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Abstract We are concerned with the nonlinear stability of vortex sheets for
the relativistic Euler equations in three-dimensional Minkowski spacetime.
This is a nonlinear hyperbolic problem with a characteristic free boundary. In
this paper, we introduce a new symmetrization by choosing appropriate func-
tions as primary unknowns. A necessary and sufficient condition for the weakly
linear stability of relativistic vortex sheets is obtained by analyzing the roots
of the Lopatinskĭı determinant associated to the constant coefficient linearized
problem. Under this stability condition, we show that the variable coefficient
linearized problem obeys an energy estimate with a loss of derivatives. The
construction of certain weight functions plays a crucial role in absorbing the
error terms caused by microlocalization. Based on the weakly linear stability
result, we establish the existence and nonlinear stability of relativistic vortex
sheets under small initial perturbations by a Nash–Moser iteration scheme.
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1 Introduction

We are concerned with the nonlinear stability of relativistic vortex sheets for
the Euler equations describing the evolution of a relativistic compressible fluid.
Relativistic vortex sheets arise as a very important feature in several models
of phenomena occurring in astrophysics, plasma physics, and nuclear physics.
Vortex sheets are interfaces between two incompressible or compressible flows
across which there is a discontinuity in fluid velocity. In particular, across a
vortex sheet, the tangential velocity field has a jump, while the normal com-
ponent of the flow velocity is continuous. The discontinuity in the tangential
velocity field creates a concentration of vorticity along the interface. Moreover,
compressible vortex sheets are characteristic discontinuities to the Euler equa-
tions for compressible fluids and as such they are fundamental waves which
play an important role in the study of general entropy solutions to multidi-
mensional hyperbolic systems of conservation laws (cf. Chen–Feldman [7]).

It was observed in [21, 36], by the normal mode analysis, that rectilinear
vortex sheets for non-relativistic isentropic compressible fluids in two space
dimensions are linearly stable when the Mach number M ą

?
2 and are vio-

lently unstable when M ă
?

2, while planar vortex sheets are always violently
unstable in three space dimensions. This kind of instabilities is the analogue
of the Kelvin–Helmholtz instability for incompressible fluids. Artola–Majda
[3] studied certain instabilities of two-dimensional supersonic vortex sheets by
analyzing the interaction with highly oscillatory waves through geometric op-
tics. A rigorous mathematical theory on nonlinear stability and local-in-time
existence of two-dimensional non-relativistic supersonic vortex sheets was first
established by Coulombel–Secchi [19, 20] based on their linear stability results
in [17] and a Nash–Moser iteration scheme.

Motivated by the earlier results in [17, 19, 20], we aim to establish the
nonlinear stability of relativistic vortex sheets in three-dimensional Minkowski
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spacetime under the necessary condition for the linear stability on the piece-
wise constant background state. This problem is a nonlinear hyperbolic prob-
lem with a characteristic free boundary. The so-called Lopatinskĭı condition
holds only in a weak sense, which yields a loss of derivatives.

We first reformulate the relativistic Euler equations into a symmetrizable
hyperbolic system by choosing appropriate functions as primary unknowns.
Our symmetrization is purely algebraic and different from those obtained by
Makino–Ukai in [33] and Trakhinin [48]. As in Francheteau–Métivier [22], we
straighten the unknown front by lifting functions Φ˘ that satisfy the eikonal
equations (2.23a) on the whole domain. Consequently, the original problem can
be transformed into a nonlinear problem in a half-space for which the boundary
matrix has constant rank on the whole half-space. This constant rank property
is essential to derive energy estimates for the variable coefficient linearized
problem by developing the Kreiss’ symmetrizers technique from [15, 17, 27].

Then we consider the constant coefficient linearized problem around the
piecewise constant background state. By computing the roots of the asso-
ciated Lopatinskĭı determinant, we deduce the necessary stability condition
(cf. (2.25)):

M ą Mc :“

?
2

?
1` ε2c̄2

,

where ε´1 is the speed of light and c̄ is the sound speed of the background
state. In the non-relativistic limit εÑ 0, this stability condition is reduced to
M ą

?
2, the well-known fact studied in [17, 36]. The critical Mach number Mc

of the relativistic stability condition is always strictly smaller than
?

2, which
means that the relativistic vortex sheets are stable in a larger physical regime.
Moreover, when the sound speed c̄ is arbitrarily close to the light speed ε´1,
the critical Mach number Mc approaches 1 so that the stability holds precisely
for supersonic relativistic flows. The symbol associated to the unknown front
is elliptic, which enables us to eliminate the front and to consider a standard
boundary value problem. We prove that the constant coefficient linearized
problem obeys an a priori energy estimate, which exhibits a loss of derivatives
with respect to the source terms, owing to the failure of the uniform Kreiss–
Lopatinskĭı condition. Since the boundary is characteristic, there exists a loss
of control on the trace of the solution.

After that, we study the effective linear problem, which is deduced from
the linearized problem around a perturbation of the background state by using
the “good unknown” of Alinhac [1] and neglecting some zero-th order terms.
The dropped terms will be considered as the error terms at each Nash–Moser
iteration step in the subsequent nonlinear analysis. We first prove for small
perturbations that the solution satisfies the same a priori estimate as the con-
stant coefficient case. The energy estimate is deduced by the technique applied
earlier to weakly stable shock waves in [15] and isentropic compressible vortex
sheets in [17]. It consists of the paralinearization of the linearized problem,
analysis of the Lopatinskĭı determinant, microlocalization, and construction
of the Kreiss’ symmetrizers. In particular, we introduce certain weight func-
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tions, vanishing only on the bicharacteristic curves starting from the critical
set, to absorb the error terms caused by microlocalization. Based on this basic
energy estimate, we establish a well-posedness result for the effective linear
problem in the usual Sobolev space Hs with s large enough. This is achieved
by means of a duality argument and higher order energy estimates. Although
our problem is a hyperbolic problem with characteristic boundary that yields
a natural loss of normal derivatives, we manage to compensate this loss by
estimating missing normal derivatives through the equations of the linearized
vorticity. With the well-posedness and tame estimate for the effective linear
problem in hand, we prove the local existence theorem for relativistic vortex
sheets (see Theorem 2.1) by a Nash–Moser iteration scheme. We emphasize
that our choice of new primary unknowns is essential for three main reasons:
The system becomes symmetrizable hyperbolic; it has an appropriate form for
the analysis of the Lopatinskĭı determinant; and, most of all, it is suitable for
getting a vorticity-type equation.

Characteristic discontinuities, especially vortex sheets, arise in a broad
range of physical problems in fluid mechanics, oceanography, aerodynamic-
s, plasma physics, astrophysics, and elastodynamics. The linear results in
[17] have been generalized to cover the two-dimensional nonisentropic flows
[38], the three-dimensional compressible steady flows [50, 52], and the two-
dimensional two-phase flows [42]. It is worth mentioning that a key ingredient
in all of these proofs is the constant rank property of the boundary matrix.
Recently, the methodology in [17] has been developed to deal with several
constant coefficient linearized problems arising in two-dimensional compress-
ible magnetohydrodynamics (MHD) and elastic flows; cf. [5, 10, 49]. See also
the very recent preprint [11] for the linear stability of elastic vortex sheets in
the variable coefficient case. For three-dimensional MHD, Chen–Wang [8, 9]
and Trakhinin [47] proved independently the nonlinear stability of compress-
ible current-vortex sheets, which indicates that non-paralleled magnetic fields
stabilize the motion of three-dimensional compressible vortex sheets. More-
over, the modified Nash–Moser iteration scheme developed in [19, 24] has been
successfully applied to the compressible liquids in vacuum [48], the plasma-
vacuum interface problem [44], MHD contact discontinuities [39], and vortex
sheets for three-dimensional steady flow [51] and two-dimensional two-phase
flow [25].

Let us also mention some earlier works on the relativistic fluids. The global
existence of discontinuous solutions to the relativistic Euler equations in one
space dimension was first investigated by Smoller–Temple [45]. Also, Makino–
Ukai [33] showed the existence of local smooth solutions in three space di-
mensions when the initial data is away from the vacuum. The stability of
relativistic compressible flows with vacuum was addressed in [26, 48]. More-
over, the blow-up in finite time of smooth solutions for the relativistic Euler
equations was shown in Pan–Smoller [40]. Also see Christodoulou [12, 13] for
the formation and development of shocks in the multidimensional relativistic
compressible fluids.
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The plan of this paper is as follows: In § 2, after introducing the free bound-
ary problem for relativistic vortex sheets, we reformulate the relativistic Euler
equations and reduce our nonlinear problem to that in a fixed domain. Then
we state the main result in this paper and introduce the weighted spaces and
norms. Section 3 is mainly devoted to proving Theorem 3.1, i.e. an energy
estimate for the constant coefficient linearized problem. More precisely, after
some reductions, we compute the roots of the associated Lopatinskĭı deter-
minant and deduce the criterion for weakly linear stability in § 3.2. Then we
adopt the argument developed recently by Chen–Hu–Wang [10] to prove the
energy estimate for the constant coefficient case. In § 4, we introduce the ef-
fective linear problem and its reformulation. Section 5 is devoted to the proof
of Theorem 5.1, the energy estimate for the effective linear problem. After
deriving a weighted energy estimate with certain weights vanishing only on
the bicharacteristic curves starting from the critical set, we can absorb the
error terms caused by microlocalization and complete the proof of Theorem
5.1. In § 6, we prove a well-posedness result of the effective linear problem in
the usual Sobolev space Hs with s large enough. In § 7, we obtain the smooth
“approximate solution” by imposing necessary compatible conditions on the
initial data. Then the original problem (2.20) and (2.23) is reduced into a
nonlinear problem with zero initial data. In § 8, by using a modification of
the Nash–Moser iteration scheme, we show the existence of solutions to the
reduced problem and conclude the proof of our main result, Theorem 2.1. Ap-
pendix A concerns the motivation of introducing new primary unknowns and
the derivation of the new symmetrization.

2 Nonlinear Problems and the Main Theorem

In this section, we first introduce the free boundary problem for relativistic
vortex sheets, then reformulate the relativistic Euler equations and reduce
our nonlinear problem to that in a fixed domain, and finally state the main
theorem of this paper and introduce the weighted spaces and norms.

2.1 Relativistic Vortex Sheets

We consider the equations of relativistic perfect fluid dynamics in the three-
dimensional Minkowski spacetime R2`1, that is, the relativistic Euler equa-
tions (see Lichnerowicz [30]):

BαT
αβ “ 0, (2.1)

where T denotes the energy-momentum stress tensor with components

Tαβ “ pp` ρε´2quαuβ ` pgαβ .
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Here p is the pressure, ρ is the energy-mass density, ε´1 is the speed of light,
gαβ “ diag p´1, 1, 1q is the flat Minkowski metric, and u “ pu0, u1, u2qT is the
flow velocity satisfying

gαβuαuβ “ ´1. (2.2)

The notation, Bα, denotes the differentiation with respect to variable xα, and
the Greek indices “α” and “β” run from 0 to 2. Throughout this paper, we
use the Einstein summation convention whereby a repeated index in a term
implies the summation over all the values of that index.

We introduce the coordinate velocity v “ pv1, v2q
T :“ pu1, u2qT{pεu0q. By

virtue of (2.2), the physical constraint is:

|v| ă ε´1. (2.3)

We also introduce the spacetime coordinates pt, xq with t :“ εx0 and x :“
px1, x2q. Then system (2.1) can be equivalently rewritten as

Bt
`

pρ` ε2pqΓ 2 ´ ε2p
˘

`∇x ¨
`

pρ` ε2pqΓ 2v
˘

“ 0, (2.4a)

Bt
`

pρ` ε2pqΓ 2v
˘

`∇x ¨
`

pρ` ε2pqΓ 2v b v
˘

`∇xp “ 0, (2.4b)

where Bt “
B
Bt , ∇x “ pB1, B2q

T with Bj “
B
Bxj

, matrix vbv has pi, jq-entry vivj ,

and

Γ “ Γ pvq :“
1

a

1´ ε2|v|2
(2.5)

is the Lorentz factor. The fluid is assumed to be barotropic, which means that
pressure p is given by an explicit function of ρ. We also assume that p “ ppρq
is a C8 function defined on pρ˚, ρ

˚q and satisfies

0 ă p1pρq ă ε´2 for all ρ P pρ˚, ρ
˚q, (2.6)

where ρ˚ and ρ˚ are some constants such that 0 ď ρ˚ ă ρ˚ ď 8. Consequently,
density ρ is a strictly increasing function of p defined on pppρ˚q, ppρ

˚qq, and
system (2.4) is closed with three unknowns pρ, v1, v2q. Barotropic fluids arise
in many physical situations such as very cold matter, nuclear matter and
ultrarelativistic fluids (cf. [2, Chapter II], [14, Chapter IX], and [45, § 1]).

Let pρ, vqpt, xq be smooth functions on either side of a smooth hypersurface
Σptq :“ tx2 “ ϕpt, x1qu. Then pρ, vq is a weak solution of (2.4) if and only
if pρ, vq is a classical solution of (2.4) on each side of Σptq and satisfies the
Rankine–Hugoniot conditions at every point of Σptq:

#

Btϕ
“

pρ` ε2pqΓ 2 ´ ε2p
‰

´
“

pρ` ε2pqΓ 2v ¨ ν
‰

“ 0,

Btϕ
“

pρ` ε2pqΓ 2v
‰

´
“

pρ` ε2pqΓ 2pv ¨ νqv
‰

´ rps ν “ 0,
(2.7)

where ν :“ p´B1ϕ, 1q is a spatial normal vector to Σptq. As usual, for any
function g, we denote by g˘ the value of g in t˘px2 ´ ϕpt, x1qq ą 0u, and
rgs :“ g`|Σptq ´ g

´|Σptq the jump across Σptq.
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In this paper, we are interested in weak solutions pρ, vq of (2.4) such that
the tangential velocity (with respect to Σptq) is the only jump experienced by
the solution pρ, vq across Σptq. Then the Rankine–Hugoniot conditions (2.7)
are reduced to

Btϕ “ v` ¨ ν “ v´ ¨ ν, p` “ p´ on Σptq. (2.8)

A piecewise smooth weak solution pρ, vq of (2.4) with discontinuities across
Σptq is called a relativistic vortex sheet if its trace on Σptq satisfies (2.8).

We note that system (2.4) admits trivial vortex-sheet solutions that consist
of two constant states separated by a rectilinear front:

pρ, vqpt, x1, x2q “

#

pρ̄, v̄, 0q if x2 ą 0,

pρ̄,´v̄, 0q if x2 ă 0,
(2.9)

where ρ̄ and v̄ are suitable positive constants. Every rectilinear relativistic
vortex sheet is of this form by changing the observer if necessary. In view of
(2.3) and (2.6), we may assume without loss of generality that

ρ̄ P pρ˚, ρ
˚q, v̄ P p0, ε´1q. (2.10)

The aim of this paper is to study the local-in-time existence and nonlinear
stability of relativistic vortex sheets with initial data close to the piecewise
constant state (2.9).

2.2 Reformulation and the Main Theorem

Let us first reformulate the relativistic Euler equations (2.4) by choosing ap-
propriate functions as primary unknowns. To this end, we define the particle
number density N “ Npρq, the sound speed c “ cpρq, and h “ hpρq by

Npρq :“ exp

ˆ
ż ρ

ρ̄

ds

s` ε2ppsq

˙

, cpρq :“
a

p1pρq, hpρq :“
ρ` ε2ppρq

Npρq
. (2.11)

We also introduce

w :“ Γv “
v

a

1´ ε2|v|2
, (2.12)

so that

Γ “
a

1` ε2|w|2, v “
w

a

1` ε2|w|2
. (2.13)

Then we discover that smooth solutions to system (2.4) satisfy

Γ pBt ` v ¨∇xqphwq `N
´1∇xp “ 0. (2.14)
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Let us take U :“ pp, hw1, hw2q
T as primary unknowns and define the following

matrices:

A0pUq :“

¨

˝

Γ p1´ ε4c2|v|2q 2ε2Nc2v1 2ε2Nc2v2

0 Γ p1´ ε2v2
1q ´ε2Γv1v2

0 ´ε2Γv1v2 Γ p1´ ε2v2
2q

˛

‚, (2.15)

A1pUq :“

¨

˝

Γv1p1´ ε
4c2|v|2q Nc2p1` ε2v2

1q ε2v1v2Nc
2

N´1p1´ ε2v2
1q Γv1p1´ ε

2v2
1q ´ε2Γv2

1v2

´ε2v1v2N
´1 ´ε2Γv2

1v2 Γv1p1´ ε
2v2

2q

˛

‚, (2.16)

A2pUq :“

¨

˝

Γv2p1´ ε
4c2|v|2q ε2v1v2Nc

2 Nc2p1` ε2v2
2q

´ε2v1v2N
´1 Γv2p1´ ε

2v2
1q ´ε2Γv1v

2
2

N´1p1´ ε2v2
2q ´ε2Γv1v

2
2 Γv2p1´ ε

2v2
2q

˛

‚. (2.17)

When the solution is in C1, system (2.4) equivalently reads

A0pUqBtU `A1pUqB1U `A2pUqB2U “ 0. (2.18)

We postpone proving the equivalence of systems (2.4) and (2.18) to Appendix
A. The choice of the new unknowns U has several advantages. First, system
(2.18) is symmetrizable hyperbolic in region tρ˚ ă ρ ă ρ˚, |v| ă ε´1u (see
Appendix A for the precise expression of the Friedrichs symmetrizer). Second,
we will see in the sequel that the form of (2.18) is appropriate for computing
the roots of the Lopatinskĭı determinant. Third, equations (2.14) will enable us
to obtain the linearized vorticity equation through which the loss of derivatives
can be compensated in the higher-order energy estimates.

Note that the first two identities in (2.8) are the eikonal equations:

Btϕ` λ2pU
`, B1ϕq “ 0, Btϕ` λ2pU

´, B1ϕq “ 0,

where λ2pU, ξq :“ v1ξ´v2, and ξ P R is the second characteristic field of (2.18)
with the corresponding eigenvector:

r2pU, ξq :“ p0, 1´ ε2v2
2 ` ε

2v1v2ξ, p1´ ε
2v2

1qξ ` ε
2v1v2q

T.

It follows from (2.11) and (2.13) that ∇Uλ2pU, ξq ¨r2pU, ξq ” 0, i.e. the charac-
teristic field λ2 is linearly degenerate in the sense of Lax [28]. As a consequence,
a relativistic vortex sheet is a characteristic discontinuity.

Function ϕ describing the discontinuity front is a part of the unknowns,
and thus the relativistic vortex sheet problem is a free boundary problem. To
reformulate this problem in a fixed domain, we replace unknowns U , which
are smooth on either side of Σptq, by

U˘7 pt, xq :“ Upt, x1, Φ
˘pt, xqq, (2.19)

where Φ˘ are smooth functions satisfying the constraints:

Φ˘pt, x1, 0q “ ϕpt, x1q, ˘B2Φ
˘pt, xq ě κ ą 0 if x2 ě 0.
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Then the existence of relativistic vortex sheets amounts to constructing solu-
tions U˘7 , which are smooth in the fixed domain tx2 ą 0u, to the following
initial-boundary value problem:

LpU˘, Φ˘q “ 0 if x2 ą 0, (2.20a)

BpU`, U´, ϕq “ 0 if x2 “ 0, (2.20b)

pU˘, ϕq|t“0 “ pU
˘
0 , ϕ0q, (2.20c)

where index “7” has been dropped for notational simplicity. According to trans-
formation (2.19), operators L and B take the forms:

#

LpU,Φq “ LpU,ΦqU

with LpU,Φq :“ A0pUqBt `A1pUqB1 ` rA2pU,ΦqB2,
(2.21)

BpU`, U´, ϕq :“

¨

˝

rv1sB1ϕ´ rv2s

Btϕ` v
`
1 B1ϕ´ v

`
2

p` ´ p´

˛

‚, (2.22)

where AjpUq, j “ 0, 1, 2, are defined by (2.15), (2.16), (2.17), respectively, and

rA2pU,Φq :“
1

B2Φ

`

A2pUq ´ BtΦA0pUq ´ B1ΦA1pUq
˘

.

As in Francheteau–Métivier [22], we choose the change of variables Φ˘ such
that

BtΦ
˘ ` v˘1 B1Φ

˘ ´ v˘2 “ 0 if x2 ě 0, (2.23a)

˘ B2Φ
˘ ě κ ą 0 if x2 ě 0, (2.23b)

Φ` “ Φ´ “ ϕ if x2 “ 0. (2.23c)

Not only does this choice simplify much the expression of system (2.20a), but
it also implies that the boundary matrix for problem (2.20):

diag p´ rA2pU
`, Φ`q, ´ rA2pU

´, Φ´qq,

has constant rank on the whole closed half-space tx2 ě 0u. This will play
a crucial role in deriving the energy estimates for the variable coefficient lin-
earized problem by developing further the Kreiss’ symmetrizers argument from
[15, 17, 27].

In the new variables, the rectilinear vortex sheet (2.9) corresponds to the
following stationary solution of (2.20a)–(2.20b) and (2.23):

sU˘ :“
`

p̄,˘h̄ sw, 0
˘T
, sϕ :“ 0, sΦ˘ :“ ˘x2, (2.24)

where p̄ :“ ppρ̄q, h̄ :“ hpρ̄q, and sw :“ sΓ v̄ with sΓ´1 :“
?

1´ ε2v̄2.
Imposing the smooth initial data pU˘0 , ϕ0q close to (2.24), we aim to show

the existence of solutions to the nonlinear problem (2.20) and (2.23) under
the necessary condition for the linear stability on the background state (2.24).
The main result is stated as follows:
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Theorem 2.1 Let T ą 0 be any fixed constant and µ P N with µ ě 13. As-
sume that the background state (2.24) satisfies the physical constraints (2.10)
and the necessary stability condition:

M :“
|v̄|

c̄
ą

?
2

?
1` ε2c̄2

with c̄ :“ cpρ̄q. (2.25)

Assume further that the initial data U˘0 and ϕ0 satisfy the compatibility condi-
tions up to order µ (see § 7), and that pU˘0 ´

sU˘, ϕ0q P H
µ`1{2pR2

`qˆH
µ`1pRq

has a compact support. Then there exists a positive constant ε such that, if
}U˘0 ´ sU˘}Hµ`1{2pR2

`
q ` }ϕ0}Hµ`1pRq ď ε, problem (2.20) and (2.23) has a

solution pU˘, Φ˘, ϕq on the time interval r0, T s satisfying

pU˘ ´ sU˘, Φ˘ ´ sΦ˘q P Hµ´7pp0, T q ˆ R2
`q, ϕ P Hµ´6pp0, T q ˆ Rq.

Remark 2.1 In the non-relativistic limit ε Ñ 0, from (2.25), one obtains the
classical stability condition M ą

?
2 for compressible vortex sheets. The critical

Mach number

Mc :“

?
2

?
1` ε2c̄2

of the relativistic stability condition is always strictly smaller than
?

2, which
means that the relativistic vortex sheets are stable in a larger physical regime
of the parameters. When c̄ is arbitrarily close to the light speed ε´1, the
critical Mach number Mc approaches 1 so that the stability holds precisely for
supersonic relativistic flows.

2.3 Weighted Sobolev Spaces and Norms

We are going to introduce certain weighted Sobolev spaces in order to prove
Theorem 2.1. Let Ω denote the half-space tpt, x1, x2q P R3 : x2 ą 0u. Boundary
BΩ is identified to R2. For all s P R and γ ě 1, the usual Sobolev space HspR2q

is equipped with the following norm:

}v}2s,γ :“
1

p2πq2

ż

R2

λ2s,γpξq|pvpξq|2 dξ, λs,γpξq :“ pγ2 ` |ξ|2q
s
2 ,

where pv is the Fourier transform of v. We equip space L2pR`;HspR2qq with
the norm:

|||v|||2s,γ :“

ż

R`
}vp¨, x2q}

2
s,γ dx2.

We will abbreviate the usual norms of L2pR2q and L2pΩq as

} ¨ } :“ } ¨ }0,γ and ||| ¨ ||| :“ ||| ¨ |||0,γ .
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The scalar products in L2pR2q and L2pΩq are denoted as follows:

xa, by :“

ż

R2

apxqbpyqdy, ⟪a, b⟫ :“

ż

Ω

apyqbpyqdy,

where bpyq is the complex conjugation of bpyq.
For s P R and γ ě 1, we introduce the weighted Sobolev space Hs

γpR2q as

Hs
γpR2q :“

 

u P D1pR2q : e´γtupt, x1q P H
spR2q

(

,

and its norm }u}HsγpR2q :“ }e´γtu}s,γ . We write L2
γpR2q :“ H0

γpR2q and

}u}L2
γpR2q :“ }e´γtu}.

We define L2pR`;Hs
γpR2qq, briefly denoted by L2pHs

γq, as the space of
distributions with finite L2pHs

γq–norm, where

}u}2L2pHsγq
:“

ż

R`
}up¨, x2q}

2
HsγpR2q dx2 “ |||e

´γtu|||2s,γ .

We set L2
γpΩq :“ L2pH0

γq and }u}L2
γpΩq

:“ |||e´γtu|||.

For all k P N and γ ě 1, we define the weighted Sobolev space Hk
γ pΩq as

Hk
γ pΩq :“

 

u P D1pΩq : e´γtu P HkpΩq
(

.

Throughout the paper, we introduce the notation: A À B (B Á A) if
A ď CB holds uniformly for some positive constant C that is independent of
γ. The notation, A „ B, means that both A À B and B À A. Then, for k P N,
one has

}u}k,γ „
ÿ

|α|ďk

γk´|α|}Bαu} for all u P HkpR2q. (2.26)

For any real number T , we introduce ωT :“ p´8, T q ˆ R and ΩT :“
ωT ˆ R`. For all k P N and γ ě 1, we define the weighted space Hk

γ pΩT q as

Hk
γ pΩT q :“

 

u P D1pΩT q : e´γtu P HkpΩT q
(

.

In view of relation (2.26), we introduce the norm on Hk
γ pΩT q as

}u}Hkγ pΩT q :“
ÿ

|α|ďk

γk´|α|}e´γtBαu}L2pΩT q. (2.27)

The norm on Hk
γ pωT q is defined in the same way. For all k P N and γ ě 1, we

define space L2pR`;Hk
γ pωT qq, briefly denoted by L2pHk

γ pωT qq, as the space of

distributions with finite L2pHk
γ pωT qq–norm, where

}u}2L2pHkγ pωT qq
:“

ż

R`
}up¨, x2q}

2
Hkγ pωT q

dx2

“
ÿ

α0`α1ďk

γk´α0´α1}e´γtBα0
t B

α1
1 u}L2pΩT q.

This is an anisotropic Sobolev space for measuring only the tangential regu-
larity (with respect to boundary BΩ). We write L2

γpΩT q :“ L2pH0
γpωT qq and

}u}L2
γpΩT q

:“ }u}L2pH0
γpωT qq

.
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3 Constant Coefficient Linearized Problem

In order to deduce the necessary condition for the linear stability of the back-
ground state (2.24), in this section, we consider the following linearized prob-
lem of (2.20) and (2.23) around (2.24):

L1˘V ˘ :“
d

dθ
L
`

U˘θ , Φ
˘
θ

˘

ˇ

ˇ

ˇ

ˇ

θ“0

“ f˘ if x2 ą 0, (3.1a)

B1pV `, V ´, ψq :“
d

dθ
BpU`θ , U

´
θ , ϕθq

ˇ

ˇ

ˇ

ˇ

θ“0

“ g if x2 “ 0, (3.1b)

where U˘θ :“ sU˘ ` θV ˘, Φ˘θ :“ sΦ˘ ` θΨ˘, and ϕθ (resp. ψ) denotes the
common trace of Φ˘θ (resp. Ψ˘) on the boundary tx2 “ 0u. The differential
operators L1` and L1´ are given by

L1˘ :“ A0

`

sU˘
˘

Bt `A1

`

sU˘
˘

B1 ˘A2

`

sU˘
˘

B2,

which are both constant coefficient differential operators. It follows from (2.6)
and (2.11) that

Npρ̄q “ 1, c̄ “ cpρ̄q P p0, ε´1q. (3.2)

To derive the boundary operator B1, we infer from (2.13) that

Γ pUq “

a

hpU1q
2 ` ε2U2

2 ` ε
2U2

3

hpU1q
, vjpUq “

Uj`1

Γ pUqhpU1q
, j “ 1, 2. (3.3)

Utilizing the identity: h1pU1q “ ε2{NpU1q yields

Bvj
BU1

“ ´
ε2vj
NhΓ 2

,
Bvj
BUj`1

“
1´ ε2v2

j

hΓ
,

Bv2

BU2
“
Bv1

BU3
“ ´

ε2v1v2

hΓ
, (3.4)

for j “ 1, 2. The second component of BpU`θ , U
´
θ , ϕθq is θpBtψ`v1pU

`
θ qB1ψq´

v2pU
`
θ q. Then we use (3.4) to obtain

d

dθ

`

BpU`θ , U
´
θ , ϕθq

˘

2

ˇ

ˇ

ˇ

ˇ

θ“0

“ Btψ ` v̄
`B1ψ ´ ph̄ sΓ q

´1V `3 .

After similar argument to the other components of BpU`θ , U
´
θ , ϕθq, we have

B1pV `, V ´, ψq “ B1pV nc, ψq :“ b̄∇ψ ` B̂V nc,

where ∇ψ :“ pBtψ, B1ψq
T, V nc :“ pV `1 , V `3 , V ´1 , V ´3 q

T denotes the “nonchar-

acteristic part” of V :“ pV `, V ´qT, and coefficients b̄ and B̂ are given by

b̄ :“

¨

˝

0 2v̄

1 v̄

0 0

˛

‚, B̂ :“

¨

˚

˝

0 ´
`

h̄ sΓ
˘´1

0
`

h̄ sΓ
˘´1

0 ´
`

h̄ sΓ
˘´1

0 0

1 0 ´1 0

˛

‹

‚

. (3.5)

We are now ready to state the main result for the constant coefficient case.



Relativistic Vortex Sheets 13

Theorem 3.1 Assume that the stationary solution defined by (2.24) satisfies
(2.10) and (2.25). Then, for all γ ě 1 and for all pV, ψq P H2

γpΩq ˆH2
γpR2q,

the following estimate holds:

γ}V }2L2
γpΩq

` }V nc|x2“0}
2
L2
γpR2q ` }ψ}

2
H1
γpR2q

À γ´3}L1˘V ˘}2L2pH1
γq
` γ´2}B1pV nc|x2“0, ψq}

2
H1
γpR2q. (3.6)

Remark 3.1 In the case of M ă Mc :“
?

2?
1`ε2c̄2

, the relativistic vortex sheet

(2.24) is violently unstable, i.e. the Lopatinskĭı determinant admits the roots
in the interior of frequency space. On the other hand, when M ě Mc, all the
roots of the Lopatinskĭı determinant are localized on the boundary of frequency
space. In particular, if M “ Mc, the only root of the Lopatinskĭı determinant
is a triple one, which leads to the following weaker estimate than (3.6):

γ}V }2L2
γpΩq

` }V nc|x2“0}
2
L2
γpR2q ` }ψ}

2
H1
γpR2q

À γ´7}L1˘V ˘}2L2pH3
γq
` γ´6}B1pV nc|x2“0, ψq}

2
H3
γpR2q, (3.7)

for all γ ě 1 and pV, ψq P H4
γpΩq ˆ H4

γpR2q. See Remarks 3.2–3.4 for more
details. This latter case corresponds to a transition between a weakly stable
zone and a violently unstable zone (cf. Coulombel–Secchi [18] for the non-
relativistic case).

The rest of this section is devoted mainly to proving Theorem 3.1.

3.1 Some Reductions

Before proving Theorem 3.1, we first make some reductions of problem (3.1).

3.1.1 Reformulation of Theorem 3.1

We first transform our problem (3.1) into the one with diagonal boundary ma-
trix. For this purpose, we calculate the eigenvalues and corresponding eigen-
vectors of A2

`

sU˘
˘

. The eigenvalues of

A2

`

sU`
˘

“ A2

`

sU´
˘

“

¨

˝

0 0 c̄2

0 0 0
1 0 0

˛

‚

are λ1 “ 0, λ2 “ ´c̄, and λ3 “ c̄, with the corresponding right eigenvectors:

r1 “ p0, 1, 0q
T, r2 “ p1, 0,´

1

c̄
qT, r3 “ p1, 0,

1

c̄
qT.

Set sR :“ pr1 r2 r3q. Then sR´1A2

`

sU˘
˘

sR “ diag p0,´c̄, c̄q. We thus perform
the linear transformation W˘ :“ sR´1V ˘ with

W˘
1 :“ V ˘2 , W˘

2 :“ 1
2

`

V ˘1 ´ c̄V ˘3
˘

, W˘
3 :“ 1

2

`

V ˘1 ` c̄V ˘3
˘

.
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Let us multiply (3.1a) by sS sR´1 with sS :“ diag p1, 2{c̄2, 2{c̄2q. Then problem
(3.1) becomes equivalent to

#

LW :“ A0BtW `A1B1W `A2B2W “ f if x2 ą 0,

BpW nc, ψq :“ b̄∇ψ ` sBW nc “ g if x2 “ 0,
(3.8)

with new f and g, where W nc :“ pW`
2 ,W

`
3 ,W

´
2 ,W

´
3 q

T denotes the “non-
characteristic part” of W :“ pW`,W´qT. The coefficient matrices Aj “

diag pA`j ,A
´
j q, j “ 0, 1, 2, are block diagonal with

A˘0 :“ sS sR´1A0psU
˘q sR

“

¨

˚

˚

˚

˝

sΓ p1´ ε2v̄2q 0 0

˘2ε2v̄
sΓ p2´ ε4c̄2v̄2q

c̄2
´ε4 sΓ v̄2

˘2ε2v̄ ´ε4 sΓ v̄2
sΓ p2´ ε4c̄2v̄2q

c̄2

˛

‹

‹

‹

‚

, (3.9)

A˘1 :“ sS sR´1A1psU
˘q sR

“

¨

˚

˚

˚

˝

˘ sΓ p1´ ε2v̄2qv̄ 1´ ε2v̄2 1´ ε2v̄2

1` ε2v̄2 ˘
sΓ v̄p2´ ε4c̄2v̄2q

c̄2
¯ε4 sΓ v̄3

1` ε2v̄2 ¯ε4 sΓ v̄3 ˘
sΓ v̄p2´ ε4c̄2v̄2q

c̄2

˛

‹

‹

‹

‚

, (3.10)

and

A˘2 :“ ˘sS sR´1A2psU
˘q sR “ ˘diagp0,´

2

c̄
,

2

c̄
q. (3.11)

We notice that (2.18) is a symmetrizable hyperbolic system with the Friedrichs
symmetrizer S2pUq defined in (A.10). Consequently, operator L is symmetriz-
able hyperbolic with the Friedrichs symmetrizer S3 defined by

S3 :“ diag p sRTS2psU
`q sRsS´1, sRTS2psU

´q sRsS´1q. (3.12)

Regarding the boundary coefficients, b̄ is given in (3.5), and sB is defined by

sB :“

¨

˝

p sΓ c̄h̄q´1 ´p sΓ c̄h̄q´1 ´p sΓ c̄h̄q´1 p sΓ c̄h̄q´1

p sΓ c̄h̄q´1 ´p sΓ c̄h̄q´1 0 0

1 1 ´1 ´1

˛

‚. (3.13)

For γ ě 1, we define

Lγ :“ L` γA0, BγpW nc, ψq :“ b̄

ˆ

γψ ` Btψ
B1ψ

˙

` sBW nc.

It is easily shown that Theorem 3.1 admits the following equivalent propo-
sition.

Proposition 3.1 Assume that the stationary solution (2.24) satisfies (2.10)
and (2.25). Then, for all γ ě 1 and pW,ψq P H2pΩq ˆH2pR2q, the following
estimate holds:

γ|||W |||2 ` }W nc|x2“0}
2
` }ψ}21,γ À γ´3|||LγW |||21,γ ` γ´2}BγpW nc|x2“0, ψq}

2
1,γ .
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3.1.2 Partial homogenization

In order to prove Proposition 3.1, we show that it suffices to study the homo-
geneous case LγW ” 0. Given pW,ψq P H2pΩq ˆH2pR2q, we set

f :“ LγW P H1pΩq, g :“ BγpW nc|x2“0, ψq P H
1pR2q,

and consider the following auxiliary problem:

#

LγW1 “ f if x2 ą 0,

BauxW nc
1 “ 0 if x2 “ 0,

(3.14)

where

Baux :“

ˆ

0 1 0 0
0 0 1 0

˙

.

The boundary matrix for problem (3.14) (i.e. ´A2) has two negative eigenval-
ues and is nonnegative on kerBaux “ tW`

3 “ W´
2 “ 0u. Thus, the boundary

conditions in (3.14) are maximally dissipative. From Lax–Phillips [29], there
exists a unique solution W1 P L

2pR`;H1pR2qq to problem (3.14) such that the
trace of W1 on tx2 “ 0u is in H1pR2q, and

γ|||W1|||
2 À γ´1|||f |||2, }W nc

1 |x2“0}
2
1,γ À γ´1|||f |||21,γ . (3.15)

It is clear that W2 :“W ´W1 satisfies

LγW2 “ 0 if x2 ą 0, (3.16a)

BγpW nc
2 , ψq “ g̃ if x2 “ 0, (3.16b)

where g̃ :“ g ´ sBW nc
1 . By virtue of (3.15), we obtain

}g̃}21,γ À }g}
2
1,γ ` γ

´1|||f |||21,γ . (3.17)

Multiplying (3.16a) by the symmetrizer S3 (cf. (3.12)), then taking the scalar
product of the resulting equations with W2, and employing integration by
parts yield

γ|||W2|||
2 À }W nc

2 |x2“0}
2. (3.18)

The next lemma follows directly from (3.15) and (3.17)–(3.18).

