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ISOMETRIC EMBEDDING VIA STRONGLY SYMMETRIC POSITIVE
SYSTEMS

GUI-QIANG CHEN, JEANNE CLELLAND, MARSHALL SLEMROD, DEHUA WANG,
AND DEANE YANG

ABSTRACT. We give a new proof for the local existence of a smooth isometric embedding of a
smooth 3-dimensional Riemannian manifold with nonzero Riemannian curvature tensor into
6-dimensional Euclidean space. Our proof avoids the sophisticated arguments via microlocal
analysis used in earlier proofs.

In Part 1, we introduce a new type of system of partial differential equations (PDE), which
is not one of the standard types (elliptic, hyperbolic, parabolic) but satisfies a property called
strong symmetric positivity. Such a PDE system is a generalization of and has properties
similar to a system of ordinary differential equations with a regular singular point. A local
existence theorem is then established by using a novel local-to-global-to-local approach. In
Part 2, we apply this theorem to prove the local existence result for isometric embeddings.
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1. INTRODUCTION

Let (M, g) be an n-dimensional C* Riemannian manifold. Recall that a C* mapy : M —
R¥ is called an isometric embeddingif y is injective and the restriction of the Euclidean metric
on RY to the image y(M) agrees with the metric g on M. In terms of local coordinates

x = (x',...,2™) on M, this is equivalent to the condition that

(1.1) oy - 0y = Gij, I<i,5<n,

where g = g;;dx'dx? and J; denotes aii'

In this paper, we study the local isometric embedding problem, which asks whether, given a
Riemannian manifold (M, ¢g) and a point xg € M, there exists an isometric embedding of some
neighborhood of xq into R¥—i.e., whether the PDE system (1.1) has local C*® solutions in
some neighborhood of xo. The system (1.1) consists of n(n+1) partial differential equations
for N unknown functions y = (y*,...,y"); thus it is overdetermined when N < In(n + 1),
underdetermined when N > in(n + 1), and determined when N = sn(n + 1).

The isometric embedding problem has a long and active history. The famous theorem of
Cartan and Janet (see, e.g., [13]) guarantees that, when the metric g is real analytic, local
real analytic solutions to (1.1) always exist in the determined case N = in(n + 1). In the
C* category, much less is known. Nash [21] proved a global existence theorem in the highly
underdetermined case N = in(n + 1)(3n + 11). Later, refinements were given by Greene
[5] and Gunther [6] for the local existence problem that improved the upper bound on the
embedding dimension to N = in(n + 1) + n.

When N = 1n(n + 1), known results for g in the C* category are limited to n < 4. Most
research activity has been concentrated on the case n = 2, where local isometric embeddings
of varying regularity have been shown to exist in a neighborhood of any point xy € M where
either the Gauss curvature K (xg) is nonzero, K(x¢) = 0 and VK (xg) # 0, or K(x¢) vanishes
to finite order in certain precise ways (cf. [8, 9, 11, 12, 14, 15, 16]). For a detailed account,
see [10].

For n > 3, there are fewer results. Bryant, Griffiths, and Yang [1] showed that, for n = 3,
local C* isometric embeddings exist in a neighborhood of any point xq € M where the
Einstein tensor has rank greater than 1. Subsequent work was able to relax this restriction
on the Einstein tensor: In [20], Nakamura and Maeda extended the existence theorem to a
neighborhood of any point where the Riemann curvature tensor does not vanish, and in [24],
Poole extended the existence theorem to a neighborhood of any point where the Riemann
curvature tensor vanishes but its covariant derivative does not. Meanwhile, for n = 4, the
results of [1], [4], and [20] imply that there exists a finite set of algebraic relations among
the Riemann curvature tensor and its covariant derivatives, with the property that a local
isometric embedding exists in a neighborhood of any point where these relations do not all
hold.

Our main result is a new, simpler proof of the following theorem of Nakamura-Maeda [20)]
when n = 3 and N = 6 (also see Goodman-Yang [4]):

Theorem (cf. Theorem 2). Let (M,g) be a C* Riemannian manifold of dimension 3;
let xo € M so that the Riemann curvature tensor R(xq) is nonzero. Then there exists a
neighborhood Q = M of xo for which there is a C* isometric embeddingy : © — RS,

Our proof, like the previous ones, uses the Nash-Moser implicit function theorem (cf.

Theorem A.1) to obtain a solution. This requires showing that the linearized system has
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a solution that satisfies certain estimates known as “smooth tame estimates” (this termi-
nology is due to Hamilton; see [7]). The advantage of our approach is that it completely
eliminates the need for the microlocal analysis and Fourier integral operators used in the
proofs of Nakamura-Maeda and Goodman-Yang; instead, it is based on Friedrichs’s theory
of symmetric positive systems.

Friedrichs [3] introduced the notion of a symmetric positive partial differential operator P
to study a class of first order linear systems of PDEs

(1.2) Pv=A0v+Bv=h

that do not necessarily fall into one of the standard types (elliptic, hyperbolic, parabolic). He
proved, under suitable boundary conditions on the domain €2, the existence and uniqueness of
an L*(Q) solution to the system (1.2). No higher order regularity of solutions is guaranteed,
even if the functions A?, B, and h are C*.

We call a domain that satisfies Friedrichs’s boundary condition P-convez (cf. Definition
2.3). Such a domain ) has the remarkable property that any solution v to a symmetric
positive system (1.2) on Q is unique in L*(Y), without assuming any boundary conditions
on v. This surprising rigidity occurs because a symmetric positive operator P always has a
subtle type of singularity in the interior of a P-convex domain. In §3, we give a 1-dimensional
example, where the system reduces to a scalar ODE, that illustrates how this occurs.

We introduce in this paper a new positivity condition that we call strong symmetric pos-
itiwity (cf. Definition 2.1) and prove a local existence and regularity theorem for first order
linear and nonlinear systems satisfying it (cf. Theorem 1). As the name indicates, this
condition is a strengthening of Friedrichs’s notion of symmetric positivity. Moser [19] intro-
duced a similar but weaker assumption, closely related to the Legendre-Hadamard condition,
and proved that any real analytic system of the form (1.2) satisfying this condition on a P-
convex domain has a unique real analytic solution v. Tso [30] proved a similar C* existence
theorem on a P-convex domain under Moser’s condition, but we believe that his proof actu-
ally requires the stronger assumption of strong symmetric positivity. Both Moser and Tso
used their results for linear systems to prove analogous perturbation theorems for nonlinear
strongly symmetric positive systems

(1.3) ®(u) =f

on a domain 2 < R”, provided that f is sufficiently close to ®(ug) for a given function uy,
and €2 is P-convex, where P is the linearization of ® at ug.

Our proof of Theorem 2 proceeds in two major steps. In Part 1 (§2-84), we establish
the local solvability of a nonlinear strongly symmetric positive system using the Nash-Moser
implicit function theorem. In Part 2 (§5-§9), we show that, if the Riemann curvature tensor is
nonzero at xo € M, then there exists an approximate isometric embedding on a neighborhood
of xy where the linearized operator can be made strongly symmetric positive by applying
a carefully chosen change of variables. This argument consists primarily of linear algebra
and requires essentially no analysis beyond that required for Part 1. Theorem 2 then follows
by the smooth tame estimates established in Part 1 and the Nash-Moser implicit function
theorem.

The first step requires solving linear strongly symmetric positive systems on a sufficiently
small, but fixed, neighborhood of a point x( in the domain and showing that solutions satisfy
smooth tame estimates. Surprisingly, Tso’s global existence theorem for strongly symmetric

positive systems on a P-convex domain does not directly imply a local solvability theorem.
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This is because there does not necessarily exist a P-convex domain in a neighborhood of a
given point xq. This subtle fact is best illustrated by the 1-dimensional example given in
§3. In §4, we show how this difficulty may be overcome by first restricting the linearized
system to a sufficiently small neighborhood of xy and then extending the restricted system
to a large ball in R™ that is P-convex for the extended system.

Before proceeding, we recall the following standard notations and facts regarding Sobolev
spaces on a domain 2 ¢ R™:

e The Euclidean norm on vectors or matrices is denoted by | - |, and the /,,-norm on
vectors or matrices is denoted by | - |w.
e The Sobolev spaces are denoted by

WEP(Q) = {ue L7(Q) : |lullx, < o0},

where [ukp = 25,<x [D%u[ s is the Sobolev norm for the multi-index o = (au, ...,
Oén), and D% = M%.

e For p = 2, Wk2(Q) is denoted by H¥(2), with the norm | - ||;2 denoted by | - [|x.

e The C*(Q2)-norm is denoted by

k
[ullkoe = D D) sup D u(x)].

7=0af<j ¢

e The Sobolev embedding theorem [28] implies that H**™(Q) can be continuously
embedded into C*(Q) whenever m > 1+ [%], in particular, there exist constants My,
depending only on 2, such that

Part 1. A Local Existence Theorem for Strongly Symmetric Positive Systems
2. STRONG SYMMETRIC POSITIVITY

Let © < R" be a bounded, open domain with piecewise smooth boundary 02 and coor-
dinates x = (z',...,2"). Let ® : C*(Q,R*) — C*(Q,R*) be a C*, nonlinear first-order
partial differential operator. Explicitly, for u e C*(Q, R®), write

®(u) = F (x,u,Vu),

where F(x,2z,p) = (F!(a%, 2%, pf), ..., F*(a", 2%, pf)) is a C*, R*-valued function on Q x R x
R". Given a function f € C*(Q, R?), consider the PDE system:

(2.1) ®(u) = f.
The linearization of ® at the function uy € C*(Q,R*) is the linear first-order partial

differential operator ®'(ug) : C°(Q,R®) — C*(Q,R?) defined by

d no
(2.2) (v = P(ug+tv) = D A0V + Bv,
t=0 =1
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where A, B € C*(Q,R**%) are given by

00 = [(40] = [ e T .

