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AND DEANE YANG

Abstract. We give a new proof for the local existence of a smooth isometric embedding of a
smooth 3-dimensional Riemannian manifold with nonzero Riemannian curvature tensor into
6-dimensional Euclidean space. Our proof avoids the sophisticated arguments via microlocal
analysis used in earlier proofs.

In Part 1, we introduce a new type of system of partial differential equations (PDE), which
is not one of the standard types (elliptic, hyperbolic, parabolic) but satisfies a property called
strong symmetric positivity. Such a PDE system is a generalization of and has properties
similar to a system of ordinary differential equations with a regular singular point. A local
existence theorem is then established by using a novel local-to-global-to-local approach. In
Part 2, we apply this theorem to prove the local existence result for isometric embeddings.
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1. Introduction

Let pM, gq be an n-dimensional C8 Riemannian manifold. Recall that a C8 map y : M Ñ

RN is called an isometric embedding if y is injective and the restriction of the Euclidean metric
on RN to the image ypMq agrees with the metric g on M . In terms of local coordinates
x “ px1, . . . , xnq on M , this is equivalent to the condition that

(1.1) Biy ¨ Bjy “ gij, 1 ď i, j ď n,

where g “ gijdx
idxj and Bi denotes B

Bxi
.

In this paper, we study the local isometric embedding problem, which asks whether, given a
Riemannian manifold pM, gq and a point x0 PM , there exists an isometric embedding of some
neighborhood of x0 into RN—i.e., whether the PDE system (1.1) has local C8 solutions in
some neighborhood of x0. The system (1.1) consists of 1

2
npn`1q partial differential equations

for N unknown functions y “ py1, . . . , yNq; thus it is overdetermined when N ă 1
2
npn ` 1q,

underdetermined when N ą 1
2
npn` 1q, and determined when N “ 1

2
npn` 1q.

The isometric embedding problem has a long and active history. The famous theorem of
Cartan and Janet (see, e.g., [13]) guarantees that, when the metric g is real analytic, local
real analytic solutions to (1.1) always exist in the determined case N “ 1

2
npn ` 1q. In the

C8 category, much less is known. Nash [21] proved a global existence theorem in the highly
underdetermined case N “ 1

2
npn ` 1qp3n ` 11q. Later, refinements were given by Greene

[5] and Gunther [6] for the local existence problem that improved the upper bound on the
embedding dimension to N “ 1

2
npn` 1q ` n.

When N “ 1
2
npn` 1q, known results for g in the C8 category are limited to n ď 4. Most

research activity has been concentrated on the case n “ 2, where local isometric embeddings
of varying regularity have been shown to exist in a neighborhood of any point x0 PM where
either the Gauss curvature Kpx0q is nonzero, Kpx0q “ 0 and ∇Kpx0q ‰ 0, or Kpx0q vanishes
to finite order in certain precise ways (cf. [8, 9, 11, 12, 14, 15, 16]). For a detailed account,
see [10].

For n ě 3, there are fewer results. Bryant, Griffiths, and Yang [1] showed that, for n “ 3,
local C8 isometric embeddings exist in a neighborhood of any point x0 P M where the
Einstein tensor has rank greater than 1. Subsequent work was able to relax this restriction
on the Einstein tensor: In [20], Nakamura and Maeda extended the existence theorem to a
neighborhood of any point where the Riemann curvature tensor does not vanish, and in [24],
Poole extended the existence theorem to a neighborhood of any point where the Riemann
curvature tensor vanishes but its covariant derivative does not. Meanwhile, for n “ 4, the
results of [1], [4], and [20] imply that there exists a finite set of algebraic relations among
the Riemann curvature tensor and its covariant derivatives, with the property that a local
isometric embedding exists in a neighborhood of any point where these relations do not all
hold.

Our main result is a new, simpler proof of the following theorem of Nakamura-Maeda [20]
when n “ 3 and N “ 6 (also see Goodman-Yang [4]):

Theorem (cf. Theorem 2). Let pM, gq be a C8 Riemannian manifold of dimension 3;
let x0 P M so that the Riemann curvature tensor Rpx0q is nonzero. Then there exists a
neighborhood Ω ĂM of x0 for which there is a C8 isometric embedding y : Ω Ñ R6.

Our proof, like the previous ones, uses the Nash-Moser implicit function theorem (cf.
Theorem A.1) to obtain a solution. This requires showing that the linearized system has
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a solution that satisfies certain estimates known as “smooth tame estimates” (this termi-
nology is due to Hamilton; see [7]). The advantage of our approach is that it completely
eliminates the need for the microlocal analysis and Fourier integral operators used in the
proofs of Nakamura-Maeda and Goodman-Yang; instead, it is based on Friedrichs’s theory
of symmetric positive systems.

Friedrichs [3] introduced the notion of a symmetric positive partial differential operator P
to study a class of first order linear systems of PDEs

(1.2) Pv “ AiBiv `Bv “ h

that do not necessarily fall into one of the standard types (elliptic, hyperbolic, parabolic). He
proved, under suitable boundary conditions on the domain Ω, the existence and uniqueness of
an L2pΩq solution to the system (1.2). No higher order regularity of solutions is guaranteed,
even if the functions Ai, B, and h are C8.

We call a domain that satisfies Friedrichs’s boundary condition P-convex (cf. Definition
2.3). Such a domain Ω has the remarkable property that any solution v to a symmetric
positive system (1.2) on Ω is unique in L2pΩq, without assuming any boundary conditions
on v. This surprising rigidity occurs because a symmetric positive operator P always has a
subtle type of singularity in the interior of a P -convex domain. In §3, we give a 1-dimensional
example, where the system reduces to a scalar ODE, that illustrates how this occurs.

We introduce in this paper a new positivity condition that we call strong symmetric pos-
itivity (cf. Definition 2.1) and prove a local existence and regularity theorem for first order
linear and nonlinear systems satisfying it (cf. Theorem 1). As the name indicates, this
condition is a strengthening of Friedrichs’s notion of symmetric positivity. Moser [19] intro-
duced a similar but weaker assumption, closely related to the Legendre-Hadamard condition,
and proved that any real analytic system of the form (1.2) satisfying this condition on a P -
convex domain has a unique real analytic solution v. Tso [30] proved a similar C8 existence
theorem on a P -convex domain under Moser’s condition, but we believe that his proof actu-
ally requires the stronger assumption of strong symmetric positivity. Both Moser and Tso
used their results for linear systems to prove analogous perturbation theorems for nonlinear
strongly symmetric positive systems

(1.3) Φpuq “ f

on a domain Ω Ă Rn, provided that f is sufficiently close to Φpu0q for a given function u0,
and Ω is P -convex, where P is the linearization of Φ at u0.

Our proof of Theorem 2 proceeds in two major steps. In Part 1 (§2–§4), we establish
the local solvability of a nonlinear strongly symmetric positive system using the Nash-Moser
implicit function theorem. In Part 2 (§5–§9), we show that, if the Riemann curvature tensor is
nonzero at x0 PM , then there exists an approximate isometric embedding on a neighborhood
of x0 where the linearized operator can be made strongly symmetric positive by applying
a carefully chosen change of variables. This argument consists primarily of linear algebra
and requires essentially no analysis beyond that required for Part 1. Theorem 2 then follows
by the smooth tame estimates established in Part 1 and the Nash-Moser implicit function
theorem.

The first step requires solving linear strongly symmetric positive systems on a sufficiently
small, but fixed, neighborhood of a point x0 in the domain and showing that solutions satisfy
smooth tame estimates. Surprisingly, Tso’s global existence theorem for strongly symmetric
positive systems on a P -convex domain does not directly imply a local solvability theorem.
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This is because there does not necessarily exist a P -convex domain in a neighborhood of a
given point x0. This subtle fact is best illustrated by the 1-dimensional example given in
§3. In §4, we show how this difficulty may be overcome by first restricting the linearized
system to a sufficiently small neighborhood of x0 and then extending the restricted system
to a large ball in Rn that is P -convex for the extended system.

Before proceeding, we recall the following standard notations and facts regarding Sobolev
spaces on a domain Ω Ă Rn:

‚ The Euclidean norm on vectors or matrices is denoted by | ¨ |, and the `8-norm on
vectors or matrices is denoted by | ¨ |8.

‚ The Sobolev spaces are denoted by

W k,p
pΩq “ tu P LppΩq : }u}k,p ă 8u,

where }u}k,p “
ř

|α|ďk }D
αu}Lp is the Sobolev norm for the multi-index α “ pα1, . . .,

αnq, and Dαu “ Bαu
pBx1qα1 ¨¨¨pBxnqαn

.

‚ For p “ 2, W k,2pΩq is denoted by HkpΩq, with the norm } ¨ }k,2 denoted by } ¨ }k.
‚ The CkpΩq-norm is denoted by

}u}k,8 “
k
ÿ

j“0

ÿ

|α|ďj

sup
xPΩ

|Dαupxq|.

‚ The Sobolev embedding theorem [28] implies that Hk`mpΩq can be continuously
embedded into CkpΩq whenever m ě 1`

“

n
2

‰

; in particular, there exist constants Mk,
depending only on Ω, such that

(1.4) }u}k,8 ďMk}u}k`1`rn2 s
.

Part 1. A Local Existence Theorem for Strongly Symmetric Positive Systems

2. Strong symmetric positivity

Let Ω Ă Rn be a bounded, open domain with piecewise smooth boundary BΩ and coor-
dinates x “ px1, . . . , xnq. Let Φ : C8pΩ̄,Rsq Ñ C8pΩ̄,Rsq be a C8, nonlinear first-order
partial differential operator. Explicitly, for u P C8pΩ̄,Rsq, write

Φpuq “ F px,u,∇uq ,

where Fpx, z,pq “ pF 1pxi, za, pai q, . . . , F
spxi, za, pai qq is a C8, Rs-valued function on Ω̄ˆRsˆ

Rns. Given a function f P C8pΩ̄,Rsq, consider the PDE system:

(2.1) Φpuq “ f .

The linearization of Φ at the function u0 P C8pΩ̄,Rsq is the linear first-order partial
differential operator Φ1pu0q : C8pΩ̄,Rsq Ñ C8pΩ̄,Rsq defined by

(2.2) Φ1pu0qv “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

Φpu0 ` tvq “
n
ÿ

i“1

AiBiv `Bv,
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where Ai, B P C8pΩ̄,Rsˆsq are given by

Aipxq “
“

pAipxqq
a
b

‰

“

„

BF a

Bpbi
px,u0pxq,∇u0pxqq



,

Bpxq “
“

pBpxqqab
‰

“

„

BF a

Bzb
px,u0pxq,∇u0pxqq



.

We will also consider the linear PDE system:

(2.3)
n
ÿ

i“1

AiBiv `Bv “ h,

where h P C8pΩ̄,Rsq.

Definition 2.1. The linear partial differential operator (2.2) is called:

‚ symmetric if the matrices A1pxq, . . . , Anpxq are symmetric for all x P Ω̄;
‚ symmetric positive if it is symmetric and the quadratic form Q0pxq : Rs Ñ R defined

by

(2.4) Q0pxqpξq “ ξT
´

Bpxq `BT
pxq ´

n
ÿ

i“1

BiA
i
pxq

¯

ξ

is positive definite for all x P Ω̄;
‚ strongly symmetric positive if it is symmetric positive and the quadratic form Q1pxq :
Rns Ñ R defined by

(2.5) Q1pxqpξ1, . . . , ξnq “
n
ÿ

i,j“1

ξTj
`

BjA
i
pxq ` BiA

j
pxq

˘

ξi

is positive definite for all x P Ω̄.

The nonlinear system (2.1) is called symmetric (resp., symmetric positive, strongly symmetric
positive) at u0 if the linearization (2.2) of Φ at u0 is symmetric (resp., symmetric positive,
strongly symmetric positive).

Remark 2.2. A few remarks are in order regarding Definition 2.1:

‚ The quadratic form Q1pxq can be represented by the symmetric nsˆ ns matrix

(2.6) Q1pxq “

»

—

—

—

—

—

—

—

–

2 B1A
1
pxq B1A

2
pxq ` B2A

1
pxq ¨ ¨ ¨ B1A

n
pxq ` BnA

1
pxq

B1A
2
pxq ` B2A

1
pxq 2 B2A

2
pxq ¨ ¨ ¨ B2A

n
pxq ` BnA

2
pxq

...
...

...
...

B1A
n
pxq ` BnA

1
pxq B2A

n
pxq ` BnA

2
pxq ¨ ¨ ¨ 2 BnA

n
pxq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

We will use the notation pQ1qijpxq to denote the pi, jqth block of Q1pxq:

pQ1qijpxq “ BiA
j
pxq ` BjA

i
pxq.

‚ The positivity of Q1pxq is called the Legendre condition ([17], p.10). Moser [19]
established an existence theorem in the real analytic category under the slightly
weaker Legendre-Hadamard condition ([17], p.11), which requires only that

(2.7) ppQ1qijqab pxqξ
aξbηiηj ě λ|ξ|2|η|2
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for all ξ P Rs, η P Rn, and some λ ą 0. However, in the C8 category, the stronger
Legendre condition is necessary (cf. [27, 31]).