Lemma 3.1 If the solution of (3.16) satisfies the estimate:

}W nc
2 |x2“0}

2 ` }ψ}21,γ À γ´2}g̃}21,γ ,

then Proposition 3.1 holds.
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3.1.3 Eliminating the front

We perform the Fourier transform of problem (3.16) in pt, x1q, with dual vari-
ables denoted by pδ, ηq. Setting τ “ γ ` iδ, we have

pτA0 ` iηA1qxW `A2
dxW

dx2
“ 0 if x2 ą 0, (3.19a)

bpτ, ηq pψ ` sBzW nc “ pg if x2 “ 0, (3.19b)

where we write g for g̃ and W for W2 for simplicity when no confusion arises.
The coefficient:

bpτ, ηq :“ b̄ pτ, iηq
T
“ p2iv̄η, τ ` iv̄η, 0q

T

is homogeneous of degree 1 in pτ, ηq. In order to take this homogeneity into
account, we define the hemisphere:

Ξ1 :“
 

pτ, ηq P Cˆ R : |τ |2 ` η2 “ 1,Re τ ě 0
(

,

and the set of “frequencies”:

Ξ :“ tpτ, ηq P Cˆ R : Re τ ě 0, pτ, ηq ‰ p0, 0qu “ p0,8q ¨Ξ1.

Notice that symbol bpτ, ηq is elliptic, i.e. it is always different from zero on Ξ1.
We set k :“

a

|τ |2 ` η2, and define

Qpτ, ηq :“
1

k

¨

˝

0 0 k

τ ` iv̄η ´2iv̄η 0

´2iv̄η τ̄ ´ iv̄η 0

˛

‚ for pτ, ηq P Ξ,

where τ̄ denotes the complex conjugation of τ , so that Q P C8pΞ,GL3pCqq is
homogeneous of degree 0 in pτ, ηq and satisfies

Qpτ, ηqbpτ, ηq “ p0, 0, θpτ, ηqqT with θpτ, ηq “ k´1|bpτ, ηq|2.

Since v̄ ‰ 0, and Ξ1 is compact, we obtain that minpτ,ηqPΞ1
|θpτ, ηq| ą 0.

Multiplying (3.19b) by Qpτ, ηq yields

¨

˝

0
0

θpτ, ηq

˛

‚
pψpδ, ηq `

ˆ

βpτ, ηq

`pτ, ηq

˙

zW ncpδ, η, 0q “ Qpτ, ηqpg, (3.20)

where β is the 2 ˆ 4 matrix given by the first two rows of Qpτ, ηq sB, and ` is
the last row of Qpτ, ηq sB. Both β and ` are C8 and homogeneous of degree 0
on Ξ. In view of (3.13), symbol β satisfies

βpτ, ηq “

¨

˝

1 1 ´1 ´1
τ ´ iv̄η
sΓ c̄h̄

´τ ` iv̄η
sΓ c̄h̄

´τ ´ iv̄η
sΓ c̄h̄

τ ` iv̄η
sΓ c̄h̄

˛

‚ on Ξ1. (3.21)
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The last component in (3.20) reads

θpτ, ηq pψ ` `pτ, ηqzW ncpδ, η, 0q “ Q3pτ, ηqpg,

where Q3pτ, ηq is the last row of Qpτ, ηq. Hence, it is homogeneous of degree
0. Thanks to the homogeneity of θ and `, we obtain

k2| pψ|2 À
ˇ

ˇzW nc|x2“0

ˇ

ˇ

2
` |pg|2 in Ξ,

from which we employ Plancherel’s theorem to deduce

}ψ}21,γ À }W
nc|x2“0}

2
` γ´2}g}21,γ . (3.22)

After eliminating the front function ψ, we have

pτA0 ` iηA1qxW `A2
dxW

dx2
“ 0 if x2 ą 0, (3.23a)

βpτ, ηqzW nc “ pG if x2 “ 0, (3.23b)

where pG consists of the first two rows of Qpτ, ηqpg. From (3.9)–(3.10), we have

τA˘0 ` iηA˘1

“

¨

˚

˚

˚

˝

a˘ sΓ p1´ ε2v̄2q iηp1´ ε2v̄2q iηp1´ ε2v̄2q

iηp1` ε2v̄2q ˘ 2ε2v̄τ
sΓ p2´ ε4c̄2v̄2q

c̄2
a˘ ´ε4 sΓ v̄2a˘

iηp1` ε2v̄2q ˘ 2ε2v̄τ ´ε4 sΓ v̄2a˘
sΓ p2´ ε4c̄2v̄2q

c̄2
a˘

˛

‹

‹

‹

‚

, (3.24)

where a˘ :“ τ˘iv̄η. Recalling that formula (3.11) defines the boundary matrix
A˘2 , we write the first and fourth equations of (3.23a) as

a˘ sΓyW˘
1 ` iηyW˘

2 ` iηyW˘
3 “ 0. (3.25)

Then we utilize (3.25) to express yW˘
1 in terms of yW˘

2 and yW˘
3 , and plug

the resulting expressions into the other four equations of (3.23a). As a conse-

quence, we obtain a system of ordinary differential equations for zW nc in the
following form:

$

&

%

d

dx2

zW nc “ Apτ, ηqzW nc if x2 ą 0,

βpτ, ηqzW nc “ pG if x2 “ 0.

(3.26)

Here matrix Apτ, ηq is given by

Apτ, ηq :“

¨

˚

˚

˝

µ` ´m` 0 0
m` ´µ` 0 0
0 0 ´µ´ m´
0 0 ´m´ µ´

˛

‹

‹

‚

, (3.27)
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where

µ˘ :“
sΓa˘
c̄
´m˘, m˘ :“

ε2c̄v̄2
sΓ 2a2

˘ ` iηc̄piηp1` ε2v̄2q ˘ 2ε2v̄τq

2 sΓa˘
.

Using the relation, sΓ´2 “ 1´ ε2v̄2, yields

µ˘ “
sΓ pτ ˘ iv̄ηq

c̄
´
c̄ sΓ piη ˘ ε2v̄τq2

2pτ ˘ iv̄ηq
, m˘ “

c̄ sΓ piη ˘ ε2v̄τq2

2pτ ˘ iv̄ηq
. (3.28)

The reader may recognize the form of the symbol in (3.27) given also by [17,
Page 957, (4.12)]. The poles of symbol Apτ, ηq on Ξ1 are exactly the points:

pτ, ηq P Ξ1 with τ “ ¯iv̄η, where the coefficient of yW`
1 or yW´

1 in (3.25)
vanishes.

By virtue of (3.22) and Lemma 3.1, we infer that, in order to prove Propo-
sition 3.1, it suffices to study problem (3.26). More precisely, we have the
following lemma.

Lemma 3.2 If the solution of (3.26) satisfies the estimate:

}W nc|x2“0}
2
À γ´2}G}21,γ , (3.29)

then Proposition 3.1 holds.

3.2 Lopatinskĭı Condition

In this subsection, we show that the Kreiss–Lopatinskĭı condition (or briefly
the Lopatinskĭı condition) holds only in the weak form under assumption (2.25)
by computing the Lopatinskĭı determinant associated to problem (3.26).

We first calculate the stable subspace of the coefficient matrix Apτ, ηq,
that is, the sum of eigenspaces of Apτ, ηq corresponding to the eigenvalues of
negative real parts.

Lemma 3.3 The following properties hold:

(a) If pτ, ηq P Ξ1 with Re τ ą 0, then the eigenvalues of Apτ, ηq are roots ω
of

ω2 “ µ2
` ´m

2
` “

sΓ 2

c̄2
pτ ` iηv̄q2 ´ sΓ 2piη ` ε2v̄τq2

“ sC2
0

`

sC2
1 pτ ` i sC2ηq

2 ` η2
˘

, (3.30a)

ω2 “ µ2
´ ´m

2
´ “

sΓ 2

c̄2
pτ ´ iηv̄q2 ´ sΓ 2piη ´ ε2v̄τq2

“ sC2
0

`

sC2
1 pτ ´ i sC2ηq

2 ` η2
˘

, (3.30b)

where sCj, j “ 0, 1, 2, are positive constants defined by

sC0 :“
sΓ p1´ ε2v̄2q
?

1´ ε4c̄2v̄2
, sC1 :“

1´ ε4c̄2v̄2

p1´ ε2v̄2qc̄
, sC2 :“

p1´ ε2c̄2qv̄

1´ ε4c̄2v̄2
. (3.31)
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Moreover, (3.30a) (resp. (3.30b)) has a unique root ω` (resp. ω´) of neg-
ative real part. The other root of (3.30a) (resp. (3.30b)) is ´ω` (resp.
´ω´).

(b) If pτ, ηq P Ξ1 with Re τ ą 0, then the stable subspace E´pτ, ηq of Apτ, ηq
has dimension two and is spanned by

E`pτ, ηq :“ ppτ ` iv̄ηqm`, pτ ` iv̄ηqpµ` ´ ω`q, 0, 0q
T
, (3.32a)

E´pτ, ηq :“ p0, 0, pτ ´ iv̄ηqpµ´ ´ ω´q, pτ ´ iv̄ηqm´q
T
. (3.32b)

(c) Both ω` and ω´ admit a continuous extension to any point pτ, ηq P Ξ1

with Re τ “ 0. In particular, if τ “ iδ P iR, then

ω˘pτ, ηq

“

$

&

%

´ sC0

b

η2 ´ sC2
1 pδ ˘

sC2ηq2 if η2 ě sC2
1

`

δ ˘ sC2η
˘2
,

´ i sgnpδ ˘ sC2ηq sC0

b

sC2
1 pδ ˘

sC2ηq2 ´ η2 if η2 ă sC2
1

`

δ ˘ sC2η
˘2
.

(3.33)

(d) Vectors E˘pτ, ηq do not vanish at any point in Ξ1. Both E`pτ, ηq and
E´pτ, ηq can be extended continuously to any point pτ, ηq P Ξ1 with Re τ “
0. These two vectors are linearly independent of the whole hemisphere Ξ1.

(e) Matrix Apτ, ηq is diagonalizable as long as eigenvalues ω˘ do not vanish,
i.e. when τ ‰ ip¯ sC2˘ sC´1

1 qη. Apart from these points, Apτ, ηq has a C8

basis of eigenvectors.

Proof The relations in (3.30) and assertions (b)–(c) and (e) can be deduced
from straightforward calculations and the implicit functions theorem.

It follows from (2.10) and (3.2) that sCj is positive. We now show that root
ω of (3.30a) is not purely imaginary when Re τ ą 0. If this were not true, there
would exist σ P R such that iσ would be a root of (3.30a). Then we would
have

sC0
sC1pτ ` i sC2ηq “ ˘i

b

σ2 ` sC2
0η

2 P iR,

which would imply Re τ “ 0. This concludes assertion (a).

It remains to prove assertion (d). We see from (3.28) that, if τ ` iv̄η “ 0,
then pτ ` iv̄ηqm` “ ´c̄η

2p1´ ε2v̄2q{p2 sΓ q ‰ 0. Hence, when pτ ` iv̄ηqm` “ 0,

τ ‰ ´iv̄η, m` “ 0, µ` “ sΓ pτ ` iv̄ηq{c̄ ‰ 0, µ2
` “ ω2

`.

Using the relations: Reµ` “ sΓ Re τ{c̄ ě 0 and Reω` ď 0, we have

pτ ` iv̄ηqpµ` ´ ω`q “ 2pτ ` iv̄ηqµ` ‰ 0.

Therefore, E`pτ, ηq defined by (3.32a) does not vanish. We can also show in a
similar way that E´pτ, ηq does not vanish. Assertion (d) then follows. l
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As in Majda–Osher [32], we define the Lopatinskĭı determinant associated
with problem (3.26) by

∆pτ, ηq :“ det rβpτ, ηq pE`pτ, ηq E´pτ, ηqqs , (3.34)

where β and E˘ are given in (3.21) and (3.32), respectively. We say that
the Lopatinskĭı condition holds if ∆pτ, ηq ‰ 0 for all pτ, ηq P Ξ with Re τ ą
0. Furthermore, if ∆pτ, ηq ‰ 0 for all pτ, ηq P Ξ, we say that the uniform
Lopatinskĭı condition holds. To deduce the energy estimate, we need to study
the zeros of ∆pτ, ηq. For this, we have the following lemma.

Lemma 3.4 Assume that (2.10) and (2.25) hold. Then, for any pτ, ηq P Ξ1,

∆pτ, ηq “ 0 if and only if τ P t0,˘iz1ηu, (3.35)

where z1 is some positive constant satisfying

0 ă z1 ă sC2 ´ sC´1
1 ă sC2 ă v̄ ă sC2 ` sC´1

1 . (3.36)

Moreover, each of these roots is simple in the sense that, if q P t0,´z1, z1u,
then there exists a neighborhood V of piqη, ηq in Ξ1 and a C8–function hq
defined on V such that

∆pτ, ηq “ pτ ´ iqηqhqpτ, ηq, hqpτ, ηq ‰ 0 for all pτ, ηq P V . (3.37)

Proof We divide the proof into seven steps.

1. According to (3.21) and (3.32), we have

βpτ, ηq pE`pτ, ηq E´pτ, ηqq

“

˜

pτ ` iv̄ηqpm` ` µ` ´ ω`q ´pτ ´ iv̄ηqpm´ ` µ´ ´ ω´q
τ ´ iv̄η
sΓ c̄h̄

pτ ` iv̄ηqpm` ´ µ` ` ω`q
τ ` iv̄η
sΓ c̄h̄

pτ ´ iv̄ηqpm´ ´ µ´ ` ω´q

¸

. (3.38)

By using (3.28) and Lemma 3.3 (a), we have

m˘ ` µ˘ “ sΓ
τ ˘ iv̄η

c̄
, m˘ ´ µ˘ “ ´

c̄ω2
˘

sΓ pτ ˘ iv̄ηq
. (3.39)

It then follows that

∆pτ, ηq “
1

c̄2h̄

!

τ ` iv̄η ´
c̄ω`
sΓ

)!

τ ´ iv̄η ´
c̄ω´
sΓ

)

ˆ
 

ω´pτ ` iv̄ηq2 ` ω`pτ ´ iv̄ηq2
(

. (3.40)

We will check the zeros of each factors in this expression separately.

2. We show in this step that both sΓ pτ ` iv̄ηq ´ c̄ω` and sΓ pτ ´ iv̄ηq ´ c̄ω´ do
not vanish at any point pτ, ηq P Ξ1. By contradiction, we assume without loss
of generality that there exists a point pτ0, η0q P Ξ1 such that

sΓ pτ0 ` iv̄η0q “ c̄ω`pτ0, η0q. (3.41)
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From (3.30a), we have

sΓ 2pτ0 ` iv̄η0q
2 ´ c̄2ω`pτ0, η0q

2 “ sΓ 2c̄2piη0 ` ε
2v̄τ0q

2 “ 0,

which implies τ0 “ iδ0 P iR with η0 “ ´ε2v̄δ0. Since pτ0, η0q P Ξ1, we see
that both η0 and δ0 are nonzero real numbers. If η2

0 ě
sC2

1 pδ0 `
sC2η0q

2, then
ω`pτ0, η0q P R due to (3.33). Then c̄ ω`pτ0, η0q ‰ sΓ pτ0 ` iv̄η0q, since

sΓ pτ0 ` iv̄η0q “ i sΓ p1´ ε2v̄2qδ0 P iRzt0u.

According to (3.41), η2
0 ă

sC2
1 pδ0 `

sC2η0q
2 so that sC2

1 p1 ´ ε2 sC2v̄q
2 ą ε4v̄2. It

then follows from (3.33) that

ω`pτ0, η0q “ ´i sgnpδ0q sgnp1´ ε2 sC2v̄q sC0

b

`

sC2
1 p1´ ε

2
sC2v̄q2 ´ ε4v̄2

˘

δ2
0

“ ´i δ0 sC0

b

sC2
1 p1´ ε

2
sC2v̄q2 ´ ε4v̄2,

where we have used that 1´ ε2 sC2v̄ “ p1´ ε2v̄2q{p1´ ε4c̄2v̄2q ą 0 from (3.2).
Consequently, we have

sΓ pτ0 ` iv̄η0q ´ c̄ω`pτ0, η0q

“ iδ0

"

sΓ p1´ ε2v̄2q ` c̄ sC0

b

sC2
1 p1´ ε

2
sC2v̄q2 ´ ε4v̄2

*

‰ 0.

This contradicts (3.41).

3. From the above analysis, we know that ∆pτ, ηq “ 0 if and only if factor
ω´pτ ` iv̄ηq2 ` ω`pτ ´ iv̄ηq2 vanishes. We first prove that this factor does not
vanish when η “ 0.

If η “ 0, then we see from (3.30) that ω2
˘ “ c̄´2

sΓ 2τ2p1 ´ ε4c̄2v̄2q. Using

(3.2) and noting Re τ ě 0, we find that ω˘ “ ´c̄´1
sΓτ
?

1´ ε4c̄2v̄2, which
yields

ω´pτ ` iv̄ηq2 ` ω`pτ ´ iv̄ηq2 “ ´2c̄´1
sΓτ3p1´ ε4c̄2v̄2q1{2 ‰ 0.

We thus assume that η ‰ 0. Introducing z :“ τ{piηq, we find from (3.30)
that

c̄2ω2
´pτ ` iv̄ηq4

sΓ 2piηq6
“ pz ` v̄q4

 

pz ´ v̄q2 ´ c̄2p1´ ε2v̄zq2
(

“: P1pzq, (3.42)

c̄2ω2
`pτ ´ iv̄ηq4

sΓ 2piηq6
“ pz ´ v̄q4

 

pz ` v̄q2 ´ c̄2p1` ε2v̄zq2
(

“: P2pzq. (3.43)

Define

P pzq :“ P1pzq ´ P2pzq. (3.44)

Then ∆pτ, ηq “ 0 holds only if ω2
´pτ`iv̄ηq4 “ ω2

`pτ´iv̄ηq4, which is equivalent
to P pzq “ 0. A straightforward calculation yields

P pzq “ ´4zv̄P0pzq, P0pzq :“ E1z
4 ` E2z

2 ` E3,
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where E1 “ 2ε4c̄2v̄2 ´ ε2c̄2 ´ 1, E2 “ 2ε4c̄2v̄4 ´ 6ε2c̄2v̄2 ` 2v̄2 ` 2c̄2, and

E3 “ 2c̄2v̄2 ´ ε2c̄2v̄4 ´ v̄4. (3.45)

It is trivial that z “ 0 is one zero of P pzq. Function P0pzq is a polynomial one
of z2 with the following zeros:

´
E2 ˘

a

E2
2 ´ 4E1E3

2E1
. (3.46)

By virtue of (2.10) and (3.2), we have

$

’

’

’

’

&

’

’

’

’

%

E1 “ ´p1´ ε
4c̄2v̄2q ´ ε2c̄2p1´ ε2v̄2q ă 0,

E2 “ 2v̄2p1´ ε2c̄2q ` 2c̄2p1´ ε2v̄2q2 ą 0,

E2
2 ´ 4E1E3

“ 4c̄2 pεv̄ ´ 1q
2
pεv̄ ` 1q

2 `
ε4c̄4v̄4 ´ 2ε2c̄2v̄2 ` 4v̄2 ` c̄2

˘

ą 0,

(3.47)

which yields that the zeros in (3.46) are real and distinct. If (2.25) holds, then
E3 ă 0, which immediately implies that the zeros in (3.46) are also positive.
Let us denote these zeros by z2

1 and z2
2 with 0 ă z1 ă z2 so that

z2
1 “

E2 ´
a

E2
2 ´ 4E1E3

´2E1
, z2

2 “
E2 `

a

E2
2 ´ 4E1E3

´2E1
. (3.48)

Consequently, the Lopatinskĭı determinant vanishes only if z P t0,˘z1,˘z2u.

4. In this step, we show that the Lopatinskĭı determinant vanishes when z “ 0,
i.e. when τ “ 0. We note that c̄ ă v̄ by combining (2.25) and (3.2). Then

sC2 ´ sC´1
1 “

pv̄ ´ c̄qp1` ε2c̄v̄q

1´ ε4c̄2v̄2
ą 0. (3.49)

It then follows directly from (3.33) that

ω˘p0, ηq “ ´i sgnp˘ sC2ηq sC0

b

sC2
1
sC2

2η
2 ´ η2 “ ¯i η sC0

b

sC2
1
sC2

2 ´ 1.

Then we infer

 

ω´pτ ` iv̄ηq2 ` ω`pτ ´ iv̄ηq2
(
ˇ

ˇ

τ“0
“ ´v̄2η2 pω`p0, ηq ` ω´p0, ηqq “ 0,

and hence ∆p0, ηq “ 0.

5. We prove that ω´pτ ` iv̄ηq2 ` ω`pτ ´ iv̄ηq2 ‰ 0 when z “ ˘z2, i.e. when
τ “ ˘iz2η. To this end, we need to show that

z2 ` sC2 ą z2 ´ sC2 ą sC´1
1 . (3.50)
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The first inequality is trivial, so it suffices to prove the second one. From (3.31)
and (3.48), we have

z2
2 ´

`

sC´1
1 ` sC2

˘2
“ ´

E2 `
a

E2
2 ´ 4E1E3

2E1
´

`

p1´ ε2v̄2qc̄` p1´ ε2c̄2qv̄
˘2

p1´ ε4c̄2v̄2q2

“ ´
p1´ ε4c̄2v̄2q2

`
a

E2
2 ´ 4E1E3 ` E2

˘

` 2E1

`

p1´ ε2v̄2qc̄` p1´ ε2c̄2qv̄
˘2

2E1p1´ ε4c̄2v̄2q2

“ ´
2cp1´ ε2v̄2qp1´ ε2c̄v̄q2pR2 ´ L2q

2E1p1´ ε4c̄2v̄2q2
,

where R2 :“ p1` ε2c̄v̄q2
?
ε4c̄2v̄4 ´ 2ε2c̄2v̄2 ` 4v̄2 ` c̄2 and

L2 :“ ε6c̄3v̄4 ` 2ε4c̄2v̄3 ´ 2ε4c̄3v̄2 ` 4ε2c̄v̄2 ` 2v̄ ` ε2c̄3.

Then we obtain from (3.2) that

R2
2 ´ L

2
2 “ c̄2pεc̄´ 1qpεc̄` 1qpεv̄ ´ 1q2pεv̄ ` 1q2p2ε4c̄2v̄2 ´ ε2c̄2 ´ 1q ą 0,

which, combined with (3.2) and (3.47), implies that z2
2 ą

`

sC´1
1 ` sC2

˘2
. Then

(3.50) follows.
In view of (3.50), we see from (3.33) that, for τ “ iz2η,

ω˘pτ, ηq “ ´i sgnpz2η ˘ sC2ηq sC0

b

sC2
1 pz2 ˘ sC2q

2η2 ´ η2

“ ´i η sC0

b

sC2
1 pz2 ˘ sC2q

2 ´ 1.

Therefore, we obtain that

ω´pτ ` iv̄ηq2 ` ω`pτ ´ iv̄ηq2 “ ´η2
`

ω`pz2 ´ v̄q
2 ` ω´pz2 ` v̄q

2
˘

“ i η3
!

sC0

b

sC2
1 pz2 ` sC2q

2 ´ 1 pz2 ´ v̄q
2 ` sC0

b

sC2
1 pz2 ´ sC2q

2 ´ 1 pz2 ` v̄q
2
)

,

which is away from zero. Applying a similar argument and using (3.50) imply
that the Lopatinskĭı determinant ∆ does not vanish either for the case: z “
´z2.

6. Let us now show that ω´pτ ` iv̄ηq2 ` ω`pτ ´ iv̄ηq2 “ 0 if z “ ˘z1, i.e. if
τ “ ˘iz1η. For this purpose, we first prove

z1 ` sC2 ą sC´1
1 , z1 ´ sC2 ă ´ sC´1

1 . (3.51)

The first inequality in (3.51) follows from (3.49). For the second in (3.51), it
suffices to derive that z2

1 ă p
sC2 ´ sC´1

1 q2. From (3.31) and (3.48), we have

`

sC2 ´ sC´1
1

˘2
´ z2

1 “

`

p1´ ε2c̄2qv̄ ´ p1´ ε2v̄2qc̄
˘2

p1´ ε4c̄2v̄2q2
`
E2 ´

a

E2
2 ´ 4E1E3

2E1

“
p1´ ε4c̄2v̄2q2

`

E2 ´
a

E2
2 ´ 4E1E3

˘

` 2E1

`

p1´ ε2c̄2qv̄ ´ p1´ ε2v̄2qc̄
˘2

2E1p1´ ε4c̄2v̄2q2

“
2cp1´ ε2v̄2qp1` ε2c̄v̄q2pR4 ` L4q

´2E1p1´ ε4c̄2v̄2q2
,
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where R4 :“ p1´ ε2c̄v̄q2
?
ε4c̄2v̄4 ´ 2ε2c̄2v̄2 ` 4v̄2 ` c̄2 and

L4 :“ ε6c̄3v̄4 ´ 2ε4c̄2v̄3 ´ 2ε4c̄3v̄2 ` 4ε2c̄v̄2 ´ 2v̄ ` ε2c̄3.

We compute that R2
4 ´ L2

4 “ R2
2 ´ L2

2 ą 0. Hence, we deduce the second
inequality in (3.51).

By virtue of (3.33) and (3.51), we derive that, for τ “ iz1η,

ω`pτ, ηq “ ´i η sC0

b

sC2
1 pz1 ` sC2q

2 ´ 1, ω´pτ, ηq “ i η sC0

b

sC2
1 pz1 ´ sC2q

2 ´ 1.

Since z “ z1 solves P pzq “ 0, if τ “ iz1η, it follows from the definition of P pzq
that ω2

´pτ` iv̄ηq4 “ ω2
`pτ´ iv̄ηq4. Hence, the Lopatinskĭı determinant vanishes

for z “ z1 (i.e. τ “ iz1η). The same argument can be applied to show that the
Lopatinskĭı determinant ∆pτ, ηq also vanishes for z “ ´z1, i.e. for τ “ ´iz1η.

7. We obtain from (3.2) by a direct computation that sC2 ă v̄ ă sC2 ` sC´1
1 ,

which, combined with (3.51), yields (3.36).
It remains to show that the roots of the Lopatinskĭı determinant are simple.

By introducing Ω˘ :“ ω˘{piηq, we find that, for η ‰ 0,

ω´pτ ` iv̄ηq2

piηq3
“ Ω´pz ` v̄q

2 “: Q1pzq,
ω`pτ ´ iv̄ηq2

piηq3
“ Ω`pz ´ v̄q

2 “: Q2pzq.

It follows from (3.36) and Lemma 3.3 that ω˘pτ, ηq ‰ 0 and η ‰ 0 when pτ, ηq
are near any root of the Lopatinskĭı determinant. Hence, Ω˘ are analytic
functions of z only and satisfy

Ω2
˘ “ c̄´2

sΓ 2
`

pz ˘ v̄q2 ´ c̄2p1˘ ε2v̄zq2
˘

.

Since ∆pτ, ηq “ 0 if and only if ω´pτ ` iv̄ηq2 ` ω`pτ ´ iv̄ηq2 “ 0, it suffices to
prove

d pQ1 `Q2q

dz

ˇ

ˇ

ˇ

ˇ

z“q

‰ 0 for all q P t0,´z1, z1u.

Using (3.42)–(3.44) and the fact that Q1pqq “ ´Q2pqq ‰ 0 for q P t0,´z1, z1u,
we derive that, for q P t0,´z1, z1u,

d pQ1 `Q2q

dz

ˇ

ˇ

ˇ

ˇ

z“q

“
1

2Q1pqq

d
`

Q2
1 ´Q

2
2

˘

dz

ˇ

ˇ

ˇ

ˇ

ˇ

z“q

“
sΓ 2

2c̄2Q1pqq

dP

dz

ˇ

ˇ

ˇ

ˇ

z“q

“
sΓ 2

c̄2Q1pqq

 

´2v̄P0pqq ´ 4v̄q2p2E1q
2 ` E2q

(

‰ 0.

Using the factorization property of holomorphic functions, we obtain

Q1pzq `Q2pzq “ pz ´ qqHqpzq for all q P t0,´z1, z1u,

whereHq is holomorphic near q andHqpqq ‰ 0. This yields that the Lopatinskĭı
determinant ∆ has a factorization:

∆pτ, ηq “ pτ ´ iqηqhqpτ, ηq for all q P t0,´z1, z1u,

where hqpτ, ηq is C8 and does not vanish near piqη, ηq P Ξ1. The proof is
completed. l
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Remark 3.2 If M “ Mc, then both E3 and z1 defined by (3.45) and (3.48)
vanish. Employing a similar argument, we can show that the Lopatinskĭı deter-
minant ∆pτ, ηq has only one triple root τ “ 0. On the other hand, if M ă Mc,
then E3 ą 0. In the latter case, the Lopatinskĭı determinant ∆pτ, ηq vanishes
if and only if τ{piηq P t0,˘z1u with nonreal number z1 given by (3.48). There-
fore, the relativistic vortex sheet (2.24) is violently unstable, which means that
the Lopatinskĭı condition does not hold.

3.3 Proof of Theorem 3.1

The following lemma relies heavily on the fact that each root of the Lopatinskĭı
determinant is simple (see Lemma 3.4).

Lemma 3.5 For every point pτ0, η0q P Ξ1, there exists a neighborhood V of
pτ0, η0q in Ξ1 and a positive constant c depending on pτ0, η0q such that

|βpτ, ηqpE`pτ, ηq E´pτ, ηqqZ| ě cγ|Z| for all pτ, ηq P V , Z P C2. (3.52)

Proof The proof is divided into two steps.

1. Let pτ0, η0q P Ξ1 with ∆pτ0, η0q ‰ 0. Since the Lopatinskĭı determinant
∆pτ, ηq is continuous in pτ, ηq, then there exists a neighborhood V of pτ0, η0q

in Ξ1 such that ∆pτ, ηq ‰ 0 for all pτ, ηq P V . It follows from definition (3.34)
that βpτ, ηqpE` E´q is invertible in V . We combine this with the fact that
γ ď 1 to obtain (3.52).

2. Let pτ0, η0q P Ξ1 such that ∆pτ0, η0q “ 0. We see from Lemma 3.4 that
τ0 “ iqη0 for some q P t0,´z1, z1u. Let us write (3.38) as

βpE` E´q “

ˆ

ζ1 ζ2
ζ3 ζ4

˙

,

where the upper left corner ζ1 is given by

ζ1 “ pτ ´ iv̄ηqpm` ` µ` ´ ω`q “
τ ` iv̄η

c̄

`

sΓ pτ ` iv̄ηq ´ c̄ω`
˘

.

From (3.36) and the proof of Lemma 3.4 (especially, Step 2), we know that
τ ‰ ´iv̄η and sΓ pτ ` iv̄ηq ‰ c̄ ω` when pτ, ηq is close to pτ0, η0q. Hence,
there exists a neighborhood V of pτ0, η0q in Ξ1 such that ζ1pτ, ηq ‰ 0 for all
pτ, ηq P V . Using the identity (cf. [15, Page 439]):

˜

1{ζ1 0

´ζ3{pζ1ζ5q 1{ζ5

¸

βpE` E´q

˜

1 ´ζ2

0 ζ1

¸

“

˜

1 0

0 pζ1ζ4 ´ ζ2ζ3q{ζ5

¸

(3.53)

with ζ5 “ 1, and noting ∆pτ, ηq “ det rβ pE` E´qs “ ζ1ζ4 ´ ζ2ζ3, we have

|βpτ, ηqpE`pτ, ηq E´pτ, ηqqZ| ě cminp1, |∆pτ, ηq|q|Z| (3.54)
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for all pτ, ηq P V , Z P C2. It thus remains to show that |∆pτ, ηq| ě cγ for
all pτ, ηq P V . Employ Lemma 3.4 and shrink V if necessary to find that
factorization (3.37) holds. Thus, we have

Bγ∆pτ, ηq “ hqpτ, ηq ` pτ ´ iqηqBγhqpτ, ηq for all pτ, ηq P V . (3.55)

Let piδ, ηq P V so that piδ, ηq P V is close to piqη0, η0q. It follows from (3.36)

that sC2
1

`

δ ` sC2η
˘2
ą η2, which, combined with (3.33), implies

ω˘piδ, ηq P iRzt0u. (3.56)

Then we obtain from (3.37) and expression (3.40) that

hqpiδ, ηq ‰ 0, ipδ ´ qηqhqpiδ, ηq “ ∆piδ, ηq P iR,

from which we have

hqpiδ, ηq P Rzt0u. (3.57)

Since τ0 ‰ ip˘ sC2 ˘ sC´1
1 qη0, eigenvalues ω˘ depend analytically on pτ, ηq in a

neighborhood of pτ0, η0q by the implicit function theorem. We then use (3.30)
to obtain that, for pτ, ηq near pτ0, η0q,

ω`pτ, ηqBγω`pτ, ηq “ sC2
0
sC2

1 pτ ` i sC2ηq. (3.58)

From (3.56) and (3.58), we infer that the derivative, Bγω`piδ, ηq, is real by
shrinking V if necessary. Employ (3.40) to derive Bγ∆piδ, ηq P R. We then
deduce from (3.55) and (3.57) that

Bγhqpiδ, ηq P iR. (3.59)

Using (3.37) and the Taylor formula for hq, we find that, for pτ, ηq P V ,

∆pτ, ηq “
`

γ ` ipδ ´ qηq
˘ `

hqpiδ, ηq ` γBγhqpiδ, ηq `Opγ
2q
˘

“ ipδ ´ qηqhqpiδ, ηq ` thqpiδ, ηq ` iBγhqpiδ, ηqpδ ´ qηqu γ `Opγ
2q pγ Ñ 0q,

where we have used the Landau symbol f “ Opgq pxÑ x0q, which means that
there exists a constant C such that |fpxq| ď C|gpxq| for all x sufficiently close
to x0. We can conclude from (3.57) and (3.59) that

Re∆pτ, ηq “ thqpiδ, ηq ` iBγhqpiδ, ηqpδ ´ qηqu γ `Opγ
2q pγ Ñ 0q.

Shrinking V if necessary, we derive from (3.57) that

|∆pτ, ηq| ě |Re∆pτ, ηq| ě cγ for all pτ, ηq P V .

Plug this into (3.54) to complete the proof of this lemma. l

Remark 3.3 In the case of M “ Mc, we know from Remark 3.2 that the
Lopatinskĭı determinant ∆pτ, ηq has only one triple root τ “ 0. In a similar
way, we can find neighborhoods V˘ of p0,˘1q in Ξ1 and a positive constant c
such that

|βpτ, ηqpE`pτ, ηq E´pτ, ηqqZ| ě cγ3|Z| for all pτ, ηq P V˘, Z P C2. (3.60)
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We now adopt the argument developed recently by Chen–Hu–Wang [10]
to avoid constructing the Kreiss’ symmetrizers in the derivation of energy
estimates for the constant coefficient case. To this end, we need the following
lemma.

Lemma 3.6 For each point pτ0, η0q P Ξ1, there exist a neighborhood V of
pτ0, η0q in Ξ1 and a continuous invertible matrix T pτ, ηq defined on V such
that

T´1AT pτ, ηq “

¨

˚

˚

˝

ω` z` 0 0
0 ´ω` 0 0
0 0 ω´ z´
0 0 0 ´ω´

˛

‹

‹

‚

(3.61)

for all pτ, ηq P V ztτ “ ˘i v̄ηu, where z˘ “ z˘pτ, ηq are complex-valued func-
tions defined on V ztτ “ ˘i v̄ηu. Moreover, the first and third columns of
T pτ, ηq are E`pτ, ηq and E´pτ, ηq, respectively.

Proof We set a˘pτ, ηq :“ τ ˘ i v̄η and define the following vectors on a neigh-
borhood V of pτ0, η0q:

Y`pτ, ηq :“

#

p0, 1, 0, 0qT if a`m`pτ0, η0q ‰ 0,

p1, 0, 0, 0qT if a`pµ` ´ ω`qpτ0, η0q ‰ 0,

Y´pτ, ηq :“

#

p0, 0, 1, 0qT if a´m´pτ0, η0q ‰ 0,

p0, 0, 0, 1qT if a´pµ´ ´ ω´qpτ0, η0q ‰ 0.

Recall that E˘pτ, ηq defined by (3.32) are continuous and never vanish on Ξ1.
Hence, one can define the following continuous and invertible matrix on V :

T pτ, ηq :“ pE`pτ, ηq Y`pτ, ηq E´pτ, ηq Y´pτ, ηqq.