56x) = (B3] = | 27 o), T |

We will also consider the linear PDE system:

(2.3) Y Av + Bv =h,
=1

where h e C*(Q, R?).
Definition 2.1. The linear partial differential operator (2.2) is called:

o symmetric if the matrices A'(x), ..., A"(x) are symmetric for all x € {);
e symmetric positive if it is symmetric and the quadratic form Qg(x) : R® — R defined
by
(2.4) Qo(x)(€) = €7 (B(x) + BT (x 2 0A'(x))¢

is positive definite for all x € ;

e strongly symmetric positive if it is symmetric positive and the quadratic form Q;(x) :
R™ — R defined by

n

(2.5) QU)(Ers- - 6a) = D) & (04T (%) + 047 (%)) &
ij=1
is positive definite for all x € Q.
The nonlinear system (2.1) is called symmetric (resp., symmetric positive, strongly symmetric
positive) at uy if the linearization (2.2) of ® at ug is symmetric (resp., symmetric positive,
strongly symmetric positive).
Remark 2.2. A few remarks are in order regarding Definition 2.1:
e The quadratic form );(x) can be represented by the symmetric ns x ns matrix

20, A (x) 01A%(x) + DAY (%) | - | 01 A™(x) + O AL (x) |
01 A%(x) + O A (x) 2 0, A% (x) | A (X) + 0, A%(x)
(26) Qi(x) =
I O1A™(X) + 0, AN (X) | 0A™(X) + 0, A%(x) | - - 20, A™(x) |

We will use the notation (Q));;(x) to denote the (4, j)th block of Q;(x):

(Q1)ij(x) = GiA (x) + 0;A'(x).
e The positivity of @Q(x) is called the Legendre condition ([17], p.10). Moser [19]
established an existence theorem in the real analytic category under the slightly
weaker Legendre-Hadamard condition ([17], p.11), which requires only that

(2.7) ((Q1)ij)ay (X)i“ibninj > MEP Il



for all £ € R*,n € R, and some A > 0. However, in the C'*° category, the stronger
Legendre condition is necessary (cf. [27, 31]).

Definition 2.3. Given a linear strongly symmetric positive first order partial differential
operator P = A'0; + B on a domain 2 < R", the domain () is called P-convex if the

characteristic matrix
n

Blx) = Y vi(x)A'(x),
i=1
is positive definite at each point x € 0€2, where v(x) = (v1(x),...,v,(x)) denotes the outer
unit normal vector to 0f) at x € 012,

Tso [30] proved the following:

Theorem (Theorem 5.1, [30]). Suppose that ®(0) = 0 and that the system (2.1) is strongly
symmetric positive at every C* function u in some Cl-neighborhood of the function uy = 0
on a domain 2 < R™ that is P-convex for the linearization P of ® at ug = 0. Then there
exist an integer 3 and a small constant € > 0 such that, for any £ € C*(Q,R®) with |f]; < ¢,
there exists a solution u € C*(Q,R®) to the nonlinear system (2.1) on 2.

Remark 2.4. Note that the condition that a PDE system is symmetric is not an open
condition with respect to the coefficients. Since the Nash-Moser implicit function theorem
requires solving the linearized equation not just at ug, but at all u near uyg, it is necessary
to assume that ®'(u) is symmetric for all u in some neighborhood of ug. The positivity
conditions, however, are open conditions; hence it suffices to assume that they hold at uy.

Moser [19] proved this theorem in the case where ® and the function f in equation (2.1)
are real analytic, under the weaker assumption of symmetric positivity together with the
Legendre-Hadamard condition (2.7). Tso [30] stated this theorem assuming these same
conditions; however, we believe that Tso’s proof, which uses the Garding inequality for non-
compactly-supported vector-valued functions on the domain €2, is correct only if the stronger
Legendre condition holds. See [27] and the discussion at [31].

3. A LOCAL EXISTENCE THEOREM FOR STRONGLY SYMMETRIC POSITIVE SYSTEMS
The goal of Part 1 of this paper is to prove the following local version of Tso’s theorem:

Theorem 1. Suppose that the linearization ®'(u) of ® is symmetric for all u in some C*-
neighborhood of ug € C* (2, R?®), and that ®'(uy) is strongly symmetric positive at some point
xo € §). Then there exist a neighborhood g < € of xg, an integer 5, and € > 0 such that,
for any f € C*(Qp, R?) with | P(ug) — £ s < €, there ezists a solution u e C*(Qy, R®) to the
nonlinear system (2.1) on Q.

We wish to emphasize that T'so’s theorem does not immediately imply the local existence
result, because strong symmetric positivity on a domain {2 does not necessarily guarantee
the existence of a P-convex neighborhood of xy. In fact, as we show in the example below,
in general no such neighborhood exists.

Example 3.1. Consider the following ODE:
(3.1) (z — zo)u' + bu = h(x)

with h € C*. 1t is straightforward to verify that:
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(i) (3.1) is strongly symmetric positive if b > i;
(ii) an interval Q = (x1,x9) is P-convex if and only if zy € (21, x2), i.e., if and only if the
regular singular point of this ODE lies in the domain.

Meanwhile, the general solution of (3.1) is

) = —— | "ty — 20 hy) dy + —

(@ = 0)" J, (2 — o)
which is smooth at z = z¢ if and only if C' = 0. Thus we see that:

e The P-convexity condition forces the uniqueness of a C'* solution of (3.1) on €,
without specifying any initial or boundary data for u.

o If Q2 is not P-convex—i.e., if 2o ¢ €2, then the ODE (3.1) has infinitely many solutions
on €. In this case, P-convexity—and hence uniqueness of the solution—can be
achieved by extending the domain to one that contains the singular point z.

In higher dimensions, a similar phenomenon occurs: Consider the strongly symmetric
positive linear PDE system (2.3) on a domain 2 < R", and let x;,x, € 0 be located on
opposite sides of 0€), with v = v(x1) = —v(x3). In order to have B(x1), 5(x2) > 0, the
matrix v;A’(x) must be positive definite at x; and negative definite at x,. Therefore, P-
convexity requires that each of its eigenvalues must change sign somewhere in the interior of
Q). For n > 2, this does not necessarily imply that the system (2.3) has any singular points
in €2, but it is still true that any C* solution on 2 is unique. Moser discussed this in [19],
concluding that, “The reason for this strange phenomenon is that usually the conditions [of
the theorem] imply the presence of a singularity and a solution which remains smooth at the
singularity is unique.”

Our proof of Theorem 1 will proceed as follows: Without loss of generality, assume that
uy = 0 and ¢(0) = 0.

e In §4.1, we restrict the nonlinear system (2.1) to a neighborhood Qy < € of xy on
which the quadratic forms (Qy)o(x) and (Qy)1(x) associated to any sufficiently small
function u on €y remain sufficiently close to Qy(0) and @ (0), respectively.

e In §4.2, we extend the linear PDE system (2.3) from the domain € to a strongly
symmetric positive system on all of R™, where the coefficients satisfy C! bounds that
will be needed later.

e In §4.3, we show that, for sufficiently large R > 0, the ball By of radius R is P-convex
for the extended linear system.

e In §4.4, we use the extended linear system on Bg to prove the smooth tame estimates

required to implement a Nash-Moser iteration scheme to solve the nonlinear system
(2.1) on Q.

Appendix A contains the precise statements of the Stein extension theorem [29] and the
Nash-Moser implicit function theorem [26] that will be used in the proof of Theorem 1.

4. PROOF OF THEOREM 1

4.1. Restriction of the nonlinear system to an appropriate neighborhood of xg.
Without loss of generality, assume that ug = 0, ®(0) = 0, and x¢ = 0. First, we show how
to choose an appropriate neighborhood €2y on which to construct a solution for the system
(2.1).
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For ease of notation, set
B=DB(0), A =A(0), A =0A0).

Using Taylor’s theorem with remainder, we can write

(4.1) B(x)=B+B(x), Alx)=A+> alAl + A'(x),
j=1
where B, A e 0 (€, R***) are such that B vanishes to order 1 and A’ vanishes to order 2 at

x = 0. The strong symmetric positivity hypothesis at x = 0 is equivalent to the assumption
that the quadratic forms Qy : R®* — R and Q; : R™ — R defined by

n

L8 A+ A)e

i,j=1

(42) QO =¢(B+B -3 A)e,  QulE-..&)

are positive definite.

Lemma 4.1. Suppose that ® satisfies the hypotheses of Theorem 1 at x = 0. Let Mg, A\ > 0
denote the minimum eigenvalues of Qo and Q1, respectively, and let B, < R"™ denote the ball
of radius r about x = 0. Then, given real numbers My, My > 1 and § > 0, there exist real
numbers r,p > 0 and an integer a > 0 such that B, < 0 and, for any u € C*(B,,R®) with
|ulo < p, the matriz-valued functions By, AL € C*(B,,R¥**) associated to the linearization
of ® at u may be written as

Bu(x) = By + Bu(x), — Al + Z L AL (x),
where
D, D, 5 A 7 Al 5 Al A1
Ba—Ble <3 |A)j= Al <3, A=A <4,
(4.3)
Balow < =2y JAulee < oy JAulo <
u||0,00 QMO; ul|1,00 2M1’ u||0,00 M0~

For convenience, we will refer to any function u € C*(B,,R®) with |ull, < p as “admissi-

ble.”

Proof. Choose r > 0 so that the restrictions of B and A’ to the ball B, of radius r satisfy

o - o y o

4.4 B — A — A —
(14) Bl < 57> 1A' < i 1Aloe < 337

Then the Sobolev embedding estimate (1.4) and the smallness of the Taylor remainder terms
for small p imply that we may choose p and « so that equations (4.3) hold. Indeed, we may
choose any o > 3 + [%] and then choose p > 0 accordingly. O

In §4.2, we will show how to choose the constants 9, My, and M; so that the restriction
of the system (2.1) to the domain Qy = B, has the property that its linearization at any
admissible u € C*(B,,R*) may be extended to a strongly symmetric positive system on all
of R™.
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4.2. Extension of the linearized system to R". We will use Stein’s extension operator
(cf. Theorem A.2) to extend the coefficient matrices in the linearized system (2.3) from B,
to all of R™. First we need the following lemma, which states that the bounding constants
in this construction are independent of r:

Lemma 4.2. There exist constants My,, 1 <p < o0, 0 <k < 0, and extension operators
&, LY(B,) — LY(R") for all r > 0 such that, for all f € W*k?(B,),

HS f kp = MkafHkp

Proof. Theorem A.2 guarantees the existence of such constants and an extension operator
for r = 1; then a straightforward rescaling of the operator and a standard rescaling argument
shows that these constants are independent of 7. [l

Now, set
My = My o, M, = M o,
where My o, and M o, are as in Lemma 4.2. Choose 0 > 0 such that, for any matrices fl;—’
and B’ with
|B' — Bly < 6, |AY — Al < 6, 1<i,j<n,
the quadratic forms @', : R®* — R and Q) : R* — R defined by

n

Q) = (B'+ (BT =Y AV)e, Qi &) = X & (A + A&
i=1

1,j=1

are positive definite with minimum eigenvalues greater than or equal to %)\0 and %)\1, re-
spectively. Then take r > 0 as given by Lemma 4.1, and set )y = B,. Henceforth, we will
restrict the systems (2.1) and (2.3) and all relevant quantities to B,.