Definition 2.3. Given a linear strongly symmetric positive first order partial differential
operator P “ AiBi ` B on a domain Ω Ă Rn, the domain Ω is called P -convex if the
characteristic matrix

βpxq “
n
ÿ

i“1

νipxqA
i
pxq,

is positive definite at each point x P BΩ, where νpxq “ pν1pxq, . . . , νnpxqq denotes the outer
unit normal vector to BΩ at x P BΩ,

Tso [30] proved the following:

Theorem (Theorem 5.1, [30]). Suppose that Φp0q “ 0 and that the system (2.1) is strongly
symmetric positive at every C8 function u in some C1-neighborhood of the function u0 “ 0
on a domain Ω Ă Rn that is P -convex for the linearization P of Φ at u0 “ 0. Then there
exist an integer β and a small constant ε ą 0 such that, for any f P C8pΩ̄,Rsq with }f}β ă ε,
there exists a solution u P C8pΩ̄,Rsq to the nonlinear system (2.1) on Ω̄.

Remark 2.4. Note that the condition that a PDE system is symmetric is not an open
condition with respect to the coefficients. Since the Nash-Moser implicit function theorem
requires solving the linearized equation not just at u0, but at all u near u0, it is necessary
to assume that Φ1puq is symmetric for all u in some neighborhood of u0. The positivity
conditions, however, are open conditions; hence it suffices to assume that they hold at u0.

Moser [19] proved this theorem in the case where Φ and the function f in equation (2.1)
are real analytic, under the weaker assumption of symmetric positivity together with the
Legendre-Hadamard condition (2.7). Tso [30] stated this theorem assuming these same
conditions; however, we believe that Tso’s proof, which uses the Gärding inequality for non-
compactly-supported vector-valued functions on the domain Ω, is correct only if the stronger
Legendre condition holds. See [27] and the discussion at [31].

3. A local existence theorem for strongly symmetric positive systems

The goal of Part 1 of this paper is to prove the following local version of Tso’s theorem:

Theorem 1. Suppose that the linearization Φ1puq of Φ is symmetric for all u in some C1-
neighborhood of u0 P C

8pΩ̄,Rsq, and that Φ1pu0q is strongly symmetric positive at some point
x0 P Ω. Then there exist a neighborhood Ω0 Ă Ω of x0, an integer β, and ε ą 0 such that,
for any f P C8pΩ0,Rsq with }Φpu0q ´ f}β ă ε, there exists a solution u P C8pΩ0,Rsq to the
nonlinear system (2.1) on Ω0.

We wish to emphasize that Tso’s theorem does not immediately imply the local existence
result, because strong symmetric positivity on a domain Ω does not necessarily guarantee
the existence of a P -convex neighborhood of x0. In fact, as we show in the example below,
in general no such neighborhood exists.

Example 3.1. Consider the following ODE:

(3.1) px´ x0qu
1
` bu “ hpxq

with h P C8. It is straightforward to verify that:
6



(i) (3.1) is strongly symmetric positive if b ą 1
2
;

(ii) an interval Ω “ px1, x2q is P -convex if and only if x0 P px1, x2q, i.e., if and only if the
regular singular point of this ODE lies in the domain.

Meanwhile, the general solution of (3.1) is

upxq “
1

px´ x0q
b

ż x

x0

py ´ x0q
b´1hpyq dy `

C

px´ x0q
b
,

which is smooth at x “ x0 if and only if C “ 0. Thus we see that:

‚ The P -convexity condition forces the uniqueness of a C8 solution of (3.1) on Ω,
without specifying any initial or boundary data for u.

‚ If Ω is not P -convex—i.e., if x0 R Ω, then the ODE (3.1) has infinitely many solutions
on Ω. In this case, P -convexity—and hence uniqueness of the solution—can be
achieved by extending the domain to one that contains the singular point x0.

In higher dimensions, a similar phenomenon occurs: Consider the strongly symmetric
positive linear PDE system (2.3) on a domain Ω Ă Rn, and let x1,x2 P BΩ be located on
opposite sides of BΩ, with ν “ νpx1q “ ´νpx2q. In order to have βpx1q, βpx2q ą 0, the
matrix νiA

ipxq must be positive definite at x1 and negative definite at x2. Therefore, P -
convexity requires that each of its eigenvalues must change sign somewhere in the interior of
Ω. For n ě 2, this does not necessarily imply that the system (2.3) has any singular points
in Ω, but it is still true that any C8 solution on Ω is unique. Moser discussed this in [19],
concluding that, “The reason for this strange phenomenon is that usually the conditions [of
the theorem] imply the presence of a singularity and a solution which remains smooth at the
singularity is unique.”

Our proof of Theorem 1 will proceed as follows: Without loss of generality, assume that
u0 “ 0 and Φp0q “ 0.

‚ In §4.1, we restrict the nonlinear system (2.1) to a neighborhood Ω0 Ă Ω of x0 on
which the quadratic forms pQuq0pxq and pQuq1pxq associated to any sufficiently small
function u on Ω0 remain sufficiently close to Q0p0q and Q1p0q, respectively.

‚ In §4.2, we extend the linear PDE system (2.3) from the domain Ω0 to a strongly
symmetric positive system on all of Rn, where the coefficients satisfy C1 bounds that
will be needed later.

‚ In §4.3, we show that, for sufficiently large R ą 0, the ball BR of radius R is P -convex
for the extended linear system.

‚ In §4.4, we use the extended linear system on BR to prove the smooth tame estimates
required to implement a Nash-Moser iteration scheme to solve the nonlinear system
(2.1) on Ω0.

Appendix A contains the precise statements of the Stein extension theorem [29] and the
Nash-Moser implicit function theorem [26] that will be used in the proof of Theorem 1.

4. Proof of Theorem 1

4.1. Restriction of the nonlinear system to an appropriate neighborhood of x0.
Without loss of generality, assume that u0 “ 0, Φp0q “ 0, and x0 “ 0. First, we show how
to choose an appropriate neighborhood Ω0 on which to construct a solution for the system
(2.1).
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For ease of notation, set

B̄ “ Bp0q, Āi “ Aip0q, Āij “ BjA
i
p0q.

Using Taylor’s theorem with remainder, we can write

(4.1) Bpxq “ B̄ ` B̂pxq, Aipxq “ Āi `
n
ÿ

j“1

xjĀij ` Â
i
pxq,

where B̂, Âi P C8pΩ̄,Rsˆsq are such that B̂ vanishes to order 1 and Âi vanishes to order 2 at
x “ 0. The strong symmetric positivity hypothesis at x “ 0 is equivalent to the assumption
that the quadratic forms Q̄0 : Rs Ñ R and Q̄1 : Rns Ñ R defined by

(4.2) Q̄0pξq “ ξT
´

B̄ ` B̄T
´

n
ÿ

i“1

Āii

¯

ξ, Q̄1pξ1, . . . , ξnq “
n
ÿ

i,j“1

ξTj
`

Āij ` Ā
j
i

˘

ξi

are positive definite.

Lemma 4.1. Suppose that Φ satisfies the hypotheses of Theorem 1 at x “ 0. Let λ0, λ1 ą 0
denote the minimum eigenvalues of Q̄0 and Q̄1, respectively, and let Br Ă Rn denote the ball
of radius r about x “ 0. Then, given real numbers M0,M1 ą 1 and δ ą 0, there exist real
numbers r, ρ ą 0 and an integer α ą 0 such that Br Ă Ω and, for any u P C8pBr,Rsq with
}u}α ă ρ, the matrix-valued functions Bu, A

i
u P C

8pBr,Rsˆsq associated to the linearization
of Φ at u may be written as

Bupxq “ B̄u ` B̂upxq, Aiupxq “ Āiu `
n
ÿ

j“1

xjpĀuq
i
j ` Â

i
upxq,

where

(4.3)
|B̄u ´ B̄|8 ă

δ

2
, |pĀuq

i
j ´ Ā

i
j|8 ă

δ

2
, |Āiu ´ Ā

i
|8 ă δ,

}B̂u}0,8 ă
δ

2M0

, }Âu}1,8 ă
δ

2M1

, }Âu}0,8 ă
δ

M0

.

For convenience, we will refer to any function u P C8pBr,Rsq with }u}α ă ρ as “admissi-
ble.”

Proof. Choose r ą 0 so that the restrictions of B̂ and Âi to the ball Br of radius r satisfy

(4.4) }B̂}0,8 ă
δ

4M0

, }Âi}1,8 ă
δ

4M1

, }Âi}0,8 ă
δ

2M0

.

Then the Sobolev embedding estimate (1.4) and the smallness of the Taylor remainder terms
for small ρ imply that we may choose ρ and α so that equations (4.3) hold. Indeed, we may
choose any α ě 3` rn

2
s and then choose ρ ą 0 accordingly. �

In §4.2, we will show how to choose the constants δ,M0, and M1 so that the restriction
of the system (2.1) to the domain Ω0 “ Br has the property that its linearization at any
admissible u P C8pBr,Rsq may be extended to a strongly symmetric positive system on all
of Rn.
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4.2. Extension of the linearized system to Rn. We will use Stein’s extension operator
(cf. Theorem A.2) to extend the coefficient matrices in the linearized system (2.3) from Br

to all of Rn. First we need the following lemma, which states that the bounding constants
in this construction are independent of r:

Lemma 4.2. There exist constants Mk,p, 1 ď p ď 8, 0 ď k ă 8, and extension operators
Er : L1pBrq Ñ L1pRnq for all r ą 0 such that, for all f P W k,ppBrq,

}Erf}k,p ďMk,p}f}k,p.

Proof. Theorem A.2 guarantees the existence of such constants and an extension operator
for r “ 1; then a straightforward rescaling of the operator and a standard rescaling argument
shows that these constants are independent of r. �

Now, set

M0 “M0,8, M1 “M1,8,

where M0,8 and M1,8 are as in Lemma 4.2. Choose δ ą 0 such that, for any matrices Āij
1

and B̄1 with

|B̄1 ´ B̄|8 ă δ, |Āij
1
´ Āij|8 ă δ, 1 ď i, j ď n,

the quadratic forms Q̄10 : Rs Ñ R and Q̄11 : Rns Ñ R defined by

Q̄10pξq “ ξT
´

B̄1 ` pB̄1qT ´
n
ÿ

i“1

Āii
1
¯

ξ, Q̄11pξ1, . . . , ξnq “
n
ÿ

i,j“1

ξTj
`

Āij
1
` Āji

1
˘

ξi

are positive definite with minimum eigenvalues greater than or equal to 1
2
λ0 and 1

2
λ1, re-

spectively. Then take r ą 0 as given by Lemma 4.1, and set Ω0 “ Br. Henceforth, we will
restrict the systems (2.1) and (2.3) and all relevant quantities to Br.

Next, we construct an extension of the linearized system (2.3) on Br to all of Rn in such
a way that the coefficients of the extended system are bounded in W k,ppRnq with respect
to the W k,ppBrq norms of the coefficients of the original system on Br. After replacing the

functions B̂, Âi, and h by their restrictions to Br, define C8 functions B̃, Ãi, and h̃ on Rn

by

(4.5)

B̃pxq “ B̄ ` pErB̂qpxq,

Ãipxq “ Āi `
n
ÿ

j“1

xjĀij ` pErÂ
i
qpxq,

h̃pxq “ pErhqpxq.

Similarly, for any admissible u P C8pBr,Rsq, let Ãiu and B̃u denote the analogous extensions
of the functions Aiu and Bu corresponding to the linearization of Φ at u. Then we have the
extended linear systems

(4.6)
n
ÿ

i“1

ÃiuBiṽ ` B̃uṽ “ h̃

on Rn.
9



Proposition 4.3. For any admissible u P C8pBr,Rsq, the extended system (4.6) is strong-
ly symmetric positive on Rn. Moreover, for any x P Rn, the associated quadratic forms
pQ̃uq0pxq : Rs Ñ R and pQ̃uq1pxq : Rns Ñ R defined by

(4.7)

pQ̃uq0pxqpξq “ ξT
´

B̃upxq ` B̃
T
u pxq ´

n
ÿ

i“1

BiÃ
i
upxq

¯

ξ,

pQ̃uq1pxqpξ1, . . . , ξnq “
n
ÿ

i,j“1

ξTj

´

BjÃ
i
upxq ` BiÃ

j
upxq

¯

ξi

have minimum eigenvalues greater than or equal to 1
2
λ0 and 1

2
λ1, respectively.

Proof. By construction, the functions ErB̂u and ErÂ
i
u satisfy

(4.8) }ErB̂u}0,8 ă
δ

2
, }ErÂ

i
u}1,8 ă

δ

2
, }ErÂ

i
u}0,8 ă δ.

The first and second inequalities in (4.8) imply that, for all x P Rn, we have

|B̃upxq ´ B̄|8 ď |B̄u ´ B̄|8 ` |ErB̂upxq|8 ă δ,

|BjÃ
i
upxq ´ Ā

i
j|8 ď |pĀuq

i
j ´ Ā

i
j|8 ` |BjpErÂ

i
uqpxq|8 ă δ,

and the result follows immediately. �

4.3. Boundary conditions on BR for large R. Next, we show that, for R sufficiently
large, BR is P -convex for the extended linear system (4.6).

Proposition 4.4. Let R ą 0. For x P BBR, let νpxq “ pν1pxq, . . . , νnpxqq denote the
outward-pointing unit normal vector to BBR at x. Then, for R sufficiently large, the char-
acteristic matrix

(4.9) βpxq “
n
ÿ

i“1

νipxqÃ
i
upxq

is positive definite for all admissible u P C8pBr,Rsq and x P BBR.