When τ ‰ ˘i v̄η, by a direct computation and using (3.30), we obtain (3.61)
with

z˘pτ, ηq :“

$

’

’

&

’

’

%

´
1

a˘pτ, ηq
if a˘m˘pτ0, η0q ‰ 0,

´
m˘

a˘pµ˘ ´ ω˘qpτ, ηq
if a˘pµ˘ ´ ω˘qpτ0, η0q ‰ 0,

which are well-defined apart from the poles of A, i.e. from τ “ ˘i v̄η. l

Proof of Theorem 3.1 According to Lemma 3.2, it suffices to show esti-
mate (3.29) in order to prove Theorem 3.1. Using Lemmas 3.5–3.6, for each
point pτ0, η0q P Ξ1, there exists a neighborhood V of pτ0, η0q in Ξ1 and a
continuous invertible matrix T pτ, ηq defined on V such that (3.52) and (3.61)



28 G.-Q. G. Chen et al.

hold. Thanks to the compactness of hemisphere Ξ1, there exists a finite cov-
ering tV1, . . . ,VJu of Ξ1 by such neighborhoods with corresponding matrices
tT1pτ, ηq, . . . , TJpτ, ηqu, and a smooth partition of unity tχjpτ, ηqu

J
j“1 such that

χj P C
8
c pVjq,

J
ÿ

j“1

χ2
j “ 1 on Ξ1.

We now derive an energy estimate in Πj :“ tpτ, ηq P Ξ : s ¨ pτ, ηq P
Vj for some s ą 0u and then patch them together to obtain (3.29). We first
extend χj and Tj to the conic zone Πj as homogeneous mappings of degree 0
with respect to pτ, ηq. Note that both Tjpτ, ηq and its inverse are bounded on
Πj , and identity (3.61) holds for all pτ, ηq P Πj with τ ‰ ˘i v̄η. Define

Wpτ, η, x2q :“ χjTjpτ, ηq
´1

zW ncpτ, η, x2q for all pτ, ηq P Πj .

Assume that pτ, ηq P Πj with Re τ ą 0. In light of (3.26), we obtain that W
satisfies

dW

dx2
“ Tjpτ, ηq

´1ATjpτ, ηqW.

Since (3.61) holds when pτ, ηq P Πj with Re τ ą 0, the equations for W2 and
W4 read

dW2

dx2
“ ´ω`W2,

dW4

dx2
“ ´ω´W4. (3.62)

Recall from Lemma 3.3 (a) that Reω˘pτ, ηq ă 0 whenever Re τ ą 0. Integra-
tion by parts for (3.62) yields

}W2pτ, η, ¨q}L2pR`q “ }W4pτ, η, ¨q}L2pR`q “ 0,

from which we immediately deduce

W2pτ, η, x2q “W4pτ, η, x2q “ 0 (3.63)

for all x2 P R` and pτ, ηq P Πj with Re τ ą 0, where we have used the
continuity of W2 and W4. Using the boundary equations in (3.26) yields

χj pG “ βpτ, ηqTjpτ, ηqWpτ, η, 0q “ βpτ, ηqpE` E´q

ˆ

W1pτ, η, 0q

W3pτ, η, 0q

˙

(3.64)

for all pτ, ηq P Πj with Re τ ą 0. By the homogeneity of Tj and β, we obtain
from (3.52) that

p|τ | ` |η|q|βpτ, ηqpE`pτ, ηq E´pτ, ηqqZ| ě cjγ|Z| for all pτ, ηq P Πj , Z P C2.

Combine this with (3.64) to deduce

|pW1pτ, η, 0q,W3pτ, η, 0qq| ď
|τ | ` |η|

cjγ

ˇ

ˇχj pGpτ, ηq
ˇ

ˇ (3.65)
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for all pτ, ηq P Πj with Re τ ą 0. Combining (3.63) and (3.65) yields

|Wpτ, η, 0q| ď
|τ | ` |η|

cjγ

ˇ

ˇχj pGpτ, ηq
ˇ

ˇ for all pτ, ηq P Πj with Re τ ą 0.

We then obtain from the definition of W and boundedness of Tjpτ, ηq that

ˇ

ˇχjzW ncpτ, η, 0q
ˇ

ˇ ď
|τ | ` |η|

cjγ

ˇ

ˇχj pGpτ, ηq
ˇ

ˇ

for all pτ, ηq P Πj with γ “ Re τ ą 0 and new positive constants cj . Adding the
above estimates for all j P t1, . . . , Ju and integrating the resulting estimate
over R2 with respect to pδ, ηq, we can derive the desired estimate (3.29) from
the Plancherel theorem. This completes the proof of Theorem 3.1. l

Remark 3.4 In the case of M “ Mc, we can derive the energy estimate (3.7)
by using (3.60) and employing a completely similar argument as above.

4 Variable Coefficient Linearized Problem

In this section, we derive the linearized problem of (2.20) around a basic
state

`

Ů˘, Φ̊˘
˘

that is a small perturbation of
`

sU˘, sΦ˘
˘

given in (2.24). More

precisely, we assume that the perturbations: V̊ ˘ :“ Ů˘ ´ sU˘ and Ψ̊˘ :“
Φ̊˘ ´ sΦ˘ satisfy

supp
`

V̊ ˘, Ψ̊˘
˘

Ă t´T ď t ď 2T, x2 ě 0, |x| ď Ru, (4.1)

V̊ ˘ PW 2,8pΩq, Ψ̊˘ PW 3,8pΩq,
›

›V̊ ˘
›

›

W 2,8pΩq
`
›

›Ψ̊˘
›

›

W 3,8pΩq
ď K, (4.2)

where T , R, and K are positive constants. Moreover, we assume that
`

Ů˘, Φ̊˘
˘

satisfies constraints (2.23) and the Rankine–Hugoniot conditions (2.20b):

BtΦ̊
˘ ` v̊˘1 B1Φ̊

˘ ´ v̊˘2 “ 0 if x2 ě 0, (4.3a)

˘ B2Φ̊
˘ ě κ0 ą 0 if x2 ě 0, (4.3b)

Φ̊` “ Φ̊´ “ ϕ̊ if x2 “ 0, (4.3c)

B
`

Ů`, Ů´, ϕ̊
˘

“ 0 if x2 “ 0, (4.3d)

where κ0 is a positive constant. We will use V̊ :“ pV̊ `, V̊ ´qT and Ψ̊ :“
pΨ̊`, Ψ̊´qT to avoid overloaded expressions.
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4.1 Linearized Problem

Let us consider the families, U˘θ “ Ů˘ ` θV ˘ and Φ˘θ “ Φ̊˘ ` θΨ˘, with a
small parameter θ. The linearized operators are given by

$

’

’

&

’

’

%

L1
`

Ů˘, Φ̊˘
˘

pV ˘, Ψ˘q :“
d

dθ
L
`

U˘θ , Φ
˘
θ

˘

ˇ

ˇ

ˇ

ˇ

θ“0

,

B1
`

Ů˘, Φ̊˘
˘

pV, ψq :“
d

dθ
BpU`θ , U

´
θ , ϕθq

ˇ

ˇ

ˇ

ˇ

θ“0

,

where V :“ pV `, V ´qT, and ϕθ (resp. ψ) denotes the common trace of Φ˘θ
(resp. Ψ˘) on boundary tx2 “ 0u. A standard computation yields the following
expression for L1:

L1pU,ΦqpV, Ψq “ LpU,ΦqV ` CpU,ΦqV ´ 1

B2Φ
LpU,ΦqΨB2U, (4.4)

where CpU,Φq is the zero-th order operator defined by

CpU,ΦqV :“
`

BUiA0pUqBtU ` BUiA1pUqB1U ` BUi
rA2pU,ΦqB2U

˘

Vi. (4.5)

We notice that matrices C
`

Ů˘, Φ̊˘
˘

are C8–functions of
`

V̊ ˘,∇V̊ ˘,∇Ψ̊˘
˘

vanishing at the origin.
We recall that the first component of BpU`θ , U

´
θ , ϕθq is rv1pUθqs B1ϕθ ´

rv2pUθqs. Ignoring indices “`” and “´” for the moment, it follows from (3.4)
and (4.3a) that

d

dθ

`

BpU`θ , U
´
θ , ϕθq

˘

1

ˇ

ˇ

ˇ

ˇ

θ“0

“ v̊1B1ψ ` B1ϕ̊∇Uv1pŮq ¨ V ´∇Uv2pŮq ¨ V

“ v̊1B1ψ ´
ε2pB1ϕ̊v̊1 ´ v̊2q

N̊ h̊Γ̊ 2
V1 `

B1ϕ̊p1´ ε
2v̊2

1q ` ε
2v̊1v̊2

h̊Γ̊
V2

´
B1ϕ̊ε

2v̊1v̊2 ` p1´ ε
2v̊2

2q

h̊Γ̊
V3

“ v̊1B1ψ `
ε2Btϕ̊

N̊ h̊Γ̊ 2
V1 `

B1ϕ̊` ε
2v̊1Btϕ̊

h̊Γ̊
V2 ´

1´ ε2v̊2Btϕ̊

h̊Γ̊
V3 on tx2 “ 0u,

where v̊j :“ vjpŮq, N̊ :“ NpŮ1q, h̊ :“ hpŮ1q, and Γ̊ :“ Γ pŮq. Performing a
similar analysis to the other components of BpU`θ , U

´
θ , ϕθq implies

B1
`

Ů˘, Φ̊˘
˘

pV, ψq :“ b̊∇ψ ` B̊V |x2“0, (4.6)

where ∇ψ :“ pBtψ, B1ψq
T. Coefficients b̊ and B̊ are defined by

b̊pt, x1q :“

˜

0 p̊v`1 ´ v̊
´
1 q|x2“0

1 v̊`1 |x2“0

0 0

¸

, (4.7)

B̊pt, x1q :“

¨

˚

˚

˚

˝

ε2Btϕ̊

N̊`h̊`Γ̊ 2
`

%̊`

h̊`Γ̊`

´ς̊`

h̊`Γ̊`

´ε2Btϕ̊

N̊´h̊´Γ̊ 2
´

´%̊´

h̊´Γ̊´

ς̊´

h̊´Γ̊´
ε2Btϕ̊

N̊`h̊`Γ̊ 2
`

%̊`

h̊`Γ̊`

´ς̊`

h̊`Γ̊`
0 0 0

1 0 0 ´1 0 0

˛

‹

‹

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x2“0

. (4.8)



Relativistic Vortex Sheets 31

In expression (4.8), we have set %̊˘ :“ %
`

Ů˘, Φ̊˘
˘

and ς̊˘ :“ ς
`

Ů˘, Φ̊˘
˘

, where

%pU,Φq :“ B1Φ` ε
2v1BtΦ, ςpU,Φq :“ 1´ ε2v2BtΦ. (4.9)

In particular, if Ψ̊˘ ” 0, then %̊˘ ” 0 and ς̊˘ ” 1. Moreover, b̊ is a C8–function
of V̊ |x2“0, and B̊ is a C8–function of pV̊ |x2“0,∇ϕ̊q.

We simplify expression (4.4) as Alinhac [1] by employing the “good un-
known”:

9V ˘ :“ V ˘ ´
B2Ů

˘

B2Φ̊˘
Ψ˘. (4.10)

After some direct calculation, we find (cf. Métivier [34, Proposition 1.3.1]) that

L1pŮ˘, Φ̊˘qpV ˘, Ψ˘q

“ LpŮ˘, Φ̊˘q 9V ˘ ` CpŮ˘, Φ̊˘q 9V ˘ `
Ψ˘

B2Φ̊˘
B2

`

LpŮ˘, Φ̊˘qŮ˘
˘

. (4.11)

In view of the nonlinear results obtained in [1, 19, 22], we neglect the zero-th
order term in Ψ˘ and consider the following effective linear problem:

L1e
`

Ů˘, Φ̊˘
˘

9V ˘ :“ L
`

Ů˘, Φ̊˘
˘

9V ˘ ` CpŮ˘, Φ̊˘q 9V ˘ “ f˘ if x2 ą 0, (4.12a)

B1e
`

Ů˘, Φ̊˘
˘

p 9V , ψq :“ b̊∇ψ ` b7ψ ` B̊ 9V |x2“0 “ g if x2 “ 0, (4.12b)

Ψ` “ Ψ´ “ ψ if x2 “ 0, (4.12c)

where CpŮ˘, Φ̊˘q, b̊, and B̊ are defined by (4.5), (4.7), and (4.8) respectively,
9V :“ p 9V `, 9V ´qT, and

b7pt, x1q :“ B̊pt, x1qp
B2Ů

`

B2Φ̊`
,
B2Ů

´

B2Φ̊´
qT|x2“0. (4.13)

Note that b7 is a C8–function of pV̊ |x2“0, B2V̊ |x2“0,∇ϕ̊, B2Ψ̊ |x2“0q that van-

ishes at the origin. By virtue of (4.2), it follows that CpŮ˘, Φ̊˘q P W 1,8pΩq,
and the coefficients of operators L

`

Ů˘, Φ̊˘
˘

are in W 2,8pΩq. We observe that

the trace of vector B̊ 9V involved in boundary conditions (4.12b) depends solely
on the traces of P`pϕ̊q 9V ` and P´pϕ̊q 9V ´ on tx2 “ 0u, where P˘pϕ̊q are defined
as

P˘pϕ̊qV :“ pV1, ς̊˘|x2“0V3 ´ %̊˘|x2“0V2q
T
, (4.14)

with %̊˘ and ς̊˘ defined by (4.9). We will consider the dropped term in (4.11) as
an error term at each Nash–Moser iteration step in the subsequent nonlinear
analysis.
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4.2 Reformulation

It is more convenient to transform the linearized problem (4.12) into a problem
with a constant and diagonal boundary matrix. This is possible because the
boundary matrix for (4.12) has constant rank on the whole closed half-space
tx2 ě 0u.

Let us calculate the eigenvalues and the corresponding eigenvectors of the
boundary matrix for (4.12). Using constraint (4.3a) reduces the coefficient

matrices rA2

`

Ů˘, Φ̊˘
˘

to:

rA2

`

Ů˘, Φ̊˘
˘

“
1

B2Φ̊˘

¨

˝

0 ´N̊˘c̊2˘%̊˘ N̊˘c̊2˘ς̊˘
´%̊˘{N̊

˘ 0 0

ς̊˘{N̊
˘ 0 0

˛

‚. (4.15)

After a direct calculation, we obtain that the eigenvalues are

λ1 “ 0, λ2 “ ´
c̊˘

b

%̊2
˘ ` ς̊

2
˘

B2Φ̊˘
, λ3 “

c̊˘

b

%̊2
˘ ` ς̊

2
˘

B2Φ̊˘
,

with corresponding eigenvectors

r1 “

¨

˝

0
ς̊˘
%̊˘

˛

‚ r2 “

¨

˚

˝

b

%̊2
˘ ` ς̊

2
˘

%̊˘{pN̊
˘c̊˘q

´ς̊˘{pN̊
˘c̊˘q

˛

‹

‚

, r3 “

¨

˚

˝

b

%̊2
˘ ` ς̊

2
˘

´%̊˘{pN̊
˘c̊˘q

ς̊˘{pN̊
˘c̊˘q

˛

‹

‚

.

Define the matrices

R
`

Ů˘, Φ̊˘
˘

:“

¨

˚

˝

0
b

%̊2
˘ ` ς̊

2
˘

b

%̊2
˘ ` ς̊

2
˘

ς̊˘ %̊˘{pN̊
˘c̊˘q ´%̊˘{pN̊

˘c̊˘q

%̊˘ ´ς̊˘{pN̊
˘c̊˘q ς̊˘{pN̊

˘c̊˘q

˛

‹

‚

, (4.16)

and rA0

`

Ů˘, Φ̊˘
˘

:“ diag p1, λ´1
2 , λ´1

3 q. Then it follows that

rA0R
´1

rA2R
`

Ů˘, Φ̊˘
˘

“ I2 :“ diag p0, 1, 1q.

We thus perform the transformation:

W˘ :“ R´1
`

Ů˘, Φ̊˘
˘

9V ˘. (4.17)

Multiplying (4.12a) by matrices rA0R
´1

`

Ů˘, Φ̊˘
˘

yields the equivalent system
of (4.12a):

A˘0 BtW
˘ `A˘1 B1W

˘ ` I2B2W
˘ `C˘W˘ “ F˘, (4.18)

where F˘ :“ rA0R
´1

`

Ů˘, Φ̊˘
˘

f˘, and

A˘0 :“ rA0R
´1A0R

`

Ů˘, Φ̊˘
˘

, A˘1 :“ rA0R
´1A1R

`

Ů˘, Φ̊˘
˘

, (4.19)

C˘ :“ rA0

´

R´1A0BtR`R
´1A1B1R`R

´1
rA2B2R`R

´1CR
¯

`

Ů˘, Φ̊˘
˘

.
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Matrices A˘0 and A˘1 belong to W 2,8pΩq, while matrices C˘ are in W 1,8pΩq.

Moreover, A˘0 and A˘1 are C8–functions of their arguments pV̊ ˘,∇Ψ̊˘q, and

C˘ are C8–functions of their arguments pV̊ ˘,∇V̊ ˘,∇Ψ̊˘,∇2Ψ̊˘q. Under
transformation (4.17), the boundary conditions (4.12b)–(4.12c) become

BγpW,ψq :“ b̊∇ψ ` b7ψ `BW “ g if x2 “ 0, (4.20a)

Ψ` “ Ψ´ “ ψ if x2 “ 0, (4.20b)

where b̊ and b7 are given by (4.7) and (4.13) respectively, W :“ pW`,W´qT,
and

Bpt, x1q :“ B̊

ˆ

RpŮ`, Φ̊`q 0

0 RpŮ´, Φ̊´q

˙
ˇ

ˇ

ˇ

ˇ

x2“0

“

¨

˚

˚

˝

0 m`1 `m
`
2 m`1 ´m

`
2 0 ´m´1 ´m

´
2 ´m´1 `m

´
2

0 m`1 `m
`
2 m`1 ´m

`
2 0 0 0

0
b

%̊2
` ` ς̊

2
`

b

%̊2
` ` ς̊

2
` 0 ´

b

%̊2
´ ` ς̊

2
´ ´

b

%̊2
´ ` ς̊

2
´

˛

‹

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x2“0

. (4.21)

In the last expression, for notational simplicity, we have introduced m˘j as

m˘1 :“
ε2BtΦ̊

˘

b

%̊2
˘ ` ς̊

2
˘

Γ̊ 2
˘h̊˘N̊

˘
, m˘2 :“

%̊2
˘ ` ς̊

2
˘

Γ̊˘c̊˘h̊˘N̊˘
. (4.22)

It is clear that matrixB is a C8–function of pV̊ |x2“0,∇ϕ̊q. According to (4.14)
and (4.17), we have

P˘pϕ̊q 9V ˘|x2“0 “

¨

˚

˝

b

%̊2
˘ ` ς̊

2
˘pW

˘
2 `W

˘
3 q

´
%̊2
˘ ` ς̊

2
˘

N̊˘c̊˘
pW˘

2 ´W
˘
3 q

˛

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x2“0

. (4.23)

We find that the trace of vector BW involved in boundary conditions (4.20)
depends only on the traces of the noncharacteristic part of vector W , i.e.
sub-vector W nc :“ pW`

2 ,W
`
3 ,W

´
2 ,W

´
3 q

T.

5 Basic Energy Estimate for the Linearized Problem

In this section, we are going to prove the following theorem, which provides
the basic energy estimate for the effective linear problem (4.12).

Theorem 5.1 Assume that the stationary solution (2.24) satisfies (2.10) and
(2.25). Assume further that the basic state

`

Ů˘, Φ̊˘
˘

satisfies (4.1)–(4.3). Then
there exist constants K0 ą 0 and γ0 ě 1 such that, if K ď K0 and γ ě γ0,
then, for all p 9V , ψq P H2

γpΩq ˆH
2
γpR2q, the following estimate holds:

γ} 9V }2L2
γpΩq

` }P˘pϕ̊q 9V ˘|x2“0}
2
L2
γpR2q ` }ψ}

2
H1
γpR2q

À γ´3
›

›L1e
`

Ů˘, Φ̊˘
˘

9V ˘
›

›

2

L2pH1
γq
` γ´2

›

›B1e
`

Ů˘, Φ̊˘
˘

p 9V |x2“0, ψq
›

›

2

H1
γpR2q

. (5.1)
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Remark 5.1 Since the Lopatinskĭı determinant associated with problem (4.12)
admits the roots on the boundary of frequency space, the energy estimate
(5.1) has a loss of regularity of the solution with respect to the source terms.
Furthermore, there is a loss of control on the traces of the solution in (5.1),
which is mainly owing to the fact that (4.12) is a characteristic boundary
problem.

We notice that systems (4.12a) are symmetrizable hyperbolic with the
Friedrichs symmetrizers S2

`

Ů˘
˘

for operators L1e
`

Ů˘, Φ̊˘
˘

, where function
S2pUq is defined in (A.10). By virtue of (4.3a), we compute

S2pŮ
˘q rA2pŮ

˘, Φ̊˘q

“
1

B2Φ̊˘
S2pŮ

˘q
`

A2pŮ
˘q ´ BtΦ̊

˘A0pŮ
˘q ´ B1Φ̊

˘A1pŮ
˘q
˘

“
1

B2Φ̊˘

¨

˝

0 ´N̊˘c̊2˘%̊˘ N̊˘c̊2˘ς̊˘
´N̊˘c̊2˘%̊˘ 0 0

N̊˘c̊2˘ς̊˘ 0 0

˛

‚,

where %̊˘ and ς̊˘ are defined in (4.9). Multiplying (4.12a) by the Friedrichs
symmetrizers S2pŮ

˘q and employing integration by parts yield the following
lemma:

Lemma 5.1 There exists a constant γ0 ě 1 such that, for all γ ě γ0, the
following estimate holds:

γ} 9V ˘}2L2
γpΩq

À γ´1
›

›L1e
`

Ů˘, Φ̊˘
˘

9V ˘
›

›

2

L2
γpΩq

` }P˘pϕ̊q 9V ˘|x2“0}
2
L2
γpR2q.

To prove Theorem 5.1, it remains to deduce the desired energy estimate
for the discontinuity front ψ and the traces of P˘pϕ̊q 9V ˘ on tx2 “ 0u in terms
of the source terms in the interior domain and on the boundary.

Introducing ĂW˘ :“ e´γtW˘, system (4.18) equivalently reads

Lγ˘ĂW˘

:“ γA˘0
ĂW˘ `A˘0 Bt

ĂW˘ `A˘1 B1
ĂW˘ ` I2B2

ĂW˘ `C˘ĂW˘ “ e´γtF˘. (5.2)

We also introduce ĂW :“ pĂW`,ĂW´qT, rΨ˘ :“ e´γtΨ˘, and rψ :“ e´γtψ. Then
the boundary conditions (4.20) are equivalent to

BγpĂW, rψq :“ γb0
rψ ` b̊∇ rψ ` b7 rψ `BĂW “ e´γtg if x2 “ 0, (5.3a)

rΨ` “ rΨ´ “ rψ if x2 “ 0, (5.3b)

where b0 :“ p0, 1, 0qT. In view of (4.23), we obtain the estimate:

}P˘pϕ̊q 9V ˘|x2“0}L2
γpR2q À }W

nc|x2“0}L2
γpR2q À

›

›ĂW nc|x2“0

›

›, (5.4)

where ĂW nc :“
`

ĂW`
2 ,

ĂW`
3 ,

ĂW´
2 ,

ĂW´
3

˘T
. By virtue of (5.4) and Lemma 5.1, we

obtain that Theorem 5.1 admits the following equivalent proposition.
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Proposition 5.1 Assume that the stationary solution (2.24) satisfies (2.10)
and (2.25). Assume further that the basic state

`

Ů˘, Φ̊˘
˘

satisfies (4.1)–(4.3).
Then there exist some constants K0 ą 0 and γ0 ě 1 such that, if K ď K0 and
γ ě γ0, then the following estimate holds: for all pW,ψq P H2pΩq ˆH2pR2q,

}W nc|x2“0}
2
` }ψ}21,γ À γ´3|||Lγ˘W˘|||21,γ ` γ

´2}BγpW nc|x2“0, ψq}
2
1,γ , (5.5)

where operators Lγ˘ and Bγ are given by (5.2) and (5.3a), respectively.

In the rest of this section, we give the proof of Proposition 5.1.

5.1 Paralinearization

We now perform the paralinearization of the interior equations and the bound-
ary conditions.

5.1.1 Some results on paradifferential calculus

For self-containedness, we list some definitions and results about paradiffer-
ential calculus with a parameter that will be used in this paper. See [4, Ap-
pendix C] and the references cited therein for the rigorous proofs.

Definition 5.1 For any m P R and k P N, we define the following:

(i) A function apx, ξ, γq : R2ˆR2ˆr1,8q Ñ CNˆN is called a paradifferential
symbol of degree m and regularity k if a is C8 in ξ and, for each α P N2,
there exists a positive constant Cα such that

}Bαξ ap¨, ξ, γq}Wk,8pR2q ď Cαλ
m´|α|,γpξq for all pξ, γq P R2 ˆ r1,8q,

where λs,γpξq :“ pγ2 ` |ξ|2qs{2 for s P R.

(ii) Γmk denotes the set of paradifferential symbols of degree m and regularity
k. We denote by αm a generic symbol in the class Γm1 .

(iii) We say that a family of operators tP γuγě1 is of order ď m, if, for every
s P R and γ ě 1, there exists a constant Cps,mq independent of γ such
that

}P γu}s,γ ď Cps,mq}u}s`m,γ for all u P Hs`m.

We use Rm to denote a generic family of operators of order ď m.

(iv) For s P R, operator Λs,γ is defined in such a way that

Λs,γupxq :“
1

p2πq2

ż

R2

eix¨ξλs,γpξqpupξqdξ

for all u in the Schwartz class S.
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(v) To any symbol a P Γm0 , we associate the family of paradifferential opera-
tors tT γa uγě1 defined in such a way that

T γa upxq :“
1

p2πq2

ż

R2

ż

R2

eix¨ξKψpx´ y, ξ, γqapy, ξ, γqpupξqdydξ

for all u P S. In the last expression, Kψp¨, ξ, γq is the inverse Fourier
transform of ψp¨, ξ, γq with ψ given by

ψpx, ξ, γq :“
ÿ

qPN
χp22´1x, 0qφp2´qξ, 2´qγq,

where φpξ, γq :“ χp2´1ξ, 2´1γq ´ χpξ, γq, and χ is a C8–function on R3

such that

χpzq ě χpz1q if |z| ď |z1|, χpzq “

#

1 if |z| ď 1
2 ,

0 if |z| ě 1.

Lemma 5.2 The following statements hold:

(i) If a PW 1,8pR2q, u P L2pR2q, and γ ě 1, then

γ}au´ T γa u} ` }aBju´ T
γ
iξja

u} ` }au´ T γa u}1,γ À }a}W 1,8pR2q}u}.

(ii) If a PW 2,8pR2q, u P L2pR2q, and γ ě 1, then

γ}au´ T γa u}1,γ ` }aBju´ T
γ
iξja

u}1,γ À }a}W 2,8pR2q}u}.

(iii) If a P Γmk , then T γa is of order ď m. In particular, if a P L8pR2q is
independent of ξ, then

}T γa u}s,γ À }a}L8pR2q}u}s,γ for all s P R, u P HspR2q.

(iv) If a P Γm1 and b P Γm
1

1 , then product ab P Γm`m
1

1 , family tT γa T
γ
b ´T

γ
abuγě1

is of order ď m`m1´1, and family tpT γa q
˚´T γa˚uγě1 is of order ď m´1.

(v) If a P Γm2 and b P Γm
1

2 , then tT γa T
γ
b ´ T

γ
ab´ T

γ
´i

ř

j BξjaBxj b
uγě1 is of order

ď m`m1 ´ 2.

(vi) G̊arding’s inequality: If a P Γ2m
1 is a square matrix symbol that satisfies

Re apx, ξ, γq ě cpγ2 ` |ξ|2qmI for all px, ξ, γq P R4 ˆ r1,8q

for some constant c, then there exists γ0 ě 1 such that

Re xT γa u, uy ě
c

4
}u}2m,γ for all u P HmpR2q and γ ě γ0.
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(vii) Microlocalized G̊arding’s inequality: Let a P Γ2m
1 be a square matrix sym-

bol and χ P Γ0
1. If there exist a scalar real symbol rχ P Γ0

1 and a constant
c ą 0 such that rχ ě 0, χrχ ” χ, and

rχ2px, ξ, γqRe apx, ξ, γq ě crχ2px, ξ, γqpγ2 ` |ξ|2qmI

for all px, ξ, γq P R4ˆr1,8q, then there exist γ0 ě 1 and C ą 0 such that

Re
@

T γa T
γ
χu, T

γ
χu

D

ě
c

2
}T γχu}

2
m,γ ´ C}u}

2
m´1,γ

for all u P HmpR2q, γ ě γ0.

Here we have used the notation, ReB :“ pB `B˚q{2, for any complex square
matrix B with B˚ being its conjugate transpose.

The reader may find the detailed proof of Lemma 5.2 (vii) in Métivier–
Zumbrun [35, Theorem B.18].

5.1.2 Paralinearization of the interior equations

In view of (4.2) and (4.3b), we have the following estimate for the coefficients
of Lγ˘ given in (5.2):

}pA˘0 ,A
˘
1 q}W 2,8pΩq ` }C

˘}W 1,8pΩq ď CpK,κ0q.

It then follows from Lemma 5.2 (ii) that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇγA`0 W
` ´ T γ

γA`0
W`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

1,γ
“

ż 8

0

}γA`0 W
`p¨, x2q ´ T

γ

γA`0
W`p¨, x2q}

2
1,γdx2

À

ż 8

0

}A`0 p¨, x2q}
2
W 2,8pR2q}W

`p¨, x2q}
2dx2

ď CpK,κ0q|||W
`|||2.

Similarly, we derive from Lemma 5.2 (i)–(ii) that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇA`0 BtW
` ´ T γ

iδA`0
W`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1,γ
À }A`0 }W 2,8pΩq|||W

`||| ď CpK,κ0q|||W
`|||,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇA`1 B1W
` ´ T γ

iηA`1
W`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1,γ
À }A`1 }W 2,8pΩq|||W

`||| ď CpK,κ0q|||W
`|||,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇC`W` ´ T γ
C`

W`
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1,γ
À }C`}W 1,8pΩq|||W

`||| ď CpK,κ0q|||W
`|||.

Combining these estimates yields
ˇ

ˇ

ˇ

ˇ

ˇ

ˇLγ`W` ´ I2B2W
` ´ T γ

τA`0 `iηA`1 `C
`
W`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1,γ
ď CpK,κ0q|||W

`|||, (5.6)

where τ “ γ ` iδ, and Lγ` is the linearized operator defined by (5.2). We can
also obtain the following estimate for the equations on W´:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇLγ´W´ ´ I2B2W
´ ´ T γ

τA´0 `iηA´1 `C
´
W´

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1,γ
ď CpK,κ0q|||W

´|||. (5.7)

The paralinearization for the interior equations is thus given as follows:

T γ
τA˘0 `iηA˘1 `C

˘
W˘ ` I2B2W

˘ “ rF˘ if x2 ą 0. (5.8)

Note that the above paralinearized equations do not involve the discontinuity
function ϕ.
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5.1.3 Paralinearization of the boundary conditions

According to (5.3a), we define

b0 :“ p0, 1, 0qT, b1pt, x1q :“
`

p̊v`1 ´ v̊
´
1 q|x2“0, v̊

`
1 |x2“0, 0

˘T
,

bpt, x1, δ, η, γq :“ τb0 ` iηb1pt, x1q “ piηp̊v
`
1 ´ v̊

´
1 q, τ ` i̊v`1 η, 0q

T|x2“0.

Since b0, b1 PW
2,8pR2q, we obtain from Lemma 5.2 (iii) that

}γb0ψ ` b̊∇ψ ´ T γb ψ}1,γ
“ }γb0ψ ` b0Btψ ` b1B1ψ ´ T

γ
b ψ}1,γ

À }pb0, b1q}W 2,8pR2q}ψ} ď CpKq}ψ} ď CpKqγ´1}ψ}1,γ . (5.9)

It follows from (4.2), (4.3b), and (4.13) that }b7}W 1,8pR2q ď CpK,κ0q. Employ-
ing Lemma 5.2 (ii)–(iii) yields

}b7ψ}1,γ ď }b7ψ ´ T
γ
b7
ψ}1,γ ` }T

γ
b7
ψ}1,γ

À }b7}W 1,8pR2q}ψ} ` }b7}L8pR2q}ψ}1,γ ď CpK,κ0q}ψ}1,γ . (5.10)

In light of (4.21), we find that }B}W 2,8pR2q ď CpK,κ0q, and B acts only on
the noncharacteristic part W nc of vector W . Hence, we deduce

}BW |x2“0 ´ T
γ
BW |x2“0}1,γ

À γ´1}B}W 2,8pR2q }W
nc|x2“0} ď CpK,κ0qγ

´1 }W nc|x2“0} . (5.11)

Combine (5.9)–(5.11) together to find

}BγpW |x2“0, ψq ´ T
γ
b ψ ´ T

γ
BW |x2“0}1,γ

ď CpK,κ0q
`

}ψ}1,γ ` γ
´1 }W nc|x2“0}

˘

. (5.12)

The paralinearization of the boundary conditions (5.3a) is then given as fol-
lows:

T γb ψ ` T
γ
BW “ G if x2 “ 0. (5.13)

5.1.4 Eliminating the front

We can eliminate front ψ from the paralinearized boundary conditions (5.13)
as in the constant coefficient case. For this purpose, we first notice that symbol
b is elliptic, which means that, for any pt, x1, δ, η, γq P R4 ˆ p0,8q,

|bpt, x1, δ, η, γq|
2 ě cpKqpγ2 ` δ2 ` η2q. (5.14)

To show this estimate, by observing that b is homogeneous of degree 1 with
respect to pτ, ηq and that Ξ1 is compact, we only need to prove

|bpt, x1, δ, η, γq|
2 ą 0 on Ξ1.
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This estimate follows from the similar property for the constant coefficient
case, by taking the perturbation, V̊ , small enough in L8pΩq.

Using (5.14) and the G̊arding inequality (Lemma 5.2 (vi)), we have

Re
@

T γb˚bψ,ψ
D

ě cpKq}ψ}21,γ for all γ ě γ0,

where γ0 depends only on K. Since b P Γ1
2, the operator:

T γb˚b ´ pT
γ
b q
˚T γb “ T γb˚b ´ T

γ
b˚T

γ
b `

 

T γb˚ ´ pT
γ
b q
˚
(

T γb

is of order ď 1. Then

}ψ}21,γ ď CpKq
`

}T γb ψ}
2 ` }ψ}1,γ}ψ}

˘

ď CpKq
`

}T γb ψ}
2 ` γ´1}ψ}21,γ

˘

,

from which we take γ sufficiently large to derive

}ψ}1,γ ď CpKq}T γb ψ}.

Since the first and fourth columns of B PW 2,8pR2q vanish, we apply Lemma
5.2 to obtain

}ψ}1,γ ď CpKq p}T γb ψ ` T
γ
BW |x2“0} ` }W

nc|x2“0}q

ď CpKq
`

γ´1}T γb ψ ` T
γ
BW |x2“0}1,γ ` }W

nc|x2“0}
˘

. (5.15)

Combine this estimate with (5.12) and let γ large enough to deduce

}ψ}1,γ ď CpKq
`

γ´1}BγpW |x2“0, ψq}1,γ ` }W
nc|x2“0}

˘

. (5.16)

This last estimate indicates that it only remains to deduce an estimate of
W nc|x2“0 in terms of the source terms.

To eliminate ψ in the boundary conditions (5.13), we define the matrix:

Qpt, x1, δ, η, γq :“

˜

0 0 1

τ ` iηv̊`1 ´iηp̊v`1 ´ v̊
´
1 q 0

¸
ˇ

ˇ

ˇ

ˇ

ˇ

x2“0

for all pτ, ηq P Ξ1.

Then we extend Q as a homogeneous mapping of degree 0 with respect to
pτ, ηq on Ξ. It follows that Q P Γ0

2 and Qb ” 0. We define symbol β as

βpt, x1, δ, η, γq :“ Qpt, x1, δ, η, γqBpt, x1q P Γ0
2

for all pt, x1, δ, η, γq P R4 ˆ R`. After a direct calculation, we find that the
first and fourth columns of β vanish, so that we consider β as a matrix with
only four columns and two rows. More precisely, for all pτ, ηq P Ξ1, symbol β
is given by

βpt, x1, δ, η, γq

“

˜

b

%̊2` ` ς̊
2
`

b

%̊2` ` ς̊
2
` ´

b

%̊2´ ` ς̊
2
´ ´

b

%̊2´ ` ς̊
2
´

å´pm
`
1 `m

`
2 q å´pm

`
1 ´m

`
2 q ´å`pm

´
1 `m

´
2 q ´å`pm

´
1 ´m

´
2 q

¸
ˇ

ˇ

ˇ

ˇ

ˇ

x2“0

, (5.17)
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where %̊˘ and ς̊˘ are given in (4.9), m˘1 and m˘2 are given in (4.22), and

å˘ :“ τ ` i̊v˘1 pt, xqη. (5.18)

Since B P Γ0
2, b P Γ1

2, and Qb ” 0, we find from (5.12) and Lemma 5.2 that

}T γβW
nc|x2“0}1,γ

“ }T γQBW |x2“0 ´ T
γ
QT

γ
BW |x2“0 ` T

γ
QpT

γ
BW |x2“0 ` T

γ
b ψq ´ T

γ
QT

γ
b ψ}1,γ

À }W nc|x2“0} ` }T
γ
BW |x2“0 ` T

γ
b ψ}1,γ ` }T

γ
QT

γ
b ψ ´ T

γ
Qbψ}1,γ

À }W nc|x2“0} ` }BγpW |x2“0, ψq}1,γ ` }ψ}1,γ . (5.19)

In view of (5.8) and (5.13), we obtain the following paralinearized problem
with reduced boundary conditions:

T γ
τA`0 `iηA`1 `C

`
W` ` I2B2W

` “ F` if x2 ą 0, (5.20a)

T γ
τA´0 `iηA´1 `C

´
W´ ` I2B2W

´ “ F´ if x2 ą 0, (5.20b)

T γβW
nc “ G if x2 “ 0. (5.20c)

We can deduce the following proposition for problem (5.20) by using the error
estimates (5.6)–(5.7), (5.12), (5.15)–(5.16), and (5.19) (see also [17, Proposi-
tion 5.3]).