Next, we construct an extension of the linearized system (2.3) on B, to all of R in such
a way that the coefficients of the extended system are bounded in W"*?(R") with respect
to the Wh» (BT) norms of the coefficients of the original system on B,. After replacmg the
functions B, A’, and h by their restrictions to B,, define C® functions B, A%, and h on R”
by

B(X) =B+ (&B’)(x),

(45) F(x) = A1 0l 4 (6,4 (x),

B(x) = (&h)(x).

Similarly, for any admissible u € C®(B,,R?), let AL and B, denote the analogous extensions
of the functions A and B, corresponding to the linearization of ® at u. Then we have the
extended linear systems

(4.6) DALV + BV =
=1

on R™.

=



Proposition 4.3. For any admissible u e C*(B,,R®), the extended system (4.6) is strong-
ly symmetric positive on R"™. Moreover, for any x € R", the associated quadratic forms

(Qu)o(x) : R* - R and (Qu)1(x) : R™ — R defined by

(Quo()(&) = €7 (Bulx) + Bl(x Z(m )e
(4.7)
Qun) (& &) = D € (3,44 + 2A00) &

i,j=1

have minimum eigenvalues greater than or equal to %)\0 and %)\1, respectively.

Proof. By construction, the functions ¢,B, and ETA’{I satisfy

- ) . ) N
(4.8) 1€ Bullo,o < 2 |1€r AL 1,00 < 2 €rAgllo,e < 0.

The first and second inequalities in (4.8) imply that, for all x € R", we have
‘B()_B|OO\|B _B|oo+’8é(>’oo<5>
105 AL (x) = Al < [(Au)} — Allos +10;(E:AL) (X) o < 6,
and the result follows immediately. 0J

4.3. Boundary conditions on By for large R. Next, we show that, for R sufficiently
large, Bp is P-convex for the extended linear system (4.6).

Proposition 4.4. Let R > 0. For x € 0Bg, let v(x) = (11(x),...,v,(X)) denote the
outward-pointing unit normal vector to 0Br at x. Then, for R sufficiently large, the char-
acteristic matrix

(49) Blx) = i -

is positive definite for all admissible u € COO( ,R*) and x € 0Bp.

Proof. The normal vector to the sphere dBp is given by

v(x) = }%x.
Thus, we have
- 2
(4.10) n
(Z:UZAZ+Z$$] Z SA’ )
3,j=1 i=1

The first and third terms in equation (4.10) are bounded:
1 & -
_ IA’L

| R Z; Tl

S, A 60| < na

< nmax{\zzl111|m PN |Aﬁ|oo} )

(4.11)
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where the second equation in (4.11) follows from the third inequality in (4.8). Meanwhile,
we claim that the second term in equation (4.10) has a minimum eigenvalue greater than
or equal to zl;R)‘l' This can be seen as follows: Consider the corresponding quadratic form

(Qu)!(x) : R* — R given by
QIO = 5 O T (A

Then, by Proposition 4.3, we have

(O] = = [(Our (X (&€, ..., 2"€)|

1 (\x1£\2 +...+ ]95”5\2)

\%
3

1 1,2 ny\2y|¢|2
:E)\l((x) + .o+ (2")9)¢]

. 1 2 2
Al
— 1R ¢

Therefore, the minimum eigenvalue of (Qu)!(x) is greater than or equal to 1RA;. Together
with the inequalities in (4.11), this implies that, for R sufficiently large, 5(x) is positive
definite for all x € 0Bp. O

4.4. Application of the Nash-Moser iteration scheme. The final step in the proof of
Theorem 1 is to apply the Nash-Moser implicit function theorem (cf. Theorem A.1).

Notation 4.5. We will adopt the following conventions:

e Functions without tildes are taken to be defined on B,, and |v|; will denote the
H*norm of v e H*(B,).

e Functions with tildes are taken to be defined on Bg, and ||v||; will denote the H*-norm
of v € H*(Bg).

Let B, = H*'(B,,R®) and F, = H*(B,,R?®), with the usual H*-norms; then we have
Ey = Fy =C*(B,,R*). Let Dy c Ey denote the ball of radius p > 0 centered at uy.

Smoothing operators S(t) : Ey — E,, may be constructed as follows (see., e.g., [1] or [25]).
First, choose a compactly supported function x € C§°(R") with x = 0 and {, x(x)dx = 1.
For t > 0, define

Xi(x) = t"x(tx),
and define S, : L2(R",R*) — C°(R",R®) by

(B0 = [ ux—yuly)dy.

Then, define S; : Ey — E., by composing S, with the Stein extension operator &, : L'(B,) —
LY(R™): For ue Ey = H'(B,,R?), define
(Spu) = (S5,€,u)

It is straightforward to show that the operators S; satisfy the required inequalities; see [25]
for details.

B,
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The fact that @ is C? follows from the fact that F is C*, and the bounds (A.2) for any
a = 0 follow from the Gagliardo-Nirenberg and Sobolev inequalities (see, e.g., [2]). To
complete the proof, it suffices to show that there exists an integer o > 0 such that, for any
integer m > o+ 1, given any u € D,,,, the extended linear system (4.6) on Bg corresponding
to the linearization of (2.1) at u has a unique solution v € H™ %(By) for any h € H™(Bg),
and that the restriction v = v|p, satisfies the smooth tame estimates (A.3).

First, because the extended system (4.6) corresponding to a given admissible u e H™(B,)
is symmetric positive with coefficient matrices (omitting the subscript u to avoid notational
clutter) A',..., A", B € H™ Y(Bg) and By is P-convex for (4.6), Friedrichs’s theory of
symmetric positive systems [3] guarantees the existence of a unique solution v € L?(Bg).
Moreover, we can obtain an explicit L? bound for v, and hence for v, as follows. Multiply
the matrix equation (4.6) by v to obtain the scalar equation

(4.12) Y VTA v +v BV =¥"h

Then, because A’ is symmetric and

Zn]ai (v74%) = i (2074 (2:9) + VT (2 A)¥) |

=1

.

we can write equation (4.12) as

(4.13) —1 i V(AN +v By =v'h -] Z 0; (VT/U\?> .

Multiply by 2 and use the fact that vI Bv = %QT(B + BT) ¥ to obtain
(4.14) ol (B +BT-Y aifv‘)v —2vTh - )4, (\NITA"\7> .

By Proposition 4.3, it follows that

Jolv <2vTh - i&- (v749)
IV SR = 20 (7).

Integrate over Bg, apply Stokes’ theorem, and use the fact that [ is positive definite on 0Bgr
to obtain

4

(115) 713 < Coho)? I3 - —
0 JoBRr

vTAvdS < Co(Mo)* b,

where C'(A\g) > 0 is a universal constant depending on )\g. Therefore, the restriction v of v
to B, satisfies

(4.16) [vlo < 9]0 < Co(Xo) o < Co(Xo) Mos|la]o,

where My is as in Lemma 4.2.
12



The bounds on the derivatives of v may be computed similarly by differentiation, and then
the existence of these derivatives follows from standard results in analysis. First, differentiate
the system (4.6) with respect to 27 to obtain

(4.17) Z <A1 25 + (05 A’)&v) + Bo,v + (0,B)V = o;h.

Multiply the matrix equation (4.17) by d;v' to obtain

(4.18) Z ( (0;9T) A1 2% + (0% )(ain)aiv) (0,%TVB o;v + (0,57)(0,B)¥ = (8;7)d;h.
By an argument similar to that above, we can write equation (4.18) as

(4.19) Rl (B+BT Zam)avmz (0, A1) 0%

— 20,97 (0 (&;B)¥) - Za (0,97 A'0;%).

Now sum equation (4.19) from j = 1 to n, and note that the second term can be written as

2 309N (0407 = D (99T (;AT + 0, A7) (6:%).

1,j=1 i,j=1

Thus the summed equation can be written as

(4.20) i (B +BT-Y 04 )a v+ 2 (0,5 T)(0; A1 + 0,47)(0,%)
j=1 i=1 ,J=1
j; (2@\7 ( ) ; ( o vTA'0; V)) :
or, in other words,
(121)
Z (O, 0¥) = ) <zajvT (am— @B)¥) - Yo (aw%@w)) .
j=1 j=1 i=1

By Proposition 4.3, it follows that

o+ A Zn] Zn] (2@ v (0h - (@B)V) - Vo, (@o%@o))

=1

- 4 $ ~ ~ -
<10+ m; o ) (105B2 + 0B 19 )
-y 0 (0,vTAlo;v) .
; (0,97 Ai0;)
13



Integrate over Bg, apply Stokes’ theorem, and use the fact that 3 is positive definite on 0B
again to obtain

- - 4 n
V2 < Cilho, M) (1) + |[¥|3|BI2 ., ) — ——— f 0.vT30.%v)dS
gy G0N (Il + 131212 ) e wP I MRGAECA

< G100, M) (IR + 9131BIE ).

where C1(\g, A1) > 0 is a universal constant depending on Ay and ).
By the Sobolev embedding estimate (1.4), we have

Bl < K[ Blasiz)
for some constant K’; thus we can write the inequality (4.22) as
91 < 02 (IB1: + 91318 By
and hence
912 < C1 (1Bl + 1910l Blaiz) -
Therefore, the restriction v of v to B, satisfies
vl < 1912 < G (IRl + 900l Bl
Odaa@hh+uww3m+g)
< C1 (I + [fol Blasra))

C”@Mh+HMHm%+g>

(4.23)

where the last inequality follows from the fact that B is a C'® function of u and its first
derivatives.