Proof. The normal vector to the sphere BBR is given by

νpxq “
1

R
x.

Thus, we have

(4.10)

βpxq “
1

R

n
ÿ

i“1

xiÃiupxq

“
1

R

´

n
ÿ

i“1

xiĀiu `
n
ÿ

i,j“1

xixjpĀuq
i
j `

n
ÿ

i“1

xipErÂ
i
uqpxq

¯

.

The first and third terms in equation (4.10) are bounded:

(4.11)

ˇ

ˇ

ˇ

1

R

n
ÿ

i“1

xiĀiu

ˇ

ˇ

ˇ

8
ă nmax

 

|Ā1
u|8, . . . , |Ā

n
u|8

(

,

ˇ

ˇ

ˇ

1

R

n
ÿ

i“1

xipErÂ
i
uqpxq

ˇ

ˇ

ˇ

8
ă nδ,

10



where the second equation in (4.11) follows from the third inequality in (4.8). Meanwhile,
we claim that the second term in equation (4.10) has a minimum eigenvalue greater than
or equal to 1

4
Rλ1. This can be seen as follows: Consider the corresponding quadratic form

pQ̃uq
:

1pxq : Rs Ñ R given by

pQ̃uq
:

1pxqpξq “
1

R

n
ÿ

i,j“1

ξTpxixjpĀuq
i
jqξ.

Then, by Proposition 4.3, we have

|pQ̃uq
:

1pxqpξq| “
1

2R
|pQ̃uq1pxqpx

1ξ, . . . , xnξq|

ě
1

4R
λ1

`

|x1ξ|2 ` . . .` |xnξ|2
˘

“
1

4R
λ1ppx

1
q
2
` . . .` pxnq2q|ξ|2

“
1

4R
λ1R

2
|ξ|2

“ 1
4
Rλ1|ξ|

2.

Therefore, the minimum eigenvalue of pQ̃uq
:

1pxq is greater than or equal to 1
4
Rλ1. Together

with the inequalities in (4.11), this implies that, for R sufficiently large, βpxq is positive
definite for all x P BBR. �

4.4. Application of the Nash-Moser iteration scheme. The final step in the proof of
Theorem 1 is to apply the Nash-Moser implicit function theorem (cf. Theorem A.1).

Notation 4.5. We will adopt the following conventions:

‚ Functions without tildes are taken to be defined on Br, and }v}k will denote the
Hk-norm of v P HkpBrq.

‚ Functions with tildes are taken to be defined on BR, and }ṽ}k will denote the Hk-norm
of ṽ P HkpBRq.

Let Ek “ Hk`1pBr,Rsq and Fk “ HkpBr,Rsq, with the usual Hk-norms; then we have
E8 “ F8 “ C8pBr,Rsq. Let D0 Ă E0 denote the ball of radius ρ ą 0 centered at u0.

Smoothing operators Sptq : E0 Ñ E8 may be constructed as follows (see., e.g., [1] or [25]).
First, choose a compactly supported function χ P C80 pRnq with χ ě 0 and

ş

Rn χpxq dx “ 1.
For t ą 0, define

χtpxq “ tnχptxq,

and define Ŝt : L2pRn,Rsq Ñ C8pRn,Rsq by

pŜtûqpxq “

ż

Rn
χtpx´ yqupyq dy.

Then, define St : E0 Ñ E8 by composing Ŝt with the Stein extension operator Er : L1pBrq Ñ

L1pRnq: For u P E0 “ H1pBr,Rsq, define

pStuq “ pŜtEruq|Br .

It is straightforward to show that the operators St satisfy the required inequalities; see [25]
for details.

11



The fact that Φ is C2 follows from the fact that F is C8, and the bounds (A.2) for any
α ě 0 follow from the Gagliardo-Nirenberg and Sobolev inequalities (see, e.g., [2]). To
complete the proof, it suffices to show that there exists an integer α ě 0 such that, for any
integer m ě α` 1, given any u P Dm, the extended linear system (4.6) on BR corresponding

to the linearization of (2.1) at u has a unique solution ṽ P Hm´αpBRq for any h̃ P HmpBRq,
and that the restriction v “ ṽ|Br satisfies the smooth tame estimates (A.3).

First, because the extended system (4.6) corresponding to a given admissible u P HmpBrq

is symmetric positive with coefficient matrices (omitting the subscript u to avoid notational
clutter) Ã1, . . . , Ãn, B̃ P Hm´1pBRq and BR is P -convex for (4.6), Friedrichs’s theory of
symmetric positive systems [3] guarantees the existence of a unique solution ṽ P L2pBRq.
Moreover, we can obtain an explicit L2 bound for ṽ, and hence for v, as follows. Multiply
the matrix equation (4.6) by ṽT to obtain the scalar equation

(4.12)
n
ÿ

i“1

ṽTÃi Biṽ ` ṽTB̃ ṽ “ ṽTh̃.

Then, because Ãi is symmetric and

n
ÿ

i“1

Bi

´

ṽTÃiṽ
¯

“

n
ÿ

i“1

´

2ṽTÃi pBiṽq ` ṽT
pBiÃ

i
qṽ
¯

,

we can write equation (4.12) as

(4.13) ´1
2

n
ÿ

i“1

ṽT
pBiÃ

i
qṽ ` ṽTB̃ ṽ “ ṽTh̃´ 1

2

n
ÿ

i“1

Bi

´

ṽTÃiṽ
¯

.

Multiply by 2 and use the fact that ṽTB̃ ṽ “ 1
2
ṽTpB̃ ` B̃Tq ṽ to obtain

(4.14) ṽT
´

B̃ ` B̃T
´

n
ÿ

i“1

BiÃ
i
¯

ṽ “ 2ṽTh̃´
n
ÿ

i“1

Bi

´

ṽTÃiṽ
¯

.

By Proposition 4.3, it follows that

1
2
λ0|ṽ|

2
ď 2ṽTh̃´

n
ÿ

i“1

Bi

´

ṽTÃiṽ
¯

ď
λ0

4
|ṽ|2 `

4

λ0

|h̃|2 ´
n
ÿ

i“1

Bi

´

ṽTÃiṽ
¯

.

Integrate over BR, apply Stokes’ theorem, and use the fact that β is positive definite on BBR

to obtain

(4.15) }ṽ}20 ď C0pλ0q
2
}h̃}20 ´

4

λ0

ż

BBR

ṽTβṽ dS ď C0pλ0q
2
}h̃}20,

where Cpλ0q ą 0 is a universal constant depending on λ0. Therefore, the restriction v of ṽ
to Br satisfies

(4.16) }v}0 ď }ṽ}0 ď C0pλ0q}h̃}0 ď C0pλ0qM0,2}h}0,

where M0,2 is as in Lemma 4.2.
12



The bounds on the derivatives of v may be computed similarly by differentiation, and then
the existence of these derivatives follows from standard results in analysis. First, differentiate
the system (4.6) with respect to xj to obtain

(4.17)
n
ÿ

i“1

´

Ãi B2
ijṽ ` pBjÃ

i
qBiṽ

¯

` B̃ Bjṽ ` pBjB̃qṽ “ Bjh̃.

Multiply the matrix equation (4.17) by Bjṽ
T to obtain

(4.18)
n
ÿ

i“1

´

pBjṽ
T
qÃi B2

ijṽ ` pBjṽ
T
qpBjÃ

i
qBiṽ

¯

` pBjṽ
T
qB̃ Bjṽ ` pBjṽ

T
qpBjB̃qṽ “ pBjṽ

T
qBjh̃.

By an argument similar to that above, we can write equation (4.18) as

(4.19) Bjṽ
T
´

B̃ ` B̃T
´

n
ÿ

i“1

BiÃ
i
¯

Bjṽ ` 2
n
ÿ

i“1

pBjṽ
T
qpBjÃ

i
qBiṽ

“ 2Bjṽ
T
´

Bjh̃´ pBjB̃qṽ
¯

´

n
ÿ

i“1

Bi

´

Bjṽ
TÃiBjṽ

¯

.

Now sum equation (4.19) from j “ 1 to n, and note that the second term can be written as

2
n
ÿ

i,j“1

pBjṽ
T
qpBjÃ

i
qBiṽ “

n
ÿ

i,j“1

pBjṽ
T
qpBjÃ

i
` BiÃ

j
qpBiṽq.

Thus the summed equation can be written as

(4.20)
n
ÿ

j“1

Bjṽ
T
´

B̃ ` B̃T
´

n
ÿ

i“1

BiÃ
i
¯

Bjṽ `
n
ÿ

i,j“1

pBjṽ
T
qpBjÃ

i
` BiÃ

j
qpBiṽq

“

n
ÿ

j“1

˜

2Bjṽ
T
´

Bjh̃´ pBjB̃qṽ
¯

´

n
ÿ

i“1

Bi

´

Bjṽ
TÃiBjṽ

¯

¸

,

or, in other words,
(4.21)

n
ÿ

j“1

Q̃0pBjṽq ` Q̃1pB1ṽ, . . . , Bnṽq “
n
ÿ

j“1

˜

2Bjṽ
T
´

Bjh̃´ pBjB̃qṽ
¯

´

n
ÿ

i“1

Bi

´

Bjṽ
TÃiBjṽ

¯

¸

.

By Proposition 4.3, it follows that

1
2
pλ0 ` λ1q

n
ÿ

j“1

|Bjṽ|
2
ď

n
ÿ

j“1

˜

2Bjṽ
T
´

Bjh̃´ pBjB̃qṽ
¯

´

n
ÿ

i“1

Bi

´

Bjṽ
TÃiBjṽ

¯

¸

ď 1
4
pλ0 ` λ1q

n
ÿ

j“1

|Bjṽ|
2
`

4

pλ0 ` λ1q

n
ÿ

j“1

´

|Bjh̃|
2
` |BjB̃|

2
0,8|ṽ|

2
¯

´

n
ÿ

i“1

Bi

´

Bjṽ
JÃiBjṽ

¯

.
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Integrate over BR, apply Stokes’ theorem, and use the fact that β is positive definite on BBR

again to obtain

(4.22)
}ṽ}21 ď C1pλ0, λ1q

2
´

}h̃}21 ` }ṽ}
2
0}B̃}

2
1,8

¯

´
4

pλ0 ` λ1q

n
ÿ

j“1

ż

BBR

pBjṽ
TβBjṽq dS

ď C1pλ0, λ1q
2
´

}h̃}21 ` }ṽ}
2
0}B̃}

2
1,8

¯

,

where C1pλ0, λ1q ą 0 is a universal constant depending on λ0 and λ1.
By the Sobolev embedding estimate (1.4), we have

}B̃}1,8 ď K}B̃}2`rn
2
s

for some constant K; thus we can write the inequality (4.22) as

}ṽ}21 ď C2
1

´

}h̃}21 ` }ṽ}
2
0}B̃}

2
2`rn

2
s

¯

,

and hence

}ṽ}1 ď C1

´

}h̃}1 ` }ṽ}0}B̃}2`rn
2
s

¯

.

Therefore, the restriction v of ṽ to Br satisfies

(4.23)

}v}1 ď }ṽ}1 ď C1

´

}h̃}1 ` }ṽ}0}B̃}2`rn
2
s

¯

ď C1M1,2

´

}h}1 ` }v}0}B}2`rn
2
s

¯

ď C 11

´

}h}1 ` }h}0}B}2`rn
2
s

¯

ď C21

´

}h}1 ` }h}0}u}3`rn
2
s

¯

,

where the last inequality follows from the fact that B is a C8 function of u and its first
derivatives.

Successive differentiations of the system (4.6) produce similar results. To obtain an esti-
mate for }v}k, differentiate the system (4.6) k times, with respect to xj1 , . . . , xjk . This yields
an equation of the form

(4.24)
n
ÿ

i“1

˜

Ãi Bk`1
ij1...jk

ṽ `
k
ÿ

q“1

pBjqÃ
i
qB
k
ij1...ĵq ...jk

ṽ

¸

` B̃ Bkj1...jk ṽ

“ B
k
j1...jk

h̃´ pBkj1...jkB̃qṽ ´
k´1
ÿ

m“1

˜

n
ÿ

i“1

Dk`1´mÃi `Dk´mB̃

¸

pDmṽq,

where, on the right-hand side, Dm indicates an appropriate differential operator of order m.
Multiply the matrix equation (4.24) by 2Bkj1...jk ṽ

T, rewrite the first term and rearrange as in
the previous cases, so that the left-hand side of equation (4.24) becomes

(4.25) B
k
j1...jk

ṽT
pB̃ ` B̃T

´

n
ÿ

i“1

BiÃ
i
qB
k
j1...jk

ṽ ` 2pBkj1...jk ṽ
T
q

n
ÿ

i“1

k
ÿ

q“1

pBjqÃ
i
qB
k
ij1...ĵq ...jk

ṽ.
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Now sum over j1, . . . , jk, and note that the second term in (4.25) can be rearranged as follows
by using the commutativity of mixed partial derivatives and relabeling as appropriate:

2
n
ÿ

i,j1,...,jk“1

k
ÿ

q“1

pB
k
j1...jk

ṽT
qpBjqÃ

i
qB
k
ij1...ĵq ...jk

ṽ

“ 2
n
ÿ

i,j1,...,jk“1

k
ÿ

q“1

pB
k
jqj1...ĵq ...jk

ṽT
qpBjqÃ

i
qB
k
ij1...ĵq ...jk

ṽ

“

n
ÿ

i,j1,...,jk“1

k
ÿ

q“1

pB
k
jqj1...ĵq ...jk

ṽT
qpBjqÃ

i
` BiÃ

jqqB
k
ij1...ĵq ...jk

ṽ

“ k
n
ÿ

i,j1,...,jk“1

pB
k
j1...jk

ṽT
qpBjkÃ

i
` BiÃ

jkqB
k
ij1...jk´1

ṽ.

