. However,

it is not difficult to check that F is uniformly continuous: let ε > 0, and take s ∈ N with ω(2−s) ≤ ε.
Since F is Lipschitz on [−2s, 2s] we can find δ1 > 0 so

|F (y1)− F (y2)| ≤ ε ∀y1, y2 ∈ [−2s, 2s], |y1 − y2| ≤ δ1.

Next, for y2 ∈ Rn+1 with |y2| > 2s we note that for any y1 ∈ Rn+1 with |y1 − y2| < 2−s we have
that |F (y1)− F (y2)| ≤ Cω(2−s) ≤ Cε. Taking δ = min(δ1, 2

−s) we fend off ε and conclude that F
is uniformly continuous on Rn+1.
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