Successive differentiations of the system (4.6) produce similar results. To obtain an esti-
mate for |v]|, differentiate the system (4.6) k times, with respect to 27!, ..., x%*. This yields
an equation of the form

n k
i Ak+1 o > R Ak ~
4 24 Z (A az]l ]kv Z 'leu.jq‘..jkv) +B ajl...jkv

k—1 n
_ ﬁfl jk~ ((35“‘1 Jn ~)\~/ — Z (Z DEt1=m ji + Dk—mB) (Dm{/),

m=1 \1i=1

where, on the right-hand side, D™ indicates an appropriate differential operator of order m.
Multlply the matrix equation (4.24) by 26'“ vT, rewrite the first term and rearrange as in
the previous cases, so that the left-hand 81de of equatlon (4.24) becomes

n n k
(4.25) ¥ V(B +BT =) AN V20 V)Y (05,400

k
Ji.- ]k ) Z]qu]kv



Now sum over j, ..., ji, and note that the second term in (4.25) can be rearranged as follows
by using the commutativity of mixed partial derivatives and relabeling as appropriate:

2 Z 2 Jredn ¥ ﬁqul)ﬁmquka\Nf

6J15eJk=1g= 1

n k
_ k =T A4\ Ak =
=2 Z 2(ajqj1..,jq...jkv )<aqu )aijl...jq...jkv

4,J15eJk=1g=1

n k
— k '3 q k ~
N Z Z(ajqj1~~3q~4k )(a A + 0 AJ )aUln-jq-“JkV

4,J15Jk=1g=1
n

=k Y (@ V@A + aAL
1,015 ,Jk=1

Thus the summed equation can be written as

(426) Z QO( J1ye- 7]k )+k Z Ql( oJk—1,1 "7§Jk1, SJk—1,1 ‘7)
JiyeensJi=1 JiyeensJi—1=1
k k 1. k R\
= Z (28]1 Find (ajl Jk (ah Tk ) )
Jiseenje=1
k—1 n
k: ~T k+1-m A1 k—m ms
o (YDA DR R) D
m=1 =1

—;ai (a;?h_ LT Mv)).

By Proposition 4.3, the left-hand side of equation (4.26) is bounded below by

n

%()‘0+k>\1) Z ’ 1 yeeesii ¥ ‘ :

J1yeJk=1

Thus, after performing operations similar to those above, we obtain

(4.27)
k—1 n
9] < Ci(ho, Mo)? (hui FIFIRIBIE o + X 1912 (D 1A oo + rBzm,oo)>
m=1 j=1

< Ci(ho, M)? (huk * 2 192, (2 ) moo)) .

By the Sobolev embedding estimate (1.4), we have

| A k1-mee < Kill A |ks2emiz, | Blimeo < Kil Bllisi-me(z]

for some constant Kj; thus we can write the inequality (4.27) as

k—1 n
o1} < ¢ (hni DI AN )/ W;])) ,
m=0 j=1

15



and hence

k—1 n
(4.28) [V][x < Cy (h”k + ) H‘7||m<2 | A7k s2mmegz) + | Bllosa— m+[’5])> :
m=0 j=1

By the Gagliardo-Nirenberg interpolation inequality [2] and the Cauchy-Schwarz inequal-
ity, for 0 < m < k — 1, we have

¥ 0l A7k 2-m 31 < ConlI9 0l A fiszerzy + 19 k-1lA7 fsp5),

190l Bllis1-msr31 < Con(I¥ oI Bl rop31 + 191l Bllzsgz))

for some constant C,,. Substituting into equation (4.28), we obtain

(120)  [l<C <|ﬁ|k+v||o(2|ﬁjuk+2+g +1Blerez)
j=1
H e (X 14 g1 + 1Bl )) .
j=1

Now let o > 4 + [%]. It follows from the fact that A and B are C* functions of u and

its first derivatives that there exist constants K , and f(k,p such that, for any u € D,, the
extended linear system (4.6) corresponding to the linearization of (2.1) at u satisfies

| A7 34120, | Blasiz) < Kpy 1A egos2), | Blisiez) < Kip(L+ [ufpssepz))-
Thus (4.29) becomes
(4.30) 90 < & (Il + 1ol ulkessz + 191 ) -

It then follows by induction (with the inequality (4.23) as the base case) that

(4.31) 19l < 3 (1Bl + [¥loulesse31) -

Therefore, the restriction v of v to B, satisfies

vl < 190 < G ([l + [¥lolulissiiz )
(432) < O Myz (Il + [Vlolulisssgz))

< Ci (I + Infolulssipz)) -

All the hypotheses of Theorem A.1 have now been verified for any a > 3 + [%]; thus the
conclusion of Theorem A.1 gives the desired solution u € C*(B,, R?) to the nonlinear system
(2.1) on B,. This completes the proof of Theorem 1.

Part 2. Application to Isometric Embedding
5. LOCAL EXISTENCE THEOREMS FOR ISOMETRIC EMBEDDING

The remainder of this paper will be devoted to giving a new proof, based on Theorem 1,

for the following local existence theorem:
16



Theorem 2. Let (M,g) be a C* Riemannian manifold of dimension n = 2 orn = 3,
let N = in(n+ 1), let xo € M so that the Riemann curvature tensor R(xg) is nonzero.

Then there exists a neighborhood €2 = M of xo for which there is a C* isometric embedding
y:Q— RV,

Here we briefly describe our strategy for proving Theorem 2. Let n = 2 or n = 3, and
let N = in(n + 1). For convenience, choose local coordinates x = (z',...,2") based at
Xg, so that without loss of generality we may assume that xg = 0. Given a C'° metric g
on a neighborhood €2 of x = 0, choose a real analytic metric g on {2 that agrees with g to
sufficiently high order at x = 0. By the Cartan-Janet theorem, there exists a real analytic
isometric embedding (possibly on a smaller neighborhood) yo : Q — R of (€, g) into RV,

The linearization of the isometric embedding system (1.1) at yq is a first-order PDE
system of N equations for the unknown function v :  — R¥. This system decomposes into
a system of n first-order PDEs for the tangential components of v, together with (N — n)
equations that determine the normal components of v algebraically in terms of the tangential
components.

We will show that, under the hypotheses of Theorem 2, the embedding y, can be chosen
so that the tangential subsystem becomes strongly symmetric positive after a fairly simple,
but carefully chosen, change of variables. Consequently, it follows from the argument given
in the proof of Theorem 1 that the tangential components of v satisfy the smooth tame
estimates required to implement a Nash-Moser iteration scheme for the isometric embedding
system (1.1), and then the remaining algebraic equations will imply the necessary estimates
for the normal components of v. Theorem 2 then follows directly from the Nash-Moser
implicit function theorem (cf. Theorem A.1).

Notation 5.1. We will use the Einstein summation convention for the remainder of this
paper.

6. THE LINEARIZED ISOMETRIC EMBEDDING SYSTEM AND NASH-MOSER ITERATION

Let © < R™ be a neighborhood of x = 0. Let y, : 2 — RY be a smooth embedding,
and let g = g;;dz'dz? be the metric on 2 induced by the restriction of the Euclidean metric
on RY to yo(Q). Linearization of the isometric embedding system (1.1) at the function y,
yields the linear PDE system

6.1 azyoav—i—@yoan:hZ, 1<Z,j<n,
J J J

for the function v : Q@ — RY, where h;; = gi; — Gij-

As described in [1], the linearized system (6.1) can be reformulated as a system of n linear
PDEs for the n tangential components of v, together with a system of (N — n) algebraic
equations for the normal components. To this end, note that, since yq is an embedding, for
each x € ) the tangent vectors {01yo(x), ..., 0nyo(x)} are linearly independent and span an
n-dimensional subspace Ty < RY. We can therefore decompose the second derivatives of y,
as follows:

(62) ﬁ%yo = Ffjak}’() + Hij;

)

where, for each 1 < i,j < n, the vector-valued function H;; = Hj; : Q — RY satisfies
H;j - dkyo = 0 for 1 < k < n. The functions Ffj : 2 — R are the Christoffel symbols
of the metric g;;, and the quadratic form H,;dz'dz? is the second fundamental form of the

embedding yy.
17



Let S,, denote the %n(n + 1)-dimensional space of quadratic forms on R™, represented by
symmetric n x n matrices [s;;]. For each x € €2, the vectors H;;(x) determine a linear map
Hy : RN — S, given by

Hy(v) = [(Hy;(x), v)].
We denote the image by Il = HX(RN ). Since the kernel of the map Hy contains T, we
have

1 1
(6.3) dimII, < §n(n +1)—n= En(n —1).

Definition 6.1. The embedding y, :  — R¥ is called nondegenerate if dim I, = %n(n -1)
for all x € €.

Now, let S* denote the dual space to S, represented by symmetric matrices [s*], with
the pairing S; x §,, — R defined for A e S}, H € §,, by

(6.4) (A,Hy= > AHy.
ij=1
Definition 6.2. The annihilator I+ of the subspace II, c S, is the subspace of S* defined
by
I} ={AeS" : (A H)=0forall HellL}.

It follows from equation (6.3) that dim Iy > n, with equality for all x € Q if and only if
Yo is nondegenerate.

Assumption 6.3. Henceforth, we will assume that y, is nondegenerate, and that conse-

quently dimII, = % (n—1) and dim I} = n for all x € Q.

Now, the system (6.1) can be rewritten as follows:

(65) é‘i(ﬁjyo : V) + é’j(é’iyo : V) —2v - 612]}/0 = hija 1< ’L,] < n.
Define functions v; and V;v; by
ﬁizv-(?iyo, 1<’L<n,
V;0; = 0;0; — Ffj@k, I<i,5<mn
then the system (6.5) can be written as
(66) vi@j + Vj,Di —2v- Hij = hija 1<7,7<n.
Since dimIIf = n, there must exist smooth maps A',... A" : Q — S* such that, for

each x € Q, the matrices A'(x),..., A"(x) comprise a basis of IIL. By writing A* = [A%7]
and pairing each of these matrlces Wlth equations (6.6) as in (6. 4) we obtain the following
system of n first order PDEs for the functions vy, ..., 0y:

(6.7) ARV w5 + Vi) = A¥hy k=1,....n

Because A* € §*, we have A*/ = A*i but the component functions A*7 do not necessarily
possess any other symmetries.

Proposition 6.4. Any solution (vy,...,0,) : @ — R™ to (6.7) uniquely determines a solution

v : Q — R to equation (6.1); moreover, v can be determined algebraically from (v, ..., 7,).
18



Proof. Suppose that vy, ..., 9, satisfy (6.7), and define
(68) Nij = hij - Vﬂjj - Vj@i, 1< Z,] <n.