Proposition 5.2 If there exist constants K0 ą 0 and γ0 ě 1 such that
solution W to the paralinearized problem (5.20) satisfies

}W nc|x2“0}
2 À γ´3|||F˘|||21,γ ` γ

´2}G}21,γ , (5.21)

for K ď K0 and γ ě γ0, then Proposition 5.1 holds.

5.2 A Reduced Problem

In order to derive the energy estimate (5.21), we now derive a problem for
the noncharacteristic variables W nc from (5.20). This is possible since the
coefficient matrix I2 “ diag p0, 1, 1q has constant rank. For convenience, we
write

τA˘0 ` iηA˘1 “: pb˘ijq P Γ1
2, (5.22)

where A˘k “ pA
ij
k,˘q, k “ 0, 1, are defined by (4.19). In particular, we compute

A11
1,˘ “ v̊˘1 A

11
0,˘, A11

0,˘ “ Γ̊˘

"

1´
ε2p̊ς˘v̊

˘
1 ` %̊˘v̊

˘
2 q

2

ς̊2˘ ` %̊
2
˘

*

“: F˘1 P R, (5.23)

from which we obtain

b˘11 :“ τA11
0,˘ ` iηA11

1,˘ “ F˘1 pτ ` i̊v˘1 ηq. (5.24)
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In view of (4.9), F˘1 “ sΓ p1´ε2v̄2q ą 0 when
`

V̊ ˘, Ψ̊˘
˘

“ 0 (cf. (3.24)). We use
the continuity of F˘1 and take K in (4.2) small enough to derive that F˘1 ą 0
for all pt, xq P sΩ. As a consequence, we have

b˘11 “ 0 if and only if å˘ “ τ ` i̊v˘1 η “ 0. (5.25)

To represent the characteristic variables W˘
1 in terms of W nc, the singular

points pt, x, τ, ηq that are given by (5.25) should be excluded. We thus intro-
duce two C8–functions χ` and rχ` defined on sΩ ˆΞ such that

– Both χ` and rχ` are homogeneous of degree zero with respect to pτ, ηq P
Ξ;

– For all pt, x, τ, ηq P sΩ ˆΞ1,

0 ď χ`pt, x, τ, ηq ď rχ`pt, x, τ, ηq ď 1, (5.26)

rχ` ” 1 on supp χ`, supp rχ` Ă
 

å`pt, x, τ, ηq ‰ 0
(

. (5.27)

Since τA`0 ` iηA`1 P Γ1
2, C` P Γ0

1, and χ` P Γ0
k for all k P N, we find from

Lemma 5.2 (iv)–(v) that

T γχ`T
γ

τA`0 `iηA`1 `C
`
“ T γ

τA`0 `iηA`1
T γχ` ` T

γ

´itχ`,τA
`
0 `iηA`1 u

` T γ
C`

T γχ` `R´1,

where ta, bu denotes the Poisson bracket of a and b:

ta, bu :“
Ba

Bδ

Bb

Bt
`
Ba

Bη

Bb

Bx1
´
Ba

Bt

Bb

Bδ
´
Ba

Bx1

Bb

Bη
. (5.28)

Setting

w` :“ T γχ`W
`

and applying operator T γχ` to (5.20a), we obtain

T γ
τA`0 `iηA`1

w` ` T γ
C`
w` ` I2B2w

` “ T γrW
` ` T γχ`F

` `R´1W
`, (5.29)

where r “ i
 

χ`, τA
`
0 ` iηA`1

(

` B2χ`I2. We will employ letter r` to denote
a generic symbol that belongs to Γ0

1 and vanishes on tχ` ” 1u Y tχ` ” 0u.

Since b`11 ‰ 0 on supp rχ`, we infer that rχ`
b`11
P Γ´1

2 and

T γ
rχ`{b

`
11

T γ
b`1j
w`j “ T γ

rχ`b
`
1j{b

`
11

w`j ` T
γ
α´1
w`j `R´2W

`.

Applying operator T γ
rχ`{b

`
11

to the first equation in (5.29) yields

T γ
rχ`
w`1 ` T

γ

rχ`b
`
12{b

`
11

w`2 ` T
γ

rχ`b
`
13{b

`
11

w`3

“

3
ÿ

j“1

T γα´1
w`j ` T

γ
r`α´1

W` ` T γα´1
T γχ`F

`
1 `R´2W

`. (5.30)
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By virtue of (5.27), we have the identities: rχ`χ` ” χ` and

Brχ`
Bδ

Bχ`
Bt

`
Brχ`
Bx1

Bχ`
Bη

” 0,

which imply

T γ
rχ`
w`1 “ T γ

rχ`
T γχ`W

`
1 “ T γ

rχ`χ`
W`

1 `R´2W
`
1 “ w`1 `R´2W

`
1 .

Plug this identity into (5.30) to obtain

w`1 “´ T
γ

rχ`b
`
12{b

`
11

w`2 ´ T
γ

rχ`b
`
13{b

`
11

w`3

`

3
ÿ

j“1

T γα´1
w`j ` T

γ
r`α´1

W` ` T γα´1
T γχ`F

`
1 `R´2W

`. (5.31)

The second equation of (5.29) reads

3
ÿ

j“1

T γ
b`2j
w`j `

3
ÿ

j“1

T γα0
w`j ` B2w

`
2 “ T γr`W

` ` T γχ`F
`
2 `R´1W

`.

Since b`j1 P Γ1
2 and rχ`b

`
1j{b

`
11 P Γ0

2, we then apply operator T γ
b`21

to expression

(5.31) and obtain

T γ
b`21
w`1 “´ T

γ

rχ`b
`
21b

`
12{b

`
11

w`2 ´ T
γ

rχ`b
`
21b

`
13{b

`
11

w`3

`

3
ÿ

j“1

T γα0
w`j ` T

γ
r`W

` `R0T
γ
χ`F

` `R´1W
`.

Consequently, we have

B2w
`
2 “T

γ
A11

rχ`

w`2 ` T
γ
A12

rχ`

w`3

`

3
ÿ

j“1

T γα0
w`j ` T

γ
r`W

` `R0T
γ
χ`F

` `R´1W
`, (5.32)

where

A11
rχ`
“ ´b`22 ` rχ`b

`
21b

`
12{b

`
11, A12

rχ`
“ ´b`23 ` rχ`b

`
21b

`
13{b

`
11.

Note that w`1 appears in a zero-th order term in (5.32). We thus apply T γα0
to

expression (5.31) and deduce

T γα0
w`1 “ T γα0

w`2 ` T
γ
α0
w`3 ` T

γ
r`α´1

W` `R´1T
γ
χ`F

` `R´1W
`,

which, together with (5.32), implies the following equation for w`2 :

B2w
`
2 “T

γ
A11

rχ`

w`2 ` T
γ
A12

rχ`

w`3

`

3
ÿ

j“2

T γα0
w`j ` T

γ
r`W

` `R0T
γ
χ`F

` `R´1W
`. (5.33)
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In this equation, the first and zero-th order terms in w`1 have been eliminated.
Performing a similar computation to the third equation of (5.29), we obtain
the following equations for wnc

` :“ pw`2 ,w
`
3 q

T:

B2w
nc
` “ T γA

rχ`
wnc
` ` T

γ
E`w

nc
` ` T

γ
r`W

` `R0T
γ
χ`F

` `R´1W
`, (5.34)

where E` P Γ0
1, symbol r` P Γ0

1 vanishes on region tχ` ” 1u Y tχ` ” 0u, and

A
rχ` “

˜

A11
rχ`

A12
rχ`

A21
rχ`

A22
rχ`

¸

P Γ1
2, Aij

rχ`
“ ´b`i`1,j`1 ` rχ`b

`
i`1,1b

`
1,j`1{b

`
11.

Let us define χ´ and rχ´ as χ` and rχ` by changing index “`” into “´”.
We set w´ :“ T γχ´W

´ and employ a similar analysis to find that wnc
´ :“

pw´2 ,w
´
3 q

T satisfies the same system as (5.34) with index “`” replaced by
“´”. Applying the rule of symbolic calculus (Lemma 5.2(iv)) to (5.20c) yields
the boundary condition for wnc :“ pw`2 ,w

`
3 ,w

´
2 ,w

´
3 q

T:

T γβw
nc|x2“0 “ G`R´1W

nc.

We combine this last relation with the systems for wnc
˘ to obtain the reduced

problem:

#

B2w
nc “ T γArw

nc ` T γEw
nc ` T γrW `R0T

γ
χF `R´1W if x2 ą 0,

T γβw
nc “ G`R´1W

nc if x2 “ 0,
(5.35)

where β is given by (5.17) for pτ, ηq P Ξ1. The symbol matrix Ar P Γ1
2 is given

by

$

’

&

’

%

Ar “
ˆ

A
rχ` 0

0 A
rχ´

˙

, A
rχ˘ “

`

Aij
rχ˘

˘

,

with Aij
rχ˘
“ ´b˘i`1,j`1 ` rχ˘b

˘
i`1,1b

˘
1,j`1{b

˘
11.

(5.36)

Matrices E and r both belong to Γ0
1 and have the same block diagonal structure

as Ar. Moreover, symbol r vanishes on region tχ` “ χ´ ” 1uYtχ` “ χ´ ” 0u.

5.3 Microlocalization

We now construct the degenerate Kreiss’ symmetrizers that are microlocal
(i.e. local in the frequency space) in order to derive our energy estimate. The
whole space sΩ ˆ Ξ will be divided into three disjoint parts according to the
poles of the “non-cutoff” symbol A and the zeros of the associated Lopatinskĭı
determinant, where

A “
ˆ

A` 0

0 A´

˙

, A˘ “
`

a˘ij
˘

, a˘ij “ ´b
˘
i`1,j`1 ` b

˘
i`1,1b

˘
1,j`1{b

˘
11. (5.37)
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Notice that A
rχ˘ “ A˘ in region trχ˘ ” 1u. In light of (5.25), we obtain that

the poles of A belong to the set Υp :“ Υ`p Y Υ
´
p , with

Υ˘p :“
 

pt, x, τ, ηq P sΩ ˆΞ : τ “ ´iηv̊˘1 pt, x, τ, ηq
(

.

For the eigenvalues and the stable subspace of Apt, x, τ, ηq, we have the
following lemma.

Lemma 5.3 Assume that
`

V̊ ,∇Ψ̊
˘

is sufficiently small in W 2,8pΩq.

(a) If pτ, ηq P Ξ1 with Re τ ą 0, then the eigenvalues of A˘pt, x, τ, ηq are
roots ω of

´

ω ´
a˘11 ` a

˘
22

2

¯2

“
`

C̊˘0
˘2

!

`

C̊˘1
˘2`

τ ˘ iC̊˘2 η
˘2
` η2

)

, (5.38)

where C̊˘j , j “ 0, 1, 2, are positive smooth functions of pV̊ ˘,∇Ψ̊˘q such

that C̊˘j “
sCj when

`

V̊ ˘, Ψ̊˘
˘

“ 0, with sCj given by (3.31). Moreover,

A˘ has a unique eigenvalue ω˘ (resp. ω1˘) of negative (resp. positive) real
part.

(b) If pτ, ηq P Ξ1 with Re τ ą 0, then the stable subspace E´pt, x, τ, ηq of
Apt, x, τ, ηq has dimension two and is spanned by

$

&

%

E`pt, x, τ, ηq :“
´

´pτ ` i̊v`1 ηqa
`
12, pτ ` i̊v`1 ηqpa

`
11 ´ ω`q, 0, 0

¯T
,

E´pt, x, τ, ηq :“
´

0, 0, pτ ` i̊v´1 ηqpa
´
22 ´ ω´q,´pτ ` i̊v´1 ηqa

´
21

¯T
.

(5.39)

(c) Both ω` and ω´ admit a continuous extension to any point pτ, ηq P Ξ1

with Re τ “ 0. If pτ, ηq P Ξ1 with τ “ iδ P iR, then

rω˘pt, x, τ, ηq :“ ω˘pt, x, τ, ηq ´
a˘11 ` a

˘
22

2
pt, x, τ, ηq

“

$

&

%

´ C̊˘0

b

η2 ´ pC̊˘1 q
2pδ ˘ C̊˘2 ηq

2 if η2 ě pC̊˘1 q
2pδ ˘ C̊˘2 ηq

2,

´ i sgnpδ ˘ C̊˘2 ηqC̊
˘
0

b

pC̊˘1 q
2pδ ˘ C̊˘2 ηq

2 ´ η2 elsewise.

(5.40)

(d) Both E`pt, x, τ, ηq and E´pt, x, τ, ηq can be extended continuously to any
point pτ, ηq P Ξ1 with Re τ “ 0. These two vectors are linearly indepen-
dent on the whole hemisphere Ξ1.

(e) If pt, x, τ, ηq R Υnd, where Υnd is given by

Υnd :“
!

τ P
 

ip´C̊`2 ˘ pC̊
`
1 q
´1qη, ip´C̊´2 ˘ pC̊

´
1 q
´1qη

(

)

, (5.41)

then matrix Apt, x, τ, ηq is diagonalizable.
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Proof We just need to deduce that relations (5.38) hold and that a˘11 ` a˘22

are well-defined for any point pτ, ηq P Ξ1, since the other assertions can be
proved similarly to the proof of Lemma 3.3.

By definition, we know that the eigenvalues of A˘ are roots ω of

ω2 ´ pa˘11 ` a
˘
22qω ` a

˘
11a

˘
22 ´ a

˘
12a

˘
21 “ 0, (5.42)

from which we have

rω2
` “

´a`11 ´ a
`
22

2
` a`12

¯´a`11 ´ a
`
22

2
´ a`12

¯

` a`12pa
`
12 ` a

`
21q, (5.43a)

rω2
´ “

´a´22 ´ a
´
11

2
` a´21

¯´a´22 ´ a
´
11

2
´ a´21

¯

` a´21pa
´
12 ` a

´
21q. (5.43b)

We now deduce the expressions for a˘11´ a
˘
22´ 2a˘12 and a˘12` a

˘
21. Recall that

a˘ij and b˘ij are given by (5.37) and (5.22), respectively. Entries A11
0,˘ and A11

1,˘

are given by (5.23). For notational simplicity, we ignore indices “˘” and “˚”
in the following expressions. We calculate coefficients A˘j defined in (4.19) by
using the computer algebra system “Maxima” to obtain the relations:

A23
1 “ v1A

23
0 , A32

1 “ v1A
32
0 , A22

1 ´A33
1 “ v1pA

22
0 ´A33

0 q, (5.44a)

A12
1 ´A13

1 “ v1pA
12
0 ´A13

0 q, A21
1 `A31

1 “ v1pA
21
0 `A31

0 q, (5.44b)

A21
1 pA

12
0 ´A13

0 q ´A
13
1 pA

21
0 `A31

0 q

“ v1

 

A21
0 pA

12
0 ´A13

0 q ´A
13
0 pA

21
0 `A31

0 q
(

, (5.44c)

A13
1 pA

21
0 `A31

0 q `A
31
1 pA

12
0 ´A13

0 q

“ v1

 

A13
0 pA

21
0 `A31

0 q `A
31
0 pA

12
0 ´A13

0 q
(

. (5.44d)

Then it follows from (5.44a) that

´b22 ` b33 ` 2b23 “ p´A
22
0 `A33

0 ` 2A23
0 qpτ ` iv1ηq.

By virtue of (5.44b)–(5.44c), we obtain

b21b12 ´ b31b13 ´ 2b21b13 “ b21pb12 ´ b13q ´ b13pb21 ` b31q

“
 

b21pA
12
0 ´A13

0 q ´ b13pA
21
0 `A31

0 q
(

pτ ` iv1ηq

“ tA21
0 pA

12
0 ´A13

0 q ´A
13
0 pA

21
0 `A31

0 qupτ ` iv1ηq
2.

Then

a11 ´ a22 ´ 2a12 “ F2pτ ` iv1ηq, (5.45)

where

F2 “ pA11
0 q
´1

 

A11
0 p´A

22
0 `A33

0 ` 2A23
0 q `A

21
0 pA

12
0 ´A13

0 q ´A
13
0 pA

21
0 `A31

0 q
(

“
2B2Φ

 

Γ pς2 ` %2q1{2pε2|v|2 ´ 1q ` ε2cpςv2 ´ %v1q
(

c pε2p%v2 ` ςv1q
2 ´ ς2 ´ %2q

. (5.46)
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In particular, F˘2 “ ˘2 sΓ {c̄ ‰ 0 when the perturbation
`

V̊ ˘, Ψ̊˘
˘

vanishes.
As a consequence, F˘2 never vanish by taking K in (4.2) small enough. Using
(5.44a)–(5.44b) and (5.44d), we can deduce from a similar calculation that

a12 ` a21 “ F3pτ ` iv1ηq, (5.47)

where

F3 “ pA
11
0 q

´1
 

A11
0 p´A

23
0 ´A32

0 q `A
21
0 A

13
0 `A31

0 A
12
0

(

“ ´
2B2Φε

2 pςv2 ´ %v1q

ε2p%v2 ` ςv1q
2 ´ ς2 ´ %2

. (5.48)

Relations (5.38) follows by plugging (5.45) and (5.47) into (5.43a)–(5.43b).
We now show that a˘11 ` a

˘
22 are well-defined. Use (5.44b) to derive

b21b12 ` b31b13 “ b12pb21 ` b31q ` b31pb13 ´ b12q

“
 

b12pA
21
0 `A31

0 q ` b31pA
13
0 ´A12

0 q
(

pτ ` iv1ηq,

which implies

a11 ` a22 “ ´b22 ´ b33 `
b21b12 ` b31b13

F1pτ ` iv1ηq
“ F4τ ` iηF5, (5.49)

where F4 and F5 are some smooth functions of pV̊ ,∇Ψ̊q that vanish when
`

V̊ , Ψ̊
˘

“ 0 (cf. (3.27) with a˘11 “ ˘µ˘ and a˘22 “ ¯µ˘). The proof of the
lemma can be completed by using the fact that A˘0 and A˘1 are smooth with

respect to pV̊ ˘,∇Ψ̊˘q. l

As in the constant coefficient case, we define the Lopatinskĭı determinant
associated with A and β as

∆pt, x1, τ, ηq :“ det rβpt, x1, τ, ηq pE`pt, x1, 0, τ, ηq E´pt, x1, 0, τ, ηqqs , (5.50)

where β and E˘ are given by (5.17) and (5.39), respectively. For the zeros of
∆pt, x1, τ, ηq, we have the following lemma.

Lemma 5.4 Assume that
`

V̊ ,∇Ψ̊
˘

is sufficiently small in W 2,8pΩq. Then

∆pt, x1, τ, ηq “ 0 if and only if pt, x1, τ, ηq P Υc,

where Υc :“ Υ´1
c Y Υ 0

c Y Υ
1
c is called the critical set with

Υ qc :“
 

pt, x1, τ, ηq P R2 ˆΞ : τ “ iηz̊qpt, x1q
(

,

where z̊0 and z̊˘1 are real-valued functions of pV̊ ˘|x2“0,∇ϕ̊q satisfying

Υc X ppΥnd Y Υpq X tx2 “ 0uq “ ∅.

Moreover, each of these roots is simple in the sense that, if q P t0,˘1u, then
there exist a neighborhood V of pi̊zqη, ηq in Ξ1 and a C8–function hq defined
on R2 ˆ V such that

∆pt, x1, τ, ηq “ pτ ´ i̊zqηqhqpt, x1, τ, ηq, hqpt, x1, τ, ηq ‰ 0 (5.51)

for all pτ, ηq P V .
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Proof Thanks to (5.17) and (5.39), we obtain that, for pτ, ηq P Ξ1,

βpt, x1, τ, ηqpE`pt, x1, 0, τ, ηq E´pt, x1, 0, τ, ηqq “

ˆ

ζ̊1 ζ̊2
ζ̊3 ζ̊4

˙
ˇ

ˇ

ˇ

ˇ

x2“0

, (5.52)

where

ζ̊1 :“ å`

b

%̊2
` ` ς̊

2
`pa

`
11 ´ a

`
12 ´ ω`q, ζ̊2 :“ ´å´

b

%̊2
´ ` ς̊

2
´pa

´
22 ´ a

´
21 ´ ω´q,

ζ̊3 :“ å`å´
 

´a`12pm
`
1 `m

`
2 q ` pa

`
11 ´ ω`qpm

`
1 ´m

`
2 q
(

,

ζ̊4 :“ å`å´
 

´pa´22 ´ ω´qpm
´
1 `m

´
2 q ` a

´
21pm

´
1 ´m

´
2 q
(

.

Recall that å˘ and m˘j are defined by (5.18) and (4.22), respectively.
Thanks to (5.45), we have

ζ̊1 “ å`

b

%̊2
` ` ς̊

2
`

´a`11 ´ a
`
22 ´ 2a`12

2
´ rω`

¯

“ å`

b

%̊2
` ` ς̊

2
`

´F`2 å`
2

´ rω`

¯

. (5.53)

Using (5.45) and (5.47) yields

ζ̊2 “ å´

b

%̊2
´ ` ς̊

2
´

´F´2 ` 2F´3
2

å´ ` rω´

¯

. (5.54)

It follows from (5.43a) that

a`11 ´ a
`
22 ` 2a`12

2
“

2rω2
` ´ 2a`12pa

`
12 ` a

`
21q

a`11 ´ a
`
22 ´ 2a`12

.

By virtue of this last identity, we obtain

ζ̊3 “ å`å´

!´

rω` ´
a`11 ´ a

`
22 ` 2a`12

2

¯

pm`2 ´m
`
1 q ´ 2a`12m

`
1

)

“ å`å´pm
`
2 ´m

`
1 qrω`

´

1´
2rω`

a`11 ´ a
`
22 ´ 2a`12

¯

`
2̊a`å´a

`
12

a`11 ´ a
`
22 ´ 2a`12

 

pm`2 ´m
`
1 qpa

`
12 ` a

`
21q ´m

`
1 pa

`
11 ´ a

`
22 ´ 2a`12q

(

.

Use (5.45) and (5.47) to deduce

pm`2 ´m
`
1 qpa

`
12 ` a

`
21q ´m

`
1 pa

`
11 ´ a

`
22 ´ 2a`12q

“ å`
`

m`2 F
`
3 ´m

`
1 pF

`
2 ` F`3 q

˘

“ 0,

which, combined with (5.45), yields

ζ̊3 “ å`å´pm
`
2 ´m

`
1 qrω`

´

1´
2rω`

å`F`2

¯

. (5.55)
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Similar to the derivation of (5.55), we can infer from (5.43b), (5.45), and (5.47)
that

ζ̊4 “ å`å´pm
´
2 `m

´
1 qrω´

´

1`
2rω´

å´pF´2 ` 2F´3 q

¯

. (5.56)

Therefore, we find that ∆ “ ∆1∆2∆3|x2“0, where

∆1 :“
F`2 å`

2
´ rω`, ∆2 :“

F´2 ` 2F´3
2

å´ ` rω´,

∆3 :“ det

¨

˚

˝

å`

b

%̊2
` ` ς̊

2
` å´

b

%̊2
´ ` ς̊

2
´

2pm`2 ´m
`
1 q

F`2
å´rω`

2pm´2 `m
´
1 q

F´2 ` 2F´3
å`rω´

˛

‹

‚

.

If
`

V̊ ˘, Ψ̊˘
˘

“ 0, then F˘2 “ ˘2 sΓ {c̄, F˘3 “ 0, m˘1 “ 0, and m˘2 “ 1{p sΓ c̄h̄q.
Thus,

∆1|pV̊ ,Ψ̊q“0 “ c̄´1
sΓ pτ ` iv̄ηq ´ ω`, ∆2|pV̊ ,Ψ̊q“0 “ ´c̄

´1
sΓ pτ ´ iv̄ηq ` ω´,

∆3|pV̊ ,Ψ̊q“0 “ ´
1
sΓ 2h̄

 

ω´pτ ` iv̄ηq2 ` ω`pτ ´ iv̄ηq2
(

.

Recalling the proof of Lemma 3.4 and using the continuity of ∆k with respect
to pV̊ ,∇Ψ̊q, we find that, if perturbation

`

V̊ ,∇Ψ̊
˘

is suitably small inW 2,8pΩq,
then ∆1 and ∆2 never vanish on R2 ˆ Ξ, and ∆3pt, x1, τ, ηq ‰ 0 for η “ 0.
Consequently, ∆pt, x1, τ, ηq “ 0 if and only if ∆3pt, x1, τ, ηq “ 0 and η ‰ 0.

Let η ‰ 0. Setting z :“ τ{piηq, we obtain that ∆3{piηq
3 “ Q̊1pzq ` Q̊2pzq,

where

Q̊1pzq :“
2pm´2 `m

´
1 q

F´2 ` 2F´3

b

%̊2
` ` ς̊

2
`

å2
`rω´

piηq3
,

Q̊2pzq :“
2pm`1 ´m

`
2 q

F`2

b

%̊2
´ ` ς̊

2
´

å2
´rω`

piηq3
.

As in the proof of Lemma 3.4, we define

P̊ pzq :“ c̄2h̄2
sΓ 2
`

Q̊1pzq
2 ´ Q̊2pzq

2
˘

.

When
`

V̊ , Ψ̊
˘

“ 0, P̊ pzq is exactly a polynomial P pzq of degree 5, given

by (3.44). As a consequence, if K in (4.2) is suitably small, then P̊ pzq is
a polynomial function with degree 5 or 6, and there are functions z̊k, k P
t0,˘1,˘2,˘3u, of

`

V̊ , Ψ̊
˘

such that

P̊ pzq “ p̊z3z ` 1qP̊1pzq, P̊1pzq “ z̊´3

ź

kPt0,˘1,˘2u

pz ´ z̊kq,

where z̊3 and P̊1pzq satisfy that

z̊3 “ 0, P̊1pzq “ P pzq when
`

V̊ , Ψ̊
˘

“ 0.
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Under condition (2.25), we can compute that the discriminants of djP pzq
dzj ,

j P t0, 1, 2, 3u, are all positive. Since the discriminant for a polynomial is con-
tinuous with respect to the coefficients of the polynomial, we take K suitably

small to conclude that the discriminants of dj P̊1pzq
dzj , j P t0, 1, 2, 3u, are all pos-

itive. Consequently, roots z̊k, k P t0,˘1,˘2u, of P̊1pzq are real and distinct.
Noting that the coefficients of P̊ pzq are all real, we obtain that z̊˘3 are

both real. Since z̊k, k P t0,˘1,˘2u, are all different, we infer that z̊k, k P
t0,˘1,˘2,˘3u, can be expressed as continuous functions of the coefficients
of P̊ pzq. Choosing K in (4.2) sufficiently small, we see that z̊´3 is always
nonzero, z̊3 and z̊0 are in a small neighborhood of 0, and z̊k, k P t˘1,˘2u, are
respectively in a small neighborhood of ˘z|k| with z1 and z2 given by (3.48).

We then use (5.40) and employ an entirely similar argument as in the proof
of Lemma 3.4 to conclude the result as expected. l

In view of Lemma 5.4, we can obtain the following result by using the
continuity of A˘k and the fact that the perturbation, pV̊ , Ψ̊q, has a compact
support (see [15, Page 423] for the proof of Proposition 5.3 (c)).

Proposition 5.3 Assume that pV̊ , Ψ̊q satisfies (4.1)–(4.2) with K being suffi-
ciently small. Then we can find neighborhoods V q

c of Υ qc , q P t0,˘1u, in sΩˆΞ
such that

(a) V q
c X pΥp Y Υndq “ ∅.

(b) Matrix A defined by (5.37) is diagonalizable on V q
c . In particular, there

exist matrices Q˘0 P Γ0
2 such that

Q˘0 pzqA
˘pzqQ˘0 pzq

´1 “ diag
`

ω˘pzq, ω
1
˘pzq

˘

“: D˘1 (5.57)

for all z “ pt, x, τ, ηq P V q
c , where ω`pzq ‰ ω1`pzq and ω´pzq ‰ ω1´pzq.

(c) Let ~ be Imω` or Imω´. Then the solution of the system:

$

’

’

’

’

’

&

’

’

’

’

’

%

dt

dx2
“
B~
Bδ
pt, x1, x2, τ, ηq,

dx1

dx2
“
B~
Bη
pt, x1, x2, τ, ηq,

dδ

dx2
“ ´

B~
Bt
pt, x1, x2, τ, ηq,

dη

dx2
“ ´

B~
Bx1

pt, x1, x2, τ, ηq,

pt, x1, γ ` iδ, ηq|x2“0 P V q
c X tx2 “ 0u

(5.58)

defines a curve pt, x1, γ ` iδ, ηq for all x2 ě 0, which remains in V q
c and

is called the bicharacteristic curve.

In order to absorb the error terms caused by microlocalization, as in [15,
17], we will construct the weight functions that vanish on the bicharacteristic
curves originating from Υc and that are nonzero far from these curves.

We define the complex-valued functions: For all z “ pt, x1, τ, ηq P R2 ˆ Ξ1

with τ “ γ ` iδ,

σqpzq :“ ´iγ ` rσqpzq, rσqpzq :“ δ ´ ηz̊qpt, x1q, q P t0,˘1u, (5.59)
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and extend σq to R2 ˆΞ as a homogeneous mapping of degree 1 with respect
to pτ, ηq. Functions z̊0pt, x1q and z̊˘1pt, x1q are given by Lemma 5.4 and cor-
respond to the points where the Lopatinskĭı determinant vanishes. Symbol σq
thus belongs to Γ1

2 such that

Υ qc “
 

z “ pt, x1, τ, ηq P R2 ˆΞ : σqpzq “ 0
(

.

In view of Proposition 5.3(c), we can construct solutions σq˘ of the linear
transport equations:

$

’

&

’

%

B2σ
q
` ` tσ

q
`, Imω`u “ 0 if x2 ą 0,

B2σ
q
´ ` tσ

q
´, Imω´u “ 0 if x2 ą 0,

σq` “ σq´ “ σq if x2 “ 0,

(5.60)

where σq is given in (5.59), and t¨, ¨u is the Poisson bracket defined by (5.28).
Then we infer that σq` (resp. σq´) is constant along each bicharacteristic curve
defined by (5.58) with ~ “ Imω` (resp. ~ “ Imω´). In particular, function σq`
(resp. σq´) vanishes only on the bicharacteristic curves originated from Υ qc with
~ “ Imω` (resp. ~ “ Imω´). By shrinking V q

c if necessary, we may assume
that σq˘ are defined in the whole set V q

c . We will see that functions σq˘ are
appropriate to deal with the error terms appearing in the energy estimates.

From the above analysis, the whole space sΩ ˆ Ξ is naturally divided into
three disjoint subsets: Υp, Vc, and sΩˆΞzpΥpYVcq, where Vc :“ V ´1

c YV 0
c YV 1

c .
To derive our energy estimate (5.21), we introduce smooth cut-off functions
according to this division. More precisely, we introduce nonnegative functions
χ˘p and χqc (with values in r0, 1s), q P t0,˘1u, such that

– χ˘p and χqc are C8 and homogeneous of degree 0 with respect to pτ, ηq so
that they belong to Γ0

k for all integer k;

– suppχqc Ă V q
c and χqc ” 1 in a neighborhood of the bicharacteristic curves

originated from the critical set Υ qc ;

– χ˘p ” 1 in a neighborhood of Υ˘p , suppχ`p X suppχ´p “ ∅, and suppχ˘p X
suppχqc “ ∅ for all q P t0,˘1u.

Since σq` and σq´ vanish only on the bicharacteristic curves originated from
Υ qc , there exists a constant c such that

|σq˘| ě c ą 0 in tχqc ă 1u X V q
c . (5.61)

We also define

χp :“ χ`p ` χ
´
p , χc :“ χ´1

c ` χ0
c ` χ

1
c , χu :“ 1´ χp ´ χc. (5.62)

Then χu has support far from the poles and the bicharacteristic curves origi-
nated from Υc. We observe that the Lopatinskĭı determinant does not vanish
on suppχu X tx2 “ 0u. This enables us to apply the standard Kreiss’ sym-
metrizers to derive the energy estimate for T γχuW

nc, which will be shown in
§ 5.4. After that, we will show how the traces of T γχpW

nc and T γχcW
nc can be

estimated. At the end of this section, we will complete the proof of Theorem
5.1 by using a weighted energy estimate with the weight functions σq˘ given
by (5.60). In particular, we will prove that the microlocalization error terms
can be absorbed by such a weighted estimate.
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5.4 Estimate at Good Frequencies

In this subsection, we show how the solutions of problem (5.20) can be esti-
mated for the frequencies that are far from both the poles Υp and the critical
set Υc. We define

W nc
u :“ pT γχuW

`
2 , T

γ
χuW

`
3 , T

γ
χuW

´
2 , T

γ
χuW

´
3 q

T

and introduce a smooth cut-off function rχu with values in r0, 1s such that

rχu ” 1 on suppχu, supp rχu X Υp “ ∅, psupp rχu X tx2 “ 0uq X Υc “ ∅,

where χu is given by (5.62). Employing the same analysis as in § 5.2, we derive
that W nc

u satisfies

#

B2W
nc
u “ T γAuW

nc
u ` T γEW

nc
u ` T γrW `R0T

γ
χuF `R´1W, x2 ą 0,

T γβW
nc
u “ G`R´1W

nc, x2 “ 0,
(5.63)

where β P Γ0
2 is given by (5.17) for pτ, ηq P Ξ1. The symbol matrices Au is

defined as Ar in (5.36) with rχ˘ replaced by rχu. Both E and r have the same
block diagonal structure as Au and belong to Γ0

1. We note that Au ” A on
region trχu ” 1u, and r is identically zero on region tχu ” 1u Y tχu ” 0u.

In view of Lemma 5.4, we find that the Lopatinskĭı determinant never
vanishes on suppχuXtx2 “ 0u. Note that the perturbation,

`

V̊ , Ψ̊
˘

, is assumed
in (4.1) to have a compact support. In the following lemma, we construct the
Kreiss’ symmetrizers that are microlocalized at all frequencies in the compact
set K, where

K :“ suppχu X t´T ď t ď 2T, x2 ě 0, |x| ď R, pτ, ηq P Ξ1u.

Lemma 5.5 Assume that (4.1)–(4.2) hold for a sufficiently small positive
constant K. Then, for each z0 P K, there exist a neighborhood V of z0 in K
and C8–mappings rpzq and T pzq defined on V such that

(a) Matrix rpzq is Hermitian, and T pzq is invertible for all z P V ;

(b) There exists c ą 0 so that

Re
`

rpzqT pzqApzqT pzq´1
˘

ě cγI for all z P V with γ “ Re τ ; (5.64)

(c) If z0 P KX tx2 “ 0u, then there exists a positive constant C so that

rpzq ` C
`

βpzqT pzq´1
˘˚
βpzqT pzq´1 ě I (5.65)

for all z P V X tx2 “ 0u,

where A and β are given by (5.37) and (5.17), respectively.

To prove Lemma 5.5, we first establish the following result.
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Lemma 5.6 Let z0 “ pt0, x0, τ0, η0q P sΩ ˆ Ξ1 so that Re τ0 “ 0 and τ0 ‰
i
`

´ C̊`2 ˘pC̊
`
1 q
´1

˘

η0. Assume that K given in (4.2) is sufficiently small. Then
there exists a neighborhood V of z0 in sΩ ˆΞ1 such that

Reω`pzq À ´γ, Reω1`pzq Á γ (5.66)

for all z “ pt, x, τ, ηq P V with γ “ Re τ. A similar result holds for ω´ and
ω1´ near z0 “ pt0, x0, τ0, η0q P sΩ ˆ Ξ1 so that Re τ0 “ 0 and τ0 ‰ i

`

´ C̊´2 ˘

pC̊´1 q
´1

˘

η0.

Proof This proof is divided into two steps.

1. If Reω`pz0q ă 0, then one uses the identities:

rω` “ ω` ´
a`11 ` a

`
22

2
, ´rω` “ ω1` ´

a`11 ` a
`
22

2
, (5.67)

and (5.49) to infer that Reω1`pz0q ą 0 for sufficiently small K. Since γ “
Re τ ď 1 for pτ, ηq P Ξ1, estimates (5.66) follow directly from the continuity of
ω`pzq and ω1`pzq with respect to z.