Thus the summed equation can be written as

(4.26)
n
ÿ

j1,...,jk“1

Q̃0pB
k
j1,...,jk

ṽq ` k
n
ÿ

j1,...,jk´1“1

Q̃1pB
k
j1,...,jk´1,1

ṽ, . . . , Bkj1,...,jk´1,n
ṽq

“

n
ÿ

j1,...,jk“1

˜

2Bkj1...jk ṽ
T
´

B
k
j1...jk

h̃´ pBkj1...jkB̃qṽ
¯

´

k´1
ÿ

m“1

B
k
j1...jk

ṽT
´

n
ÿ

i“1

Dk`1´mÃi `Dk´mB̃
¯

Dmṽ

´

n
ÿ

i“1

Bi

´

B
k
j1,...,jk

ṽTÃiBkj1,...,jk ṽ
¯

¸

.

By Proposition 4.3, the left-hand side of equation (4.26) is bounded below by

1
2
pλ0 ` kλ1q

n
ÿ

j1,...,jk“1

|B
k
j1,...,jk

ṽ|2.

Thus, after performing operations similar to those above, we obtain
(4.27)

}ṽ}2k ď Ckpλ0, λ1q
2

˜

}h̃}2k ` }ṽ}
2
0}B̃}

2
k,8 `

k´1
ÿ

m“1

}ṽ}2m

´

n
ÿ

j“1

}Ãj}2k`1´m,8 ` }B̃}
2
k´m,8

¯

¸

ď Ckpλ0, λ1q
2

˜

}h̃}2k `
k´1
ÿ

m“0

}ṽ}2m

´

n
ÿ

j“1

}Ãj}2k`1´m,8 ` }B̃}
2
k´m,8

¯

¸

.

By the Sobolev embedding estimate (1.4), we have

}Ãj}k`1´m,8 ď Kk}Ã
j
}k`2´m`rn

2
s, }B̃}k´m,8 ď Kk}B̃}k`1´m`rn

2
s

for some constant Kk; thus we can write the inequality (4.27) as

}ṽ}2k ď C2
k

˜

}h̃}2k `
k´1
ÿ

m“0

}ṽ}2m

´

n
ÿ

j“1

}Ãj}2k`2´m`rn
2
s ` }B̃}

2
k`1´m`rn

2
s

¯

¸

,
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and hence

(4.28) }ṽ}k ď Ck

˜

}h̃}k `
k´1
ÿ

m“0

}ṽ}m

´

n
ÿ

j“1

}Ãj}k`2´m`rn
2
s ` }B̃}k`1´m`rn

2
s

¯

¸

.

By the Gagliardo-Nirenberg interpolation inequality [2] and the Cauchy-Schwarz inequal-
ity, for 0 ď m ď k ´ 1, we have

}ṽ}m}Ã
j
}k`2´m`rn

2
s ď C̃mp}ṽ}0}Ã

j
}k`2`rn

2
s ` }ṽ}k´1}Ã

j
}3`rn

2
sq,

}ṽ}m}B̃}k`1´m`rn
2
s ď C̃mp}ṽ}0}B̃}k`1`rn

2
s ` }ṽ}k´1}B̃}2`rn

2
sq

for some constant C̃m. Substituting into equation (4.28), we obtain

(4.29) }ṽ}k ď C 1k

˜

}h̃}k ` }ṽ}0

´

n
ÿ

j“1

}Ãj}k`2`rn
2
s ` }B̃}k`1`rn

2
s

¯

`}ṽ}k´1

´

n
ÿ

j“1

}Ãj}3`rn
2
s ` }B̃}2`rn

2
s

¯

¸

.

Now let α ě 4 ` rn
2
s. It follows from the fact that A and B are C8 functions of u and

its first derivatives that there exist constants K̃ρ and K̃k,ρ such that, for any u P Dα, the
extended linear system (4.6) corresponding to the linearization of (2.1) at u satisfies

}Ãj}3`rn
2
s, }B̃}2`rn

2
s ď K̃ρ, }Ãj}k`2`rn

2
s, }B̃}k`1`rn

2
s ď K̃k,ρp1` }u}k`3`rn

2
sq.

Thus (4.29) becomes

(4.30) }ṽ}k ď C2k

´

}h̃}k ` }ṽ}0}u}k`3`rn
2
s ` }ṽ}k´1

¯

.

It then follows by induction (with the inequality (4.23) as the base case) that

(4.31) }ṽ}k ď C3k

´

}h̃}k ` }ṽ}0}u}k`3`rn
2
s

¯

.

Therefore, the restriction v of ṽ to Br satisfies

(4.32)

}v}k ď }ṽ}k ď C3k

´

}h̃}k ` }ṽ}0}u}k`3`rn
2
s

¯

ď C3kMk,2

´

}h}k ` }v}0}u}k`3`rn
2
s

¯

ď C̃k

´

}h}k ` }h}0}u}k`3`rn
2
s

¯

.

All the hypotheses of Theorem A.1 have now been verified for any α ě 3 ` rn
2
s; thus the

conclusion of Theorem A.1 gives the desired solution u P C8pBr,Rsq to the nonlinear system
(2.1) on Br. This completes the proof of Theorem 1.

Part 2. Application to Isometric Embedding

5. Local existence theorems for isometric embedding

The remainder of this paper will be devoted to giving a new proof, based on Theorem 1,
for the following local existence theorem:
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Theorem 2. Let pM, gq be a C8 Riemannian manifold of dimension n “ 2 or n “ 3,
let N “ 1

2
npn ` 1q, let x0 P M so that the Riemann curvature tensor Rpx0q is nonzero.

Then there exists a neighborhood Ω ĂM of x0 for which there is a C8 isometric embedding
y : Ω Ñ RN .

Here we briefly describe our strategy for proving Theorem 2. Let n “ 2 or n “ 3, and
let N “ 1

2
npn ` 1q. For convenience, choose local coordinates x “ px1, . . . , xnq based at

x0, so that without loss of generality we may assume that x0 “ 0. Given a C8 metric g
on a neighborhood Ω of x “ 0, choose a real analytic metric ḡ on Ω that agrees with g to
sufficiently high order at x “ 0. By the Cartan-Janet theorem, there exists a real analytic
isometric embedding (possibly on a smaller neighborhood) y0 : Ω Ñ RN of pΩ, ḡq into RN .

The linearization of the isometric embedding system (1.1) at y0 is a first-order PDE
system of N equations for the unknown function v : Ω Ñ RN . This system decomposes into
a system of n first-order PDEs for the tangential components of v, together with pN ´ nq
equations that determine the normal components of v algebraically in terms of the tangential
components.

We will show that, under the hypotheses of Theorem 2, the embedding y0 can be chosen
so that the tangential subsystem becomes strongly symmetric positive after a fairly simple,
but carefully chosen, change of variables. Consequently, it follows from the argument given
in the proof of Theorem 1 that the tangential components of v satisfy the smooth tame
estimates required to implement a Nash-Moser iteration scheme for the isometric embedding
system (1.1), and then the remaining algebraic equations will imply the necessary estimates
for the normal components of v. Theorem 2 then follows directly from the Nash-Moser
implicit function theorem (cf. Theorem A.1).

Notation 5.1. We will use the Einstein summation convention for the remainder of this
paper.

6. The linearized isometric embedding system and Nash-Moser iteration

Let Ω Ă Rn be a neighborhood of x “ 0. Let y0 : Ω Ñ RN be a smooth embedding,
and let ḡ “ ḡijdx

idxj be the metric on Ω induced by the restriction of the Euclidean metric
on RN to y0pΩq. Linearization of the isometric embedding system (1.1) at the function y0

yields the linear PDE system

(6.1) Biy0 ¨ Bjv ` Bjy0 ¨ Biv “ hij, 1 ď i, j ď n,

for the function v : Ω Ñ RN , where hij “ gij ´ ḡij.
As described in [1], the linearized system (6.1) can be reformulated as a system of n linear

PDEs for the n tangential components of v, together with a system of pN ´ nq algebraic
equations for the normal components. To this end, note that, since y0 is an embedding, for
each x P Ω the tangent vectors tB1y0pxq, . . . , Bny0pxqu are linearly independent and span an
n-dimensional subspace Tx Ă RN . We can therefore decompose the second derivatives of y0

as follows:

(6.2) B
2
ijy0 “ ΓkijBky0 `Hij,

where, for each 1 ď i, j ď n, the vector-valued function Hij “ Hji : Ω Ñ RN satisfies
Hij ¨ Bky0 “ 0 for 1 ď k ď n. The functions Γkij : Ω Ñ R are the Christoffel symbols

of the metric ḡij, and the quadratic form Hijdx
idxj is the second fundamental form of the

embedding y0.
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Let Sn denote the 1
2
npn` 1q-dimensional space of quadratic forms on Rn, represented by

symmetric n ˆ n matrices rsijs. For each x P Ω, the vectors Hijpxq determine a linear map
Hx : RN Ñ Sn, given by

Hxpvq “ rxHijpxq,vys.

We denote the image by IIx “ HxpRNq. Since the kernel of the map Hx contains Tx, we
have

(6.3) dim IIx ď
1

2
npn` 1q ´ n “

1

2
npn´ 1q.

Definition 6.1. The embedding y0 : Ω Ñ RN is called nondegenerate if dim IIx “
1
2
npn´1q

for all x P Ω.

Now, let S˚n denote the dual space to Sn, represented by symmetric matrices rsijs, with
the pairing S˚n ˆ Sn Ñ R defined for A P S˚n , H P Sn by

(6.4) xA,Hy “
n
ÿ

i,j“1

AijHij.

Definition 6.2. The annihilator IIKx of the subspace IIx Ă Sn is the subspace of S˚n defined
by

IIKx “ tA P S˚n : xA,Hy “ 0 for all H P IIxu.

It follows from equation (6.3) that dim IIKx ě n, with equality for all x P Ω if and only if
y0 is nondegenerate.

Assumption 6.3. Henceforth, we will assume that y0 is nondegenerate, and that conse-
quently dim IIx “

1
2
npn´ 1q and dim IIKx “ n for all x P Ω.

Now, the system (6.1) can be rewritten as follows:

(6.5) BipBjy0 ¨ vq ` BjpBiy0 ¨ vq ´ 2v ¨ B2
ijy0 “ hij, 1 ď i, j ď n.

Define functions v̄i and ∇j v̄i by

v̄i “ v ¨ Biy0, 1 ď i ď n,

∇j v̄i “ Bj v̄i ´ Γkij v̄k, 1 ď i, j ď n;

then the system (6.5) can be written as

(6.6) ∇iv̄j `∇j v̄i ´ 2v ¨Hij “ hij, 1 ď i, j ď n.

Since dim IIKx “ n, there must exist smooth maps A1, . . . , An : Ω Ñ S˚n such that, for
each x P Ω, the matrices A1pxq, . . . , Anpxq comprise a basis of IIKx . By writing Ak “ rAkijs
and pairing each of these matrices with equations (6.6) as in (6.4), we obtain the following
system of n first order PDEs for the functions v̄1, . . . , v̄n:

(6.7) Akijp∇iv̄j `∇j v̄iq “ Akijhij, k “ 1, . . . , n.

Because Ak P S˚n , we have Akij “ Akji, but the component functions Akij do not necessarily
possess any other symmetries.

Proposition 6.4. Any solution pv̄1, . . . , v̄nq : Ω Ñ Rn to (6.7) uniquely determines a solution
v : Ω Ñ RN to equation (6.1); moreover, v can be determined algebraically from pv̄1, . . . , v̄nq.
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Proof. Suppose that v̄1, . . . , v̄n satisfy (6.7), and define

(6.8) ηij “ hij ´∇iv̄j ´∇j v̄i, 1 ď i, j ď n.

Equation (6.7) implies that rηijpxqs P IIx for each x P Ω. Assumption 6.3 implies that Hx

has maximal rank so that, for each x P Ω, there exists a unique vpxq P RN such that

(6.9)
vpxq ¨ Biy0pxq “ v̄ipxq, 1 ď i ď n,

´2vpxq ¨Hijpxq “ ηijpxq, 1 ď i, j ď n.

Therefore, the map v : Ω Ñ RN satisfies (6.6), which in turn is equivalent to (6.1). �

It follows from Proposition 6.4 that, in order to solve the linearized equations (6.1), it
suffices to solve equations (6.7). This system can be written as

(6.10) AkijpBiv̄j ` Bj v̄i ´ 2Γ`ij v̄`q “ Akijhij, k “ 1, . . . , n.

Since Akij “ Akji and Γkij “ Γkji, this is equivalent to the system

(6.11) AkijpBiv̄j ´ Γ`ij v̄`q “
1
2
Akijhij, k “ 1, . . . , n.

We can write this system in matrix form as follows: For i “ 1, . . . , n, let Āi denote the
matrix

Āi “ rAkijs “

»

—

—

–

A1i1 ¨ ¨ ¨ A1in

...
...

Ani1 ¨ ¨ ¨ Anin

fi

ffi

ffi

fl

.