Equation (6.7) implies that [n;;(x)] € IIx for each x € 2. Assumption 6.3 implies that Hy
has maximal rank so that, for each x € Q, there exists a unique v(x) € R" such that

6.9 v(x) - diyo(x) = vi(x), l<i<mn,
(69) —2v(x) - Hij(x) = n;5(x), l<i,7<n.
Therefore, the map v : Q — RY satisfies (6.6), which in turn is equivalent to (6.1). O

It follows from Proposition 6.4 that, in order to solve the linearized equations (6.1), it
suffices to solve equations (6.7). This system can be written as

(6.10) A (005 + 0;0; — 2U0,) = Ahy;,  k=1,...,n.
Since A" = A¥' and T}; = T'¥;, this is equivalent to the system
(611) Akij (éiﬁj - Ffj@g) = %Akijhij, k= 1, o, n.
We can write this system in matrix form as follows: For i = 1,...,n, let A’ denote the
matrix . ,
Alzl . Alzn

Ai _ [Alm] _
Then the system (6.11) can be written as
(6.12) A0V + Bv = h,
where
(6.13)

v=[y], B=[B¥=[-A""T] ], h=[tA""h,,), 1<k {m<n
Our proof of Theorem 2 is based on the following key result.

Proposition 6.5. Suppose that the system (6.12) is strongly symmetric positive at x = 0.
Then there exist a neighborhood g < ) of x = 0, an integer 3, and € > 0 such that, for
any C® metric g on Qo with ||g — gl < €, there exists a C° solution 'y : Qo — RY to the
isometric embedding system (1.1).

Moreover, the conclusion holds if the system (6.12) becomes strongly symmetric positive
after performing a change of variables of the form

(6.14) X = ¢(x), w = S(x)v,
where ¢ : Q — R™ is a local diffeomorphism of Q with ¢$(0) = 0, and S : Q — R™*™ is a C*®,
n x n matriz-valued function on Q with S(0) invertible.

Proof. First, suppose that the system (6.12) is strongly symmetric positive at x = 0. The
argument from the proof of Theorem 1 shows that, under the hypotheses of the proposition,
there exists a neighborhood ©y < Q of x = 0 on which the system (6.12) corresponding to
the linearization of (1.1) at any function y : Qo — RY sufficiently close to yo has a solution
v that satisfies the estimates of the form:

(6.15) 9l < i (Il + [Bloly — olssssiz) . k>0,
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for some constants C}. Then it follows from equation (6.8) that

Il < G (Wlss + Bloly = yolsssrz) k>0,

for some constants C}. These estimates, together with equations (6.9) and Assumption 6.3,
imply (possibly after shrinking y) that

(6.16) Vi < Cic (Ilices + Bloly = Yollsssizs)» k20

for some constants Cj,. The existence of a solution y : Qg — R to the system (1.1) then
follows from Theorem A.1, just as in the proof of Theorem 1.

For the second statement, assume that €2y has been chosen so that the restriction of ¢ to g
is smoothly invertible and the matrix S(x) is invertible for all x € Qy, with the determinant
of S(x) bounded away from 0. Then it suffices to observe that a change of coordinates of
the form (6.14) induces linear maps 1, : H*(y) — H*(¢(p)) defined by

and that these maps are continuous with continuous inverse. Thus the estimates of the form

(6.15) for the function w imply similar estimates for v, which in turn imply the estimates
(6.16) for v. O

Thus it remains to show that, under the hypotheses of Theorem 2, the approximate em-
bedding yo : © — RY can be chosen so that the linearized system (6.12) becomes strongly
symmetric positive at x = 0 after a change of variables of the form (6.14).

7. SYMMETRIZATION

The matrices A? in the system (6.12) are not necessarily symmetric, because the functions
A¥iJ and A% are not necessarily equal. The system (6.12) can be re-expressed as a symmetric
system if and only if there exists an invertible n x n matrix C' such that the matrices

CA',...,CA"

are all symmetric, in which case multiplying the system (6.12) by C' results in a symmetric
system.
Observe that multiplying (6.12) by an invertible matrix C' is equivalent to replacing the

basis A',..., A" for the annihilator IT} at each point with the alternate basis
At = CLAF
Moreover, a given basis A!, ..., A" for Hi will lead to symmetric matrices A', ..., A" if and
only if
(7.1) AFiI = ATk,

i.e., if and only if the coefficients A%* are symmetric in all their indices. Therefore, in order
to determine whether the system (6.12) is symmetrizable, it suffices to determine whether
there exists a basis A¥ = [A*J] for II+ for which the coefficients A*Y are symmetric in all
their indices. If we choose such a basis for IT3, then we will have

Ak _ Ak
and there will be no need to distinguish between the two.

Proposition 7.1. When n =2 orn = 3, the linearized system (6.12) is symmetrizable.
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Proof. Whenn = 2, we have N = 3. Choose any smoothly varying basis element H3(x) € II,.
Consider the 4-dimensional space of all symmetric cubic forms

AZAU’“( ¢ 0 oi) e S3(TR?),

o 01 Ok
and for k = 1,2, let A* denote the matrix A* = [A*7]. The annihilator equations
(A* H?) =0, k=12,

form a system of 2 homogeneous linear equations for the 4 functions A*”. Thus there must
be at least a 2-dimensional solution space at each point x € U, and choosing A(x) to be
any smoothly varying, nonvanishing element of this space produces a symmetric linearized
system (6.12).

When n = 3, we have N = 6. Choose any smoothly varying basis (H*(x), H%(x), H%(x))
for the space II;. Consider the 10-dimensional space of all symmetric cubic forms

A= Ak (i d d

- O —— O
ort  Oxi  OxF
and for k = 1,2, 3, let A* denote the matrix A*¥ = [A*J]. The annihilator equations
(A* H*) = 0, k=1,2,3, a=45,6,

form a system of 9 homogeneous linear equations for the 10 functions A*J. Thus there must
be at least a 1-dimensional solution space at each point x € U, and choosing A(x) to be
any smoothly varying, nonvanishing element of this space produces a symmetric linearized
system (6.12). O

) e S3(TR?),

Remark 7.2. The result of Proposition 7.1 does not hold for a generic choice of II, when
n = 4; this is the primary obstruction to applying our methods to the isometric embedding
problem in higher dimensions.

For the remainder of this paper, we will restrict to the cases n = 2 and n = 3. We will
assume that the functions A*J are symmetric in all their indices, so that the matrices A* in
the linear system (6.12) are symmetric and may be identified with the matrices A*. We will
use the convention that Roman indices (i, j, k, etc.) range from 1 to n, while Greek indices
(ar, 8,7, ete.) range from (n+ 1) to N = n(n + 1).

8. COMPATIBILITY EQUATIONS AND NORMAL FORMS

In this section, we will show how the Gauss and Codazzi equations (also called the “com-
patibility equations”) for the embedding yo : @ — RY introduce constraints on the values
of the matrices A’ (now assumed to be symmetric) and their first derivatives at x = 0, and
we will show how the matrices A’ can be put into a simple normal form at the point x = 0.

Let x = (z',...,2") be local coordinates on ) centered at x = 0. We will assume that x
is a normal coordinate system at 0 with respect to the metric g on €2, i.e., that FZ(O) =0
for 1 < 4,7,k < n. We will not, however, assume that g¢;;(0) = J,;, because our argument
will involve a nontrivial GL(n,R) action on the tangent space ToM. The specific values of
9i;(0) will not affect our argument, in any case.

Let g be a real analytic metric on € that agrees with ¢ up to order at least S (where 3
is as in Proposition 6.5) at x = 0, and note that this implies that the Riemann curvature

tensors of g and g agree up to order at least (5 —2) at x = 0. By the Cartan-Janet isometric
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embedding theorem [13], there exists a real analytic isometric embedding (possibly on a
smaller neighborhood) yo :  — RY of (Q, ) into RY.

Let (€441, -.,ex) be a smoothly varying orthonormal basis for the normal bundle of the
embedded submanifold y,(2) = RY, chosen so that
(8.1) Vie.(0) =0

forn+1 < o < N and all w € ToM, where V* denotes the connection on the normal
bundle induced by the Euclidean connection on RY. This condition is the analog for the
normal bundle of the normal coordinates condition I Z(O) = 0. Then we can write the second
fundamental form of yq as

(8.2) Hijdz' o da’ = eq @ Hjdx' o da’

for scalar-valued functions Hj : 2 — R.
The embedding y, : @ — R must satisfy the following conditions at x = 0:

e Metric conditions:
(0iyo - 0j¥0)|x=0 = 9:5(0), 1<1i,j<n,
Vi(0;50)|x=0 = (I};0ky0)|x—0 = 0, 1 <i,j k<n;

e Gauss equations and their first derivatives:

(8.3) ( i (HGHS, — H%ﬁ))

= Rijk€(0)7 1< Z.ajukag N,

a=n+1 x=0
N
(8.4) Om < > (HGHS, - HéZka)) = (OmRijee)(0),  1<4d,5,k,£,m <,
a=n+1 x=0

where R;jre denotes the components of the Riemann curvature tensor of (M, g);
e Codazzi equations:

(8.5) (O:H5)|, o = (GHR)| o = (OhHY)| _yy 1<ijk<n, n+l<a<N.

This form of the Codazzi equations at x = 0 relies on the normal coordinates condi-
tion T, (0) = 0 and the condition (8.1) on the covariant derivatives of e,.

Conversely, the Cartan-Janet theorem guarantees that, for any choice of real numbers H%(0)
and 0, H{3(0) satisfying equations (8.3)(8.5), there exists a real analytic isometric embedding
yo : 2 — RY of (©,3) (possibly after shrinking ) whose second fundamental form agrees
with the given values up to first order at x = 0.