2. Assume that Reω`pz0q “ 0. It follows from Re τ0 “ 0 and (5.49) that
Re rω`pz0q “ 0. Thanks to (5.40), η2

0 ă pC̊
`
1 q

2pδ0 ` C̊`2 η0q
2 for δ0 “ Im τ0 so

that δ0 ‰ ´C̊
`
2 η0. For all piδ, ηq with pC̊`1 q

2
`

δ ` C̊`2 η
˘2
ą η2, we apply (5.40)

again to derive that

δ ‰ ´C̊`2 η, rω`pt, x, iδ, ηq “ ´i sgnpδ ` C̊`2 ηqC̊
`
0

b

pC̊`1 q
2pδ ` C̊`2 ηq

2 ´ η2. (5.68)

Since τ0 ‰ ip´C̊`2 ˘pC̊
`
1 q
´1qη0, rω` depends analytically on pτ, ηq by applying

the implicit functions theorem to (5.38). In particular, we obtain that, for z
near z0,

rω`pt, x, τ, ηqBγrω`pt, x, τ, ηq “ pC̊
`
0 C̊

`
1 q

2pτ ` iC̊`2 ηq. (5.69)

From (5.68)–(5.69), Bγrω`pt, x, iδ, ηq is real and negative for pt, x, iδ, ηq in a
suitable neighborhood V of z0. Using the Taylor expansion yields that, for all
pτ, ηq P V ,

rω`pτ, ηq “ rω`piδ, ηq ` Bγrω`piδ, ηqγ `Opγ
2q pγ Ñ 0q.

Then we deduce that Re rω` À ´γ, up to shrinking V . In view of (5.49) and
(5.67), estimates (5.66) follow by taking K small enough. l

Proof of Lemma 5.5 The proof is divided into two cases.

Case 1. Let z0 P KzΥnd with Υnd given in (5.41). In light of Lemmas 5.4
and 5.6, we can find a neighborhood V of z0 in K such that

Reω˘pzq À ´γ, Reω1˘pzq Á γ for all z P V , (5.70)
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and

∆pzq ‰ 0 for all z P V X tx2 “ 0u. (5.71)

According to Lemma 5.3, matrix A is diagonalizable in V . Indeed, a smooth
basis of the eigenvectors is given by

E`pzq, Y`pzq :“
`

pτ ` i̊v`1 ηqp´a
`
22 ` ω

1
`q, pτ ` i̊v`1 ηqa

`
21, 0, 0

˘T
, (5.72)

E´pzq, Y´pzq :“
`

0, 0, pτ ` i̊v´1 ηqa
´
12, pτ ` i̊v´1 ηqp´a

´
11 ` ω

1
´q
˘T
, (5.73)

where E˘ are given by (5.39). Notice that E˘ and Y˘ are linearly indepen-
dent in V . We can thus define the smooth and invertible matrix T pzq :“

pE` E´ Y` Y´q
´1

in V so that

T pzqApzqT pzq´1 “ diag pω`, ω´, ω
1
`, ω

1
´q for all z P V .

Construct the symmetrizer, rpzq, as

rpzq :“ diag p´1,´1,K 1,K 1q for all z P V , (5.74)

where K 1 ě 1 is a constant to be chosen. Then we can obtain (5.64) from
(5.70) directly.

Thanks to (5.71), we have
ˇ

ˇβpzqpE`pzq E´pzqqZ
´
ˇ

ˇ Á |Z´| for all z P V X tx2 “ 0u, Z´ P C2. (5.75)

This implies
|Z´|2 ď C0

`

|Z`|2 ` |βpzqT pzq´1Z|2
˘

for all Z “ pZ´, Z`qT P C4 with Z˘ P C2, where C0 is some positive constant
independent of z P V . Then we have

@`

rpzq ` 2C0

`

βpzqT pzq´1
˘˚
βpzqT pzq´1

˘

Z,Z
D

C4

“ ´|Z´|2 `K|Z`|2 ` 2C0

ˇ

ˇβpzqT pzq´1Z
ˇ

ˇ

2

ě |Z´|2 ` pK 1 ´ 2C0q|Z
`|2 ě |Z|2

by choosing K 1 ě 2C0 ` 1, which implies (5.65).

Case 2. Let z0 P K X Υnd. Then symbol A is not diagonalizable at z0.
We consider without loss of generality that z0 “ pt0, x0, τ0, η0q P K satisfies
τ0 “ ´ipC̊`2 ˘ pC̊

`
1 q
´1qη0. The case, τ0 “ ´ipC̊´2 ˘ pC̊

´
1 q
´1qη0, can be dealt

with in an entirely similar way. Using (3.36) and the continuity of C̊˘j in

pV̊ ˘,∇Ψ̊˘q, we take K sufficiently small to find

τ0 ` i̊v`1 η0 ‰ 0, τ0 ‰ ´ipC̊´2 ˘ pC̊
´
1 q
´1qη0,

which, combined with (5.38) and (5.45), imply
`

a`11 ´ a
`
22 ´ 2a`12

˘

pz0q “ F`2 pz0qa`pz0q ‰ 0, ω´pz0q ‰ ω1´pz0q.
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Since rω`pz0q “ 0, we use (5.43a), (5.45), and (5.47) to obtain

pa`11 ´ a
`
22qpz0q

2
“ ´

´

1`
2F`3 pz0q

F`2 pz0q

¯

a`12pz0q, (5.76)

and hence

pa`11 ´ ω`qpz0q “
a`11 ´ a

`
22

2
pz0q ´ rω`pz0q “ ´

´

1`
2F`3 pz0q

F`2 pz0q

¯

a`12pz0q ‰ 0.

In view of (5.39) and (5.72)–(5.73), we find that the vectors:

rE` :“ p´a`12,´pF
`
2 ` 2F`3 qa

`
12{F

`
2 , 0, 0q

T, rY` :“ pi, 0, 0, 0qT, E´pzq, Y´pzq

form a smooth basis in neighborhood V . Define T pzq :“
`

rE` rY` E´ Y´
˘´1

.
Then

T pzqApzqT pzq´1 “

¨

˝

ar 0 0
0 ω´ 0
0 0 ω1´

˛

‚ for all z P V ,

where ar is the 2ˆ 2 matrix with pi, jq–entry aijr pzq:

a11
r pzq “

p2F`3 ` F`2 qa
`
22 ` F`2 a

`
21

2F`3 ` F`2
, a12

r pzq “
´F`2 a

`
21i

p2F`3 ` F`2 qa
`
12

,

a22
r pzq “

p2F`3 ` F`2 qa
`
11 ´ F`2 a

`
21

2F`3 ` F`2
, a21

r pzq “
a`12ã

21
r pzq

p2F`3 ` F`2 qF
`
2 i

with

ã21
r pzq :“ F`2 p2F

`
3 ` F`2 qpa

`
22 ´ a

`
11 ´ 2a`12q ´ 4pF`3 q

2a`12 ` pF
`
2 q

2pa`12 ` a
`
21q.

By virtue of (5.45), (5.47), and (5.76), we derive

2F`2 a
`
21pz0q “ ´2F`2 a

`
12pz0q ` 2F`3 pa

`
11 ´ a

`
22 ´ 2a`12qpz0q

“ p2F`3 ` F`2 qpa
`
11 ´ a

`
22qpz0q,

ã21
r pz0q “ 4F`3 pF

`
3 ` F`2 qa

`
12pz0q ` pF`2 q

2pa`12 ` a
`
21qpz0q

“ 4F`3 pF
`
3 ` F`2 qa

`
12pz0q ` F`2 F

`
3 pa

`
11 ´ a

`
22 ´ 2a`12qpz0q

“ 0,

which implies

a11
r pz0q ´ a

22
r pz0q “ a21

r pz0q “ 0. (5.77)

We now look for a symmetrizer r with the form:

rpzq “

¨

˝

spzq 0 0
0 ´1 0
0 0 K 1

˛

‚,
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where K 1 ě 1 is some real constant, and s is some 2 ˆ 2 Hermitian matrix,
depending smoothly on z. Both K 1 and s are to be fixed such that (5.65) holds
for z P V X tx2 “ 0u when z0 P tx2 “ 0u and (5.64) holds for all z P V .

We recall that ∆pzq ‰ 0 in V X tx2 “ 0u so that (5.75) holds. Noting that
the first and third columns of T pz0q

´1 are E`pz0q and E´pz0q, we can find a
positive constant C0 such that, if z0 P KX tx2 “ 0u, then

|Z1|
2 ` |Z3|

2 ď C0

`

|Z2|
2 ` |Z4|

2 ` |βpz0qT pz0q
´1Z|2

˘

for all Z “ pZ1, Z2, Z3, Z4q
T P C4. Assume that the Hermitian matrix s satis-

fies

spz0q “

ˆ

0 e1

e1 e2

˙

“: E, (5.78)

where e1 and e2 are some real constants to be fixed. Then we have

@`

rpz0q ` C
1C0

`

βpz0qT pz0q
´1

˘˚
βpz0qT pz0q

´1
˘

Z,Z
D

C4

“ 2e1 RexZ1, Z2yC ` e2|Z2|
2 ´ |Z3|

2 `K 1|Z4|
2 ` C 1C0

ˇ

ˇβpz0qT pz0q
´1Z

ˇ

ˇ

2

ě pC 1 ´maxt|e1|, 1uq
`

|Z1|
2 ` |Z3|

2
˘

` pe2 ´ |e1| ´ C
1C0q|Z2|

2 ` pK 1 ´ C 1C0q|Z4|
2.

We choose C 1 “ maxt|e1|, 1u ` 2, e2 “ |e1| `C
1C0 ` 2, and K 1 “ C 1C0 ` 2 to

obtain

rpz0q ` C
1C0

`

βpz0qT pz0q
´1

˘˚
βpz0qT pz0q

´1 ě 2I.

Using the continuity and shrinking V if necessary, we derive estimate (5.65)
for C “ C 1C0.

It remains to choose a suitable Hermitian matrix spτ, ηq and e1 P R such
that both (5.64) and (5.78) hold. Since τ0 ‰ ´ipC̊´2 ˘pC̊

´
1 q
´1qη0, we find that

Reω´pzq À ´γ and Reω1´pzq Á γ for all z P V from Lemma 5.6. Consequently,
it suffices to find e1 P R and a Hermitian matrix spzq satisfying (5.78) and

Re pspzqarpzqq Á γI for all z P V . (5.79)

To this end, we let

spzq “ E ` F pzq ` γGpzq

for some smooth 2 ˆ 2 Hermitian matrices F and G satisfying F pz0q “ 0,
where E is defined by (5.78). In light of Taylor’s formula, we may write

arpzq “ arpt, x, γ ` iδ, ηq “ arpt, x, iδ, ηq ` γBγarpt, x, iδ, ηq ` γ
2N1pzq

for a suitable continuous function N1. Noting from (5.22) and (5.37) that
aijr pt, x, iδ, ηq are purely imaginary, we may choose

F pzq :“ diag pfpzq, 0q
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with

fpzq “
e1pa

11
r ´ a

22
r qpt, x, iδ, ηq ` e2a

21
r pt, x, iδ, ηq

a12
r pt, x, iδ, ηq

,

so that matrix pE ` F pzqqarpt, x, iδ, ηq is symmetric and purely imaginary for
all z P V . It follows from (5.77) that F pz0q “ 0. Therefore, we have

Re pspzqarpzqq

“ Re
 

γpE ` F pzqqBγarpt, x, iδ, ηq ` γGpzqarpt, x, iδ, ηq ` γ
2N2pzq

(

“ γ Re tEBγarpt, x, iδ, ηq `Gpzqarpt, x, iδ, ηq `N3pzqu

for some continuous functions N2 and N3 satisfying N3pz0q “ 0, where we have
used F pz0q “ 0. According to (3.28), we see that, for τ̃ “ ´ip sC2 ˘ sC´1

1 qη0,

Bγa
21
r pt0, x0, τ̃ , η0q|pV̊ ,Ψ̊q“0 “ Bγ t2im`pm` ´ µ`qu pτ̃ , η0q

“
2i sΓ 2piη0 ` ε

2v̄τ̃q

pτ̃ ` iv̄η0q
3

ˆ

!

2ε2c̄2v̄pτ̃ ` iv̄η0qpiη0 ` ε
2v̄τ̃q2 ´ c̄2piη0 ` ε

2v̄τ̃q3 ´ ε2v̄pτ̃ ` iv̄η0q
3
)

“ 2 sΓ 2p1´ ε2v̄2q
η2

0piη0 ` ε
2v̄τ̃q

τ̃ ` iv̄η0
P Rzt0u,

where we have used c̄2piη0 ` ε
2v̄τ̃q2 “ pτ̃ ` iv̄η0q

2 and condition (2.10). Then
Bγa

21
r pz0q is always non-zero by choosing K sufficiently small and using the

continuity of A˘j and C̊˘j . In order to obtain (5.64), we choose

e1 :“
`

Bγa
21
r pz0q

˘´1
, Gpzq :“

ˆ

0 ig

´ig 0

˙

for some positive constant g. This choice of e1 and G yields

Re tEBγarpz0q `Gpzqarpz0qu “

ˆ

1 ‹

‹ ‹

˙

`

ˆ

0 iga22
r pz0q

´iga11
r pz0q ´iga12

r pz0q

˙

,

where the entries with ‹ are the coefficients that depend only on z0, e1, and
e2 (which have been fixed earlier). Notice that, if pV̊ , Ψ̊q “ 0, then

a11
r pz0q “ ´a

22
r pz0q “ pµ` ´m`qpτ̃ , η0q “ 0, a12

r pz0q “ i

for τ̃ “ ´ip sC2 ˘ sC´1
1 qη0. Then we can take K sufficiently small, g suitably

large, and shrink V to conclude (5.64). This completes the proof. l

Thanks to Lemma 5.5, one can deduce the following lemma by using a
partition of unity. We refer to [4, Theorem 9.1] and [52, § 4.7.3] for a detailed
derivation of the following “global” symmetrizer S.
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Lemma 5.7 Assume that (4.1)–(4.2) hold for a sufficiently small positive
constant K. Then there exists a mapping

S : sΩ ˆ pR2 ˆ R`zt0uq ÑM4pCq

that satisfies the following properties:

(a) For all z P sΩ ˆ pR2 ˆ R`zt0uq, matrix Spzq is Hermitian and S P Γ2
2;

(b) For all z “ pt, x1, δ, η, γq P BΩ ˆ pR2 ˆ R`zt0uq,

rχupzq
2Spzq ` Crχupzq

2λ2,γβpzq˚βpzq ě crχupzq
2λ2,γI,

where λm,γ :“ pγ2 ` δ2 ` η2qm{2;

(c) There exists a finite set of matrix-valued mappings Vj, Hj, and Ej such
that

Re pSpzqAupzqq “
ÿ

j

Vjpzq
˚

ˆ

γHjpzq 0
0 Ejpzq

˙

Vjpzq,

where Vj and Ej belong to Γ1
2, Hj P Γ0

2, and the following estimates hold:
ÿ

j

Vjpzq
˚Vjpzq ě cλ2,γ

rχupzq
2I, Hjpzq ě cI, Ejpzq ě cλ1,γI.

With Lemma 5.7 in hand, we can choose S as a symmetrizer for problem
(5.63) to show the energy estimate as in [15, § 3.5], for which we only give the
result here for brevity. We just recall that the components T γχuW

˘
1 are given in

terms of T γχuW
˘
2,3 by relations similar to (5.31). The estimate for T γχuW reads:

γ|||T γχuW |||
2
1,γ ` }T

γ
χuW

nc|x2“0}
2
1,γ

À }G}21,γ ` }W
nc|x2“0}

2 ` γ´1
`

|||F |||21,γ ` |||W |||
2 ` |||T γrW |||

2
1,γ

˘

, (5.80)

where symbol r P Γ0
1 vanishes on region tχu ” 1u Y tχu ” 0u.

5.5 Estimate near the Poles

This subsection is devoted to deriving the energy estimate near poles Υp “
Υ`p Y Υ´p . Matrix A is not defined at points in Υp, while the stable subspace
E´ of A admits a continuous extension at these points, due to Lemma 5.3.
We show the estimate near Υ`p without loss of generality. For this purpose, we
define two cut-off functions rχ and rχ1 with values in r0, 1s that are both C8

and homogeneous of degree 0 with respect to pτ, ηq and satisfy that

rχ ” 1 on suppχ`p , rχ1 ” 1 on supp rχ, supp rχ1 X suppχc “ ∅, (5.81)

where χ`p and χc are introduced at the end of § 5.3. As in [17], we go back to
the original problem (5.20) and set

W`
p :“ T γ

χ`p
W`, W´

p :“ T γ
χ`p
W´. (5.82)
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Then we employ the argument in the derivation of (5.29) to obtain

T γ
τA`0 `iηA`1

W`
p ` T

γ
C`

W`
p ` I2B2W

`
p “ T γrW

` ` T γ
χ`p
F` `R´1W

`, (5.83)

where r “ i
 

χ`p , τA
`
0 ` iηA`1

(

` B2χ
`
p I2 P Γ0

1. The equation for W´
p is the

same as (5.83) with index “`2 replaced by “´2.
Let us introduce symbols R` and L`1 , both belonging to Γ0

2, such that, for
pτ, ηq P Ξ1,

R` :“

¨

˝

1 k1 k2

0 ´å`a
`
12 0

0 å`pa
`
11 ´ ω`q 1

˛

‚, L`1 :“

¨

˝

1 0 0
0 1 0
l1 l2 l3

˛

‚.

Recalling from (5.22) and (5.24) that pb`ijq “ τA`0 ` iηA`1 and b`11 “ F`1 å`,
we choose

k1 “ pF`1 q
´1

 

b`12a
`
12 ´ b

`
13pa

`
11 ´ ω`q

(

, k2 “ ´b
`
23{b

`
21,

l1 “ ´pF`1 q
´1

 

b`21pa
`
11 ´ ω`q ` b

`
31a

`
12

(

, l2 “ å`pa
`
11 ´ ω`q, l3 “ å`a

`
12,

so that L`1 I2R
` “ diag p0, ´å`a

`
12, å`a

`
12q and

L`1 pτA
`
0 ` iηA`1 qR

` “

¨

˝

b`11 0 k2b
`
11 ` b

`
13

b`21 d1 0
0 d3 d2

˛

‚,

where

d1 “ b`21k1 ´ b
`
22̊a`a

`
12 ` b

`
23̊a`pa

`
11 ´ ω`q, d2 “ ljpk2b

`
j1 ` b

`
j3q “ ljb

`
j3,

d3 “ lj
`

k1b
`
j1 ´ b

`
j2̊a`a

`
12 ` b

`
j3̊a`pa

`
11 ´ ω`q

˘

“ lj
`

´b`j2̊a`a
`
12 ` b

`
j3̊a`pa

`
11 ´ ω`q

˘

.

We have used the relation: ljb
`
j1 “ 0. From (5.24) and definition (5.37) of A,

we have

d1 “ pF`1 q
´1

 

pb`21b
`
12 ´ b

`
22F

`
1 å`qa

`
12 ` p´b

`
21b

`
13 ` b

`
23F

`
1 å`qpa

`
11 ´ ω`q

(

“ pF`1 q
´1

 

b`11a
`
11a

`
12 ´ b

`
11a

`
12pa

`
11 ´ ω`q

(

“ å`a
`
12ω`,

d2 “ pF`1 q
´1

 

pa`11 ´ ω`qp´b
`
21b

`
13 ` F`1 å`b

`
23q ` a

`
12p´b

`
31b

`
13 ` F`1 å`b

`
33q

(

“ ´pF`1 q
´1

 

pa`11 ´ ω`qb
`
11a

`
12 ` a

`
12b

`
11a

`
22

(

“ å`a
`
12pω` ´ a

`
11 ´ a

`
22q,

and

F`1 d3 “ pa
`
11 ´ ω`q

2p´b`21̊a`b
`
13 ` F`1 å

2
`b
`
23q ` pa

`
12q

2å`pb
`
12b

`
31 ´ F`1 å`b

`
32q

` pa`11 ´ ω`qa
`
12̊a`pb

`
12b

`
21 ´ b

`
13b

`
31 ´ F`1 å`b

`
22 ` F`1 å`b

`
33q

“ ´ å`b
`
11a

`
12

 

pa`11 ´ ω`q
2 ´ a`12a

`
21 ´ pa

`
11 ´ ω`qpa

`
11 ´ a

`
22q

(

“ 0.



Relativistic Vortex Sheets 59

We have used (5.42) for deriving the last identity. We notice from (3.27)–(3.28)
that

å`a
`
12|pV̊ ,Ψ̊q“0 “ ´pτ ` iv̄ηqm` “ sΓ c̄piη ` ε2v̄τq2{2

does not vanish on supp rχ1 by shrinking supp rχ1 if necessary. Since å`a
`
12 is

smooth in pτ, ηq and pV̊ ,∇Ψ̊q, matrix L`2 :“ diag p1, ´p̊a`a
`
12q

´1, p̊a`a
`
12q

´1q

is a smooth and invertible mapping on supp rχ1. We then derive

L`I2R` “ I2, L` :“ L`2 L
`
1 , (5.84)

L`pτA
`
0 ` iηA`1 qR`

“

¨

˝

b`11 0 k2b
`
11 ` b

`
13

´b`21{p̊a`a
`
12q ´ω` 0

0 0 ω` ´ a
`
11 ´ a

`
22

˛

‚“: Ad`. (5.85)

We also introduce symbols R´ and L´1 that belong to Γ0
2 and satisfy that,

for pτ, ηq P Ξ1,

R´ :“

¨

˝

1 k´1 k´2
0 å´pa

´
22 ´ ω´q å´a

´
12

0 ´å´a
´
21 å´p´a

´
11 ` ω

1
´q

˛

‚,

L´1 :“

¨

˝

1 0 0
l´1 å´pa

´
11 ´ ω

1
´q å´a

´
12

l´2 å´a
´
21 å´pa

´
22 ´ ω´q

˛

‚,

with

k´1 “ pF
´
1 q
´1

 

´pa´22 ´ ω´qb
´
12 ` a

´
21b

´
13

(

,

k´2 “ pF
´
1 q
´1

 

´a´12b
´
12 ` pa

´
11 ´ ω

1
´qb

´
13

(

,

l´1 “ pF
´
1 q
´1

 

´pa´11 ´ ω
1
´qb

´
21 ´ a

´
12b

´
31

(

,

l´2 “ pF
´
1 q
´1

 

´a´21b
´
21 ´ pa

´
22 ´ ω´qb

´
31

(

,

so that L´1 I2R´ “ diag p0, d4, ´d4q and

L´1 pτA
´
0 ` iηA´1 qR´ “

¨

˝

b´11 0 0
0 d5 d6

0 d7 d8

˛

‚,

where d4 “ å2
´

 

pa´11 ´ ω
1
´qpa

´
22 ´ ω´q ´ a

´
12a

´
21

(

and

d5 “ å´pa
´
11 ´ ω

1
´q

 

b´21k
´
1 ` b

´
22̊a´pa

´
22 ´ ω´q ´ b

´
23̊a´a

´
21

(

` å´a
´
12

 

b´31k
´
1 ` b

´
32̊a´pa

´
22 ´ ω´q ´ b

´
33̊a´a

´
21

(

.
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We omit the expressions for dj , j P t6, 7, 8u, since they are quite similar to
that of d5. By virtue of the identity: a´22 ´ ω´ “ ´a´11 ` ω1´ and (5.42), we
deduce

pa´11 ´ ω
1
´qpa

´
22 ´ ω´q ´ a

´
12a

´
21 “ ´pa

´
22 ´ ω´q

2 ´ a´12a
´
21

“ pω´ ´ a
´
22qp´2ω´ ` a

´
11 ` a

´
22q, (5.86)

which yields d4 “ å2
´pω´ ´ a

´
22qp´2ω´ ` a

´
11 ` a

´
22q. Using (5.22), (5.24), and

the identity: a´22 ´ ω´ “ ´a
´
11 ` ω

1
´, we compute

d5 “ å2
´

 

a´11pa
´
22 ´ ω´q

2 ´ 2a´12a
´
21pa

´
22 ´ ω´q ` a

´
12a

´
21a

´
22

(

,

which, combined with (5.42) and (5.86), implies

d5 “ å2
´ω´pω´ ´ a

´
22qp2ω´ ´ a

´
11 ´ a

´
22q “ ´ω´d4.

Performing the similar calculations to dj for j “ 6, 7, 8, we can discover that
d6 “ d7 “ 0 and d8 “ ω1´d4 so that

L´1 pτA
´
0 ` iηA´1 qR´ “ diag p0, ´ω´d4, ω

1
´d4q.

Note that d4 does not vanish in neighborhood supp rχ1 of Υ`p up to shrinking

supp rχ1. Setting L´2 :“ diag p1, d´1
4 , ´d´1

4 q and L´ :“ L´2 L
´
1 , we obtain

#

L´I2R´ “ I2,

L´pτA
´
0 ` iηA´1 qR´ “ diag pb´11, ´ω´, ´ω

1
´q “: Ad´.

(5.87)

Let us define

Z` :“ T γ
rχR´1
`

W`
p , Z´ :“ T γ

rχR´1
´

W´
p .

Applying operator T γ
rχL`

to (5.83) and using (5.84) yield

T γ
rχL`pτA

`
0 `iηA`1 q

W`
p ` T

γ

´i
ř1
j“0 Bξj prχL`qBxj pτA

`
0 `iηA`1 q

W`
p ` T

γ
rχL`C`

W`
p

“ ´T γ
rχL`I2

B2W
`
p ` T

γ
rχL`

T γrW
` ` T γ

rχL`
T γ
χ`p
F` `R´1W

`

“ ´I2B2Z
` ` T γ

I2B2prχR
´1
`
q
W`
p ` T

γ
rχL`

T γrW
` ` T γ

rχL`
T γ
χ`p
F` `R´1W

`,

where x0 :“ t, ξ0 :“ δ, and ξ1 :“ η to avoid overloaded equations. On the
other hand, it follows from (5.82) and (5.85) that

T γ
Ad
`

Z` “ T γ
rχL`pτA

`
0 `iηA`1 q

W`
p ` T

γ

´i
ř1
j“0 BξjA

d
`
Bxj prχR

´1
`
q
W`
p `R´1W

`.

Then we have

I2B2Z
` ` T γ

rAd
`

Z` ` T γDp
`

Z` “ T γrW
` `R0T

γ

χ`p
F` `R´1W

` (5.88)
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for new r P Γ0
1 vanishing on tχ`p ” 1u Y tχ`p ” 0u, where rAd` is an extension

of Ad` to the whole set sΩ ˆΞ, and Dp` P Γ0
1 is given by

Dp` :“ rχL`C
`R` ´ I2B2prχR

´1
` qR`

` i
ÿ

j“0,1

 

Bξj
rAd`Bxj prχR

´1
` q ´ Bξj prχL`qBxj pτA

`
0 ` iηA`1 q

(

R`.

Similarly, we have

I2B2Z
´ ` T γ

rAd
´

Z´ ` T γDp
´

Z´ “ T γrW
´ `R0T

γ

χ`p
F´ `R´1W

´, (5.89)

where r P Γ0
1 vanishes on tχ`p ” 1u Y tχ`p ” 0u, rAd´ is an extension to the

whole set sΩ ˆ Ξ of Ad´, and Dp´ P Γ0
1. According to the definitions of R˘, we

have

Znc “ T γ
rχ rR´1

T γ
χ`p
W nc, (5.90)

where Znc :“ pZ`2 , Z
`
3 , Z

´
2 , Z

´
3 q

T and

rR :“

¨

˚

˚

˝

´å`a
`
12 0 0 0

å`pa
`
11 ´ ω`q 1 0 0

0 0 å´pa
´
22 ´ ω´q å´a

´
12

0 0 ´å´a
´
21 å´p´a

´
11 ` ω

1
´q

˛

‹

‹

‚

.

Note from (5.39) that the first and third columns of rR are E` and E´. By
virtue of (5.20c), we obtain the following boundary conditions in terms of Znc:

T γβpE` E´q

ˆ

Z`2
Z´2

˙

`R0

ˆ

Z`3
Z´3

˙

“ R0G`R´1W
nc if x2 “ 0. (5.91)

For problem (5.88)–(5.89) and (5.91), we obtain the following energy esti-
mate:

Lemma 5.8 There exists constants K0 ď 1 and γ0 ě 1 such that, if γ ě γ0

and K ď K0 for K given in (4.2), then

γ|||Z˘|||21,γ ` }pZ
˘
2 , Z

˘
3 q|x2“0}

2
1,γ

À }G}21,γ ` }W
nc|x2“0}

2 ` γ´1
`

|||T γ
χ`p
F |||21,γ ` |||W |||

2 ` |||T γrW |||
2
1,γ

˘

, (5.92)

where symbol r P Γ0
1 vanishes in region tχ`p ” 1u Y tχ`p ” 0u.

Proof We divide the proof into five steps.

1. Estimate for Z`3 . According to the form of Ad` given by (5.85), the third
equation in (5.88) for Z`3 reads

B2Z
`
3 “ T γ

´ω``a
`
11`a

`
22

Z`3 ` T
γ
α0
Z` ` T γrW

` `R0T
γ

χ`p
F`3 `R´1W

`. (5.93)
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Take the scalar product in L2pΩq of (5.93) with Λ2,γZ`3 to obtain

}Z`3 |x2“0}
2
1,γ ` 2 Re⟪Λ1,γZ`3 , Λ

1,γT γ
´ω``a

`
11`a

`
22

Z`3 ⟫ “
4
ÿ

j“1

Hj , (5.94)

where each term Hj in the decomposition is defined in the following:

H1 :“ ´2 Re⟪Λ1,γZ`3 , Λ
1,γT γα0

Z`⟫ À |||Z`|||21,γ ,

H2 :“ ´2 Re⟪Λ1,γZ`3 , Λ
1,γT γrW

`⟫ À εγ|||Z`3 |||
2
1,γ `

1

εγ
|||T γrW

`|||21,γ ,

H3 :“ ´2 Re⟪Λ1,γZ`3 , Λ
1,γR0T

γ

χ`p
F`3 ⟫ À εγ|||Z`3 |||

2
1,γ `

1

εγ
|||T γ

χ`p
F`3 |||

2
1,γ ,

H4 :“ ´2 Re⟪Λ1,γZ`3 , Λ
1,γR´1W

`⟫ À εγ|||Z`3 |||
2
1,γ `

1

εγ
|||W`|||2.

For the second term on the left-hand side of (5.94), we employ Lemma 5.2 (iv)
to deduce

Re⟪Λ1,γZ`3 , Λ
1,γT γ

´ω``a
`
11`a

`
22

Z`3 ⟫
ě Re⟪Λ1,γZ`3 , T

γ

´ω``a
`
11`a

`
22

Λ1,γZ`3 ⟫´ C|||Z`3 |||21,γ .

Thanks to (5.49), Repa`11 ` a`22q “ F`4 γ, where F`4 is a smooth function of

pV̊ ,∇Ψ̊q that vanishes at the origin. We then employ Lemma 5.6 and take
K in (4.2) sufficiently small to obtain that Rep´ω` ` a`11 ` a`22q Á γ. Apply
G̊arding’s inequality (Lemma 5.2 (vi)) to obtain

Re⟪Λ1,γZ`3 , T
γ

´ω``a
`
11`a

`
22

Λ1,γZ`3 ⟫ Á γ|||Λ1,γZ`3 |||
2 Á γ|||Z`3 |||

2
1,γ ,

from which we have

Re⟪Λ1,γZ`3 , Λ
1,γT γ

´ω``a
`
11`a

`
22

Z`3 ⟫ Á pγ ´ Cq|||Z`3 |||21,γ .
Choosing ε small and γ large, we derive from (5.94) that

γ|||Z`3 |||
2
1,γ ` }Z

`
3 |x2“0}

2
1,γ

À |||Z`|||21,γ ` γ
´1

`

|||T γrW
`|||21,γ ` |||T

γ

χ`p
F`3 |||

2
1,γ ` |||W

`|||2
˘

. (5.95)

2. Estimate for Z`1 . The equation for Z`1 in (5.88) is as follows:

T γ
b`11
Z`1 ` T

γ

k2b
`
11`b

`
13

Z`3 “ T γα0
Z` ` T γrW

` `R0T
γ

χ`p
F`1 `R´1W

`. (5.96)

Recall from (5.24) that Re b`11 “ F`1 γ and Repk2b
`
11 ` b`13q “ γα0. Similar to

Step 1, we take the scalar product in L2pΩq of (5.96) with Λ2,γZ`1 and use
(5.95) to obtain

γ|||Z`1 |||
2
1,γ

À |||Z`|||21,γ ` γ|||Z
`
3 |||

2
1,γ ` γ

´1
`

|||T γrW
`|||21,γ ` |||T

γ

χ`p
F`1 |||

2
1,γ ` |||W

`|||2
˘

À |||Z`|||21,γ ` γ
´1

`

|||T γrW
`|||21,γ ` |||T

γ

χ`p
F`|||21,γ ` |||W

`|||2
˘

(5.97)
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for γ sufficiently large.

3. Estimate for Z`2 . The equation for Z`2 in (5.88) reads

B2Z
`
2 “T

γ

p̊a`a
`
12q

´1b`21
Z`1 ` T

γ
ω`Z

`
2 ` T

γ
α0
Z`

` T γrW
` `R0T

γ

χ`p
F`2 `R´1W

`.

We note that Reω` À ´γ and Repp̊a`a
`
12q

´1b`21q “ γα0. Employing a similar
analysis as Step 1 and using (5.97) yield

γ|||Z`2 |||
2
1,γ ´ C}Z

`
2 |x2“0}

2
1,γ

À |||Z`|||21,γ ` γ|||Z
`
1 |||

2
1,γ ` γ

´1
`

|||T γrW
`|||21,γ ` |||T

γ

χ`p
F`2 |||

2
1,γ ` |||W

`|||2
˘

À |||Z`|||21,γ ` γ
´1

`

|||T γrW
`|||21,γ ` |||T

γ

χ`p
F`|||21,γ ` |||W

`|||2
˘

. (5.98)

4. Combine estimates (5.95) and (5.97)–(5.98), and take γ suitably large to
find

γ|||Z`|||21,γ ` }Z
`
3 |x2“0}

2
1,γ

À }Z`2 |x2“0}
2
1,γ ` γ

´1
`

|||T γrW
`|||21,γ ` |||T

γ

χ`p
F`|||21,γ ` |||W

`|||2
˘

. (5.99)

The derivation for the estimate of Z´ is entirely similar so that

γ|||Z˘|||21,γ ` }Z
˘
3 |x2“0}

2
1,γ

À }Z˘2 |x2“0}
2
1,γ ` γ

´1
`

|||T γrW |||
2
1,γ ` |||T

γ

χ`p
F |||21,γ ` |||W |||

2
˘

. (5.100)

5. Estimate on the boundary. It remains to make an estimate for }Z˘2 |x2“0}1,γ .
Using the boundary conditions (5.91), we have

}T γ
rβ
Z2|x2“0}

2
1,γ À }Z

˘
3 |x2“0}

2
1,γ ` }G}

2
1,γ ` }W

nc|x2“0}
2, (5.101)

where rβ :“ βpE` E´q and Z2 :“ pZ`2 , Z
´
2 q

T. Setting V ˘ :“ T γ
rR´1

T γ
χ`p
W nc
˘ , we

see from (5.90) that

Z˘2 “ T γ
rχV

˘
1 `R´1W

nc. (5.102)

Since rβ P Γ0
2, we apply the rule of symbolic calculus (Lemma 5.2 (iv)) to find

that

T γ
rβ
R´1 “ R´1, pΛ1,γT γ

rβ
q˚Λ1,γT γ

rβ
´ T γ

λ2,γ rβ˚ rβ
“ R´1.

Thus, we have

}T γ
rβ
Z2|x2“0}

2
1,γ

Á Re
@

pΛ1,γT γ
rβ
q˚Λ1,γT γ

rβ
T γ
rχV1|x2“0, T

γ
rχV1|x2“0

D

´ C}W nc|x2“0}
2

Á Re
@

T γ
λ2,γ rβ˚ rβ

T γ
rχV1|x2“0, T

γ
rχV1|x2“0

D

´ C}T γ
rχV1|x2“0}1,γ}T

γ
rχV1|x2“0} ´ C}W

nc|x2“0}
2
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for V1 :“ pV `1 , V ´1 q
T, which, combined with (5.101), implies

Re
@

T γ
λ2,γ rβ˚ rβ

T γ
rχV1|x2“0, T

γ
rχV1|x2“0

D

À }Z˘3 |x2“0}
2
1,γ ` }G}

2
1,γ ` γ

´1}Z˘2 |x2“0}
2
1,γ ` }W

nc|x2“0}
2. (5.103)

Recall from Lemma 5.4 that the Lopatinskĭı determinant ∆ does not vanish
on supp rχ1, owing to (5.81). It then follows from definition (5.50) of ∆ that

rχ2
1 Repλ2,γ

rβ˚ rβq Á rχ2
1λ

2,γI.

Then we can employ the localized G̊arding’s inequality (Lemma 5.2 (vii)) and
utilize (5.102) to derive

Re
@

T γ
λ2,γ rβ˚ rβ

T γ
rχV1|x2“0, T

γ
rχV1|x2“0

D

Á }T γ
rχV1|x2“0}

2
1,γ ´ C}V1|x2“0}

2 Á }Z2|x2“0}
2
1,γ ´ C}W

nc|x2“0}
2. (5.104)

Combine (5.103) with (5.104) and take γ small to infer that

}Z˘2 |x2“0}
2
1,γ À }Z

˘
3 |x2“0}

2
1,γ ` }G}

2
1,γ ` }W

nc|x2“0}
2. (5.105)

We combine (5.105) with (5.95) to eliminate the first term on the right hand
side of (5.105), and then use (5.100) to conclude estimate (5.92). This com-
pletes the proof. l

Recall that χp “ χ`p ` χ´p and suppχ`p X suppχ´p “ ∅. Shrinking the
support of χp if necessary, we obtain the following result from Lemma 5.8.