Then the system (6.11) can be written as

(6.12) ĀiBiv̄ `Bv̄ “ h,

where
(6.13)

v̄ “ rv̄js, B “ rBkj
s “ r´Ak`mΓj`ms, h “ r1

2
Ak`mh`ms, 1 ď j, k, `,m ď n.

Our proof of Theorem 2 is based on the following key result.

Proposition 6.5. Suppose that the system (6.12) is strongly symmetric positive at x “ 0.
Then there exist a neighborhood Ω0 Ă Ω of x “ 0, an integer β, and ε ą 0 such that, for
any C8 metric g on Ω0 with }g ´ ḡ}β ă ε, there exists a C8 solution y : Ω0 Ñ RN to the
isometric embedding system (1.1).

Moreover, the conclusion holds if the system (6.12) becomes strongly symmetric positive
after performing a change of variables of the form

(6.14) x̄ “ φpxq, w̄ “ Spxqv̄,

where φ : Ω Ñ Rn is a local diffeomorphism of Ω with φp0q “ 0, and S : Ω Ñ Rnˆn is a C8,
nˆ n matrix-valued function on Ω with Sp0q invertible.

Proof. First, suppose that the system (6.12) is strongly symmetric positive at x “ 0. The
argument from the proof of Theorem 1 shows that, under the hypotheses of the proposition,
there exists a neighborhood Ω0 Ă Ω of x “ 0 on which the system (6.12) corresponding to
the linearization of (1.1) at any function y : Ω0 Ñ RN sufficiently close to y0 has a solution
v̄ that satisfies the estimates of the form:

(6.15) }v̄}k ď C 1k

´

}h}k ` }h}0}y ´ y0}k`3`rn
2
s

¯

, k ě 0,
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for some constants C 1k. Then it follows from equation (6.8) that

}η}k ď C2k

´

}h}k`1 ` }h}0}y ´ y0}k`4`rn
2
s

¯

, k ě 0,

for some constants C2k . These estimates, together with equations (6.9) and Assumption 6.3,
imply (possibly after shrinking Ω0) that

(6.16) }v}k ď Ck

´

}h}k`1 ` }h}0}y ´ y0}k`4`rn
2
s

¯

, k ě 0

for some constants Ck. The existence of a solution y : Ω0 Ñ RN to the system (1.1) then
follows from Theorem A.1, just as in the proof of Theorem 1.

For the second statement, assume that Ω0 has been chosen so that the restriction of φ to Ω0

is smoothly invertible and the matrix Spxq is invertible for all x P Ω0, with the determinant
of Spxq bounded away from 0. Then it suffices to observe that a change of coordinates of
the form (6.14) induces linear maps ψk : HkpΩ0q Ñ HkpφpΩ0qq defined by

ψkpv̄q “ w̄,

and that these maps are continuous with continuous inverse. Thus the estimates of the form
(6.15) for the function w̄ imply similar estimates for v̄, which in turn imply the estimates
(6.16) for v. �

Thus it remains to show that, under the hypotheses of Theorem 2, the approximate em-
bedding y0 : Ω Ñ RN can be chosen so that the linearized system (6.12) becomes strongly
symmetric positive at x “ 0 after a change of variables of the form (6.14).

7. Symmetrization

The matrices Āi in the system (6.12) are not necessarily symmetric, because the functions
Akij and Ajik are not necessarily equal. The system (6.12) can be re-expressed as a symmetric
system if and only if there exists an invertible nˆ n matrix C such that the matrices

CĀ1, . . . , CĀn

are all symmetric, in which case multiplying the system (6.12) by C results in a symmetric
system.

Observe that multiplying (6.12) by an invertible matrix C is equivalent to replacing the
basis A1, . . . , An for the annihilator IIKx at each point with the alternate basis

A1` “ C`
kA

k.

Moreover, a given basis A1, . . . , An for IIKx will lead to symmetric matrices Ā1, . . . , Ān if and
only if

(7.1) Akij “ Ajik;

i.e., if and only if the coefficients Aijk are symmetric in all their indices. Therefore, in order
to determine whether the system (6.12) is symmetrizable, it suffices to determine whether
there exists a basis Ak “ rAkijs for IIKx for which the coefficients Akij are symmetric in all
their indices. If we choose such a basis for IIKx , then we will have

Āk “ Ak,

and there will be no need to distinguish between the two.

Proposition 7.1. When n “ 2 or n “ 3, the linearized system (6.12) is symmetrizable.
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Proof. When n “ 2, we have N “ 3. Choose any smoothly varying basis element H3pxq P IIx.
Consider the 4-dimensional space of all symmetric cubic forms

A “ Aijk
ˆ

B

Bxi
˝
B

Bxj
˝
B

Bxk

˙

P S3
pTR2

q,

and for k “ 1, 2, let Ak denote the matrix Ak “ rAkijs. The annihilator equations

xAk, H3
y “ 0, k “ 1, 2,

form a system of 2 homogeneous linear equations for the 4 functions Akij. Thus there must
be at least a 2-dimensional solution space at each point x P U , and choosing Apxq to be
any smoothly varying, nonvanishing element of this space produces a symmetric linearized
system (6.12).

When n “ 3, we have N “ 6. Choose any smoothly varying basis pH4pxq, H5pxq, H6pxqq
for the space IIx. Consider the 10-dimensional space of all symmetric cubic forms

A “ Aijk
ˆ

B

Bxi
˝
B

Bxj
˝
B

Bxk

˙

P S3
pTR3

q,

and for k “ 1, 2, 3, let Ak denote the matrix Ak “ rAkijs. The annihilator equations

xAk, Hα
y “ 0, k “ 1, 2, 3, α “ 4, 5, 6,

form a system of 9 homogeneous linear equations for the 10 functions Akij. Thus there must
be at least a 1-dimensional solution space at each point x P U , and choosing Apxq to be
any smoothly varying, nonvanishing element of this space produces a symmetric linearized
system (6.12). �

Remark 7.2. The result of Proposition 7.1 does not hold for a generic choice of IIx when
n ě 4; this is the primary obstruction to applying our methods to the isometric embedding
problem in higher dimensions.

For the remainder of this paper, we will restrict to the cases n “ 2 and n “ 3. We will
assume that the functions Akij are symmetric in all their indices, so that the matrices Āi in
the linear system (6.12) are symmetric and may be identified with the matrices Ai. We will
use the convention that Roman indices (i, j, k, etc.) range from 1 to n, while Greek indices
(α, β, γ, etc.) range from pn` 1q to N “ 1

2
npn` 1q.

8. Compatibility equations and normal forms

In this section, we will show how the Gauss and Codazzi equations (also called the “com-
patibility equations”) for the embedding y0 : Ω Ñ RN introduce constraints on the values
of the matrices Ai (now assumed to be symmetric) and their first derivatives at x “ 0, and
we will show how the matrices Ai can be put into a simple normal form at the point x “ 0.

Let x “ px1, . . . , xnq be local coordinates on Ω centered at x “ 0. We will assume that x
is a normal coordinate system at 0 with respect to the metric g on Ω, i.e., that Γkijp0q “ 0
for 1 ď i, j, k ď n. We will not, however, assume that gijp0q “ δij, because our argument
will involve a nontrivial GLpn,Rq action on the tangent space T0M . The specific values of
gijp0q will not affect our argument, in any case.

Let ḡ be a real analytic metric on Ω that agrees with g up to order at least β (where β
is as in Proposition 6.5) at x “ 0, and note that this implies that the Riemann curvature
tensors of g and ḡ agree up to order at least pβ´2q at x “ 0. By the Cartan-Janet isometric
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embedding theorem [13], there exists a real analytic isometric embedding (possibly on a
smaller neighborhood) y0 : Ω Ñ RN of pΩ, ḡq into RN .

Let pen`1, . . . , eNq be a smoothly varying orthonormal basis for the normal bundle of the
embedded submanifold y0pΩq Ă RN , chosen so that

(8.1) ∇K
weαp0q “ 0

for n ` 1 ď α ď N and all w P T0M , where ∇K denotes the connection on the normal
bundle induced by the Euclidean connection on RN . This condition is the analog for the
normal bundle of the normal coordinates condition Γkijp0q “ 0. Then we can write the second
fundamental form of y0 as

(8.2) Hijdx
i
˝ dxj “ eα bH

α
ijdx

i
˝ dxj

for scalar-valued functions Hα
ij : Ω Ñ R.

The embedding y0 : Ω Ñ RN must satisfy the following conditions at x “ 0:

‚ Metric conditions:

pBiy0 ¨ Bjy0q|x“0 “ gijp0q, 1 ď i, j ď n,

∇ipBjy0q|x“0 “ pΓ
k
ijBky0q|x“0 “ 0, 1 ď i, j, k ď n;

‚ Gauss equations and their first derivatives:
˜

N
ÿ

α“n`1

pHα
ikH

α
j` ´H

α
i`H

α
jkq

¸

ˇ

ˇ

ˇ

ˇ

x“0

“ Rijk`p0q, 1 ď i, j, k, ` ď n,(8.3)

Bm

˜

N
ÿ

α“n`1

pHα
ikH

α
j` ´H

α
i`H

α
jkq

¸

ˇ

ˇ

ˇ

ˇ

x“0

“ pBmRijk`qp0q, 1 ď i, j, k, `,m ď n,(8.4)

where Rijk` denotes the components of the Riemann curvature tensor of pM, gq;
‚ Codazzi equations:

(8.5) pBiH
α
jkq

ˇ

ˇ

x“0
“ pBjH

α
kiq
ˇ

ˇ

x“0
“ pBkH

α
ijq
ˇ

ˇ

x“0
, 1 ď i, j, k ď n, n` 1 ď α ď N.

This form of the Codazzi equations at x “ 0 relies on the normal coordinates condi-
tion Γijkp0q “ 0 and the condition (8.1) on the covariant derivatives of eα.

Conversely, the Cartan-Janet theorem guarantees that, for any choice of real numbers Hα
ijp0q

and BkH
α
ijp0q satisfying equations (8.3)–(8.5), there exists a real analytic isometric embedding

y0 : Ω Ñ RN of pΩ, ḡq (possibly after shrinking Ω) whose second fundamental form agrees
with the given values up to first order at x “ 0.

Notation 8.1. Henceforth, we will only be concerned with the values of Hα
ij, A

kij, and their
first derivatives at x “ 0. Thus we will use the following notations:

‚ Hα
ij will denote the real number Hα

ijp0q, and Hα will denote the matrix rHα
ijs.

‚ hαkij will denote the real number BkH
α
ijp0q, and hαk will denote the matrix rhαkijs. Note

that the Codazzi equations (8.5) are equivalent to the condition that the hαkij are
fully symmetric in their lower indices.

‚ Akij will denote the real number Akijp0q, and Ak will denote the matrix rAkijs.

‚ akij` will denote the real number B`A
kijp0q, and ak` will denote the matrix rakij` s. Note

that the akij` are fully symmetric in their upper indices, but there are no symmetries
involving the lower index.
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‚ Rijk` will denote the real number Rijk`p0q. Note that the Rijk` must satisfy the
symmetries of the Riemann curvature tensor:

Rijk` “ ´Rjik` “ ´Rij`k “ Rk`ij.

When n “ 2, the only nonzero component of R is the Gauss curvature K “ R1212;
when n “ 3, R has 6 nonzero components, represented by R1212, R2323, R3131, R1223,
R2331, R3112.

‚ rijk`,m will denote the real number BmRijk`p0q; when n “ 2, we will denote r1212,1

and r1212,2 by k1 and k2, respectively. Note that the rijk`,m must satisfy the same
symmetries as the Rijk` in their first four indices, together with the second Bianchi
identities. When n “ 2, the second Bianchi identities are trivial; when n “ 3, they
are represented by the three equations:

(8.6) r2323,1 ` r2331,2 ` r1223,3 “ r2331,1 ` r3131,2 ` r3112,3 “ r1223,1 ` r3112,2 ` r1212,3 “ 0.

The values of Hα
ij, h

α
ijk, A

kij, akij` are constrained by the following relations and are other-
wise arbitrary (apart from the nondegeneracy condition on the Hα

ij):

‚ Gauss equations:

(8.7)
N
ÿ

α“n`1

pHα
ikH

α
j` ´H

α
i`H

α
jkq “ Rijk`, 1 ď i, j, k, ` ď n;

‚ Codazzi equations:

(8.8) hαijk “ hαikj “ hαjik, 1 ď i, j, k ď n, n` 1 ď α ď N ;

‚ Annihilator equations:

(8.9) AkijHα
ij “ 0, 1 ď k ď n, n` 1 ď α ď N ;

‚ Derivatives of the Gauss equations:

(8.10)
N
ÿ

α“n`1

pHα
ikh

α
j`m `H

α
j`h

α
ikm ´H

α
i`h

α
jkm ´H

α
jkh

α
i`mq “ rijk`,m, 1 ď i, j, k, `,m ď n;

‚ Derivatives of the annihilator equations:

(8.11) Akijhαij` `H
α
ija

kij
` “ 0, 1 ď k, ` ď n, n` 1 ď α ď N.