Notation 8.1. Henceforth, we will only be concerned with the values of H®, A*¥J and their

13
first derivatives at x = 0. Thus we will use the following notations:

o Hf will denote the real number Hf(0), and H* will denote the matrix [H}].

o hf;; will denote the real number 0, H}(0), and hf will denote the matrix [hg;;]. Note
that the Codazzi equations (8.5) are equivalent to the condition that the hj,; are
fully symmetric in their lower indices.

o AR will denote the real number A*(0), and A* will denote the matrix [A*7].

e a7 will denote the real number d,A*7(0), and a} will denote the matrix [a}*]. Note
that the algij are fully symmetric in their upper indices, but there are no symmetries

involving the lower index.
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o Rike will denote the real number R;;r(0). Note that the R, must satisfy the
symmetries of the Riemann curvature tensor:

Rijke = —Rjire = —Rijo = Riuij-
When n = 2, the only nonzero component of R is the Gauss curvature K = Ria1o;

when n = 3, R has 6 nonzero components, represented by Ri212, Ro303, R3131, R1293,

Ra331, Rai1a.

® rijkem Will denote the real number 0,,R;jke(0); when n = 2, we will denote r1212;
and 72122 by ki and kg, respectively. Note that the r;jie,,, must satisfy the same
symmetries as the [;jie in their first four indices, together with the second Bianchi
identities. When n = 2, the second Bianchi identities are trivial; when n = 3, they
are represented by the three equations:

(8.6) 793231 + T2331,2 + T'1223.3 = T'2331,1 + 31312 + T3112,3 = T1223.1 + T'3112,2 + T1212,3 = 0.

The values of H, his,., A%, ay” are constrained by the following relations and are other-
wise arbitrary (apart from the nondegeneracy condition on the H}):
e Gauss equations:
N
(8.7) > (HGHS, — HYHS) = Ryre, 1<, 5,k 0 <n;

a=n+1

e Codazzi equations:

(8.8) oe = D = M 1<i,jk<n, n+1<a<N;
e Annihilator equations:
(8.9) AMITHE =0, 1<k<n, n+l<a<N;
e Derivatives of the Gauss equations:
N
(8.10) > (H§hSy + HihS — HyhS — HhG) = Fijeem, 1<, j.k, 0,m < n;
a=n+1

e Derivatives of the annihilator equations:

(8.11) AR, + HRap? =0,  1<k(<n, n+l<a<N.

It will be helpful to reduce to the case where the values H;j and AFJ take on relatively

simple normal forms. To this end, consider a linear transformation of the independent
variables of the form:

(8.12) X —>g- X

with g € GL(n,R). This transformation induces an analogous action by g on the tangent
and cotangent spaces ToR"™ and TFR", and hence on the tensors

R = Rijp(da’ A da?) o (da® A da*),
H = e, ® Hjda' o da?,
w0 0 0
A=A — 0o _—o0_——
((%EZ ® 0ai ° (%k) ’

and their covariant derivatives, while preserving the normal coordinates condition Ffj(O) = 0.
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8.1. Normal form for n = 2. When n = 2, the subspace Il < S; is spanned by the
matrix: 5 5
73— Hy, HY, ‘
HY, H3,
The nondegeneracy of the embedding yo : @ — RY implies that the matrix H? is nonzero.
Then, by an action of the form (8.12), we can arrange that

) s K 0
o 1

where K is the Gauss curvature of (M, g) at x = 0. The annihilator equations (8.9) then

imply that we can choose
0 1 1 0
, A% = )
1 O] 'O -K ]

8.2. Normal form for n = 3. When n = 3, Il < S; is the subspace
Il = span(H*, H?, H®),

(8.14) Al =

where, for a =4, 5,6,
HYy Hyy Hg
H® = | Hy, Hj Hj
Hg Hy, Hi
Each symmetric matrix H* may also be regarded as representing the quadratic form H fj‘-dq:idxj
€ S?(T§R?), or equivalently, the quadratic polynomial H XX/,

Following [1], we say that Ily is general if there exists a nonsingular cubic polynomial
Y =Y X' X7 X* such that

11 oY oY oY

= span .

0T PP\ ax1 ax? ax

In particular, Y must depend on all three variables X', X2, X3,
The following classical lemma may be found, e.g., in [22]:

Lemma 8.2. If Y € S3(T3R?) is a nonsingular, homogeneous cubic polynomial, then there
exists a unique real number o # —3 and a basis (X', X2, X?) of T§R?® such that
Y = (X')? 4+ (X?)? + (X?)? + 60 X' X2 X7
It follows that, if IIg is general, then, by an action of the form (8.12), we can arrange that
100 0 0 o 0 o 0
(8.15) IIg=span| |0 O of,]0 1 Of,|lc 0 O
0 o 0 o 0 0 0 0 1

The annihilator equations (8.9) then imply that we can choose
—20 0 0 0 0 1 01 0
(8.16) Al=1 0 0 1}/, A2=10 —20 O], A=110 0
0 10 1 0 O 0 0 —20
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Meanwhile, the Riemann curvature tensor R may be regarded as a quadratic form on the
space A%(ToR?); as such it is represented by the symmetric matrix:

Rogos  Raogsi Rigos
(8.17) R = | Ras31 Raizi Rsii2
Rises Rz Rioio

The only invariant of R under the action (8.12) is its signature (p, q). The following propo-
sition is a direct consequence of Theorem F' in [1]; we will give an independent proof below.

Proposition 8.3. If R is nonzero, then the Gauss equations (8.7) have a solution (H*,
H?, H®) whose span 11y is equivalent under the action (8.12) to the normal form (8.15) for

some o with 0 < |o| < % In fact, 0 may be chosen arbitrarily within this range, the only

restrictions being that:
o If the signature of R is (1,0), then we must have o < 0;
o [f the signature of R is (0,1), then we must have o > 0.

Proof. Let H*, H®, H° denote the basis

1 00 0 0 o 0 o 0
H*=10 0 o, H=10 1 0, HS=1oc 0 0
0 o 0 o 0 0 0 01
for IIg. Then, for a = 4,5, 6, let B
H* = v5H®
for some invertible matrix ['yg‘] Now, for 8 = 4,5,6, let 73 denote the vector
75
_ |5
s = | Vs
6
Bz

Then it follows from the Gauss equations (8.7) that the corresponding matrix Ris given by
(v57%6) — 0* (74" 7a) *(vays) —o(6v6) 02 (V6 va) — o (V57s)

(818)  R=|0*(us)—c(ere) () —o*(s) 07 (95076) — 0(Yara)
(o) —o(1575)  0*(v%6) —o(yava)  (av5) — 0% (6 76)

It suffices to show by example that, with the sign restrictions given above, the vectors
4,75, Y6 May be chosen so as to obtain a matrix R of arbitrary nonzero signature. We may
achieve this as follows: Let v4,7s,7¢ be linearly independent unit vectors in R3, oriented
so that the angle between any pair of these vectors is equal to the same real number 6.

Geometric constraints require that 0 < 0 < %’r, and hence —% < cosf < 1. Denote cosf by
¢; then from (8.18), we have

b—0® o*p—0 o*p—o0
(8.19) R=|o%-0 ¢—0*> o2p—0c

o’p—0o o*p—0 ¢—o?
The eigenvalues of the matrix (8.19) are

A=o¢(1+20%) —0o(c+2), (1- agggb +o+4+0¢), (1—0)(p+ 0+ 00).



Therefore, for 0 < o < %, we have

1 g
r(0a3)7 _§<¢<_0_+1’
R (07]-)7 Qb_ _ﬁu
sgn(R) =4 (2,1), 2% <¢ <32,
(2,0), ¢ =2‘§(f;,€’,
L(3a0)7 (;(_;,(_TQ_ZQ) < gb < 17
and for —% < 0 < 0, we have
r(Ou 3)7 _% < (rb < (;(fgti)a
N (07 2)7 ¢ = 01(_:_7;;.22)7
sen(R) = 1 (1,2), 39572 <6< -5,
(1a0>7 gb: _O-L_Ha
L (3,0), S <¢<l

A slight perturbation of the vectors 74, 75,76 will replace the double eigenvalue of R with
distinct eigenvalues, which will lead to R attaining the remaining possible signatures ((0, 2),
(1,2), and (1,1) for ¢ > 0 and (1,1), (2,1), and (2,0) for ¢ < 0) as ¢ varies. O

Remark 8.4. It is possible to show that, when R = 0, all nondegenerate solutions (H?,
H5, H®) to the Gauss equations (8.7) are simultaneously diagonalizable under the action
(8.12) and are therefore equivalent to the normal form (8.15) with ¢ = 0. The cubic form
A thus becomes reducible, with the result that the rank of equations (8.11) with respect to
the variables hfj, drops from 27 to 21. This drop in rank is the main obstruction to carrying
out our construction when R = 0.

9. STRONG SYMMETRIC POSITIVITY FOR THE SYSTEM (6.12)

In this section we will prove the following theorem, thereby completing the proof of The-
orem 2.

Theorem 9.1. Suppose that either n = 2 and K # 0, orn = 3 and R # 0. Then the
linearized isometric embedding system (6.12) can be transformed to a strongly symmetric
positive system in a neighborhood of x = 0 via a change of variables of the form:

(9.1) ot =T+ 5, BT, v=+75)w,

where ¢y = ¢i; € R and Sy, ... S, are constant n x n matrices.

In order to prove Theorem 9.1, we will show that, when n = 2 or n = 3, for any given real
numbers R;jre and 7;jx¢,m satisfying the necessary symmetries with R;j,, not all equal to zero,

there exist real numbers H, h:,, AM, ay” that satisfy equations (8.7)-(8.11), together with
a change of variables of the form (9.1), that renders the system (6.12) strongly symmetric
positive at x = 0.

At first glance, the strong symmetric positivity condition might appear impossible to

achieve: From the expressions (6.13) and the normal coordinates condition FZ(O) =0, we
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have B(0) = 0. Therefore, symmetric positivity for the system (6.12) would require that the

matrix
n

Qo = — 2 a;
i=1
be positive definite, while strong symmetric positivity would require that each of the diagonal
sub-blocks (Q1); = 2at (no sum on 4) of Q; (cf. equation (2.6)) be positive definite. Clearly,
these two conditions are mutually exclusive, and the situation appears hopeless. However,
it turns out that a change of variables provides some unexpected flexibility:

Lemma 9.2. Under the change of variables (9.1), the symmetric linear system (6.12) with
associated quadratic forms Qy and ()1 at x = 0 is transformed to a symmetric system

(9.2) A'd;w + Bw = h,

with associated quadratic form CZQO at x = 0 given by

(9.3) Qo = —ai + ¢, AT,

and the (i, §)th block of Q1 (cf. equation (2.6)) at x = 0 given by

(9.4) @Wf”%wm+@mm? - -
=a’+al — (ch + ) )A" + STA + A5 + STA" + A'S;.