Proposition 5.4 There exist constants K0 ď 1 and γ0 ě 1 such that, if
γ ě γ0 and K ď K0 for K given in (4.2), then

γ|||T γχpW |||
2
1,γ ` }T

γ
χpW

nc|x2“0}
2
1,γ

À }G}21,γ ` }W
nc|x2“0}

2 ` γ´1
`

|||T γχpF |||
2
1,γ ` |||W |||

2 ` |||T γrW |||
2
1,γ

˘

, (5.106)

where symbol r P Γ0
1 vanishes in region tχp ” 1u Y tχp ” 0u.

5.6 Estimate near Bad Frequencies

We now show the energy estimate near the points in Υc “ YqPt0,˘1uΥ
q
c , i.e.

near the zeros of the Lopatinskĭı determinant. We consider the case near set
Υ 0
c , without loss of generality. To this end, we introduce two smooth cut-off

functions χ1 and χ2 with values in r0, 1s such that

– χ1 ” 1 on the support of χ0
c , χ2 ” 1 on the support of χ0

c , and suppχ2 Ă

V 0
c ;

– χ1 and χ2 are both C8 and homogeneous of degree 0 with respect to
pτ, ηq,
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where χ0
c is given at the end of § 5.3. Defining

w˘ :“ T γχ0
c
W˘, wnc

˘ :“ pw˘2 ,w
˘
3 q

T,

we perform similar calculations as we have done in § 5.2 to obtain the following
system:

B2w
nc
˘ “ T γA˘χ2

wnc
˘ ` T

γ
E˘w

nc
˘ ` T

γ
rW

˘ `R0T
γ
χ0
c
F˘ `R´1W

˘, (5.107)

where E˘ P Γ0
1, A˘χ2

P Γ1
2 is given in (5.36) with rχ˘ replaced by χ2, and r P Γ0

1

vanishes in region tχ0
c ” 1u Y tχ0

c ” 0u.
Since matrix A˘χ2

” A˘ in region tχ2 ” 1u, we obtain from Proposition 5.3
that

Q˘0 A
˘
χ2
“ D˘1 Q

˘
0 in tχ2 ” 1u. (5.108)

More precisely, we have

ˆ

Q`0 0
0 Q´0

˙´1

“ pE` Y` E´ Y´q, (5.109)

where E˘, Y`, and Y´ are defined by (5.39) and (5.72)–(5.73), respectively.
Then the following lemma can be proved as in [15, Page 425] by using (5.108).

Lemma 5.9 There exist symbols Q˘´1 P Γ´1
1 and diagonal symbols D˘0 P Γ0

1,
which are defined in region tχ2 ” 1u, such that

pQ˘0 `Q
˘
´1qpA

˘
χ2
` E˘q ´ pD˘1 ` D˘0 qpQ

˘
0 `Q

˘
´1q ` B2Q

˘
0

´ ipBδQ
˘
0 BtA

˘
χ2
` BηQ

˘
0 Bx1A˘χ2

´ BδD˘1 BtQ
˘
0 ´ BηD

˘
1 Bx1Q

˘
0 q P Γ´1

1 .

We now prove the estimates for

Z˘ :“ T γ
χ1pQ

˘
0 `Q

˘
´1q
wnc
˘ , (5.110)

which will be shown to satisfy the paradifferential equations with diagonal
principle symbols.

In fact, using Lemmas 5.2 and 5.9, we see from (5.107) that

B2Z
` “ T γ

rD`1
Z` ` T γ

rD`0
Z` ` T γrW

` `R0T
γ
χ0
c
F` `R´1W

`, (5.111)

where rD`1 (resp. rD`0 ) is an extension of D`1 (resp. D`0 ) to the whole set sΩˆΞ.
Thanks to Lemma 5.6, these extension can be chosen such that

rD`1 “
ˆ

ω` 0
0 ω1`

˙

“

ˆ

γe` ` i~` 0
0 γe1` ` i~1`

˙

, rD`0 “ diag pd`, d
1
`q, (5.112)

where e`, e
1
` P Γ0

2 and ~`, ~1` P Γ1
2 are real-valued symbols, and d`, d

1
` P Γ0

1

such that

e` À ´1, e1` Á 1.

We obtain the following result for functions Z˘ that are given in (5.110):
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Lemma 5.10 There exist constants K0 ď 1 and γ0 ě 1 such that, if γ ě γ0

and K ď K0 for K given in (4.2), then

γ3|||Z1|||
2 ` γ|||Z2|||

2
1,γ ` }Z2|x2“0}

2
1,γ ` γ

2}Z1|x2“0}
2 ` }T γ

rσ0
Z1|x2“0}

2

À γ´1
`

|||T γrW |||
2
1,γ ` |||T

γ
χ0
c
F |||21,γ ` |||W |||

2
˘

` }G}21,γ ` }W
nc|x2“0}

2, (5.113)

where Zj :“ pZ`j , Z
´
j q

T, j “ 1, 2, rσ0 is the scalar real symbol given by (5.59),

and r P Γ0
1 vanishes in region tχ0

c ” 1u Y tχ0
c ” 0u.

Proof The proof is divided into two steps.

1. Estimate in domain Ω. The first equation in (5.111) reads

B2Z
`
1 “ T γω`Z

`
1 ` T

γ
d`
Z`1 ` T

γ
rW

` `R0T
γ
χ0
c
F` `R´1W

`. (5.114)

Recalling that Reω` “ γe` À ´γ, we choose the identity as a symmetrizer
and obtain the following L2 estimate:

γ|||Z`1 |||
2 À }Z`1 |x2“0}

2 ` γ´1|||pT γrW
`,R0T

γ
χ0
c
F`,R´1W

`q|||2

À }Z`1 |x2“0}
2 ` γ´3

`

|||T γrW
`|||21,γ ` |||T

γ
χ0
c
F`|||21,γ ` |||W

`|||2
˘

(5.115)

for sufficiently large γ.
The second equation in (5.111) reads

B2Z
`
2 “ T γω1

`
Z`2 ` T

γ
d1
`
Z`2 ` T

γ
rW

` `R0T
γ
χ0
c
F` `R´1W

`.

Recalling that Reω1` “ γe1` Á γ, we perform a similar calculation as Step 1
in the proof of Lemma 5.8 to deduce

γ|||Z`2 |||
2
1,γ ` }Z

`
2 |x2“0}

2
1,γ

À γ´1
`

|||T γrW
`|||21,γ ` |||T

γ
χ0
c
F`|||21,γ ` |||W

`|||2
˘

(5.116)

for sufficiently large γ.
A similar analysis enables us to deduce the energy estimates for Z´1 and

Z´2 as (5.115) and (5.116). The combination of all these estimates is

γ3|||Z1|||
2 ` γ|||Z2|||

2
1,γ ` }Z2|x2“0}

2
1,γ

À γ2}Z1|x2“0}
2 ` γ´1

`

|||T γrW |||
2
1,γ ` |||T

γ
χ0
c
F |||21,γ ` |||W |||

2
˘

. (5.117)

2. Estimate for the boundary terms. We now estimate the traces of the in-
coming modes Z1 in terms of the outgoing models Z2 and the source term G.
Using the boundary condition (5.20c) yields

T γβw
nc “ G`R´1W

nc if x2 “ 0.

From the proof of Lemma 5.4, we find that ζ̊1 ‰ 0, and

pζ̊1ζ̊4 ´ ζ̊2ζ̊3q|x2“0 “ ∆ “ pτ ´ i̊z0ηqh0pt, x1, τ, ηq, h0pt, x1, τ, ηq ‰ 0



Relativistic Vortex Sheets 67

in a neighborhood of pi̊z0η, ηq P Ξ1. According to identity (3.53), we define the
following invertible matrices in a suitably small neighborhood of Υ 0

c :

P1 “

˜

1{ζ̊1 0

´ζ̊3{pζ̊1ζ5q 1{ζ5

¸

, P2 “

˜

1 ´ζ̊2

0 ζ̊1

¸

,

with ζ5 :“ h0pt, x1, τ, ηq such that P1 and P2 belong to Γ0
2. Shrinking V 0

c if
necessary, we have

βin :“ P1βpE` E´qP2 “

ˆ

1 0
0 λ´1,γpγ ` irσ0q

˙

in V 0
c , (5.118)

where rσ0 “ δ ´ z̊0η is the scalar real symbol in Γ1
2. We recall from (5.59) that

σ0 “ ´iγ ` rσ0.
We then fix the four cut-off functions χc1 , χc2 , χc3 , and χc4 such that

– χc1 ” 1 in a neighborhood of suppχ1 X tx2 “ 0u;

– χcj ” 1 in a neighborhood of suppχcj´1 for j “ 2, 3, 4;

– suppχc4 Ă V 0
c X tx2 “ 0u.

As in [15, § 3.4.3], the following estimate can be obtained by using the localized
G̊arding’s inequality:

}T γχc2λ1,γβin
T γχc1T

γ

χc4P
´1
2

Z1|x2“0}

À }G}1,γ ` }Z2|x2“0}1,γ ` }W
nc|x2“0}. (5.119)

Now we utilize the special structure of βin to derive a lower bound for the
term on the left-hand side of (5.119). Setting

pυ1, υ2q
T :“ T γ

χc4P
´1
2

Z1|x2“0, (5.120)

we obtain from (5.118) that

}T γχc2λ1,γβin
T γχc1T

γ

χc4P
´1
2

Z1|x2“0}
2

“ }T γχc2λ1,γT
γ
χc1

υ1}
2 ` }T γχc2 pγ`irσ0q

T γχc1υ2}
2. (5.121)

Use Lemma 5.2 (iv) and apply the localized G̊arding’s inequality (Lemma
5.2 (vii)) to obtain

}T γχc2λ1,γT
γ
χc1

υ1}
2 “

@`

T γχc2λ1,γ

˘˚
T γχc2λ1,γT

γ
χc1

υ1, T
γ
χc1

υ1

D

ě Re
@

T γχ2
c2
λ2,γT

γ
χc1

υ1, T
γ
χc1

υ1

D

´ C
›

›T γχc1υ1

›

›

›

›T γχc1υ1

›

›

1,γ

ě c}T γχc1υ1}
2
1,γ ´ C}υ1}

2 ´ C}T γχc1υ1}
2

Á }υ1}
2
1,γ ´ C}Z1|x2“0}

2 Á γ2}υ1}
2 ` }T γ

rσ0
υ1}

2 ´ C}Z1|x2“0}
2

for large enough γ. Similarly, we obtain that, for sufficiently large γ,

}T γχc2 pγ`irσ0q
T γχc1υ2}

2 Á γ2}υ2}
2 ` }T γ

rσ0
υ2}

2 ´ C}Z1|x2“0}
2.
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Plug the above two estimates into (5.121) to infer

}T γχc2λ1,γβin
T γχc1T

γ

χc4P
´1
2

Z1|x2“0}
2

Á γ2}pυ1, υ2q}
2 ` }T γ

rσ0
pυ1, υ2q}

2 ´ C}Z1|x2“0}
2. (5.122)

Since χc3χ1 ” χ1, we see from (5.110) and (5.120) that

T γχc3T
γ
rσ0
Z1 “ T γ

rσ0
T γχc3Z1 `R0Z1 “ T γ

rσ0
Z1 `R0Z1,

so that

T γ
rσ0
pυ1, υ2q “ T γ

χc4P
´1
2

T γ
rσ0
Z1|x2“0 `R0Z1|x2“0

“ T γ
χc4P

´1
2

T γχc3T
γ
rσ0
Z1|x2“0 `R0Z1|x2“0.

Thanks to the ellipticity of pP´1
2 q˚P´1

2 on the support of χc4 , we apply the
localized G̊arding’s inequality to obtain

}T γ
rσ0
pυ1, υ2q}

2

ě
@`

T γ
χc4P

´1
2

˘˚
T γ
χc4P

´1
2

T γχc3T
γ
rσ0
Z1|x2“0, T

γ
χc3

T γ
rσ0
Z1|x2“0

D

´ C}Z1|x2“0}
2

Á }T γχc3T
γ
rσ0
Z1|x2“0}

2 ´ C}T γ
rσ0
Z1|x2“0}

2
´1,γ

´ C}T γχc3T
γ
rσ0
Z1|x2“0}

2
´1,γ ´ C}Z1|x2“0}

2

for large enough γ. Then we take γ sufficiently large to deduce

}T γ
rσ0
pυ1, υ2q}

2 Á }T γ
rσ0
Z1|x2“0}

2 ´ C}Z1|x2“0}
2. (5.123)

Similarly, we have

}pυ1, υ2q}
2 Á }Z1|x2“0}

2 ´ C}Z1|x2“0}
2
´1,γ

Á }Z1|x2“0}
2 ´

C

γ2
}Z1|x2“0}

2. (5.124)

Combining estimates (5.117), (5.119), and (5.122)–(5.124), we take γ large
enough to derive (5.113) and conclude the proof. l

Recall that vectors Z˘ are defined by (5.110) and that matrices Q˘0 P Γ0
2

are invertible in a neighborhood of the support of χ1 and Q˘´1 P Γ´1
1 . It then

follows from Lemma 5.10 that

γ3|||T γχ0
c
W nc|||2 ` γ2}T γχ0

c
W nc|x2“0}

2 ` }T γ
rσ0
T γχ0

c
W nc|x2“0}

2

À γ´1
`

|||T γrW |||
2
1,γ ` |||T

γ
χ0
c
F |||21,γ ` |||W |||

2
˘

` }G}21,γ ` }W
nc|x2“0}

2. (5.125)

Noting that components T γχ0
c
W˘

1 are given in terms of T γχ0
c
W˘

2 and T γχ0
c
W˘

3 by

relation (5.31), we can deduce an L2 estimate for T γχ0
c
W˘

1 , that is, we can add

the terms, γ3|||T γχ0
c
W˘

1 |||
2, on the left-hand side of (5.125).

The following proposition then follows by combining the estimates for the
three cases Υ qc with q P t0,˘1u.
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Proposition 5.5 There exist constants K0 ď 1 and γ0 ě 1 such that, if
γ ě γ0 and K ď K0 for K given in (4.2), then

γ3|||T γχcW |||
2 ` γ2}T γχcW

nc|x2“0}
2 `

ÿ

qPt0,˘1u

}T γ
rσq
T γχcW

nc|x2“0}
2

À γ´1
`

|||T γrW |||
2
1,γ ` |||T

γ
χcF |||

2
1,γ ` |||W |||

2
˘

` }G}21,γ ` }W
nc|x2“0}

2, (5.126)

where rσq P Γ1
2 is given in (5.59) and r P Γ0

1 vanishes in region tχc ” 1uYtχc ”
0u.

5.7 Proof of Theorem 5.1

We now patch the microlocalized energy estimates (5.80), (5.106), and (5.126)
together to deduce estimate (5.21). Since χu ` χp ` χc ” 1,

γ3|||W |||2 ` γ2}W nc|x2“0}
2

À γ|||pT γχuW,T
γ
χpW q|||

2
1,γ ` γ

3|||T γχcW |||
2

` }pT γχuW
nc, T γχpW

ncq|x2“0}
2
1,γ ` γ

2}T γχcW
nc|x2“0}

2. (5.127)

Adding estimates (5.80), (5.106), and (5.126), we use (5.127) and take γ large
enough to deduce

γ|||pT γχuW,T
γ
χpW q|||

2
1,γ ` }pT

γ
χuW

nc, T γχpW
ncq|x2“0}

2
1,γ

` γ3|||T γχcW |||
2 ` γ2}T γχcW

nc|x2“0}
2

À }G}21,γ ` γ
´1|||F |||21,γ ` γ

´1|||T γrW |||
2
1,γ . (5.128)

In order to absorb the microlocalization error term |||T γrW |||1,γ , we decompose
symbol r in terms of χu, χp, and σq (q P t0,˘1u). Notice that symbol r P Γ0

1

vanishes in the region:

tχc ” 1u X tχp ” 0u X tχu ” 0u ” tχc ” 1u.

In region tχc ď 1{2u, χu ` χp ě
1
2 , so that we can write

r “ αuχu ` αpχp,

where matrices αu and αp belong to Γ0
1 and have the same block diagonal

structure as A. In region t 1
2 ď χc ă 1u, we can utilize (5.61) to write

r “
ÿ

qPt0,˘1u

αqc

ˆ

σq`I3 0
0 σq´I3

˙

χqc ,

where αqc P Γ´1
1 has the same block diagonal structure as A, and σq˘ are

solutions to (5.60). Thus we obtain

|||T γrW |||1,γ À |||pT
γ
χuW,T

γ
χpW q|||1,γ `

ÿ

qPt0,˘1u

|||T γ
σq
˘

T γ
χqc
W |||. (5.129)

We now make the estimate for the last term in (5.129) in the following lemma:
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Lemma 5.11 There exist constants K0 ď 1 and γ0 ě 1 such that, if γ ě γ0

and K ď K0 for K given in (4.2), then, for q P t0,˘1u,

γ|||T γ
σq
˘

T γ
χqc
W |||2 À γ|||W |||2 ` γ´1

`

|||T γrW |||
2
1,γ ` |||T

γ
χqc
F |||21,γ

˘

` }G}21,γ ` γ
2}W nc|x2“0}

2, (5.130)

where r P Γ0
1 vanishes in region tχqc ” 1u.

Proof Let us show an estimate for T γ
σ0
`

Z`1 with Z`1 defined by (5.110). Recall

from (5.60) that symbol σ0
` satisfies the transport equation:

#

B2σ
0
` ` tσ

0
`, Imω`u “ 0 if x2 ą 0,

σ0
` “ ´iγ ` rσ0 if x2 “ 0.

(5.131)

Setting S :“ pT γ
σ0
`

q˚T γ
σ0
`

, we take the scalar product in L2pΩq of (5.114) with

SZ`1 and apply integration by parts to derive

›

›

`

T γ
σ0
`

Z`1
˘

|x2“0

›

›

2
`

6
ÿ

j“1

Ij “ 0, (5.132)

where each term Ij in the decomposition will be defined and estimated below.
First, noting that σ0

` P Γ1
2 and T γ

σ0
`

T γd` “ T γd`T
γ
σ0
`

`R0, we obtain

I1 :“ 2 Re⟪T γ
σ0
`

T γd`Z
`
1 , T

γ
σ0
`

Z`1 ⟫
À |||T γ

σ0
`

Z`1 |||
2 ` |||Z`1 ||||||T

γ
σ0
`

Z`1 ||| À |||T
γ
σ0
`

Z`1 |||
2 ` |||Z`1 |||

2. (5.133)

Moreover, we have

I2 :“ 2 Re⟪T γ
σ0
`

T γrW
`, T γ

σ0
`

Z`1 ⟫
À pεγq´1|||T γrW |||

2
1,γ ` εγ|||T

γ
σ0
`

Z`1 |||
2, (5.134)

I3 :“ 2 Re⟪T γ
σ0
`

R0T
γ
χ0
c
F`, T γ

σ0
`

Z`1 ⟫
À pεγq´1|||T γχ0

c
F`|||21,γ ` εγ|||T

γ
σ0
`

Z`1 |||
2, (5.135)

I4 :“ 2 Re⟪T γ
σ0
`

R´1W
`, T γ

σ0
`

Z`1 ⟫
À pεγq´1|||W`|||2 ` εγ|||T γ

σ0
`

Z`1 |||
2. (5.136)

For the terms:

I5 :“ Re⟪pB2SqZ
`
1 , Z

`
1 ⟫, I6 :“ 2 Re⟪ST γω`Z`1 , Z`1 ⟫,

we use the identity: B2S “ pT
γ
B2σ0

`

q˚T γ
σ0
`

` pT γ
σ0
`

q˚T γ
B2σ0

`

to obtain

I5 ` I6 “ 2 Re⟪T γ
B2σ0

`

Z`1 ` T
γ
σ0
`

T γω`Z
`
1 , T

γ
σ0
`

Z`1 ⟫. (5.137)
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We write ω` “ γe`` i~` with real-valued symbols e` P Γ0
2 and ~` P Γ1

2 as in
(5.112). Employing the rule of symbolic calculus (Lemma 5.2), we have

T γ
σ0
`

T γω` “ γT
γ
e`T

γ
σ0
`

` γT γ
´itσ0

`
,e`u

` γR´1 ` T
γ
i~`T

γ
σ0
`

` T γ
tσ0
`
,~`u `R0.

It follows from (5.131) and (5.137) that

I5 ` I6 À Re⟪pγT γe`T γσ0
`

` γT γ
´itσ0

`
,e`u

` T γi~`T
γ
σ0
`

qZ`1 , T
γ
σ0
`

Z`1 ⟫
` |||Z`1 ||||||T

γ
σ0
`

Z`1 |||.

Since σ0
` P Γ1

2 and i~` P iR, operators T γ
´itσ0

`
,e`u

and ReT γi~` are both of order

ď 0. It then follows that

Re⟪pγT γ
´itσ0

`
,e`u

` T γi~`T
γ
σ0
`

qZ`1 , T
γ
σ0
`

Z`1 ⟫

À γ|||Z`1 ||||||T
γ
σ0
`

Z`1 ||| ` |||T
γ
σ0
`

Z`1 |||
2 À ε´1γ|||Z`1 |||

2 ` εγ|||T γ
σ0
`

Z`1 |||
2,

which implies

I5 ` I6 À Re⟪γT γe`T γσ0
`

Z`1 , T
γ
σ0
`

Z`1 ⟫` ε´1γ|||Z`1 |||
2 ` εγ|||T γ

σ0
`

Z`1 |||
2. (5.138)

Since e` ď ´c ă 0, we apply G̊arding’s inequality to deduce

´Re⟪γT γe`T γσ0
`

Z`1 , T
γ
σ0
`

Z`1 ⟫ Á γ|||T γ
σ0
`

Z`1 |||
2 (5.139)

for sufficiently large γ. Plugging estimates (5.133)–(5.136) and (5.138)–(5.139)
into (5.132), we take ε small enough to deduce

γ|||T γ
σ0
`

Z`1 |||
2 À}pT γ

σ0
`

Z`1 q|x2“0}
2

` γ´1|||T γrW |||
2
1,γ ` γ

´1|||T γχ0
c
F`|||21,γ ` γ|||W

`|||2. (5.140)

For the first term on the right-hand side, we use the fact that σ0
`|x2“0 “

´iγ ` rσ0 to obtain

}pT γ
σ0
`

Z`1 q|x2“0} À γ}Z`1 |x2“0} ` }T
γ
rσ0
Z`1 |x2“0}. (5.141)

We plug (5.141) into (5.140) and use (5.113) to find

γ|||T γ
σ0
`

Z`1 |||
2 À γ´1

`

|||T γrW |||
2
1,γ ` |||T

γ
χ0
c
F |||21,γ

˘

` γ|||W`|||2 ` }G}21,γ ` γ
2 }W nc|x2“0}

2
. (5.142)

Recall that Z`1 is defined by (5.110) with Q0 P Γ0
2 being invertible. We then

use (5.116) and (5.31) to conclude (5.130). The proof is completed. l

Combining estimates (5.128)–(5.129) together, using (5.127), and taking γ
suitably large, we obtain (5.21). In view of Proposition 5.2, estimate (5.1) also
holds. This completes the proof of Theorem 5.1.
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6 Well-posedness for the Linearized Problem

In this section, we establish a well-posedness result for the linearized prob-
lem (4.12) in the usual Sobolev space Hs with s large enough. The essential
point is to deduce a tame estimate in Hs. For a hyperbolic problem with a
characteristic boundary, there is a loss of derivatives in a priori energy esti-
mates. To overcome this difficulty, it is natural to introduce Sobolev spaces
with conormal regularity, where two tangential derivatives count as one normal
derivative (see Secchi [43] and the references therein). However, for our prob-
lem (4.12), we can manage to compensate the loss of derivatives and deduce
a priori estimates in the usual Sobolev spaces. This is achieved by employing
the idea in [19] and estimating the missing derivatives through the equation
of the linearized vorticity.

The main result in this section is stated as follows:

Theorem 6.1 Let T ą 0 and s P r3, α̃s XN with any integer α̃ ě 3. Assume
that the background state (2.24) satisfies (2.10) and (2.25), and that pertur-
bations pV̊ ˘, Ψ̊˘q belong to Hs`3

γ pΩT q for all γ ě 1 and satisfy (4.1)–(4.3),
and

}pV̊ ˘,∇Ψ̊˘q}H5
γpΩT q

` }pV̊ ˘, B2V̊
˘,∇Ψ̊˘q|x2“0}H4

γpωT q
ď K. (6.1)

Assume further that the source terms pf, gq P Hs`1pΩT q ˆ Hs`1pωT q vanish
in the past. Then there exists a positive constant K0, which is independent
of s and T , and there exist two constants C ą 0 and γ ě 1, which depend
solely on K0, such that, if K ď K0, then problem (4.12) admits a unique
solution p 9V ˘, ψq P HspΩT q ˆ Hs`1pωT q that vanishes in the past and obeys
the following tame estimate:

} 9V }HsγpΩT q ` }P
˘pϕ̊q 9V ˘|x2“0}HsγpωT q ` }ψ}Hs`1

γ pωT q

ď C
 

}f}Hs`1
γ pΩT q

` }g}Hs`1
γ pωT q

`
`

}f}H4
γpΩT q

` }g}H4
γpωT q

˘

}pV̊ ˘, Ψ̊˘q}Hs`3
γ pΩT q

(

. (6.2)

We consider the case where the source terms f and g vanish in the past, which
corresponds to the case with zero initial data. The case of general initial data
is postponed to the nonlinear analysis which involves the construction of a
so-called approximate solution. Before estimating the higher order derivatives
of solutions, we first prove that the linearized problem (4.12) is well-posed in
L2.

6.1 First Well-Posedness Result

In this subsection, we apply the well-posedness result in L2 of Coulombel
[16] to the effective linear problem (4.12). We recall that system (4.12a) is
symmetrizable hyperbolic and observe that the coefficients of the linearized
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operators satisfy the regularity assumptions of [16]. We also recall that problem
(4.12) satisfies the energy estimate (5.1), which exhibits a loss of one tangential
derivative. According to the result in [16], we only need to find a dual problem
that obeys an appropriate energy estimate.

Let us define a dual problem for (4.12). We introduce the following matri-
ces:

B̊1 :“

˜

0 0 0 ´˚̀́
1 0 0

˚̀̀
1 0 0 ˚̀́

1 0 0

0 ˚̀̀
2

˚̀̀
3 0 ´˚̀́

2 ´
˚̀́
3

¸
ˇ

ˇ

ˇ

ˇ

ˇ

x2“0

, D̊1 :“

˜

0 0 0 0 0 0
0 0 0 0 0 0

0 ˚̀̀
2

˚̀̀
3 0 ˚̀́

2
˚̀́
3

¸
ˇ

ˇ

ˇ

ˇ

ˇ

x2“0

, (6.3)

and

D̊ :“

˜

0 Γ̊´1
` %̊` ´Γ̊´1

` ς̊` 0 Γ̊´1
´ %̊´ ´Γ̊´1

´ ς̊´
0 Γ̊´1

` %̊` ´Γ̊´1
` ς̊` 0 0 0

1 0 0 1 0 0

¸
ˇ

ˇ

ˇ

ˇ

ˇ

x2“0

,

where

˚̀̆
1 :“ ´

N̊˘c̊2˘Γ̊˘

B2Φ̊˘
, ˚̀̆

2 :“ ´
%̊˘

2N̊˘B2Φ̊˘
, ˚̀̆

3 :“
ς̊˘

2N̊˘B2Φ̊˘
.

Thanks to (4.15), we compute that these matrices satisfy the relation:

B̊T
1 B̊ ` D̊

T
1 D̊ “ diag

`

rA2pŮ
`, Φ̊`q, rA2pŮ

´, Φ̊´q
˘
ˇ

ˇ

x2“0
, (6.4)

where B̊ is defined by (4.8). Moreover, we infer from (4.2) that all matrices
B̊, B̊1, D̊, and D̊1 belong to W 2,8pR2q. Following [34, § 3.2], we define a dual
problem for (4.12) as:

$

’

’

&

’

’

%

L1e
`

Ů˘, Φ̊˘
˘˚
U˘ “ rf˘, x2 ą 0,

D̊1U “ 0, x2 “ 0,

divp̊bTB̊1Uq ´ b
T
7 B̊1U “ 0, x2 “ 0,

(6.5)

where b̊, b7, B̊1, and D̊1 are defined in (4.7), (4.13), and (6.3), div denotes
the divergence operator in R2 with respect to pt, x1q, and the dual operators

L1e
`

Ů˘, Φ̊˘
˘˚

are the formal adjoints of L1e
`

Ů˘, Φ̊˘
˘

. More precisely, we have

L1epV, Ψq˚U “ ´A0pV q
TBtU ´A1pV q

TB1U ´ rA2pV, Ψq
TB2U

` CpV, Ψq˚U ´
`

BtA0pV q
T ` B1A1pV q

T ` B2
rA2pV, Ψq

T
˘

U,

where CpV, Ψq˚, the adjoint of CpV, Ψq, is a zero-th order operator. We refer to
[34, § 3.2] for the derivation of the dual problem by using integration by parts
and identity (6.4).

Since the first two rows of matrix D̊1 given in (6.3) are zero, we see that the
number of the boundary conditions in (6.5) is exactly two. This is compatible
with the number of incoming characteristics, that is, the number of negative
eigenvalues of the boundary matrix for (6.5). In fact, the boundary matrix
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of operator L1epV, Ψq˚ in the half-space Ω is rA2pV, Ψq
T. Then we infer from

(4.15) that problem (6.5) has two incoming characteristics and two outgoing
characteristics.

We can define and analyze the Lopatinskĭı determinant associated with
the boundary conditions in (6.5) as we have done in § 5. Then we have the
following result, which is an analogue of Lemma 5.4 by changing γ into ´γ.

Lemma 6.1 Assume that (4.1)–(4.2) hold for a sufficiently small K ą 0.
Then the dual problem (6.5) satisfies the backward Lopatinskĭı condition. More-
over, the roots of the associated Lopatinskĭı determinant are simple and co-
incide with the roots of the Lopatinskĭı determinant (5.50) for the original
problem (4.12).

One can reproduce the same analysis as we have done in § 5 to show that
the dual problem satisfies an a priori estimate that is similar to (5.1). The
linearized problem (4.12) thus satisfies all the assumptions (i.e. symmetriz-
ability, regularity, and weak stability) listed in [16]. We therefore obtain the
following well-posedness result.

Theorem 6.2 Let T ą 0 be any fixed constant. Assume that the background
state (2.24) satisfies (2.10) and (2.25). Assume further that the basic state
`

V̊ ˘, Ψ̊˘
˘

satisfies (4.1)–(4.3). Then there exist positive constants K0 ą 0 and
γ0 ě 1, independent of T , such that, if K ď K0, then, for the source terms
f˘ P L2pR`;H1pωT qq and g P H1pωT q that vanish for t ă 0, the problem:

#

L1e
`

Ů˘, Φ̊˘
˘

9V ˘ “ f˘ for t ă T, x2 ą 0,

B1e
`

Ů˘, Φ̊˘
˘

p 9V , ψq “ g for t ă T, x2 “ 0,

has a unique solution p 9V `, 9V ´, ψq P L2pΩT q ˆL
2pΩT q ˆH

1pωT q that vanish-
es for t ă 0 and satisfies P˘pϕ̊q 9V ˘|x2“0 P L

2pωT q. Moreover, the following
estimate holds for all γ ě γ0 and for all t P r0, T s:

γ} 9V }2L2
γpΩtq

` }P˘pϕ̊q 9V ˘|x2“0}
2
L2
γpωtq

` }ψ}2H1
γpωtq

À γ´3}f˘}2L2pH1
γpωtqq

` γ´2}g}2H1
γpωtq

. (6.6)

Theorem 6.2 shows the well-posedness of problem (4.12) in L2 when the
source terms pf, gq belong to L2pH1qˆH1. We now turn to the energy estimates
for the higher-order derivatives of solutions.

6.2 A Priori Tame Estimates

To obtain the estimates for the higher-order derivatives of solutions to (4.12),
it is convenient to deal with the reformulated problem (4.18) and (4.20) for the
new unknowns W . Until the end of this section, we always assume that γ ě γ0
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and K ď K0, where γ0 and K0 are given by Theorem 6.2. Then estimate (6.6)
can be rewritten as

?
γ}W }L2

γpΩT q
` }W nc|x2“0}L2

γpωT q
` }ψ}H1

γpωT q

À γ´3{2}F˘}L2pH1
γpωT qq

` γ´1}g}H1
γpωT q

. (6.7)

We first derive the estimate of the tangential derivatives. Let k P r1, ss be
a fixed integer. Applying the tangential derivative Bα “ Bα0

t B
α1
1 with |α| “ k

to system (4.18) yields the equations for BαW˘ that involve the linear terms
of the derivatives, Bα´βBtW

˘ and Bα´βB1W
˘, with |β| “ 1. These terms

cannot be treated simply as source terms, owing to the loss of derivatives in
the energy estimate (6.7). To overcome this difficulty, we adopt the idea of [19]
and deal with a boundary value problem for all the tangential derivatives of
order equal to k, i.e. for W pkq :“ tBα0

t B
α1
1 W˘, α0 ` α1 “ ku. Such a problem

satisfies the same regularity and stability properties as the original problem
(4.18) and (4.20). Repeating the derivation in § 5, we find that W pkq obeys an
energy estimate similar to (6.7) with new source terms F pkq and Gpkq. Then
we can employ the Gagliardo–Nirenberg and Moser-type inequalities (cf. [19,
Theorems 8–10]) to derive the following estimate for tangential derivatives (see
[19, Proposition 1] for the detailed proof).

Lemma 6.2 (Estimate of tangential derivatives) Assume that the hy-
potheses of Theorem 6.1 hold. Then there exist constants Cs ą 0 and γs ě 1,
independent of T , such that, for all γ ě γs and for all pW,ψq P Hs`2

γ pΩT q ˆ
Hs`2
γ pωT q that are solutions of problem (4.18) and (4.20), the following esti-

mate holds:

?
γ}W }L2pHsγpωT qq

` }W nc|x2“0}HsγpωT q ` }ψ}Hs`1
γ pωT q

ď Cs
 

γ´1}g}Hs`1
γ pωT q

` γ´3{2
›

›F˘
›

›

L2pHs`1
γ pωT qq

` γ´1
`

}W nc|x2“0}L8pωT q ` }ψ}W 1,8pωT q

˘
›

›

`

V̊ , B2V̊ ,∇Ψ̊
˘

|x2“0

›

›

Hs`1
γ pωT q

` γ´3{2}W }W 1,8pΩT q

›

›

`

V̊ ,∇Ψ̊
˘
›

›

Hs`2
γ pΩT q

(

. (6.8)

We recall that the boundary matrix for our problem (4.18) and (4.20) is not
invertible. Thus, there is no hope to estimate all the normal derivatives of W
directly from (4.18) by employing the standard argument for noncharacteristic
boundary problems as in [41]. Nevertheless, for our problem (4.12), we can
obtain the estimate of the missing normal derivatives through the equation of
the “linearized vorticity”.

In view of the original equations (2.14), taking into account the change of
variables and linearization, we define the “linearized vorticity” as:

9ξ˘ :“
´

B1 ´
B1Φ̊

˘

B2Φ̊˘
B2

¯

9V ˘3 ´
1

B2Φ̊˘
B2

9V ˘2 , (6.9)
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where 9V ˘2 and 9V ˘3 are the second and third components of the good unknown
(4.10), respectively. We notice that multiplying (A.6) by S1pUq leads to sys-
tem (2.18), where S1pUq is defined by (A.9). Thus, we multiply (4.12a) with
matrices S1pŮ

˘q´1 to obtain

`

B0pŮ
˘qBt `B1pŮ

˘qB1 ` rB2pŮ
˘, Φ̊˘qB2

˘

9V ˘ ` rCpŮ˘, Φ̊˘q 9V ˘ “ f̃˘, (6.10)

where rCpŮ˘, Φ̊˘q :“ S1pŮ
˘q´1CpŮ˘, Φ̊˘q, f̃˘ :“ S1pŮ

˘q´1f˘, and matrices
Bj are defined by (A.7)–(A.8). In light of (4.3a), we have

rB2pŮ , Φ̊q :“
1

B2Φ̊

`

B2pŮq ´ BtΦ̊B0pŮq ´ B2Φ̊B1pŮq
˘

“
1

B2Φ̊

¨

˝

rB11
2

rB12
2

rB13
2

´N̊´1B1Φ̊ 0 0

N̊´1 0 0

˛

‚,

where the explicit form of rB1j
2 is of no interest. Using the second and third

components of (6.10) yields the following equations for 9ξ˘:

pBt ` v̊
˘
1 B1q 9ξ˘

“ B1F˘2 ´
1

B2Φ̊˘

´

B1Φ̊
˘B2F˘2 ` B2F˘1

¯

` Λ̊˘1 ¨ B1
9V ˘ ` Λ̊˘2 ¨ B2

9V ˘, (6.11)

where vectors Λ̊˘1 and Λ̊˘2 are C8–functions of pV̊ ˘,∇V̊ ˘,∇Ψ̊˘,∇2Ψ̊˘q that
vanish at the origin, and the source terms F˘1 and F˘2 are given by

F˘1 :“ Γ̊´1
˘

`

f̃˘ ´ rCpŮ˘, Φ̊˘q 9V ˘
˘

2
, F˘2 :“ Γ̊´1

˘

`

f̃˘ ´ rCpŮ˘, Φ̊˘q 9V ˘
˘

3
.