It will be helpful to reduce to the case where the values Hα
ij and Akij take on relatively

simple normal forms. To this end, consider a linear transformation of the independent
variables of the form:

(8.12) x Ñ g ¨ x

with g P GLpn,Rq. This transformation induces an analogous action by g on the tangent
and cotangent spaces T0Rn and T ˚0Rn, and hence on the tensors

R “ Rijk`pdx
i
^ dxjq ˝ pdxk ^ dx`q,

H “ eα bH
α
ijdx

i
˝ dxj,

A “ Aijk
ˆ

B

Bxi
˝
B

Bxj
˝
B

Bxk

˙

,

and their covariant derivatives, while preserving the normal coordinates condition Γkijp0q “ 0.
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8.1. Normal form for n “ 2. When n “ 2, the subspace II0 Ă S2 is spanned by the
matrix:

H3
“

«

H3
11 H3

12

H3
12 H3

22

ff

.

The nondegeneracy of the embedding y0 : Ω Ñ RN implies that the matrix H3 is nonzero.
Then, by an action of the form (8.12), we can arrange that

(8.13) H3
“

«

K 0

0 1

ff

,

where K is the Gauss curvature of pM, gq at x “ 0. The annihilator equations (8.9) then
imply that we can choose

(8.14) A1
“

«

0 1

1 0

ff

, A2
“

«

1 0

0 ´K

ff

.

8.2. Normal form for n “ 3. When n “ 3, II0 Ă S3 is the subspace

II0 “ spanpH4, H5, H6
q,

where, for α “ 4, 5, 6,

Hα
“

»

—

—

–

Hα
11 Hα

12 Hα
31

Hα
12 Hα

22 Hα
23

Hα
31 Hα

22 Hα
33

fi

ffi

ffi

fl

.

Each symmetric matrixHα may also be regarded as representing the quadratic formHα
ijdx

idxj

P S2pT ˚0R3q, or equivalently, the quadratic polynomial Hα
ijX

iXj.
Following [1], we say that II0 is general if there exists a nonsingular cubic polynomial

Y “ YijkX
iXjXk such that

II0 “ span

ˆ

BY

BX1
,
BY

BX2
,
BY

BX3

˙

.

In particular, Y must depend on all three variables X1, X2, X3.
The following classical lemma may be found, e.g., in [22]:

Lemma 8.2. If Y P S3pT ˚0R3q is a nonsingular, homogeneous cubic polynomial, then there
exists a unique real number σ ‰ ´1

2
and a basis pX1, X2, X3q of T ˚0R3 such that

Y “ pX1
q
3
` pX2

q
3
` pX3

q
3
` 6σX1X2X3.

It follows that, if II0 is general, then, by an action of the form (8.12), we can arrange that

(8.15) II0 “ span

¨

˚

˝

»

—

–

1 0 0

0 0 σ

0 σ 0

fi

ffi

fl

,

»

—

–

0 0 σ

0 1 0

σ 0 0

fi

ffi

fl

,

»

—

–

0 σ 0

σ 0 0

0 0 1

fi

ffi

fl

˛

‹

‚

.

The annihilator equations (8.9) then imply that we can choose

(8.16) A1
“

»

—

–

´2σ 0 0

0 0 1

0 1 0

fi

ffi

fl

, A2
“

»

—

–

0 0 1

0 ´2σ 0

1 0 0

fi

ffi

fl

, A3
“

»

—

–

0 1 0

1 0 0

0 0 ´2σ

fi

ffi

fl

.
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Meanwhile, the Riemann curvature tensor R may be regarded as a quadratic form on the
space Λ2pT0R3q; as such it is represented by the symmetric matrix:

(8.17) R̂ “

»

—

–

R2323 R2331 R1223

R2331 R3131 R3112

R1223 R3112 R1212

fi

ffi

fl

.

The only invariant of R̂ under the action (8.12) is its signature pp, qq. The following propo-
sition is a direct consequence of Theorem F in [1]; we will give an independent proof below.

Proposition 8.3. If R̂ is nonzero, then the Gauss equations (8.7) have a solution pH4,
H5, H6q whose span II0 is equivalent under the action (8.12) to the normal form (8.15) for
some σ with 0 ă |σ| ă 1

2
. In fact, σ may be chosen arbitrarily within this range, the only

restrictions being that:

‚ If the signature of R̂ is p1, 0q, then we must have σ ă 0;

‚ If the signature of R̂ is p0, 1q, then we must have σ ą 0.

Proof. Let H̄4, H̄5, H̄6 denote the basis

H̄4
“

»

—

–

1 0 0

0 0 σ

0 σ 0

fi

ffi

fl

, H̄5
“

»

—

–

0 0 σ

0 1 0

σ 0 0

fi

ffi

fl

, H̄6
“

»

—

–

0 σ 0

σ 0 0

0 0 1

fi

ffi

fl

for II0. Then, for α “ 4, 5, 6, let
Hα

“ γαβ H̄
β

for some invertible matrix rγαβ s. Now, for β “ 4, 5, 6, let γβ denote the vector

γβ “

»

—

–

γ4
β

γ5
β

γ6
β

fi

ffi

fl

.

Then it follows from the Gauss equations (8.7) that the corresponding matrix R̂ is given by

(8.18) R̂ “

»

—

–

pγ5 ¨γ6q ´ σ
2pγ4 ¨γ4q σ2pγ4 ¨γ5q ´ σpγ6 ¨γ6q σ2pγ6 ¨γ4q ´ σpγ5 ¨γ5q

σ2pγ4 ¨γ5q ´ σpγ6 ¨γ6q pγ6 ¨γ4q ´ σ
2pγ5 ¨γ5q σ2pγ5 ¨γ6q ´ σpγ4 ¨γ4q

σ2pγ6 ¨γ4q ´ σpγ5 ¨γ5q σ2pγ5 ¨γ6q ´ σpγ4 ¨γ4q pγ4 ¨γ5q ´ σ
2pγ6 ¨γ6q

fi

ffi

fl

.

It suffices to show by example that, with the sign restrictions given above, the vectors
γ4, γ5, γ6 may be chosen so as to obtain a matrix R̂ of arbitrary nonzero signature. We may
achieve this as follows: Let γ4, γ5, γ6 be linearly independent unit vectors in R3, oriented
so that the angle between any pair of these vectors is equal to the same real number θ.
Geometric constraints require that 0 ă θ ă 2π

3
, and hence ´1

2
ă cos θ ă 1. Denote cos θ by

φ; then from (8.18), we have

(8.19) R̂ “

»

—

–

φ´ σ2 σ2φ´ σ σ2φ´ σ

σ2φ´ σ φ´ σ2 σ2φ´ σ

σ2φ´ σ σ2φ´ σ φ´ σ2

fi

ffi

fl

.

The eigenvalues of the matrix (8.19) are

λ “ φp1` 2σ2
q ´ σpσ ` 2q, p1´ σqpφ` σ ` σφq, p1´ σqpφ` σ ` σφq.
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Therefore, for 0 ă σ ă 1
2
, we have

sgnpR̂q “

$

’

’

’

’

’

&

’

’

’

’

’

%

p0, 3q, ´1
2
ă φ ă ´ σ

σ`1
,

p0, 1q, φ “ ´ σ
σ`1

,

p2, 1q, ´ σ
σ`1

ă φ ă σpσ`2q
1`2σ2 ,

p2, 0q, φ “ σpσ`2q
1`2σ2 ,

p3, 0q, σpσ`2q
1`2σ2 ă φ ă 1,

and for ´1
2
ă σ ă 0, we have

sgnpR̂q “

$

’

’

’

’

’

&

’

’

’

’

’

%

p0, 3q, ´1
2
ă φ ă σpσ`2q

1`2σ2 ,

p0, 2q, φ “ σpσ`2q
1`2σ2 ,

p1, 2q, σpσ`2q
1`2σ2 ă φ ă ´ σ

σ`1
,

p1, 0q, φ “ ´ σ
σ`1

,

p3, 0q, ´ σ
σ`1

ă φ ă 1.

A slight perturbation of the vectors γ4, γ5, γ6 will replace the double eigenvalue of R̂ with
distinct eigenvalues, which will lead to R̂ attaining the remaining possible signatures (p0, 2q,
p1, 2q, and p1, 1q for σ ą 0 and p1, 1q, p2, 1q, and p2, 0q for σ ă 0) as φ varies. �

Remark 8.4. It is possible to show that, when R̂ “ 0, all nondegenerate solutions pH4,
H5, H6q to the Gauss equations (8.7) are simultaneously diagonalizable under the action
(8.12) and are therefore equivalent to the normal form (8.15) with σ “ 0. The cubic form
A thus becomes reducible, with the result that the rank of equations (8.11) with respect to
the variables hαijk drops from 27 to 21. This drop in rank is the main obstruction to carrying

out our construction when R̂ “ 0.

9. Strong symmetric positivity for the system (6.12)

In this section we will prove the following theorem, thereby completing the proof of The-
orem 2.

Theorem 9.1. Suppose that either n “ 2 and K ‰ 0, or n “ 3 and R̂ ‰ 0. Then the
linearized isometric embedding system (6.12) can be transformed to a strongly symmetric
positive system in a neighborhood of x “ 0 via a change of variables of the form:

(9.1) xi “ x̄i ` 1
2
cijkx̄

jx̄k, v̄ “ pI ` x̄iSiqw̄,

where cijk “ cikj P R and S1, . . . Sn are constant nˆ n matrices.

In order to prove Theorem 9.1, we will show that, when n “ 2 or n “ 3, for any given real
numbers Rijk` and rijk`,m satisfying the necessary symmetries with Rijk` not all equal to zero,

there exist real numbers Hα
ij, h

α
ijk, A

kij, akij` that satisfy equations (8.7)–(8.11), together with
a change of variables of the form (9.1), that renders the system (6.12) strongly symmetric
positive at x “ 0.

At first glance, the strong symmetric positivity condition might appear impossible to
achieve: From the expressions (6.13) and the normal coordinates condition Γkijp0q “ 0, we
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have Bp0q “ 0. Therefore, symmetric positivity for the system (6.12) would require that the
matrix

Q̄0 “ ´

n
ÿ

i“1

aii

be positive definite, while strong symmetric positivity would require that each of the diagonal
sub-blocks pQ̄1qii “ 2aii (no sum on i) of Q̄1 (cf. equation (2.6)) be positive definite. Clearly,
these two conditions are mutually exclusive, and the situation appears hopeless. However,
it turns out that a change of variables provides some unexpected flexibility:

Lemma 9.2. Under the change of variables (9.1), the symmetric linear system (6.12) with
associated quadratic forms Q̄0 and Q̄1 at x “ 0 is transformed to a symmetric system

(9.2) ÃiBiw̄ ` B̃w̄ “ h̃,

with associated quadratic form ˜̄Q0 at x “ 0 given by

(9.3) ˜̄Q0 “ ´a
i
i ` c

i
ijA

j,

and the pi, jqth block of ˜̄Q1 (cf. equation (2.6)) at x “ 0 given by

(9.4)
p ˜̄Q1qij “ BiÃ

j
p0q ` BjÃ

i
p0q

“ aij ` a
j
i ´ pc

i
jk ` c

j
ikqA

k
` ST

i A
j
` AjSi ` S

T
j A

i
` AiSj.

Proof. According to the chain rule, up to first order at x “ 0, we have

B

Bx̄i
“

B

Bxi
` cjikx̄

k B

Bxj
,

B

Bxi
“

B

Bx̄i
´ cjikx̄

k B

Bx̄j
.

Therefore, at x “ 0, we have

(9.5)

B

Bxi
v̄ “

ˆ

B

Bx̄i
´ cjikx̄

k B

Bx̄j

˙

`

pI ` x̄`S`qw̄
˘

“ pI ` x̄`S`q

ˆ

B

Bx̄i
w̄ ´ cjikx̄

k B

Bx̄j
w̄

˙

` pSi ´ c
j
ikx̄

kSjqw̄.

Substitution of (9.5) and (9.1) into the linear system (6.12) yields

Ai
ˆ

pI ` x̄`S`q

ˆ

B

Bx̄i
w̄ ´ cjikx̄

k B

Bx̄j
w̄

˙˙

`
`

BpI ` x̄`S`q ` A
i
pSi ´ c

j
ikx̄

kSjq
˘

w̄ “ h.

Multiply on the left by pI ` x̄`S`q
T, collect the terms and then relabel them to obtain the

system (9.2), where

(9.6)

Ãi “ pI ` x̄`S`q
T
`

Ai ´ cijkx̄
kAj

˘

pI ` x̄`S`q,

B̃ “ pI ` x̄`S`q
T
`

BpI ` x̄`S`q ` A
i
pSi ´ c

j
ikx̄

kSjq
˘

,

h̃ “ pI ` x̄`S`q
Th,

and Bi now represents B

Bx̄i
. Finally, computation of

Q̃0 “ B̃ ` B̃T
´

n
ÿ

i“1

BiÃ
i, pQ̃1qij “ BiÃ

j
` BjÃ

i,

and evaluating at x “ 0 yields equations (9.3) and (9.4). �
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In light of Lemma 9.2, our strategy for proving Theorem 9.1 will be as follows:

1. By applying the GLpn,Rq action (8.12), we may assume that Akij and Hα
ij are as in

equations (8.13)–(8.14) when n “ 2 and as in equations (8.15)–(8.16) when n “ 3.

2. Identify the values of akij` for which the system (6.12) can be transformed to a strongly
symmetric positive system (9.2) via a change of variables of the form (9.1).