Proof. According to the chain rule, up to first order at x = 0, we have

o 0 .0 o 0 .0

oxt  oxi KT ogd ori ozt KT o

Therefore, at x = 0, we have

o_ (0 NG o
iV = (% chT ajj) (I +z°S)w)

(9.5) 5 5
= (I +7'S)) <%w — c{ka@’“@ W) + (S — 7" S))w.
Substitution of (9.5) and (9.1) into the linear system (6.12) yields

Al <(I + 7Sy) <aiiw — cfkfk%W)) + (B(I +7°Sy) + AY(S; — 7" S;)) w = h.

Multiply on the left by (I + 7°S,)T, collect the terms and then relabel them to obtain the
system (9.2), where

A= (I +7S)" (A" = ¢, 2" A7) (I + 2'S)),
(9.6) B=(I+z"S)" (B(I+7"Sy) + A'(S; — c),z"S;))
h = (I +2'S;)"h,

and 0; now represents % Finally, computation of

Qo=B+B =Y 0A,  (Qu)y = A + A"
=1

and evaluating at x = 0 yields equations (9.3) and (9.4). O
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In light of Lemma 9.2, our strategy for proving Theorem 9.1 will be as follows:
1. By applying the GL(n,R) action (8.12), we may assume that A*/ and H{} are as in
equations (8.13)—(8.14) when n = 2 and as in equations (8.15)—(8.16) when n = 3.
2. Identify the values of a?ij for which the system (6.12) can be transformed to a strongly
symmetric positive system (9.2) via a change of variables of the form (9.1).
3. Identify the values of A, that satisfy equations (8.11) for some ay” from Step 2.
4. Show that all possible values of 7, satisfy equations (8.10) for some hgy from
Step 3.
5. Conclude that, for any R;;i not all equal to zero and any 7;jxem, there exist HE,
ARG b, and ay” that satisfy equations (8.7)~(8.11) and for which the system (6.12)
can be transformed to a strongly symmetric positive system (9.2).
Proof of Theorem 9.1.
First we give the proof for the case n = 2. We begin by identifying the values of algi‘j for
which we can arrange that

(9.7) éo = Ay, él = puly,

for given real numbers A\, u > 0, where I, and I, denote the 2 x 2 and 4 x 4 identity matrices,
respectively.
By applying the GL(2) action (8.12), we can assume that

01 1 0 K 0
Alz s A2: ’ H3: :
1 0 0 —K 0 1

5 0 0

o 1)’

so that the matrices A, A2, and D form a basis for Sy, and write the matrices S; and S5 as

sit si? sil si?
S1 = 21 22| Sz = 21 22|
ST 81 D

Then, after some computation, equation (9.3) can be written as

Set

(9.8) Qo= (i +a3) + (ciy + ) A + (cly + 3) A,
and the equations (9.4) can be written as

(
(
(

)11 = 261% - 2(0%1 - Sil - S%Q)Al - 2(42 + Z112(5))A2 + 4(3i2 + Ks%l)D,

(9.9) oz = 2a3 — 2(y + Zog ()AL — 2(c3y — 2557 ) A% + 4K (s3' — s32) D,

On On On

D1z = ay +aj — (cp + ¢y + Ziar(s)) A" — (cpp + cfp + Zina(s)) A
+2(s3% + K(s1! + 538 — 522))D,

where Z;;i,(s) represents a linear combination of the s;’ whose precise form is irrelevant.
i
Regardless of the values of a,”, we can set

(Ql)ij = 5¢j#12
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and solve equations (9.9) for the variables si?, s3%, s3? (from the coefficients of D) and
s¥2 sil el 2, 3, e, (from the coefficients of Al and A?). Note that this solution makes
use of the assumption that K # 0. Then we can set

Qo = My
and solve equations (9.8) for the variables ¢}, and c3, if and only if the matrix
AN al2 ) l2 g g2

1 2 _
ay +az + Ay = al1? 1 g122 al? 1 g2 1 )

is a linear combination of A' and A2, which in turn is true if and only if

(9.10) (1% + a3 + \) + K(ai™ + a3 + )\) = 0.

Thus, the strong symmetric positivity condition (9.7) can be realized if and only if the a?ij

satisfy equation (9.10). )
The next step is to identify the values of hY;, that satisfy equations (8.11) for some ay”

satisfying equation (9.10). Equations (8.11) may be written in matrix form as

(9.11) (AR B2y + (H?, afy = 0.
The condition (9.10) is equivalent to
(H? al + a3y = —(K + 1)
therefore, (9.11) implies that we must have
(A1) + (A% B3y = —(H? ay + a3) = (K + 1),
or, equivalently,

(9.12) 3h31y — Khiyy = (K + 1)A.

Conversely, for any values of hZJ . that satisfy the condition (9.12), there exist values of ak”

that satisfy the condition (9.10).
Finally, consider equations (8.10), which can be written as

Kh:l))m + h?n = ki,

(9.13)
KRy, + h3yy = ks.

The values of hg’jk may be chosen arbitrarily, subject only to the condition (9.12); therefore,
any given values of k; and ks may be realized by an appropriate choice of hf’]k

We conclude that, for any K # 0 and any ki, ks, there exist solutions h?jk and algij to
equations (8.7)—(8.11) that satisfy the conditions (9.10) and (9.12), and hence the linearized
system (6.12) can be transformed to a strongly symmetric positive system via a change of
variables of the form (9.1). This completes the proof for n = 2.

Now consider the case n = 3. The argument is essentially the same as for n = 2, but the
linear algebra requires a bit more effort. We begin by identifying the values of aflj for which
we can arrange that

(9.14) Qo =My, Qi = uly,

for given real numbers A\, > 0, where /3 and Iy denote the 3 x 3 and 9 x 9 identity matrices,

respectively.
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By applying the GL(3) action (8.12), we can assume that

—20 0 0 0 0 1
At=1 0 0 1], A’=10 —-20 0],
0 10 1 0 0

with 0 < |o] < 1. Let H*, H® H denote the basis

1 00 0 0 o
(9.15) H*=|0 0 o, H>=10 1 0],
0 o O c 0 0
for IIg. Then, for a = 4, 5,6, we can write
(9.16) H* = y3H’
for some invertible matrix [y5]. Set
1 00 000
D=0 0 0f, Dy,=10 1 0f,
000 000

so that the matrices A', A%, A3 D,, Dy, D3 form a basis
5&,5&,5& as

11 12 13 11 12 13
S ST 51 7 S S5

21 .22 .23 21 .22 .23

31 .32 .33 31 .32 .33

s 81T S5 S7 ST S

01 0
A =110 0
00 —2
0 o 0
HS=10 0 0
0 0 1
000
Dy=10 0 0},
001

for S3, and write the matrices

11 .12 13
837 837 S3

_ o2t 22 (23
S3 = |s5 s3° s3

31 32 33

Then, after some computation, equation (9.3) can be written as

(9.17) 520 = —(aj + a3+ ag) + (e + ¢y + C?3)A1 + (cip + Gy + 033)142 + (0%3 + 033 + 023)143
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and the equations (9.4) can be written as
(9.18)
(Qu)nn = 201 = 2(c}y — 53 = 53 A" = 2(cly + Zu1a(5)) A — 2cfy + Zuss(5))A®
+ 40 (532 4 533 — 2571 ) Dy + 4(s32 + 087t — 20%57°) Dy + 4(s3° + 083 — 20%577) D3,
Q)22 = 205 = 2chy + Zom (5)) A" = 2ch, — s} = 5°)A® = 2y + Zom(s)) A°
+ 4(s3t 4+ 0852 — 202552 Dy + 4o (syt + 55° — 2532) Dy + 4(sy° 4 08y° — 207851 ) D,
(Qu)ss = 205 — 2(cly + Zsa (5)) A" — 2(cBy + Zssa(s)) A® — 2(c}y — 55! — 532 A®
+4(s3t + 0s3° — 207832 Dy + 4(s3? + 055° — 20253 ) Dy + do(s5! + 32 — 2s3°) D3,
(Qu)z = a} + @3 — (chy + &y + Zinn(5)) A = (chy + ¢ + Zia(s)) A2
— (33 + €3 + Z1a3(8)) A + 2 (s + o (s]” + 537 + s5° — 2s3') — 20°s7°) Dy
+2 (532 +o(s2 4 st 4 53— 2537 — 2023?) D,
+2(sy° + 83>+ o(s]? + s5) — 20%(sy” + s7')) Ds,
(Q1)2s = a3 + a5 — (cly + ¢y + Zagi (5)) AT — (¢ + G5 + Zasa(s)) A°
— (G35 + g + Zaz3(s))A® + 2 (83" + 55" + 0(sy” + s3°) — 20%(s5° + 53°)) Du
+2 (852 +0(s3 + s3t 4 530 — 2537%) — 202331) D,
+2 (53’ + o(sh! + 557 + 53 — 253°) — 20°s3") Ds,
(@)1 = aj + az — (¢, + c13 + Zan(5)) A" — (], + ¢33 + Zgia(s)) A®
— (c}s + 33 + Z313(3)) A% + 2 (57" + o(sy® + 537 + 550 — 2s3') — 207s77) Dy
+2 (si2 + 852 + o (52 4 s31) — 207 (s + ség’)) D,

2 (5B 4+ a(st + 52 4 s — 28%) — 20%12) Dy,

where Z;j;(s) represents a linear combination of the s;/ whose precise form is irrelevant.
i
Regardless of the values of a,”, we can set

(ng) = Oipuls
and solve equations (9.18) for the variables

1,1 23 32 22 13 31 33 1,2 21 31 32 23 12 13 31 21 23 32
51 751 751 752 752 752 783 783 783 781 782 782 782 783 783 781 783 783

(from the coefficients of Dy, Dy, D3) and

33 11 22 1 1 2 2 3 3 2 1 2 3 1 3 1 2 3
81 582,583 ,C012,613:€12)C23:€13,C23,C11:C22,C33,C22,C33,C11,C23,C1 3, C1 2

(from the coefficients of A', A%, A%). This solution makes use of the fact that 0 < |o] < 3,
and while the explicit solution is rather complicated, it should be fairly clear that such a
solution exists for |o| > 0 sufficiently small. Then we can set

C:?O = M3
31



and solve equations (9.17) for the variables c};, c3,, ¢35 if and only if the matrix

111 4 CL%12 + a113 4 )\ 112 + a$22 + CL123 113 + (I$23 + CL133
al + a2+ ag + A3 = ai? + ad* + a§23 A+ a3+ a2+ N B+ ad +ad?
at® + ad® + al? al® +a3® + a2 a®® +ad® +adB 4+ A

is a linear combination of A, A%, and A3, which in turn is true if and only if

111 112

+ ay? + a3 + 20(a;* + a3 + a3?) + X =0,
(9.19) a1 + a3 + a2 + 20(a1® + a3 + a3®) + A =0,

1 1 1
33 233 333 12 122 + &323) +A=0.