Employing a standard energy estimate to the transport equations (6.11), we
can apply the Gagliardo–Nirenberg and Moser-type inequalities to derive the
following estimate of 9ξ˘:

Lemma 6.3 (Estimate of vorticity) Assume that the hypotheses of Theo-
rem 6.1 hold. Then there exist constants Cs ą 0 and γs ě 1, independent of T ,
such that, for all γ ě γs and for all pW,ψq P Hs`2

γ pΩT q ˆH
s`2
γ pωT q that are

solutions of problem (4.18) and (4.20), functions 9ξ˘ defined by (6.9) satisfy
the following estimate:

γ
›

› 9ξ˘
›

›

Hs´1
γ pΩT q

ď Cs
 
›

›f˘
›

›

HsγpΩT q
`
›

›f˘
›

›

L8pΩT q

›

›

`

V̊ ,∇Ψ̊
˘
›

›

HsγpΩT q
`
›

› 9V ˘
›

›

HsγpΩT q

`
›

› 9V ˘
›

›

W 1,8pΩT q

`
›

›V̊
›

›

Hs`1
γ pΩT q

`
›

›∇Ψ̊
›

›

HsγpΩT q

˘(

. (6.12)

We are going to make the estimate for all the normal derivatives by means
of estimates (6.8) and (6.12) for the tangential derivatives and the linearized
vorticity. To this end, we need to express the normal derivatives B2W

˘ in
terms of the tangential derivatives BtW

˘, B1W
˘, and vorticity 9ξ˘. Since I2 “
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diag p0, 1, 1q, the normal derivatives B2W
˘
2 and B2W

˘
3 are directly given by

(4.18) as:

I2B2W
˘ “ I2pF

˘ ´A˘0 BtW
˘ ´A˘1 B1W

˘ ´C˘W˘q. (6.13)

The “missing” normal derivatives B2W
˘
1 can be expressed by 9ξ˘ and equations

(4.18). From transformation (4.17) and definition (4.16), we have

B2
9V2 “ ς̊B2W1 `

%̊

N̊ c̊
B2pW2 ´W3q ` B2ς̊W1 ` B2

ˆ

%̊

N̊ c̊

˙

pW2 ´W3q,

B2
9V3 “ %̊B2W1 ´

ς̊

N̊ c̊
B2pW2 ´W3q ` B2%̊W1 ´ B2

ˆ

ς̊

N̊ c̊

˙

pW2 ´W3q,

where we have omitted indices “˘”. By definition (6.9), we obtain

`

B1Φ̊%̊` ς̊
˘

B2W1

“ B2Φ̊
`

B1
9V3 ´ 9ξ

˘

`
B1Φ̊ς̊ ´ %̊

N̊ c̊
B2pW2 ´W3q ` CpŮ , Φ̊qW, (6.14)

where CpŮ , Φ̊q is a C8–function of pV̊ ,∇V̊ ,∇Ψ̊ ,∇2Ψ̊q that vanishes at the ori-
gin. According to (4.9), we see that B1Φ̊%̊` ς̊ Á 1 by taking K0 ą 0 sufficiently
small. Then we find from (6.13)–(6.14) that

B2W
˘ “ rA˘3 F

˘ ` rA˘0 BtW
˘

` rA˘1 B1W
˘ ` rC˘W˘ ´

B2Φ̊
˘

B1Φ̊˘%̊˘ ` ς̊˘

¨

˝

9ξ˘

0
0

˛

‚, (6.15)

where rA˘0,1,3 are C8–functions of pV̊ ,∇Ψ̊q, and rC˘ are C8–functions of

pV̊ ,∇V̊ ,∇Ψ̊ ,∇2Ψ̊q that vanish at the origin. Although the linearized prob-
lem (4.18) and (4.20) is characteristic, we manage to express all the normal
derivatives B2W

˘ by (6.15) as a linear combination of the tangential deriva-
tives, vorticity, zero-th order terms, and source terms. Then we can prove the
following result similar to [19, Proposition 3], so we omit its proof.

Lemma 6.4 (Estimate of normal derivatives) Assume that the hypothe-
ses of Theorem 6.1 hold. Then there exist constants Cs ą 0 and γs ě 1,
which are independent of T , such that, for all γ ě γs and solutions pW,ψq P
Hs`2
γ pΩT q ˆ Hs`2

γ pωT q of problem (4.18) and (4.20), the following estimate
holds for all integer k P r1,ms:

›

›Bk2W
˘
›

›

L2pHs´kγ pωT qq
ď Cs

 
›

›

`

F˘,W˘, 9ξ˘
˘
›

›

Hs´1
γ pΩT q

`
›

›W˘
›

›

L2pHsγpωT qq

`
›

› 9ξ˘
›

›

L8pΩT q

›

›

`

V̊ ,∇Ψ̊
˘
›

›

Hs´1
γ pΩT q

`
›

›

`

F˘,W˘
˘
›

›

L8pΩT q

›

›

`

V̊ ,∇Ψ̊
˘
›

›

HsγpΩT q

(

. (6.16)
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In light of definition (2.27), we see that, for all s P N and θ P Hs
γpΩT q,

}θ}HsγpΩT q “
s
ÿ

k“0

}Bk2θ}L2pHs´kγ pωT qq
, γ}θ}Hs´1

γ pΩT q
ď }θ}HsγpΩT q.

By virtue of these identities, we combine Lemmas 6.2–6.4 and employ the
Moser-type inequalities to obtain the following a priori estimates on the Hs

γ–

norm of solution 9V ˘ to the linearized problem (4.12).

Proposition 6.1 Assume that the hypotheses of Theorem 6.1 hold. Then
there exists a constant K0 ą 0 (independent of s and T ) and constants Cs ą 0
and γs ě 1 (depending on s, but independent of T ) such that, if K ď K0,
then, for all γ ě γs and solutions p 9V , ψq P Hs`2

γ pΩT q ˆH
s`2
γ pωT q of problem

(4.12), the following estimate holds:

?
γ
›

› 9V ˘
›

›

HsγpΩT q
`
›

›P˘pϕ̊q 9V ˘|x2“0

›

›

HsγpωT q
` }ψ}Hs`1

γ pωT q

ď Cs
 

γ´1{2
›

›f˘
›

›

HsγpΩT q
` γ´3{2

›

›f˘
›

›

L2pHs`1
γ pωT qq

` γ´1}g}Hs`1
γ pωT q

` γ´1
`
›

›P˘pϕ̊q 9V ˘
›

›

L8pωT q
` }ψ}W 1,8pωT q

˘

}pV̊ , B2V̊ ,∇Ψ̊q}Hs`1
γ pωT q

`
`

γ´1{2
›

›f˘
›

›

L8pΩT q
` γ´3{2

›

› 9V ˘
›

›

W 1,8pΩT q

˘
›

›

`

V̊ ,∇Ψ̊
˘
›

›

Hs`2
γ pΩT q

(

. (6.17)

6.3 Proof of Theorem 6.1

Theorem 6.2 shows that the linearized problem (4.12) is well-posed for sources
terms pf˘, gq P L2pH1pωT qqˆH

1pωT q that vanish in the past. Following [6, 41],
we can use Proposition 6.1 to covert Theorem 6.2 into a well-posedness result
of (4.12) in Hs. More precisely, we can prove that, under the assumptions of
Theorem 6.1, if pf˘, gq P Hs`1pΩT qˆH

s`1pωT q vanish in the past, then there
exists a unique solution p 9V ˘, ψq P HspΩT q ˆ Hs`1pωT q that vanishes in the
past and satisfies (6.17) for all γ ě γs.

It remains to prove the tame estimate (6.2). To this end, we first fix the
value of γ such that γ is greater than the maximum of γ3, . . . , γα̃. Using (6.17)
with s “ 3 and (6.1), we have

›

› 9V ˘
›

›

H3
γpΩT q

`
›

›P˘pϕ̊q 9V ˘|x2“0

›

›

H3
γpωT q

` }ψ}H4
γpωT q

À K
`
›

›f˘
›

›

L8pΩT q
`
›

› 9V ˘
›

›

W 1,8pΩT q
`
›

›P˘pϕ̊q 9V ˘|x2“0

›

›

L8pωT q
` }ψ}W 1,8pωT q

˘

`
›

›f˘
›

›

H4
γpΩT q

` }g}H4
γpωT q

. (6.18)

Note that T ą 0 and γ have been fixed. Thanks to the classical Sobolev
inequalities that }θ}L8pΩT q À }θ}H2pΩT q and }θ}L8pωT q À }θ}H2pωT q, we uti-
lize (6.18) and take K ą 0 sufficiently small to obtain that }f˘}L8pΩT q À
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}f˘}H4
γpΩT q

and

›

› 9V ˘
›

›

W 1,8pΩT q
`
›

›P˘pϕ̊q 9V ˘|x2“0

›

›

L8pωT q
` }ψ}W 1,8pωT q

À
›

› 9V ˘
›

›

H3
γpΩT q

`
›

›P˘pϕ̊q 9V ˘|x2“0

›

›

H3
γpωT q

` }ψ}H4
γpωT q

À
›

›f˘
›

›

H4
γpΩT q

` }g}H4
γpωT q

.

Plugging these estimates into (6.17) yields (6.2), which completes the proof of
Theorem 6.1.

7 Construction of the Approximate Solution

In this section, we introduce the “approximate” solution pUa, Φaq in order to
reduce the original problem (2.20) and (2.23) into a nonlinear problem with
zero initial data. We naturally expect to solve this reformulated problem in
the space of functions vanishing in the past, so that Theorem 6.1, which is the
well-posedness result in the same function space for the linearized problem,
can be applied. We need to impose the necessary compatibility conditions on
the initial data pU˘0 , ϕ0q for the existence of smooth approximate solutions
pUa, Φaq, which are solutions of problem (2.20) and (2.23) in the sense of
Taylor’s series at time t “ 0.

Let s ě 3 be an integer. Assume that Ũ˘0 :“ U˘0 ´
sU˘ P Hs`1{2pR2

`q and

ϕ0 P H
s`1pRq. We also assume without loss of generality that pŨ˘0 , ϕ0q has a

compact support:

supp Ũ˘0 Ă tx2 ě 0, x2
1 ` x

2
2 ď 1u, suppϕ0 Ă r´1, 1s. (7.1)

We extend ϕ0 from R to R2
` by constructing Φ̃`0 “ Φ̃´0 P H

s`3{2pR2
`q, which

satisfies

Φ̃˘0 |x2“0 “ ϕ0, supp Φ̃˘0 Ă tx2 ě 0, x2
1 ` x

2
2 ď 2u, (7.2)

and the estimate:

›

›Φ̃˘0
›

›

Hs`3{2pR2
`
q
ď C}ϕ0}Hs`1pRq. (7.3)

By virtue of (7.3) and the Sobolev embedding theorem, we infer that, for ϕ0

small enough in Hs`1pRq, the following estimates hold for Φ˘0 :“ Φ̃˘0 `
sΦ˘0 :

˘B2Φ
˘
0 ě

7

8
for all x P R2

`. (7.4)

For problem (2.23), we prescribe the initial data:

Φ˘|t“0 “ Φ˘0 . (7.5)
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Let us denote the perturbation by pŨ˘, Φ̃˘q :“ pU˘ ´ sU˘, Φ˘ ´ sΦ˘q, and
the traces of the `-th order time derivatives on tt “ 0u by

Ũ˘` :“ B`t Ũ
˘|t“0, Φ̃˘` :“ B`t Φ̃

˘|t“0, ` P N.

To introduce the compatibility conditions, we need to determine traces
Ũ˘` and Φ̃˘` in terms of the initial data Ũ˘0 and Φ̃˘0 through equations (2.20a)

and (2.23a). For this purpose, we set W˘ :“ pŨ˘,∇xŨ
˘,∇xΦ̃

˘q P R11, and
rewrite (2.20a) and (2.23a) as

BtŨ
˘ “ F1pW˘q, BtΦ̃

˘ “ F2pW˘q, (7.6)

where F1 and F2 are suitable C8–functions that vanish at the origin. After
applying operator B`t to (7.6), we take the traces at time t “ 0. One can employ
the generalized Faà di Bruno’s formula (cf. [37, Theorem 2.1]) to derive

Ũ˘``1 “
ÿ

αiPN11,|α1|`¨¨¨``|α`|“`

Dα1`¨¨¨`α`F1pW˘
0 q

ź̀

i“1

`!

αi!

ˆ

W˘
i

i!

˙αi

, (7.7)

Φ̃˘``1 “
ÿ

αiPN11,|α1|`¨¨¨``|α`|“`

Dα1`¨¨¨`α`F2pW˘
0 q

ź̀

i“1

`!

αi!

ˆ

W˘
i

i!

˙αi

, (7.8)

where W˘
i denotes trace pŨ˘i ,∇xŨ

˘
i ,∇xΦ̃

˘
i q at t “ 0. From (7.7)–(7.8), one

can determine pŨ˘` , Φ̃
˘
` q`ě0 inductively as functions of the initial data Ũ˘0 and

Φ̃˘0 . Furthermore, we have the following lemma (see [34, Lemma 4.2.1] for the
proof):

Lemma 7.1 Assume that (7.1)–(7.4) hold. Then the equations (7.7)–(7.8)
determine Ũ˘` P Hs`1{2´`pR2

`q for ` “ 1, . . . , s, and Φ̃˘` P H
s`3{2´`pR2

`q for
` “ 1, . . . , s` 1, such that

supp Ũ˘` Ă tx2 ě 0, x2
1 ` x

2
2 ď 1u, supp Φ̃˘` Ă tx2 ě 0, x2

1 ` x
2
2 ď 2u.

In addition,

s
ÿ

`“0

›

›Ũ˘`
›

›

Hs`1{2´`pR2
`
q
`

s`1
ÿ

`“0

›

›Φ̃˘`
›

›

Hs`3{2´`pR2
`
q

ď C
`
›

›Ũ˘0
›

›

Hs`1{2pR2
`
q
` }ϕ0}Hs`1pRq

˘

,

where constant C ą 0 depends only on s and }pŨ˘0 , Φ̃
˘
0 q}W 1,8pR2

`
q.

To construct a smooth approximate solution, one has to impose certain
assumptions on traces Ũ˘` and Φ̃˘` . We are now ready to introduce the following
terminology.



Relativistic Vortex Sheets 81

Definition 7.1 (Compatibility conditions) Let s ě 3 be an integer.
Let Ũ˘0 :“ U˘0 ´ sU˘0 P Hs`1{2pR2

`q and ϕ0 P Hs`1pRq satisfy (7.1). The
initial data U˘0 and ϕ0 are said to be compatible up to order s if there
exist functions Φ̃˘0 P Hs`3{2pR2

`q satisfying (7.2)–(7.4) such that functions

Ũ˘1 , . . . , Ũ
˘
s , Φ̃

˘
1 , . . . , Φ̃

˘
s`1 determined by (7.7)–(7.8) satisfy:

B
j
2

`

Φ̃`` ´ Φ̃
´
`

˘

|x2“0 “ 0 for j, ` P N with j ` ` ă s` 1, (7.9a)

B
j
2

`

p̃`` ´ p̃
´
`

˘

|x2“0 “ 0 for j, ` P N with j ` ` ă s, (7.9b)

and
ż

R2
`

ˇ

ˇB
s`1´`
2

`

Φ̃`` ´ Φ̃
´
`

˘
ˇ

ˇ

2
dx1

dx2

x2
ă 8 for ` “ 0, . . . , s` 1, (7.10a)

ż

R2
`

ˇ

ˇB
s´`
2

`

p̃`` ´ p̃
´
`

˘
ˇ

ˇ

2
dx1

dx2

x2
ă 8 for ` “ 0, . . . , s. (7.10b)

It follows from Lemma 7.1 that p̃˘0 , . . . , p̃
˘
s´2, Φ̃

˘
0 , . . . , Φ̃

˘
s´1 P H

5{2pR2
`q Ă

W 1,8pR2
`q. Then we can take the j-th order derivatives of the traces in (7.9).

In what follows, we employ ε0p¨q to denote a function that tends to 0 when its
argument tends to 0. Relations (7.9)–(7.10) enable us to utilize the lifting result
in [31, Theorem 2.3] to construct the approximate solution in the following
lemma. We refer to [19, Lemma 3] for the proof.

Lemma 7.2 Let s ě 3 be an integer. Assume that Ũ˘0 :“ U˘0 ´ sU˘0 P

Hs`1{2pR2
`q and ϕ0 P H

s`1pRq satisfy (7.1), and that the initial data U˘0 and

ϕ0 are compatible up to order s. If Ũ˘0 and ϕ0 are sufficiently small, then there
exist functions Ua˘, Φa˘, and ϕa such that Ũa˘ :“ Ua˘ ´ sU˘ P Hs`1pΩq,
Φ̃a˘ :“ Φa˘ ´ sΦ˘ P Hs`2pΩq, ϕa P Hs`3{2pBΩq, and

BtΦ
a˘ ` va˘1 B1Φ

a˘ ´ va˘2 “ 0 in Ω, (7.11a)

B
j
tLpUa˘, Φa˘q|t“0 “ 0 for j “ 0, . . . , s´ 1, (7.11b)

Φa` “ Φa´ “ ϕa on BΩ, (7.11c)

BpUa`, Ua´, ϕaq “ 0 on BΩ. (7.11d)

Furthermore, we have

˘ B2Φ
a˘ ě

3

4
for all pt, xq P Ω, (7.12)

supp
`

Ũa˘, Φ̃a˘
˘

Ă
 

t P r´T, T s, x2 ě 0, x2
1 ` x

2
2 ď 3

(

, (7.13)

and

›

›Ũa˘
›

›

Hs`1pΩq
`
›

›Φ̃a˘
›

›

Hs`2pΩq
` }ϕa}Hs`3{2pBΩq

ď ε0

`
›

›Ũ˘0
›

›

Hs`1{2pR2
`
q
` }ϕ0}Hs`1pRq

˘

. (7.14)
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Let us denote Ua :“ pUa`, Ua´qT and Φa :“ pΦa`, Φa´qT. Vector pUa, Φaq
in Lemma 7.2 is called the approximate solution to problem (2.20) and (2.23).
Relations (7.11c) and (7.13) immediately imply that ϕa is supported within
t´T ď t ď T, x2

1 ď 3u. Since s ě 3, it follows from (7.14) and the Sobolev
embedding theorem that

›

›Ũa˘
›

›

W 2,8pΩq
`
›

›Φ̃a˘
›

›

W 3,8pΩq
ď ε0

`
›

›Ũ˘0
›

›

Hs`1{2pR2
`
q
` }ϕ0}Hs`1pRq

˘

.

We are going to reformulate the original problem into that with zero initial
data by using the approximate solution pUa, Φaq. Let us introduce

fa :“

#

´ LpUa, Φaq if t ą 0,

0 if t ă 0.
(7.15)

Since pŨa˘,∇Φ̃a˘q P Hs`1pΩq, taking into account (7.11b) and (7.13), we
obtain that fa P HspΩq and

supp fa Ă
 

0 ď t ď T, x2 ě 0, x2
1 ` x

2
2 ď 3

(

.

Using the Moser-type inequalities and the fact that fa vanishes in the past,
we obtain from (7.14) the estimate:

}fa}HspΩq ď ε0

`
›

›Ũ˘0
›

›

Hs`1{2pR2
`
q
` }ϕ0}Hs`1pRq

˘

. (7.16)

Let pUa, Φaq be the approximate solution defined in Lemma 7.2. By virtue
of (7.11) and (7.15), we see that pU,Φq “ pUa, Φaq ` pV, Ψq is a solution of
the original problem (2.20) and (2.23) on r0, T s ˆ R2

`, if V “ pV `, V ´qT and
Ψ “ pΨ`, Ψ´qT solve the following problem:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

LpV, Ψq :“ LpUa ` V, Φa ` Ψq ´ LpUa, Φaq “ fa in ΩT ,

EpV, Ψq :“ BtΨ ` pv
a
1 ` v1qB1Ψ ` v1B1Φ

a ´ v2 “ 0 in ΩT ,

BpV, ψq :“ BpUa ` V, ϕa ` ψq “ 0 on ωT ,

Ψ` “ Ψ´ “ ψ on ωT ,

pV, Ψq “ 0, for t ă 0.

(7.17)

The initial data (2.20c) and (7.5) have been absorbed into the interior equa-
tions. From (7.11a) and (7.11d), we observe that pV, Ψq “ 0 satisfies (7.17)
for t ă 0. Therefore, the original nonlinear problem on r0, T s ˆ R2

` is now
reformulated as a problem on ΩT whose solutions vanish in the past.

8 Nash–Moser Iteration

In this section, we prove the existence of solutions to problem (7.17) by a
suitable iteration scheme of Nash–Moser type (cf. Hörmander [24]). First, we
introduce the smoothing operators Sθ and describe the iterative scheme for
problem (7.17).
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8.1 The Iterative Scheme

We first state the following result from [19, Proposition 4].

Proposition 8.1 Let T ą 0 and γ ě 1, and let m ě 4 be an integer. Then
there exists a family tSθuθě1 of smoothing operators:

Sθ : F3
γ pΩT q ˆ F3

γ pΩT q ÝÑ
č

βě3

Fβ
γ pΩT q ˆ Fβ

γ pΩT q,

where Fβ
γ pΩT q :“

 

u P Hβ
γ pΩT q : u “ 0 for t ă 0

(

is a closed subspace of

Hβ
γ pΩT q such that

}Sθu}Hβγ pΩT q ď Cθpβ´αq`}u}Hαγ pΩT q for all α, β P r1,ms, (8.1a)

}Sθu´ u}Hβγ pΩT q ď Cθβ´α}u}Hαγ pΩT q for all 1 ď β ď α ď m, (8.1b)
›

›

›

›

d

dθ
Sθu

›

›

›

›

Hβγ pΩT q

ď Cθβ´α´1}u}Hαγ pΩT q for all α, β P r1,ms, (8.1c)

and

}pSθu´ Sθvq|x2“0}Hβγ pωT q

ď Cθpβ`1´αq`}pu´ vq|x2“0}Hαγ pωT q for all α, β P r1,ms, (8.2)

where α, β P N, pβ´αq` :“ maxt0, β´αu, and C ą 0 is a constant depending
only on m. In particular, if u “ v on ωT , then Sθu “ Sθv on ωT . Furthermore,
there exists another family of smoothing operators (still denoted by Sθ) acting
on the functions defined on the boundary ωT and satisfying the properties in
(8.1) with norms } ¨ }Hαγ pωT q.

The proof of (8.2) is based on the following lifting operator (see [22, Chap-
ter 5] and [19]).

Lemma 8.1 Let T ą 0 and γ ě 1, and let m ě 1 be an integer. Then there

exists an operator RT , which is continuous from Fs
γpωT q to Fs`1{2

γ pΩT q for
all s P r1,ms, such that, if s ě 1 and u P Fs

γpωT q, then pRTuq|x2“0 “ u.

Now, following [19], we describe the iteration scheme for problem (7.17).

Assumption (A-1): pV0, Ψ0, ψ0q “ 0 and, for k “ 0, . . . , n, pVk, Ψk, ψkq are
already given and satisfy

pVk, Ψk, ψkq|tă0 “ 0, Ψ`k |x2“0 “ Ψ´k |x2“0 “ ψk. (8.3)

Let us consider

Vn`1 “ Vn ` δVn, Ψn`1 “ Ψn ` δΨn, ψn`1 “ ψn ` δψn, (8.4)

where these differences δVn, δΨn, and δψn will be specified below.
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First we are going to find pδ 9Vn, δψnq by solving the effective linear problem:
$

’

’

&

’

’

%

L1epUa ` Vn`1{2, Φ
a ` Ψn`1{2qδ 9Vn “ fn in ΩT ,

B1epUa ` Vn`1{2, Φ
a ` Ψn`1{2qpδ 9Vn, δψnq “ gn on ωT ,

pδ 9Vn, δψnq “ 0 for t ă 0,

(8.5)

where operators L1e and B1e are defined in (4.12a)–(4.12b),

δ 9Vn :“ δVn ´
B2pU

a ` Vn`1{2q

B2pΦa ` Ψn`1{2q
δΨn (8.6)

is the “good unknown” (cf. (4.10)), and pVn`1{2, Ψn`1{2q is a smooth modified
state such that pUa`Vn`1{2, Φ

a`Ψn`1{2q satisfies constraints (4.1)–(4.3). The
source term pfn, gnq will be defined through the accumulated error terms at
Step n later on.

We define the modified state as
$

’

’

’

’

’

&

’

’

’

’

’

%

Ψ˘n`1{2 :“ SθnΨ
˘
n , v1

`

V ˘n`1{2

˘

:“ Sθnv1

`

V ˘n
˘

,

p˘n`1{2 :“ Sθnp
˘
n ¯

1
2RT

`

Sθnp
`
n |x2“0 ´ Sθnp

´
n |x2“0

˘

,

v2

`

V ˘n`1{2

˘

:“ BtΨ
˘

n`1{2 `
`

va˘1 ` v1

`

V ˘n`1{2

˘˘

B1Ψ
˘

n`1{2

` v1

`

V ˘n`1{2

˘

B1Φ
a˘,

(8.7)

where Sθn are the smoothing operators defined in Proposition 8.1 with se-
quence tθnu given by

θ0 ě 1, θn “
b

θ2
0 ` n, (8.8)

and RT is the lifting operator given in Lemma 8.1. Thanks to (8.3), we have

$

’

’

’

’

&

’

’

’

’

%

Ψ`n`1{2|x2“0 “ Ψ´n`1{2|x2“0 “: ψn`1{2,

p`n`1{2|x2“0 “ p´n`1{2|x2“0,

EpVn`1{2, Ψn`1{2q “ 0,
`

Vn`1{2, Ψn`1{2, ψn`1{2

˘

|tă0 “ 0.

(8.9)

It then follows from (7.11) that pUa`Vn`1{2, Φ
a`Ψn`1{2q satisfies (4.3a) and

(4.3c)–(4.3d). The additional constraint (4.3b) will be obtained by taking the
initial data small enough.

The error terms at Step n are defined from the following decompositions:

LpVn`1, Ψn`1q ´ LpVn, Ψnq
“ L1pUa ` Vn, Φa ` ΨnqpδVn, δΨnq ` e1n
“ L1pUa ` SθnVn, Φa ` SθnΨnqpδVn, δΨnq ` e1n ` e2n
“ L1pUa ` Vn`1{2, Φ

a ` Ψn`1{2qpδVn, δΨnq ` e
1
n ` e

2
n ` e

3
n

“ L1epUa ` Vn`1{2, Φ
a ` Ψn`1{2qδ 9Vn ` e

1
n ` e

2
n ` e

3
n `Dn`1{2δΨn (8.10)
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and

BpVn`1|x2“0, ψn`1q ´ BpVn|x2“0, ψnq

“ B1pUa ` Vn, Φa ` ΨnqpδVn|x2“0, δψnq ` ẽ
1
n

“ B1pUa ` SθnVn, Φa ` SθnΨnqpδVn|x2“0, δψnq ` ẽ
1
n ` ẽ

2
n

“ B1epUa ` Vn`1{2, Φ
a ` Ψn`1{2qpδ 9Vn|x2“0, δψnq ` ẽ

1
n ` ẽ

2
n ` ẽ

3
n , (8.11)

where we have set

Dn`1{2 :“
1

B2pΦa ` Ψn`1{2q
B2LpUa ` Vn`1{2, Φ

a ` Ψn`1{2q, (8.12)

and have used (4.11) to obtain the last identity in (8.10). Let us set

en :“ e1n ` e
2
n ` e

3
n `Dn`1{2δΨn, ẽn :“ ẽ1n ` ẽ

2
n ` ẽ

3
n . (8.13)

Assumption (A-2): f0 :“ Sθ0f
a, pe0, ẽ0, g0q :“ 0, and pfk, gk, ek, ẽkq are

already given and vanish in the past for k “ 0, . . . , n´ 1.

We compute the accumulated error terms at Step n, n ě 1, by

En :“
n´1
ÿ

k“0

ek, rEn :“
n´1
ÿ

k“0

ẽk. (8.14)

Then we compute fn and gn for n ě 1 from the equations:

n
ÿ

k“0

fk ` SθnEn “ Sθnf
a,

n
ÿ

k“0

gk ` Sθn
rEn “ 0. (8.15)

Under assumptions (A-1)–(A-2), pVn`1{2, Ψn`1{2q and pfn, gnq have been

specified from (8.7) and (8.15). Then we can obtain pδ 9Vn, δψnq as the solution
of the linear problem (8.5) by applying Theorem 6.1.

Next we need to construct δΨn “ pδΨ
`
n , δΨ

´
n q

T satisfying δΨ˘n |x2“0 “ δψn.
We use the boundary conditions in (8.5) (cf. (4.7)–(4.8), (4.13), and (8.6)) to
derive that δψn satisfies

ˆ

ε2BtΦ
`

n`1{2

N`n`1{2h
`

n`1{2pΓ
`

n`1{2q
2
,

%`n`1{2

h`n`1{2Γ
`

n`1{2

,
´ς`n`1{2

h`n`1{2Γ
`

n`1{2

˙
ˇ

ˇ

ˇ

ˇ

x2“0

ˆ

ˆ

δ 9V `n ` δψn
B2U

`

n`1{2

B2Φ
`

n`1{2

˙
ˇ

ˇ

ˇ

ˇ

x2“0

` Btpδψnq ` v1

`

U`n`1{2

˘
ˇ

ˇ

x2“0
B1pδψnq

“ gn,2,

ˆ

ε2BtΦ
´

n`1{2

N´n`1{2h
´

n`1{2pΓ
´

n`1{2q
2
,

%´n`1{2

h´n`1{2Γ
´

n`1{2

,
´ς´n`1{2

h´n`1{2Γ
´

n`1{2

˙
ˇ

ˇ

ˇ

ˇ

x2“0

ˆ

ˆ

δ 9V ´n ` δψn
B2U

´

n`1{2

B2Φ
´

n`1{2

˙
ˇ

ˇ

ˇ

ˇ

x2“0

` Btpδψnq ` v1

`

U´n`1{2

˘ˇ

ˇ

x2“0
B1pδψnq

“ gn,2 ´ gn,1,
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where we have set U˘n`1{2 :“ Ua˘ ` V ˘n`1{2, Φ˘n`1{2 :“ Φa˘ ` Ψ˘n`1{2, and

pN˘n`1{2, h
˘

n`1{2, Γ
˘

n`1{2, %
˘

n`1{2, ς
˘

n`1{2q :“ pN,h, Γ, %, ςqpU˘n`1{2, Φ
˘

n`1{2q,

with pN,h, Γ, %, ςq defined in (2.11), (3.3), and (4.9). Then we define δΨ`n and
δΨ´n as solutions to the following equations:

ˆ

ε2BtΦ
`

n`1{2

N`n`1{2h
`

n`1{2pΓ
`

n`1{2q
2
,

%`n`1{2

h`n`1{2Γ
`

n`1{2

,
´ς`n`1{2

h`n`1{2Γ
`

n`1{2

˙

ˆ

ˆ

δΨ`n
B2U

`

n`1{2

B2Φ
`

n`1{2

` δ 9V `n

˙

` BtpδΨ
`
n q ` v1

`

U`n`1{2

˘

B1pδΨ
`
n q

“ RT gn,2 `G
`
n , (8.16)

ˆ

ε2BtΦ
´

n`1{2

N´n`1{2h
´

n`1{2pΓ
´

n`1{2q
2
,

%´n`1{2

h´n`1{2Γ
´

n`1{2

,
´ς´n`1{2

h´n`1{2Γ
´

n`1{2

˙

ˆ

ˆ

δΨ´n
B2U

´

n`1{2

B2Φ
´

n`1{2

` δ 9V ´n

˙

` BtpδΨ
´
n q ` v1

`

U´n`1{2

˘

B1pδΨ
´
n q

“ RT pgn,2 ´ gn,1q `G
´
n , (8.17)

where the source terms G˘n will be chosen by using a decomposition for oper-
ator E .

We define the error terms: ê1n, ê2n, and ê3n by

EpVn`1, Ψn`1q ´ EpVn, Ψnq “ E 1pVn, ΨnqpδVn, δΨnq ` ê1n
“ E 1pSθnVn, SθnΨnqpδVn, δΨnq ` ê1n ` ê2n
“ E 1pVn`1{2, Ψn`1{2qpδVn, δΨnq ` ê

1
n ` ê

2
n ` ê

3
n , (8.18)

and denote

ên :“ ê1n ` ê
2
n ` ê

3
n , Ên :“

n´1
ÿ

k“0

êk. (8.19)

From (7.11a), we have

EpV, Ψq “ BtpUa ` V q ` v1pU
a ` V qB1pΦ

a ` Ψq ´ v2pU
a ` V q.

Similar to the derivation of (4.6) and (4.12b), we deduce that

E 1pV ˘n`1{2, Ψ
˘

n`1{2qpδV
˘
n , δΨ

˘
n q

are equal to the left-hand sides of (8.16)–(8.17), respectively. Then it follows
from (8.16)–(8.18) that

EpVn`1, Ψn`1q ´ EpVn, Ψnq “
ˆ

RT gn,2 `G
`
n ` ê

`
n

RT pgn,2 ´ gn,1q `G
´
n ` ê

´
n

˙

.
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Summing these relations and using EpV0, Ψ0q “ 0 yield

EpV ´n`1, Ψ
´
n`1q “ RT

´

n
ÿ

k“0

pgk,2 ´ gk,1q
¯

`

n
ÿ

k“0

G´k ` Ê
´
n`1.

On the other hand, we obtain from (8.5) and (8.11) that

gn “ BpVn`1|x2“0, ψn`1q ´ BpVn|x2“0, ψnq ´ ẽn. (8.20)

In view of (7.17) and (2.22), one obtains the relations:

`

BpVn`1|x2“0, ψn`1q
˘

2

“ EpV `n`1|x2“0, ψn`1q

“ EpV ´n`1|x2“0, ψn`1q `
`

BpVn`1|x2“0, ψn`1q
˘

1
. (8.21)

Summing (8.20) and using BpV0|x2“0, ψ0q “ 0, we have

EpV ´n`1, Ψ
´
n`1q

“ RT

´

E
`

V ´n`1|x2“0, ψn`1

˘

´ rEn`1,2 ` rEn`1,1

¯

`

n
ÿ

k“0

G´k ` Ê
´
n`1. (8.22)

Similarly, we can also obtain

EpV `n`1, Ψ
`
n`1q

“ RT

´

E
`

V `n`1|x2“0, ψn`1

˘

´ rEn`1,2

¯

`

n
ÿ

k“0

G`k ` Ê
`
n`1. (8.23)

Assumption (A-3): pG`0 , G
´
0 , ê0q “ 0, and pG`k , G

´
k , êkq are already given

and vanish in the past for k “ 0, . . . , n´ 1.

Under assumptions (A-1)–(A-3), taking into account (8.22)–(8.23) and the
property of RT , we compute the source terms G˘n from

Sθn
`

Ê`n ´RT
rEn,2

˘

`

n
ÿ

k“0

G`k “ 0, (8.24a)

Sθn
`

Ê´n ´RT
rEn,2 `RT

rEn,1
˘

`

n
ÿ

k“0

G´k “ 0. (8.24b)

From assumption (A-3) and the properties of Sθ, it is clear that G˘n vanish
in the past. As in [22], one can also check that the trace of G˘n on ωT vanishes.
Hence, we can find δΨ˘n , vanishing in the past and satisfying δΨ˘n |x2“0 “ δψn,
as the unique smooth solutions to the transport equations (8.16)–(8.17).

Once δΨn is specified, we can obtain δVn from (8.6) and pVn`1, Ψn`1, ψn`1q

from (8.4). The error terms: e1n, e2n, e3n , ẽ1n, ẽ2n, ẽ3n , ê1n, ê2n, and ê3n are computed
from (8.10)–(8.11) and (8.18). Then en, ẽn, and ên are obtained from (8.13)
and (8.19).



88 G.-Q. G. Chen et al.

Using (8.5) and (8.15), we sum (8.10) and (8.20) from n “ 0 to m, respec-
tively, to obtain

LpVm`1, Ψm`1q “

m
ÿ

n“0

fn ` Em`1 “ Sθmf
a ` pI ´ SθmqEm ` em, (8.25)

BpVm`1|x2“0, ψm`1q “

m
ÿ

n“0

gn ` rEm`1 “ pI ´ Sθmq
rEm ` ẽm. (8.26)

Plugging (8.24) into (8.22)–(8.23), we utilize (8.21) to deduce

$

’

’

’

’

’

&

’

’

’

’

’

%

EpV ´m`1, Ψ
´
m`1q “ RT

``

BpVm`1|x2“0, ψm`1q
˘

2
´

`

BpVm`1|x2“0, ψm`1q
˘

1

˘

` pI ´ Sθm q
`

Ê´m ´RT

`

rEm,2 ´ rEm,1
˘˘

` ê´m ´RT

`

ẽm,2 ´ ẽm,1
˘

,

EpV `m`1, Ψ
`
m`1q “ RT

``

BpVn`1|x2“0, ψn`1q
˘

2

˘

` pI ´ Sθm q
`

Ê`m ´RT
rEm,2

˘

` ê`m ´RT ẽm,2.