3. Identify the values of hαijk that satisfy equations (8.11) for some akij` from Step 2.
4. Show that all possible values of rijk`,m satisfy equations (8.10) for some hαijk from

Step 3.
5. Conclude that, for any Rijk` not all equal to zero and any rijk`,m, there exist Hα

ij,

Akij, hαijk, and akij` that satisfy equations (8.7)–(8.11) and for which the system (6.12)
can be transformed to a strongly symmetric positive system (9.2).

Proof of Theorem 9.1.
First we give the proof for the case n “ 2. We begin by identifying the values of akij` for

which we can arrange that

(9.7) ˜̄Q0 “ λI2,
˜̄Q1 “ µI4,

for given real numbers λ, µ ą 0, where I2 and I4 denote the 2ˆ2 and 4ˆ4 identity matrices,
respectively.

By applying the GLp2q action (8.12), we can assume that

A1
“

«

0 1

1 0

ff

, A2
“

«

1 0

0 ´K

ff

, H3
“

«

K 0

0 1

ff

.

Set

D “

«

0 0

0 1

ff

,

so that the matrices A1, A2, and D form a basis for S2, and write the matrices S1 and S2 as

S1 “

«

s11
1 s12

1

s21
1 s22

1

ff

, S2 “

«

s11
2 s12

2

s21
2 s22

2

ff

.

Then, after some computation, equation (9.3) can be written as

(9.8) ˜̄Q0 “ ´pa
1
1 ` a

2
2q ` pc

1
11 ` c

2
12qA

1
` pc1

12 ` c
2
22qA

2,

and the equations (9.4) can be written as

(9.9)

p ˜̄Q1q11 “ 2a1
1 ´ 2pc1

11 ´ s
11
1 ´ s

22
1 qA

1
´ 2pc1

12 ` Z112psqqA
2
` 4ps12

1 `Ks
21
1 qD,

p ˜̄Q1q22 “ 2a2
2 ´ 2pc2

12 ` Z221psqqA
1
´ 2pc2

22 ´ 2s11
2 qA

2
` 4Kps11

2 ´ s
22
2 qD,

p ˜̄Q1q12 “ a1
2 ` a

2
1 ´ pc

1
12 ` c

2
11 ` Z121psqqA

1
´ pc1

22 ` c
2
12 ` Z122psqqA

2

` 2ps12
2 `Kps

11
1 ` s

21
2 ´ s

22
1 qqD,

where Zijkpsq represents a linear combination of the sijk whose precise form is irrelevant.

Regardless of the values of akij` , we can set

p ˜̄Q1qij “ δijµI2
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and solve equations (9.9) for the variables s12
1 , s

22
2 , s

12
2 (from the coefficients of D) and

s22
1 , s

11
2 , c

1
12, c

2
12, c

2
11, c

1
22 (from the coefficients of A1 and A2). Note that this solution makes

use of the assumption that K ‰ 0. Then we can set

˜̄Q0 “ λI2

and solve equations (9.8) for the variables c1
11 and c2

22 if and only if the matrix

a1
1 ` a

2
2 ` λI2 “

«

a111
1 ` a112

2 ` λ a112
1 ` a122

2

a112
1 ` a122

2 a122
1 ` a222

2 ` λ

ff

is a linear combination of A1 and A2, which in turn is true if and only if

(9.10) pa122
1 ` a222

2 ` λq `Kpa111
1 ` a112

2 ` λq “ 0.

Thus, the strong symmetric positivity condition (9.7) can be realized if and only if the akij`
satisfy equation (9.10).

The next step is to identify the values of h3
ijk that satisfy equations (8.11) for some akij`

satisfying equation (9.10). Equations (8.11) may be written in matrix form as

(9.11) xAk, h3
`y ` xH

3, ak` y “ 0.

The condition (9.10) is equivalent to

xH3, a1
1 ` a

2
2y “ ´pK ` 1qλ;

therefore, (9.11) implies that we must have

xA1, h3
1y ` xA

2, h3
2y “ ´xH

3, a1
1 ` a

2
2y “ pK ` 1qλ,

or, equivalently,

(9.12) 3h3
112 ´Kh

3
222 “ pK ` 1qλ.

Conversely, for any values of h3
ijk that satisfy the condition (9.12), there exist values of akij`

that satisfy the condition (9.10).
Finally, consider equations (8.10), which can be written as

(9.13)
Kh3

122 ` h
3
111 “ k1,

Kh3
222 ` h

3
112 “ k2.

The values of h3
ijk may be chosen arbitrarily, subject only to the condition (9.12); therefore,

any given values of k1 and k2 may be realized by an appropriate choice of h3
ijk.

We conclude that, for any K ‰ 0 and any k1, k2, there exist solutions h3
ijk and akij` to

equations (8.7)–(8.11) that satisfy the conditions (9.10) and (9.12), and hence the linearized
system (6.12) can be transformed to a strongly symmetric positive system via a change of
variables of the form (9.1). This completes the proof for n “ 2.

Now consider the case n “ 3. The argument is essentially the same as for n “ 2, but the
linear algebra requires a bit more effort. We begin by identifying the values of akij` for which
we can arrange that

(9.14) ˜̄Q0 “ λI3,
˜̄Q1 “ µI9,

for given real numbers λ, µ ą 0, where I3 and I9 denote the 3ˆ3 and 9ˆ9 identity matrices,
respectively.
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By applying the GLp3q action (8.12), we can assume that

A1
“

»

—

–

´2σ 0 0

0 0 1

0 1 0

fi

ffi

fl

, A2
“

»

—

–

0 0 1

0 ´2σ 0

1 0 0

fi

ffi

fl

, A3
“

»

—

–

0 1 0

1 0 0

0 0 ´2σ

fi

ffi

fl

with 0 ă |σ| ă 1
2
. Let H̄4, H̄5, H̄6 denote the basis

(9.15) H̄4
“

»

—

–

1 0 0

0 0 σ

0 σ 0

fi

ffi

fl

, H̄5
“

»

—

–

0 0 σ

0 1 0

σ 0 0

fi

ffi

fl

, H̄6
“

»

—

–

0 σ 0

σ 0 0

0 0 1

fi

ffi

fl

for II0. Then, for α “ 4, 5, 6, we can write

(9.16) Hα
“ γαβ H̄

β

for some invertible matrix rγαβ s. Set

D1 “

»

—

—

–

1 0 0

0 0 0

0 0 0

fi

ffi

ffi

fl

, D2 “

»

—

—

–

0 0 0

0 1 0

0 0 0

fi

ffi

ffi

fl

, D3 “

»

—

—

–

0 0 0

0 0 0

0 0 1

fi

ffi

ffi

fl

,

so that the matrices A1, A2, A3, D1, D2, D3 form a basis for S3, and write the matrices
S1, S2, S3 as

S1 “

»

—

—

–

s11
1 s12

1 s13
1

s21
1 s22

1 s23
1

s31
1 s32

1 s33
1

fi

ffi

ffi

fl

, S2 “

»

—

—

–

s11
2 s12

2 s13
2

s21
2 s22

2 s23
2

s31
2 s32

2 s33
2

fi

ffi

ffi

fl

, S3 “

»

—

—

–

s11
3 s12

3 s13
3

s21
3 s22

3 s23
3

s31
3 s32

3 s33
3

fi

ffi

ffi

fl

.

Then, after some computation, equation (9.3) can be written as

(9.17) ˜̄Q0 “ ´pa
1
1` a

2
2` a

3
3q ` pc

1
11` c

2
12` c

3
13qA

1
` pc1

12` c
2
22` c

3
23qA

2
` pc1

13` c
2
23` c

3
33qA

3,
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and the equations (9.4) can be written as
(9.18)

p ˜̄Q1q11 “ 2a1
1 ´ 2pc1

11 ´ s
22
1 ´ s

33
1 qA

1
´ 2pc1

12 ` Z112psqqA
2
´ 2pc1

13 ` Z113psqqA
3

` 4σps22
1 ` s

33
1 ´ 2s11

1 qD1 ` 4ps32
1 ` σs

21
1 ´ 2σ2s13

1 qD2 ` 4ps23
1 ` σs

31
1 ´ 2σ2s12

1 qD3,

p ˜̄Q1q22 “ 2a2
2 ´ 2pc2

12 ` Z221psqqA
1
´ 2pc2

22 ´ s
11
2 ´ s

33
2 qA

2
´ 2pc2

23 ` Z223psqqA
3

` 4ps31
2 ` σs

12
2 ´ 2σ2s23

2 qD1 ` 4σps11
2 ` s

33
2 ´ 2s22

2 qD2 ` 4ps13
2 ` σs

32
2 ´ 2σ2s21

2 qD3,

p ˜̄Q1q33 “ 2a3
3 ´ 2pc3

13 ` Z331psqqA
1
´ 2pc3

23 ` Z332psqqA
2
´ 2pc3

33 ´ s
11
3 ´ s

22
3 qA

3

` 4ps21
3 ` σs

13
3 ´ 2σ2s32

3 qD1 ` 4ps12
3 ` σs

23
3 ´ 2σ2s31

3 qD2 ` 4σps11
3 ` s

22
3 ´ 2s33

3 qD3,

p ˜̄Q1q12 “ a1
2 ` a

2
1 ´ pc

1
12 ` c

2
11 ` Z121psqqA

1
´ pc1

22 ` c
2
12 ` Z122psqqA

2

´ pc1
23 ` c

2
13 ` Z123psqqA

3
` 2

`

s31
1 ` σps

12
1 ` s

22
2 ` s

33
2 ´ 2s11

2 q ´ 2σ2s23
1

˘

D1

` 2
`

s32
2 ` σps

21
2 ` s

11
1 ` s

33
1 ´ 2s22

1 q ´ 2σ2s13
2

˘

D2

` 2
`

s13
1 ` s

23
2 ` σps

32
1 ` s

31
2 q ´ 2σ2

ps12
2 ` s

21
1 q

˘

D3,

p ˜̄Q1q23 “ a2
3 ` a

3
2 ´ pc

2
13 ` c

3
12 ` Z231psqqA

1
´ pc2

23 ` c
3
22 ` Z232psqqA

2

´ pc2
33 ` c

3
23 ` Z233psqqA

3
` 2

`

s21
2 ` s

31
3 ` σps

13
2 ` s

12
3 q ´ 2σ2

ps32
2 ` s

23
3 q

˘

D1

` 2
`

s12
2 ` σps

23
2 ` s

11
3 ` s

33
3 ´ 2s22

3 q ´ 2σ2s31
2

˘

D2

` 2
`

s13
3 ` σps

11
2 ` s

22
2 ` s

32
3 ´ 2s33

2 q ´ 2σ2s21
3

˘

D3,

p ˜̄Q1q31 “ a3
1 ` a

1
3 ´ pc

3
11 ` c

1
13 ` Z311psqqA

1
´ pc3

12 ` c
1
23 ` Z312psqqA

2

´ pc3
13 ` c

1
33 ` Z313psqqA

3
` 2

`

s21
1 ` σps

13
1 ` s

22
3 ` s

33
3 ´ 2s11

3 q ´ 2σ2s32
1

˘

D1

` 2
`

s12
1 ` s

32
3 ` σps

23
1 ` s

21
3 q ´ 2σ2

ps31
1 ` s

13
3 q

˘

D2

` 2
`

s23
3 ` σps

11
1 ` s

22
1 ` s

31
3 ´ 2s33

1 q ´ 2σ2s12
3

˘

D3,

where Zijkpsq represents a linear combination of the sijk whose precise form is irrelevant.

Regardless of the values of akij` , we can set

p ˜̄Qijq “ δijµI3

and solve equations (9.18) for the variables

s1,1
1 , s2,3

1 , s3,2
1 , s2,2

2 , s1,3
2 , s3,1

2 , s3,3
3 , s1,2

3 , s2,1
3 , s3,1

1 , s3,2
2 , s2,3

2 , s1,2
2 , s1,3

3 , s3,1
3 , s2,1

1 , s2,3
3 , s3,2

3

(from the coefficients of D1, D2, D3) and

s3,3
1 , s1,1

2 , s2,2
3 , c1

1,2, c
1
1,3, c

2
1,2, c

2
2,3, c

3
1,3, c

3
2,3, c

2
1,1, c

1
2,2, c

2
3,3, c

3
2,2, c

1
3,3, c

3
1,1, c

1
2,3, c

2
1,3, c

3
1,2

(from the coefficients of A1, A2, A3). This solution makes use of the fact that 0 ă |σ| ă 1
2
,

and while the explicit solution is rather complicated, it should be fairly clear that such a
solution exists for |σ| ą 0 sufficiently small. Then we can set

˜̄Q0 “ λI3
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and solve equations (9.17) for the variables c1
11, c

2
22, c

3
33 if and only if the matrix

a1
1 ` a

2
2` a

3
3 ` λI3 “

»

—

—

–

a111
1 ` a112

2 ` a113
3 ` λ a112

1 ` a122
2 ` a123

3 a113
1 ` a123

2 ` a133
3

a112
1 ` a122

2 ` a123
3 a122

1 ` a222
2 ` a223

3 ` λ a123
1 ` a223

2 ` a233
3

a113
1 ` a123

2 ` a133
3 a123

1 ` a223
2 ` a233

3 a133
1 ` a233

2 ` a333
3 ` λ

fi

ffi

ffi

fl

is a linear combination of A1, A2, and A3, which in turn is true if and only if

(9.19)

a111
1 ` a112

2 ` a113
3 ` 2σpa123

1 ` a223
2 ` a233

3 q ` λ “ 0,

a122
1 ` a222

2 ` a223
3 ` 2σpa113

1 ` a123
2 ` a133

3 q ` λ “ 0,

a133
1 ` a233

2 ` a333
3 ` 2σpa112

1 ` a122
2 ` a123

3 q ` λ “ 0.