+ a5 + a3 + 20(a; + ay

Thus, the strong symmetric positivity condition (9.14) can be realized if and only if the afij
satisfy equations (9.19).

The next step is to identify the values of hf}, that satisfy equations (8.11) for some aif”
satisfying equation (9.19). Equations (8.11) may be written in matrix form as

(9.20) (A¥ hgy + (H*, af) = 0.
The conditions (9.19) are equivalent to
(H* aj + a3 + a3y = —\, a=4,5,6;
therefore,
(H* a1 + a3 + a3y = <7§‘Hﬁ,a% +ay+ady=—(7+9E +9N a=4,5,6.
Then equation (9.20) implies that we must have
(AL RS) + (A% B3y + (A% hg) = —(H® a3 + a5 + az) = (0 +95 +96)X, o =4,5,6,
or, equivalently,

(9.21) 6hiys — 20 (A1, + hagy + h333) = (V4 + 75 + Y6\, a=4,5,6.

Conversely, for any values of A}, that satisfy the conditions (9.21), there exist values of ak”

that satisfy the conditions (9.19).

Equations (8.10) are considerably more complicated here than in the n = 2 case. Taking
the second Bianchi equations into account, there are 15 equations for the 15 components
Tijke,m, With left-hand sides that are hnear functions of the 30 components hwk We will

regard equations (8.10) as defining a linear map G from the30-dimensional space H of R
values to the 15-dimensional space R of rjjkem values; what remains to show is that the

restriction of G to the 27-dimensional affine subspace defined by equations (9.21) is surjective
onto R.
First, observe that we can write equations (8.10) in matrix form as

6
(9.22) > Gohe =,
a=4
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where G denotes the 15 x 10 matrix

B [
H22
a
H33

|
O O O O O O o O O O O T O
o
w

0
0
0
0
0
H;,
Hy,

0
—H3,

0
0
0
0
0
0

he denotes the vector

To ey o ey «a @
h - [hlll h222 h‘333 h112 h311

and 7 denotes the vector

T
T1223,2 T2331,2 73131,3 72323,3 71223,3 72331,3 7’3112,3] .

onogNg:Lgoooooooooo
Q
[\&]

—2H;,
0
—Hg,
HS,
Hs,
0
Hs,
—Hg,

o o O o o o o

0 0
—2H 0
Hg, 0
H?, 0
~Hg, 0
0  —2HZ
0 0
0 —Hf
0 Hp
0 Hg
He, 0
0 Hg
0 —Hj
0 0
~Hg 0

Thus the map G is represented by the 15 x 30 matrix

acting on the vector

Now, let G denote the restriction of G to the 27-dimensional subspace defined by equations
(9.21). By solving equations (9.21) for h$,; and substituting into equation (9.22), we can
represent G as

(G4 G5 G
;L4

b= | i
jLG

[}
Hll

el
7H31

—2H7Y,
H3
Ha;

—Hg;

o o o O

6
() = 3 Gl + o,

a=4
33

~2H;,
0
—Hg,
HS,
Hp,

~HY,
0
—2H5,
H,
HS,
—Hp,

T
a a « a «
h223 h122 h‘331 h233 h‘123] )

r= [7"1212,1 T3131,1 72331,1 731121 7T1223,1 723232 712122 731122

a
H31

a
_Hll

a
H12

«
H12

o)
_H22

o
H23

a
H23

a
_H33

[
H31 _




where G% denotes the 15 x 9 matrix

(9.23) G =
[ HS, 0 0 —2H% 0 0 HY 0 0 ]
Hssy 0 0 0 —-2H$ O 0 HY 0
30 H3 50 H3 30 H3, —Hgy  H; 0 0 —Hp 0
—Hg—30HY,  —30HY —soHY  H$, HY 0 0 0 0
%UH% %UH% %UH?Q Hyy —Hj 0 —Hg 0 0
0 HS, 0 0 0 —2Hy O 0 HS,
0 HY 0 HS3, 0 0 2HY; 0 0
%UH{IQ %UH?Q %JH?Q —Hy 0 —Hfy, Hy 0 0 ;
—soHS, —H$—30HS, —30HS, 0 0 HY HgE 0 0
%UH% %UH% %UH% 0 0 Hg —Hg 0 —Hp
0 0 HY 0 Hsy 0 0 —-2H$ O
0 0 HS3, 0 0 Hs, 0 0 205,
%UH% %UH% %0H2a3 0 0 —Hy 0 —Hyp Hf
—30 HS, —30H$, —HYy—30HS 0 0 0 0 Hy HY
%UH% %UH:% %UH?% 0 —Hy 0 0 Hyy  —Hpy

h® denotes the vector

A

2 T
h® = [hcﬁl h3as hiss hiiy h§i1 hias hiyy his h%:ag] )
and 7 is the vector obtained by evaluating G on the vector h with

h?23 = %(74(11 + 75()1 + fyg[))ﬂ a = 47 57 67

and all other h%k,

equal to 0. Thus, it suffices to show that the 15 x 27 matrix
[G4 G5 GG]

has rank 15.
In order to compute the rank of this matrix, observe that equation (9.16) implies that

(G4 & o] =[gl[Ct & G,
where G represents the matrix G with all entries H}; replaced by Hfj‘ Thus, the rank of

the matrix [G* G® G%] is equal to the rank of the matrix [G* G° G®]|. We can compute
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5 HS into (9.23) yields

this rank explicitly: Substitution of the expressions (9.15) for H*,

—20c 0 0 0

0

00 O

—1

0 0 —20

0

0O 0 0 -1

—0

—20c 0

0
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0O 0 0 =20 00 0 0 0
1 0 0 0 00 0O 0 ©
o 0 0 -1 00 0 —o 0
o 0 0 0 ¢0 0 0 0
%02 %02 %02 0O 0 0 O 0 O
o 1 0 0 00 0 0 0
o 0 0 0 00 -2 0 0
G°=|30% 30®> 26 0 00 0 0 0O
o 0 0 0 0o¢ 0 0 0
o 0 0 0 00 -1 0 -0
o 0 0 0 10 0 0 0
o 0 0 0 01 0 0 0
o 0 0 0 00 0 0 o
—40 —30 —30 0 00 0 0
0 0 0 0 00 0 o 0

Then a direct computation shows that the matrix [G* G G°] has rank 15; for example,
the submatrix consisting of columns (2, 3,6, 7,9, 10, 12,14, 17,18, 19, 20, 22, 23, 25) has deter-
minant equal to —520*(c —1)*(c® + o + 1)? # 0. Therefore, G is surjective onto R, and any
given values of r;;i..m may be realized by an appropriate choice of hf‘]k

We conclude that, for any R # 0 and any rijeem, there exist solutions Hp, AR hy, and
ab” to equations (8.7)(8.11) that satisfy the conditions (9.19) and (9.21), and hence the
linearized system (6.12) can be transformed to a strongly symmetric positive system via a
change of variables of the form (9.1). This completes the proof for n = 3. U

In closing, we note that the strong symmetric positivity condition (2.5) is extremely fragile
under changes of coordinates, as described in Lemma 9.2—indeed, this is precisely why we
have to choose local coordinates so carefully in our proof of Theorem 9.1. In future work, we
hope to explore this condition in more depth and to obtain a more intrinsic understanding
of its significance.

APPENDIX A. THEOREMS FROM ANALYSIS

Theorem A.1 (Nash-Moser-Schwartz-Sergeraert). Let FEy, Fy be real Banach spaces, and

let By (resp. Fy), k € N, be vector subspaces of Ey (resp. Fy), such that Ex.1 < Ejy (resp.,

Fii1 < Fy). Let each space Ey, (resp. Fy) be equipped with a Banach norm |- ||y such that the
00] a0

inclusions Eyi1 — Ey (resp. Fy1 — F}) are continuous. Let E,, = ﬂEk and F, = ﬂFk
k=0 k=0
be given the intersection topology. Moreover, suppose that there exists a family of linear
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“smoothing operators” S(t) : Ey — E, defined for t € R, satisfying
apy SO M, e R i< e B
' [S(t)ul; < M7l teR"i<jue L,

where M;; are positive real constants.

Let ug € Ey; let Dy < Ey be a neighborhood of vy, and let Dy, = Do 0 Ey, for k = 0. Let
® : Dy — Fy be a C? map, and suppose that there exists an integer o = 0 satisfying the
following assumptions:

(i) For any k =0, ®(Dy) < F.
(ii) There exists a constant C" such that, for anyu € D, and v € E,, such that u+v € D,

[®(u+v) =20 < C|V]a,
[2(u+v) = &(u) = D' (Wv]o < v

(iii) There exist constants Cy > 0 with the property that, for any u € D,, there exists a
continuous linear map R(u) : F,, — FEqy such that, for allh € F,,

&'(u) R(u)h = h,

and for all k =0, u e Di,n, and h € Fi,,

(A.2)

(A.3) | B(w) b < Ce([h]isa + [hfalu —uolria)-
Then there exists € > 0 such that, for any f € F, with
[f = P(uo)]a <

there exists u € Dy, such that
O(u) = f.

The proof of this theorem can be found in [25] and [26].

Theorem A.2 (Stein). Let < R™ be a bounded Lipschitz domain. Then there ezists a
linear extension operator
&: LY Q) —» LYR")
satisfying:
(i) (Ef)|a = [; i.e., € is an extension operator.
(i) The restriction of & to W*P(Q) is a bounded linear operator

& WhP(Q) — WrP(R™), l<p<w, 0<k<on
The proof of this theorem can be found in [29].
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