(8.27)

Since Sθm Ñ I as m Ñ 8, we can formally obtain the solution to problem
(7.17) from

LpVm`1, Ψm`1q Ñ fa, BpVm`1|x2“0, ψm`1q Ñ 0, EpVm`1, Ψm`1q Ñ 0,

provided that the error terms: pem, ẽm, êmq Ñ 0.

8.2 Inductive Hypothesis

Given a constant ε ą 0 and an integer α̃ that will be chosen later on, we
assume that (A-1)–(A-3) are satisfied and that the following estimate holds:
›

›Ũa
›

›

Hα̃`3
γ pΩT q

`
›

›Φ̃a
›

›

Hα̃`4
γ pΩT q

`
›

›ϕa
›

›

H
α̃`7{2
γ pΩT q

`
›

›fa
›

›

Hα̃`2
γ pΩT q

ď ε. (8.28)

Given another integer α, our inductive hypothesis reads:

pHn´1q

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

(a) }pδVk, δΨkq}HsγpΩT q ` }δψk}Hs`1
γ pωT q

ď εθs´α´1
k ∆k

for all k “ 0, . . . , n´ 1 and s P r3, α̃s X N;

(b) }LpVk, Ψkq ´ fa}HsγpΩT q ď 2εθs´α´1
k

for all k “ 0, . . . , n´ 1 and s P r3, α̃´ 2s X N;

(c) }BpVk|x2“0, ψkq}HsγpωT q ď εθs´α´1
k

for all k “ 0, . . . , n´ 1 and s P r4, αs X N;

(d) }EpVk, Ψkq}H3
γpΩT q

ď εθ2´α
k for all k “ 0, . . . , n´ 1,

where ∆k :“ θk`1 ´ θk with θk defined by (8.8). Notice that

1

3θk
ď ∆k “

b

θ2
k ` 1´ θk ď

1

2θk
for all k P N.
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In particular, sequence p∆kq is decreasing and tends to 0. Our goal is to show
that, for a suitable choice of parameters θ0 ě 1 and ε ą 0, and for fa small
enough, (Hn´1) implies (Hn) and that (H0) holds. Once this goal is achieved,
we infer that (Hn) holds for all n P N, which enables us to conclude the proof
of Theorem 2.1.

From now on, we assume that (Hn´1) holds. As in [19], hypothesis (Hn´1)
yields the following consequences:

Lemma 8.2 If θ0 is large enough, then, for each k “ 0, . . . , n and each
integer s P r3, α̃s,

}pVk, Ψkq}HsγpΩT q ` }ψk}Hs`1
γ pωT q

ď

#

εθ
ps´αq`
k if s ‰ α,

ε log θk if s “ α,
(8.29)

}ppI ´ SθkqVk, pI ´ SθkqΨkq}HsγpΩT q ď Cεθs´αk . (8.30)

Furthermore, for each k “ 0, . . . , n, and each integer s P r3, α̃` 4s,

}pSθkVk, SθkΨkq}HsγpΩT q ď

#

Cεθ
ps´αq`
k if s ‰ α,

Cε log θk if s “ α.
(8.31)

Estimates (8.30)–(8.31) follow directly from (8.1) and (8.29).

8.3 Estimate of the Error Terms

To deduce (Hn) from (Hn´1), we need to estimate the quadratic error terms
e1k, ẽ1k, and ê1k, the first substitution error terms e2k, ẽ2k, and ê2k, the second
substitution error terms e3k , ẽ3k , and ê3k , and the last error term Dk`1{2δΨk.
Recall from (8.10) that

e1k “ LpVk`1, Ψk`1q ´ LpVk, Ψkq ´ L1pUa ` Vk, Φa ` ΨkqpδVk, δΨkq,

which can be rewritten as

e1k “

ż 1

0

L2pUa ` Vk ` τδVk,

Φa ` Ψk ` τδΨkq
`

pδVk, δΨkq, pδVk, δΨkq
˘

p1´ τqdτ, (8.32)

where operator L2 is defined by

L2pU,Φq
`

pV 1, Ψ 1q, pV 2, Ψ2q
˘

:“
d

dτ
L1pU ` τV 2, Φ` τΨ2qpV 1, Ψ 1q

ˇ

ˇ

ˇ

ˇ

τ“0

,

with operator L1 given in (4.4). We can also obtain a similar expression for
ẽ1k (resp. ê1k) defined by (8.11) (resp. (8.18)) in terms of the second derivative
operator B2 (resp. E2).

To control the quadratic error terms, we need the estimates for operators
L2, B2, and E2 (see (8.32)). They can be obtained from the explicit forms



90 G.-Q. G. Chen et al.

of L2, B2, and E2 by applying the Moser-type and Sobolev embedding in-
equalities. Omitting detailed calculations, we find that the explicit forms of
operators E2pU,Φq and B2pU,Φq depend on state pU,Φq, which make the follow-
ing estimates for E2 and B2 different from those obtained in [19, Proposition
5]. This difference is caused by the introduction of new primary unknowns
pp, hw1, hw2q.

Proposition 8.2 Let T ą 0 and s P N with s ě 3. Assume that pŨ , Φ̃q P

Hs`1
γ pΩT q, Φ̃|x2“0 P H

s`1
γ pωT q, and }pŨ , Φ̃q}H3

γpΩT q
ď rK for all γ ě 1. Then

there exist two positive constants rK0 and C, which are independent of T and
γ, such that, if rK ` ε ď rK0, γ ě 1, pV1, Ψ1q, pV2, Ψ2q P Hs`1

γ pΩT q, and
pW1, ψ1q, pW2, ψ2q P H

s`1
γ pωT q ˆH

s`1
γ pωT q, then

›

›L2
`

Ua ` Ũ , Φa ` Φ̃
˘`

pV1, Ψ1q, pV2, Ψ2q
˘
›

›

HsγpΩT q

`
›

›E2
`

Ũ , Φ̃
˘`

pV1, Ψ1q, pV2, Ψ2q
˘›

›

HsγpΩT q

ď C
!

}pV1, Ψ1q}W 1,8pΩT q}pV2, Ψ2q}W 1,8pΩT q

›

›

`

Ũ ` Ũa, Φ̃` Φ̃a
˘
›

›

Hs`1
γ pΩT q

`
ÿ

i‰j

}pVi, Ψiq}Hs`1
γ pΩT q

}pVj , Ψjq}W 1,8pΩT q

)

,

›

›B2
`

Ua ` Ũ , Φa ` Φ̃
˘`

pW1, ψ1q, pW2, ψ2q
˘
›

›

HsγpωT q

ď C
!

}pW1, ψ1q}W 1,8pωT q}pW2, ψ2q}W 1,8pωT q

›

›

`

Ũ ` Ũa, Φ̃` Φ̃a
˘
›

›

Hs`1
γ pωT q

`
ÿ

i‰j

}pWi, ψiq}Hs`1
γ pωT q

}pWj , ψjq}W 1,8pωT q

)

.

Using Proposition 8.2, we obtain the following result.

Lemma 8.3 (Estimate of the quadratic error terms) Let α ě 4. Then
there exist ε ą 0 sufficiently small and θ0 ě 1 sufficiently large such that, for
all k “ 0, . . . , n´ 1, and all integers s P r3, α̃´ 1s,

}pe1k, ê
1
kq}HsγpΩT q ` }ẽ

1
k}HsγpωT q ď Cε2θ

L1psq´1
k ∆k,

where L1psq :“ maxtps` 2´ αq` ` 4´ 2α, s` 3´ 2αu.

Proof In light of pHn´1q and (8.29), we have

sup
0ďτď1

}pVk ` τδVk, Ψk ` τδΨkq}H3
γpΩT q

ď Cε.

For ε small enough, we can apply Proposition 8.2 and use the Sobolev embed-
ding inequality, (8.28), and pHn´1q to obtain

}e1k}HsγpΩT q

ď C
!

ε2θ4´2α
k ∆2

k

`

ε` }pVk, Ψk, δVk, δΨkq}Hs`1
γ pΩT q

˘

` ε2θs`2´2α
k ∆2

k

)
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for s P r3, α̃ ´ 1s. If s` 1 ‰ α, then we obtain from (8.29) and the inequality
2θk∆k ď 1 that

}e1k}HsγpΩT q ď Cε2∆2
k

`

θ
ps`1´αq``4´2α
k ` θs`2´2α

k

˘

ď Cε2θ
L1psq´1
k ∆k.

If s` 1 “ α, then using (8.29) and α ě 4 yields

}e1k}Hα´1
γ pΩT q

ď Cε2∆2
k

 

pε` ε log θk ` εθ
´1
k ∆kq ` θ

1´α
k

(

ď Cε2∆2
kθ

1´α
k ď Cε2θ

L1pα´1q´1
k ∆k.

The estimates for ê1k and ẽ1k are similar and follow by applying Proposition 8.2
and the trace theorem. This completes the proof. l

Now we estimate the first substitution error terms e2k, ẽ2k, and ê2k given in
(8.10)–(8.11), and (8.18) by rewriting them in terms of L2, B2, and E2. For
instance, ẽ2k can be rewritten as

ẽ2k “

ż 1

0

B2
`

Ua ` SθkVk ` τpI ´ SθkqVk, Φ
a ` SθkΨk ` τpI ´ SθkqΨk

˘

`

pδVk|x2“0, δψkq, ppI ´ SθkqVk|x2“0, pI ´ SθkqΨk|x2“0q
˘

dτ. (8.33)

Then we have the following lemma.

Lemma 8.4 (Estimate of the first substitution error terms) Let α ě 4.
Then there exist ε ą 0 sufficiently small and θ0 ě 1 sufficiently large such that,
for all k “ 0, . . . , n´ 1, and all integers s P r3, α̃´ 2s,

}pe2k, ê
2
kq}HsγpΩT q ` }ẽ

2
k}HsγpωT q ď Cε2θ

L2psq´1
k ∆k,

where L2psq :“ maxtps` 2´ αq` ` 6´ 2α, s` 5´ 2αu.

Proof It follows from (8.30) and (8.31) that

sup
0ďτď1

}pSθkVk ` τpI ´ SθkqVk, SθkΨk ` τpI ´ SθkqΨkq}H3
γpΩT q

ď Cε.

For ε sufficiently small, we can apply Proposition 8.2 to estimate B2 in (8.33).
Employ the trace and embedding theorems to obtain

}ẽ2k}HsγpωT q

À
›

›

`

δVk, δΨk
˘
›

›

H3
γpΩT q

›

›

`

pI ´ SθkqVk, pI ´ SθkqΨk
˘
›

›

H3
γpΩT q

ˆ
›

›

`

Ũa ` SθkVk ` τpI ´ SθkqVk, Φ̃
a ` SθkΨk ` τpI ´ SθkqΨk

˘
›

›

Hs`2
γ pΩT q

`
›

›

`

δVk, δΨk
˘
›

›

Hs`2
γ pΩT q

›

›

`

pI ´ SθkqVk, pI ´ SθkqΨk
˘
›

›

H3
γpΩT q

`
›

›

`

pI ´ SθkqVk, pI ´ SθkqΨk
˘›

›

Hs`2
γ pΩT q

›

›

`

δVk, δΨk
˘›

›

H3
γpΩT q

.
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Using estimates (8.28), pHn´1q, and (8.30)–(8.31), we obtain that, for s`2 ‰ α
and s` 2 ď α̃,

}ẽ2k}HsγpωT q

ď C
!

ε2θ5´2α
k ∆k

`

ε` εθ
ps`2´αq`
k

˘

` ε2θs`4´2α
k ∆k

)

ď Cε2θ
L2psq´1
k ∆k.

For s` 2 “ α, we obtain

}ẽ2k}HsγpωT q ď C
 

ε2θ5´2α
k ∆k

`

ε` ε log θk
˘

` ε2θ2´α
k ∆k

(

ď Cε2∆k

`

θ5´2α
k log θk ` θ

2´α
k

˘

ď Cε2θ
L2pα´2q´1
k ∆k,

owing to α ě 4. The estimate for e2k and ê2k can be deduced in the same way.
l

Now we estimate the second substitution error terms e3k , ẽ3k , and ê3k given
in (8.10)–(8.11) and (8.18) by rewriting them in terms of L2, B2, and E2. For
instance, ê3k can be rewritten as

ê3k “

ż 1

0

E2
`

Vk`1{2 ` τpSθkVk ´ Vk`1{2q, Ψk`1{2

˘`

pδVk, δΨkq, pSθkVk ´ Vk`1{2, 0q
˘

dτ.

Here we have used relation Ψk`1{2 “ SθkΨk (cf. (8.7)). Then we have the
following result.

Lemma 8.5 (Estimate of the second substitution error terms) Let
α ě 4. Then there exist ε ą 0 sufficiently small and θ0 ě 1 sufficiently large
such that, for all k “ 0, . . . , n´ 1, and all integers s P r3, α̃´ 1s,

}pe3k , ê
3
k q}HsγpΩT q ` }ẽ

3
k }HsγpωT q ď Cε2θ

L3psq´1
k ∆k,

where L3psq :“ maxtps` 2´ αq` ` 8´ 2α, s` 6´ 2αu.

Proof Omitting detailed derivation, we can use the inductive assumption
pHn´1q, definition (8.7), and the properties of Sθ and RT to obtain

}SθkVk ´ Vk`1{2}HsγpΩT q ď Cεθs`1´α
k (8.34)

for all k “ 0, . . . , n´1 and all integers s P r3, α̃`3s. We refer to [19, Proposition
7] for the proof of (8.34). It follows from (8.31) and (8.34) that

}Vk`1{2}HsγpΩT q ď Cεθ
ps´αq``1
k for s P r3, α̃` 3s. (8.35)

Thus, we have

}pŨa ` Vk`1{2 ` τpSθkVk ´ Vk`1{2q, Φ̃
a ` Ψk`1{2q}Hs`1

γ pΩT q

ď Cεθ
ps`1´αq``1
k . (8.36)



Relativistic Vortex Sheets 93

For ε small enough, one may apply Proposition 8.2 and use pHn´1q, (8.34),
and (8.36) to deduce

}ê3k }HsγpΩT q ď C
!

ε2θ6´2α
k ∆kεθ

ps`1´αq``1
k ` ε2θs`4´2α

k ∆k

)

ď Cε2θ
L3psq´1
k ∆k.

The estimate for e3k and ẽ3k can be deduced in a similar way by using the trace
theorem. l

We now estimate the last error term (8.12):

Dk`1{2δΨk “
δΨk

B2pΦa ` Ψk`1{2q
Rk,

where Rk :“ B2LpUa ` Vk`1{2, Φ
a ` Ψk`1{2q. This error term results from the

introduction of the good unknown in decomposition (8.10). Note from (8.7),
(8.28), and (8.31) that

|B2pΦ
a ` Ψk`1{2q| “

ˇ

ˇB2
sΦ` B2

`

Φ̃a ` Ψk`1{2

˘
ˇ

ˇ ě
1

2
,

provided that ε is small enough. Then we have the following estimate.

Lemma 8.6 Let α ě 5 and α̃ ě α ` 2. Then there exist ε ą 0 sufficiently
small and θ0 ě 1 sufficiently large such that, for all k “ 0, . . . , n´ 1, and for
all integers s P r3, α̃´ 2s, we have

}Dk`1{2δΨk}HsγpΩT q ď Cε2θ
Lpsq´1
k ∆k, (8.37)

where Lpsq :“ maxtps` 2´ αq` ` 8´ 2α, ps` 1´ αq` ` 9´ 2α, s` 6´ 2αu.

Proof The proof follows from the arguments as in [1, 19]. Let Ω`T :“ p0, T q ˆ
R2
`. Since δΨk vanishes in the past, using the Moser-type inequality, we obtain

}Dk`1{2δΨk}HsγpΩT q “ }Dk`1{2δΨk}HsγpΩ
`
T q

ď C
 

}δΨk}L8pΩ`T q
`

}Rk}HsγpΩ
`
T q
` }Rk}L8pΩ`T q

}Φ̃a ` Ψk`1{2}Hs`1
γ pΩ`T q

˘

` }δΨk}HsγpΩ
`
T q
}Rk}L8pΩ`T q

(

. (8.38)

To estimate Rk, we introduce the following decomposition for t ą 0:

LpUa ` Vk`1{2, Φ
a ` Ψk`1{2q ´ LpVk, Ψkq ` fa

“ LpUa ` Vk`1{2, Φ
a ` Ψk`1{2q ´ LpUa ` Vk, Φa ` Ψkq

“

ż 1

0

L1
`

Ua ` Vk ` τpVk`1{2 ´ Vkq,

Φa ` Ψk ` τpΨk`1{2 ´ Ψkq
˘

pVk`1{2 ´ Vk, Ψk`1{2 ´ Ψkqdτ. (8.39)

If s ď α̃´ 3, the inductive assumption pHn´1q implies

}LpVk, Ψkq ´ fa}Hs`1
γ pΩT q

ď 2εθs´αk . (8.40)
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Since we can obtain an estimate for L1 similar to that for L2 (see Proposition
8.2), using Lemma 8.2 and (8.34) leads to

}LpUa ` Vk`1{2, Φ
a ` Ψk`1{2q ´ LpUa ` Vk, Φa ` Ψkq}Hs`1

γ pΩT q

ď Cε
`

θs`3´α
k ` θ

ps`2´αq``5´α
k

˘

. (8.41)

Plugging (8.40)–(8.41) into (8.39) yields

}Rk}HsγpΩT q ď Cε
`

θs`3´α
k ` θ

ps`2´αq``5´α
k

˘

for s P r3, α̃´ 3s. (8.42)

If s “ α̃´ 2 ě α, then we use (8.31) and (8.35) to obtain

}Rk}HsγpΩT q ď }LpU
a ` Vk`1{2, Φ

a ` Ψk`1{2q}Hs`1
γ pΩT q

ď C}pŨa ` Vk`1{2, Φ̃
a ` Ψk`1{2q}Hs`2

γ pΩT q

ď Cεθs`3´α
k .

Thus, we obtain estimate (8.42) for s P r3, α̃´2s. Thanks to pHn´1q and (8.42),
we utilize the embedding inequality to find

}δΨk}L8pΩT q ď Cεθ2´α
k ∆k, }Rk}L8pΩT q ď Cεθ6´α

k .

Using these bounds and plugging (8.42), pHn´1q, and (8.31) into (8.38) yield
(8.37). l

From Lemmas 8.3–8.6, we can immediately obtain the following estimate
for ek, ẽk, and êk defined in (8.13) and (8.19).

Lemma 8.7 Let α ě 5. Then there exist ε ą 0 sufficiently small and θ0 ě 1
sufficiently large such that, for all k “ 0, . . . , n ´ 1, and for all integers s P
r3, α̃´ 2s, we have

}ek}HsγpΩT q ` }êk}HsγpΩT q ` }ẽk}HsγpωT q ď Cε2θ
Lpsq´1
k ∆k, (8.43)

where Lpsq is defined in Lemma 8.6.

Lemma 8.7 yields the estimate of the accumulated error terms Ek, rEk, and
Êk that are defined in (8.14) and (8.19).

Lemma 8.8 Let α ě 7 and α̃ “ α ` 4. Then there exist ε ą 0 sufficiently
small and θ0 ě 1 sufficiently large such that

}pEn, Ênq}Hα`2
γ pΩT q

` } rEn}Hα`2
γ pωT q

ď Cε2θn. (8.44)

Proof Notice that Lpα` 2q ď 1 if α ě 7. From (8.43), we have

}pEn, Ênq}Hα`2
γ pΩT q

` } rEn}Hα`2
γ pωT q

ď

n´1
ÿ

k“0

 

}pek, êkq}Hα`2
γ pΩT q

` }ẽk}Hα`2
γ pωT q

(

ď

n´1
ÿ

k“0

Cε2∆k ď Cε2θn,

provided that α ě 7 and α ` 2 P r3, α̃ ´ 2s. Thus, the minimal possible α̃ is
α` 4. l
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8.4 Proof of Theorem 2.1

To prove our main result, we first derive the estimates of the source terms fn,
gn, and G˘n defined in (8.15) and (8.24).

Lemma 8.9 Let α ě 7 and α̃ “ α ` 4. Then there exist ε ą 0 sufficiently
small and θ0 ě 1 sufficiently large such that, for all integers s P r3, α̃` 1s,

}fn}HsγpΩT q ď C∆n

 

θs´α´2
n p}fa}Hα`1

γ pΩT q
` ε2q ` ε2θLpsq´1

n

(

, (8.45)

}gn}HsγpωT q ď Cε2∆n

`

θs´α´2
n ` θLpsq´1

n

˘

, (8.46)

and for all integers s P r3, α̃s,

}G˘n }HsγpΩT q ď Cε2∆n

`

θs´α´2
n ` θLpsq´1

n

˘

. (8.47)

Proof It follows from (8.15) that

fn “ pSθn ´ Sθn´1qf
a ´ pSθn ´ Sθn´1qEn´1 ´ Sθnen´1.

Using (8.1a), (8.1c), (8.43), and (8.44), we obtain the estimates:

}pSθn ´ Sθn´1
qfa}HsγpΩT q ď Cθs´α´2

n´1 }fa}Hα`1
γ pΩT q

∆n´1,

}pSθn ´ Sθn´1
qEn´1}HsγpΩT q ď Cθs´α´3

n´1 }En´1}Hα`2
γ pΩT q

∆n´1

ď Cε2θs´α´2
n´1 ∆n´1,

}Sθnen´1}HsγpΩT q ď Cε2θ
Lpsq´1
n´1 ∆n´1.

Combining the above estimates with the inequalities: θn´1 ď θn ď
?

2θn´1 and
∆n´1 ď 3∆n, we derive (8.45). Similarly, we obtain (8.46). To prove (8.47),
we use (8.24) to find

G`n “ pSθn ´ Sθn´1
q
`

RT
rEn´1,2 ´ Ê

`
n´1

˘

` Sθn
`

RT ẽn´1,2 ´ ê
`
n´1

˘

.

Then we obtain the estimate for G`n by using (8.43)–(8.44) as above. The
estimate of G´n is the same. l

We are going to obtain the estimate of the solution to problem (8.5) by
employing the tame estimate (6.2).

Lemma 8.10 Let α ě 7. If ε ą 0 and }fa}Hα`1
γ pΩT q

{ε are sufficiently small,

and if θ0 ě 1 is sufficiently large, then, for all integers s P r3, α̃s,

}pδVn, δΨnq}HsγpΩT q ` }δψn}Hs`1
γ pωT q

ď εθs´α´1
n ∆n. (8.48)

Proof Let us consider problem (8.5), which can be solved, since Ua ` Vn`1{2

and Φa ` Ψn`1{2 satisfy the required constraints (8.9). Constraint (4.1) can
be obtained by truncating the coefficients, Ua` Vn`1{2 and Φa`Ψn`1{2, by a
suitable cut-off function, while (4.3b) can be obtained by taking ε ą 0 small
enough. We can consider the coefficients with a fixed compact support. In order
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to apply Theorem 6.1, we obtain (6.1), by using the classical trace estimate,
(8.28), (8.31), (8.34), and α ě 7. Thus, we can employ the tame estimate (6.2)
to obtain

}δ 9Vn}HsγpΩT q ` }δψn}Hs`1
γ pωT q

ď C
 `

}fn}H4
γpΩT q

` }gn}H4
γpωT q

˘

}pŨa ` Vn`1{2, Φ̃
a ` Ψn`1{2q}Hs`3

γ pΩT q

` }fn}Hs`1
γ pΩT q

` }gn}Hs`1
γ pωT q

(

. (8.49)

The particular case s “ 3 implies

}δ 9Vn}H3
γpΩT q

ď C
`

}fn}H4
γpΩT q

` }gn}H4
γpωT q

˘

. (8.50)

Given δψn, we can compute δΨn from equations (8.16)–(8.17). Performing
the energy estimates for δΨn, and using Lemma 8.2, (8.34), and the Sobolev
embedding theorem, we derive

γ}δΨn}HsγpΩT q

ď C
 

}gn}HsγpωT q ` }Gn}HsγpΩT q ` }δ
9Vn}HsγpΩT q ` }δ

9Vn}H3
γpΩT q

ˆ }Φ̃a ` SθnΨn}Hs`1
γ pΩT q

` εθps`2´αq`
n }δΨn}H3

γpΩT q

(

(8.51)

for all integers s P r3, α̃s and ε small enough. For s “ 3, using (8.50), we have

}δΨn}H3
γpΩT q

ď C
`

}fn}H4
γpΩT q

` }gn}H4
γpωT q

` }Gn}H3
γpΩT q

˘

. (8.52)

In view of (8.6), using estimates (8.49), (8.51)–(8.52), and the Moser-type
inequality, we obtain

}pδVn, δΨnq}HsγpΩT q ` }δψn}Hs`1
γ pωT q

ď C
 

}fn}Hs`1
γ pΩT q

` }gn}Hs`1
γ pωT q

` }Gn}HsγpΩT q

` p}fn}H4
γpΩT q

` }gn}H4
γpωT q

` }Gn}H3
γpΩT q

q

ˆ
`

}pŨa ` Vn`1{2, Φ̃
a ` Ψn`1{2q}Hs`3

γ pΩT q
` εθps`2´αq`

n

˘(

(8.53)

for all integers s P r3, α̃s. Using Lemma 8.9, (8.31), and (8.34), we obtain from
(8.53) that

}pδVn, δΨnq}HsγpΩT q ` }δψn}Hs`1
γ pωT q

ď C∆n

 

θ2´α
n p}fa}Hα`1

γ pΩT q
` ε2q ` ε2θ9´2α

n

(`

εθps`3´αq`
n ` εθs`4´α

n

˘

` C∆n

 

θs´α´1
n p}fa}Hα`1

γ pΩT q
` ε2q ` ε2θLps`1q´1

n

(

. (8.54)

Exactly as in [19], we can obtain the following inequalities:
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Lps` 1q ď s´ α,

ps` 3´ αq` ` 2´ α ď s´ α´ 1,

ps` 3´ αq` ` 9´ 2α ď s´ α´ 1,

s` 6´ 2α ď s´ α´ 1,

s` 13´ 3α ď s´ α´ 1,
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for α ě 7 and s P r3, α̃s. Thus, (8.54) yields

}pδVn, δΨnq}HsγpΩT q ` }δψn}Hs`1
γ pωT q

ď C
`

}fa}Hα`1
γ pΩT q

` ε2
˘

θs´α´1
n ∆n,

and (8.48) follows by taking ε` }fa}Hα`1
γ pΩT q

{ε small enough. l

Estimate (8.48) is inequality (a) of pHnq. We now prove the other inequal-
ities in pHnq.

Lemma 8.11 Let α ě 7. If ε ą 0 and }fa}Hα`1
γ pΩT q

{ε are sufficiently small,

and if θ0 ě 1 is sufficiently large, then, for all integers s P r3, α̃´ 2s,

}LpVn, Ψnq ´ fa}HsγpΩT q ď 2εθs´α´1
n . (8.55)

Moreover, for all integers s P r4, αs,

}BpVn|x2“0, ψnq}HsγpωT q ď εθs´α´1
n (8.56)

and

}EpVn, Ψnq}H3
γpΩT q

ď εθ2´α
n . (8.57)

Proof From (8.25), we have

}LpVn, Ψnq ´ fa}HsγpΩT q ď }pI ´ Sθn´1
qfa}HsγpΩT q

` }pSθn´1 ´ IqEn´1}HsγpΩT q ` }en´1}HsγpΩT q.

For s P rα` 1, α̃´ 2s, using (8.1a) and (8.28), we obtain

}pI ´ Sθn´1qf
a}HsγpΩT q ď θs´α´1

n´1 p}fa}HsγpΩT q ` C}f
a}Hα`1

γ pΩT q
q

ď εθs´α´1
n

´

1`
C}fa}Hα`1

γ pΩT q

ε

¯

,

while, for s P r3, α` 1s, applying (8.1b), we have

}pI ´ Sθn´1
qfa}HsγpΩT q ď Cθs´α´1

n´1 }fa}Hα`1
γ pΩT q

ď Cθs´α´1
n }fa}Hα`1

γ pΩT q
.

Lemma 8.8 and (8.1b) imply

}pI ´ Sθn´1
qEn´1}HsγpΩT q ď Cθs´α´2

n´1 }En´1}Hα`2
γ pΩT q

ď Cε2θs´α´1
n

for 3 ď s ď α` 2 “ α̃´ 2. It follows from (8.43) that

}en´1}HsγpΩT q ď Cε2θ
Lpsq´1
n´1 ∆n´1 ď Cε2θLpsq´2

n ď Cε2θs´α´1
n .

By virtue of the above estimates, we choose ε and }fa}Hα`1
γ pΩT q

{ε sufficiently

small to obtain (8.55). Similarly, using decompositions (8.26)–(8.27), we can
prove estimates (8.56)–(8.57). l
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In view of Lemmas 8.10–8.11, we have obtained pHnq from pHn´1q, pro-
vided that α ě 7, α̃ “ α ` 4, (8.28) holds, ε ą 0 and }fa}Hα`1

γ pΩT q
{ε are

sufficiently small, and θ0 ě 1 is large enough. Fixing constants α, α̃, ε ą 0 and
θ0 ě 1, we now prove pH0q.

Lemma 8.12 If }fa}Hα`1
γ pΩT q

{ε is sufficiently small, then pH0q holds.

Proof Recall from assumptions (A-1)–(A-3) that pV0, Ψ0, ψ0, g0, G
˘
0 q “ 0 and

f0 “ Sθ0f
a. Then it follows from (8.7) that pV1{2, Ψ1{2q “ 0. Thanks to (8.28)

and the properties of the approximate solution in Lemma 7.2, we may apply
Theorem 6.1 to obtain pδ 9V0, δψ0q as the unique solution of (8.5) for n “ 0,
which satisfies

}δ 9V0}HsγpΩT q ` }δψ0}Hs`1
γ pΩT q

ď C}Sθ0f
a}Hs`1

γ pΩT q
.

Then we find δΨ˘0 from equations (8.16)–(8.17) with n “ 0. The standard
energy estimates yield

}δΨ0}HsγpΩT q ď C}δ 9V0}HsγpΩT q for s P r3, α̃s,

which, combined with (8.6) and (8.28), implies

}pδV0, δΨ0q}HsγpΩT q ` }δψ0}Hs`1
γ pΩT q

ď C}Sθ0f
a}Hs`1

γ pΩT q
ď Cθ

ps´αq`
0 }fa}Hα`1

γ pΩT q
.

If }fa}Hα`1
γ pΩT q

{ε is suitably small, then we can obtain inequality (a) of pH0q.

The other inequalities of pH0q can be shown to hold by taking }fa}Hα`1
γ pΩT q

small enough. l

From (8.12) and Lemmas 8.10–8.11, we derive that pHnq holds for every
n P N, provided that the parameters are well-chosen and that fa is sufficiently
small. We are now in a position to conclude the proof of Theorem 2.1.

Proof of Theorem 2.1 We consider the initial data pU˘0 , ϕ0q satisfying all
the assumptions of Theorem 2.1. Let α̃ “ µ´ 2 and α “ α̃´ 4 ě 7. Then the
initial data U˘0 and ϕ0 are compatible up to order µ “ α̃ ` 2. From (7.14)
and (7.16), we obtain (8.28) and all the requirements of Lemmas 8.10–8.12,
provided that pŨ˘0 , ϕ0q is sufficiently small in Hµ`1{2pR2

`q ˆ Hµ`1pRq with

Ũ˘0 :“ U˘0 ´ sU˘. Hence, for small initial data, property pHnq holds for all
integers n. In particular, we have

8
ÿ

k“0

´

}pδVk, δΨkq}HsγpΩT q ` }δψk}Hs`1
γ pωT q

¯

ď C
8
ÿ

k“0

θs´α´2
k ă 8

for s P r3, α ´ 1s. Thus, sequence pVk, Ψkq converges to some limit pV, Ψq in
Hα´1
γ pΩT q, and sequence ψk converges to some limit ψ in Hα

γ pΩT q. Passing
to the limit in (8.55)–(8.56) for s “ α ´ 1 “ µ ´ 7, and in (8.57), we obtain
(7.17). Therefore, pU,Φq “ pUa`V, Φa`Ψq is a solution on Ω`T of the original
problem (2.20) and (2.23). This completes the proof. l
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Appendix A Symmetrization of the Relativistic Euler Equations

Under assumption (2.6), Makino–Ukai [33] showed that there exists a strictly
convex entropy function for the relativistic Euler equations (2.4), which yields
a symmetrizer for (2.4) by following Godunov’s symmetrization procedure in
[23]. By contrast, the symmetrizable hyperbolic system (2.18) is deduced by
using a purely algebraic symmetrization of the relativistic Euler equations
(2.4); see Trakhinin [48] for a different algebraic symmetrization.

In order to derive (2.18), we need to recover another conservation law (that
is, conservation of particle number) from equations (2.4). Denoting by N the
particle number density and by e the specific internal energy, then

ρ “ Np1` ε2eq. (A.1)

The particle number density N was introduced by Taub [46]. For a perfect
fluid, N and e are functions of the two thermodynamic variables ρ and S
(specific entropy). According to the first law of thermodynamics, the following
differential relation holds:

TdS “ de` p dN´1, (A.2)

where T is the absolute temperature. By virtue of (A.1)–(A.2), we have

BplnNq

Bρ
“

1

ρ` ε2p
,

BplnNq

BS
“ ´ε2NT. (A.3)

In the case of barotropic fluids where pressure p depends solely on ρ, it is nat-
ural to introduce the “mathematical” particle number density N as a function
of ρ only such that the first relation in (A.3) holds. This motivates us to define
N “ Npρq as (2.11).

Let pρ, vq be a C1–solution to (2.4). It follows from (2.4a) and h “ pρ `
ε2pq{N that

´hΓ tBtpNΓ q ` BkpNΓvkqu “ NΓ tΓ pBt ` vkBkqh` hpBt ` vkBkqΓ u ´ ε
2Btp.

In view of (2.13) and (2.4b), we obtain

NhΓ pBt ` vkBkqΓ “ NhΓε2vjpBt ` vkBkqwj

“ ´ε2N |w|2pBt ` vkBkqh´ ε
2hΓ´1|w|2 tBtpNΓ q ` BkpNΓvkqu ´ ε

2vjBjp,

which implies

hΓ´1pε2|w|2 ´ Γ 2q tBtpNΓ q ` BkpNΓvkqu

“ NpΓ 2 ´ ε2|w|2qpBt ` vkBkqh´ ε
2pBt ` vkBkqp.

Thanks to (2.11) and (2.13), Npρqh1pρq “ ε2p1pρq and Γ 2 ´ ε2|w|2 “ 1. Then
we obtain the conservation of particle number:

BtpNΓ q ` BkpNΓvkq “ 0. (A.4)
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Equations (2.14) then follow from (2.4b) and (A.4). Using the identities: Γt “

ε2v ¨ Btw and N 1ppq “ N 1pρq
p1pρq “

1
hpρqc2pρq , we see from (A.4) that

Γ pBt ` v ¨∇xqp`Nhc
2
`

ε2v ¨ Btw `∇x ¨ w
˘

“ 0.

We use the relations: h1ppq “ ε2{N and w “ Γv to deduce

Γ p1´ ε4c2|v|2qBtp` Γ p1´ ε
2c2qv ¨∇xp

`Nc2
`

ε2v ¨ Btphwq `∇x ¨ phwq
˘

“ 0. (A.5)

Set U :“ pp, hw1, hw2q
T. Then equations (2.14) and (A.5) can be written as

B0pUqBtU `B1pUqB1U `B2pUqB2U “ 0, (A.6)

where the coefficient matrices are given by

B0pUq :“

ˆ

Γ p1´ ε4c2|v|2q ε2c2NvT

0 ΓI2

˙

, (A.7)

BjpUq :“

ˆ

Γvjp1´ ε
2c2q Nc2eTj

N´1ej ΓvjI2

˙

, j “ 1, 2, (A.8)

Here we have set ej :“ pδ1j , δ2jq
T and I2 :“ pδijq2ˆ2 with δij being the Kro-

necker symbol. Let us define

S1pUq :“

ˆ

1 ε2Nc2Γ´1vT

0 I2 ´ ε
2v b v

˙

. (A.9)

Multiplying (A.6) by S1pUq and using the identity: Γ 2 ´ ε2c2Γ 2 ` ε2c2 “
Γ 2p1 ´ ε4c2|v|2q, we obtain system (2.18). Conversely, we can also deduce
system (2.4) from (2.18) so that we derive the equivalence of these two systems
in the region where the solutions are in C1.

It remains to show that system (2.18) is symmetrizable hyperbolic in region
tρ˚ ă ρ ă ρ˚, |v| ă ε´1u. Let us set the Friedrichs symmetrizer :

S2pUq :“

ˆ

1 ´2ε2Nc2ΓvT

0 N2c2I2

˙

. (A.10)

After straightforward calculations, we derive that all matrices S2pUqAjpUq are
symmetric, and the eigenvalues of S2pUqA0pUq are

λ1 “ Γ p1´ ε4c2|v|2q, λ2 “ ΓN2c2, λ3 “ ΓN2c2p1´ ε2|v|2q.

Assumption (2.6) yields that λ1, λ2, and λ3 are all positive. Consequently,
S2pUqA0pUq is positive definite and system (2.18) is symmetrizable hyperbolic.
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https://doi.org/10.4171/031

13. Christodoulou, D.: The Shock Development Problem. European Mathe-
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23. Godunov, S. K.: An interesting class of quasi-linear systems. Dokl. Akad.
Nauk SSSR 139, 521–523 (1961).
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