Thus, the strong symmetric positivity condition (9.14) can be realized if and only if the akij`
satisfy equations (9.19).

The next step is to identify the values of hαijk that satisfy equations (8.11) for some akij`
satisfying equation (9.19). Equations (8.11) may be written in matrix form as

(9.20) xAk, hα` y ` xH
α, ak` y “ 0.

The conditions (9.19) are equivalent to

xH̄α, a1
1 ` a

2
2 ` a

3
3y “ ´λ, α “ 4, 5, 6;

therefore,

xHα, a1
1 ` a

2
2 ` a

3
3y “ xγ

α
β H̄

β, a1
1 ` a

2
2 ` a

3
3y “ ´pγ

α
4 ` γ

α
5 ` γ

α
6 qλ, α “ 4, 5, 6.

Then equation (9.20) implies that we must have

xA1, hα1 y ` xA
2, hα2 y ` xA

3, hα3 y “ ´xH
α, a1

1 ` a
2
2 ` a

3
3y “ pγ

α
4 ` γ

α
5 ` γ

α
6 qλ, α “ 4, 5, 6,

or, equivalently,

(9.21) 6hα123 ´ 2σphα111 ` h
α
222 ` h

α
333q “ pγ

α
4 ` γ

α
5 ` γ

α
6 qλ, α “ 4, 5, 6.

Conversely, for any values of hαijk that satisfy the conditions (9.21), there exist values of akij`
that satisfy the conditions (9.19).

Equations (8.10) are considerably more complicated here than in the n “ 2 case. Taking
the second Bianchi equations into account, there are 15 equations for the 15 components
rijk`,m, with left-hand sides that are linear functions of the 30 components hαijk. We will

regard equations (8.10) as defining a linear map G̃ from the30-dimensional space H of hαijk
values to the 15-dimensional space R of rijk`,m values; what remains to show is that the

restriction of G̃ to the 27-dimensional affine subspace defined by equations (9.21) is surjective
onto R.

First, observe that we can write equations (8.10) in matrix form as

(9.22)
6
ÿ

α“4

G̃αĥα “ r̂,
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where G̃α denotes the 15ˆ 10 matrix

G̃α
“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

Hα
22 0 0 ´2Hα

12 0 0 Hα
11 0 0 0

Hα
33 0 0 0 ´2Hα

31 0 0 Hα
11 0 0

0 0 0 ´Hα
33 Hα

23 0 0 ´Hα
12 0 Hα

31

´Hα
23 0 0 Hα

31 Hα
12 0 0 0 0 ´Hα

11

0 0 0 Hα
23 ´Hα

22 0 ´Hα
31 0 0 Hα

12

0 Hα
33 0 0 0 ´2Hα

23 0 0 Hα
22 0

0 Hα
11 0 Hα

22 0 0 ´2Hα
12 0 0 0

0 0 0 ´Hα
23 0 ´Hα

11 Hα
31 0 0 Hα

12

0 ´Hα
31 0 0 0 Hα

12 Hα
23 0 0 ´Hα

22

0 0 0 0 0 Hα
31 ´Hα

33 0 ´Hα
12 Hα

23

0 0 Hα
11 0 Hα

33 0 0 ´2Hα
31 0 0

0 0 Hα
22 0 0 Hα

33 0 0 ´2Hα
23 0

0 0 0 0 0 ´Hα
31 0 ´Hα

22 Hα
12 Hα

23

0 0 ´Hα
12 0 0 0 0 Hα

23 Hα
31 ´Hα

33

0 0 0 0 ´Hα
23 0 0 Hα

12 ´Hα
11 Hα

31

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

;

ĥα denotes the vector

ĥα “
“

hα111 hα222 hα333 hα112 hα311 hα223 hα122 hα331 hα233 hα123

‰T
,

and r̂ denotes the vector

r̂ “ rr1212,1 r3131,1 r2331,1 r3112,1 r1223,1 r2323,2 r1212,2 r3112,2

r1223,2 r2331,2 r3131,3 r2323,3 r1223,3 r2331,3 r3112,3s
T.

Thus the map G̃ is represented by the 15ˆ 30 matrix
“

G̃4 G̃5 G̃6
‰

acting on the vector

ĥ “

»

—

—

–

ĥ4

ĥ5

ĥ6

fi

ffi

ffi

fl

.

Now, let G denote the restriction of G̃ to the 27-dimensional subspace defined by equations
(9.21). By solving equations (9.21) for hα123 and substituting into equation (9.22), we can
represent G as

Gpĥq “
6
ÿ

α“4

Gαˆ̄hα ` r̂0,
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where Gα denotes the 15ˆ 9 matrix

(9.23) Gα
“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

Hα
22 0 0 ´2Hα

12 0 0 Hα
11 0 0

Hα
33 0 0 0 ´2Hα

31 0 0 Hα
11 0

1
3
σHα

31
1
3
σHα

31
1
3
σHα

31 ´Hα
33 Hα

23 0 0 ´Hα
12 0

´Hα
23´

1
3
σHα

11 ´1
3
σHα

11 ´1
3
σHα

11 Hα
31 Hα

12 0 0 0 0

1
3
σHα

12
1
3
σHα

12
1
3
σHα

12 Hα
23 ´Hα

22 0 ´Hα
31 0 0

0 Hα
33 0 0 0 ´2Hα

23 0 0 Hα
22

0 Hα
11 0 Hα

22 0 0 ´2Hα
12 0 0

1
3
σHα

12
1
3
σHα

12
1
3
σHα

12 ´Hα
23 0 ´Hα

11 Hα
31 0 0

´1
3
σHα

22 ´Hα
31´

1
3
σHα

22 ´1
3
σHα

22 0 0 Hα
12 Hα

23 0 0

1
3
σHα

23
1
3
σHα

23
1
3
σHα

23 0 0 Hα
31 ´Hα

33 0 ´Hα
12

0 0 Hα
11 0 Hα

33 0 0 ´2Hα
31 0

0 0 Hα
22 0 0 Hα

33 0 0 ´2Hα
23

1
3
σHα

23
1
3
σHα

23
1
3
σHα

23 0 0 ´Hα
31 0 ´Hα

22 Hα
12

´1
3
σHα

33 ´1
3
σHα

33 ´Hα
12´

1
3
σHα

33 0 0 0 0 Hα
23 Hα

31

1
3
σHα

31
1
3
σHα

31
1
3
σHα

31 0 ´Hα
23 0 0 Hα

12 ´Hα
11

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

;

ˆ̄hα denotes the vector

ˆ̄hα “
“

hα111 hα222 hα333 hα112 hα311 hα223 hα122 hα331 hα233

‰T
,

and r̂0 is the vector obtained by evaluating G on the vector ĥ with

hα123 “
1
6
pγα4 ` γ

α
5 ` γ

α
6 qλ, α “ 4, 5, 6,

and all other hαijk equal to 0. Thus, it suffices to show that the 15ˆ 27 matrix

“

G4 G5 G6
‰

has rank 15.
In order to compute the rank of this matrix, observe that equation (9.16) implies that

“

G4 G5 G6
‰

“ rγαβ s
“

Ḡ4 Ḡ5 Ḡ6
‰

,

where Ḡα represents the matrix Gα with all entries Hα
ij replaced by H̄α

ij. Thus, the rank of

the matrix
“

G4 G5 G6
‰

is equal to the rank of the matrix
“

Ḡ4 Ḡ5 Ḡ6
‰

. We can compute
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this rank explicitly: Substitution of the expressions (9.15) for H̄4, H̄5, H̄6 into (9.23) yields

Ḡ4
“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 σ 0 0 0 0

´4
3
σ ´1

3
σ ´1

3
σ 0 0 0 0 0 0

0 0 0 σ 0 0 0 0 0

0 0 0 0 0 ´2σ 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 ´σ 0 ´1 0 0 0

0 0 0 0 0 0 σ 0 0

1
3
σ2 1

3
σ2 1

3
σ2 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 ´2σ

1
3
σ2 1

3
σ2 1

3
σ2 0 0 0 0 0 0

0 0 0 0 0 0 0 σ 0

0 0 0 0 ´σ 0 0 0 ´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

Ḡ5
“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 0 0 0 0 0 0 0 0

0 0 0 0 ´2σ 0 0 0 0

1
3
σ2 1

3
σ2 1

3
σ2 0 0 0 0 0 0

0 0 0 σ 0 0 0 0 0

0 0 0 0 ´1 0 ´σ 0 0

0 0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 σ 0 0

´1
3
σ ´4

3
σ ´1

3
σ 0 0 0 0 0 0

0 0 0 0 0 σ 0 0 0

0 0 0 0 0 0 0 ´2σ 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 ´σ 0 ´1 0

0 0 0 0 0 0 0 0 σ

1
3
σ2 1

3
σ2 1

3
σ2 0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,
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Ḡ6
“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 0 0 ´2σ 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 0 0 ´1 0 0 0 ´σ 0

0 0 0 0 σ 0 0 0 0

1
3
σ2 1

3
σ2 1

3
σ2 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 ´2σ 0 0

1
3
σ2 1

3
σ2 1

3
σ2 0 0 0 0 0 0

0 0 0 0 0 σ 0 0 0

0 0 0 0 0 0 ´1 0 ´σ

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 σ

´1
3
σ ´1

3
σ ´4

3
σ 0 0 0 0 0 0

0 0 0 0 0 0 0 σ 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Then a direct computation shows that the matrix
“

Ḡ4 Ḡ5 Ḡ6
‰

has rank 15; for example,
the submatrix consisting of columns p2, 3, 6, 7, 9, 10, 12, 14, 17, 18, 19, 20, 22, 23, 25q has deter-
minant equal to ´64

27
σ3pσ´ 1q3pσ2` σ` 1q2 ‰ 0. Therefore, G is surjective onto R, and any

given values of rijk`,m may be realized by an appropriate choice of hαijk.

We conclude that, for any R̂ ‰ 0 and any rijk`,m, there exist solutions Hα
ij, A

kij, hαijk, and

akij` to equations (8.7)–(8.11) that satisfy the conditions (9.19) and (9.21), and hence the
linearized system (6.12) can be transformed to a strongly symmetric positive system via a
change of variables of the form (9.1). This completes the proof for n “ 3. �

In closing, we note that the strong symmetric positivity condition (2.5) is extremely fragile
under changes of coordinates, as described in Lemma 9.2—indeed, this is precisely why we
have to choose local coordinates so carefully in our proof of Theorem 9.1. In future work, we
hope to explore this condition in more depth and to obtain a more intrinsic understanding
of its significance.

Appendix A. Theorems from analysis

Theorem A.1 (Nash-Moser-Schwartz-Sergeraert). Let E0, F0 be real Banach spaces, and
let Ek (resp. Fk), k P N, be vector subspaces of E0 (resp. F0), such that Ek`1 Ă Ek (resp.,
Fk`1 Ă Fk). Let each space Ek (resp. Fk) be equipped with a Banach norm } ¨ }k such that the

inclusions Ek`1 ãÑ Ek (resp. Fk`1 ãÑ Fk) are continuous. Let E8 “
8
č

k“0

Ek and F8 “
8
č

k“0

Fk

be given the intersection topology. Moreover, suppose that there exists a family of linear
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“smoothing operators” Sptq : E0 Ñ E8, defined for t P R`, satisfying

(A.1)
}u´ Sptqu}i ďMi,jt

i´j
}u}j, t P R`, i ď j,u P Ej;

}Sptqu}j ďMi,jt
j´i
}u}i, t P R`, i ď j,u P Ei,

where Mij are positive real constants.
Let u0 P E8; let D0 Ă E0 be a neighborhood of u0, and let Dk “ D0 X Ek for k ě 0. Let

Φ : D0 Ñ F0 be a C2 map, and suppose that there exists an integer α ě 0 satisfying the
following assumptions:

(i) For any k ě 0, ΦpDkq Ă Fk.
(ii) There exists a constant C 1 such that, for any u P Dα and v P Eα such that u`v P Dα,

(A.2)
}Φpu` vq ´ Φpuq}α ď C 1}v}α,

}Φpu` vq ´ Φpuq ´ Φ1puqv}α ď C 1}v}2α.

(iii) There exist constants Ck ą 0 with the property that, for any u P Dα, there exists a
continuous linear map Rpuq : Fα Ñ E0 such that, for all h P Fα,

Φ1puqRpuqh “ h,

and for all k ě 0, u P Dk`α, and h P Fk`α,

(A.3) }Rpuqh}k ď Ckp}h}k`α ` }h}α}u´ u0}k`αq.

Then there exists ε ą 0 such that, for any f P F8 with

}f ´ Φpu0q}α ă ε,

there exists u P D8 such that
Φpuq “ f .

The proof of this theorem can be found in [25] and [26].

Theorem A.2 (Stein). Let Ω Ă Rn be a bounded Lipschitz domain. Then there exists a
linear extension operator

E : L1
pΩq Ñ L1

pRn
q

satisfying:

(i) pEfq|Ω “ f ; i.e., E is an extension operator.
(ii) The restriction of E to W k,ppΩq is a bounded linear operator

E : W k,p
pΩq Ñ W k,p

pRn
q, 1 ď p ď 8, 0 ď k ă 8.

The proof of this theorem can be found in [29].
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