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Abstract We are concerned with the nonlinear stability of vortex sheets for
the relativistic Euler equations in three-dimensional Minkowski spacetime.
This is a nonlinear hyperbolic problem with a characteristic free boundary. In
this paper, we introduce a new symmetrization by choosing appropriate func-
tions as primary unknowns. A necessary and sufficient condition for the weakly
linear stability of relativistic vortex sheets is obtained by analyzing the roots
of the Lopatinskii determinant associated to the constant coefficient linearized
problem. Under this stability condition, we show that the variable coefficient
linearized problem obeys an energy estimate with a loss of derivatives. The
construction of certain weight functions plays a crucial role in absorbing the
error terms caused by microlocalization. Based on the weakly linear stability
result, we establish the existence and nonlinear stability of relativistic vortex
sheets under small initial perturbations by a Nash—Moser iteration scheme.
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1 Introduction

We are concerned with the nonlinear stability of relativistic vortex sheets for
the Euler equations describing the evolution of a relativistic compressible fluid.
Relativistic vortex sheets arise as a very important feature in several models
of phenomena occurring in astrophysics, plasma physics, and nuclear physics.
Vortex sheets are interfaces between two incompressible or compressible flows
across which there is a discontinuity in fluid velocity. In particular, across a
vortex sheet, the tangential velocity field has a jump, while the normal com-
ponent of the flow velocity is continuous. The discontinuity in the tangential
velocity field creates a concentration of vorticity along the interface. Moreover,
compressible vortex sheets are characteristic discontinuities to the Euler equa-
tions for compressible fluids and as such they are fundamental waves which
play an important role in the study of general entropy solutions to multidi-
mensional hyperbolic systems of conservation laws (c¢f. Chen-Feldman [7]).

It was observed in [21, 36], by the normal mode analysis, that rectilinear
vortex sheets for non-relativistic isentropic compressible fluids in two space
dimensions are linearly stable when the Mach number M > +/2 and are vio-
lently unstable when M < /2, while planar vortex sheets are always violently
unstable in three space dimensions. This kind of instabilities is the analogue
of the Kelvin—-Helmholtz instability for incompressible fluids. Artola—Majda
[3] studied certain instabilities of two-dimensional supersonic vortex sheets by
analyzing the interaction with highly oscillatory waves through geometric op-
tics. A rigorous mathematical theory on nonlinear stability and local-in-time
existence of two-dimensional non-relativistic supersonic vortex sheets was first
established by Coulombel-Secchi [19, 20] based on their linear stability results
in [17] and a Nash—-Moser iteration scheme.

Motivated by the earlier results in [17, 19, 20], we aim to establish the
nonlinear stability of relativistic vortex sheets in three-dimensional Minkowski
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spacetime under the necessary condition for the linear stability on the piece-
wise constant background state. This problem is a nonlinear hyperbolic prob-
lem with a characteristic free boundary. The so-called Lopatinskii condition
holds only in a weak sense, which yields a loss of derivatives.

We first reformulate the relativistic Euler equations into a symmetrizable
hyperbolic system by choosing appropriate functions as primary unknowns.
Our symmetrization is purely algebraic and different from those obtained by
Makino-Ukai in [33] and Trakhinin [48]. As in Francheteau-Métivier [22], we
straighten the unknown front by lifting functions & that satisfy the eikonal
equations (2.23a) on the whole domain. Consequently, the original problem can
be transformed into a nonlinear problem in a half-space for which the boundary
matrix has constant rank on the whole half-space. This constant rank property
is essential to derive energy estimates for the variable coefficient linearized
problem by developing the Kreiss’ symmetrizers technique from [15, 17, 27].

Then we consider the constant coefficient linearized problem around the
piecewise constant background state. By computing the roots of the asso-
ciated Lopatinskii determinant, we deduce the necessary stability condition

(cf. (2.25)):
V2
V1 + e2e2’

where €' is the speed of light and ¢ is the sound speed of the background
state. In the non-relativistic limit € — 0, this stability condition is reduced to
M > /2, the well-known fact studied in [17, 36]. The critical Mach number M.,
of the relativistic stability condition is always strictly smaller than /2, which
means that the relativistic vortex sheets are stable in a larger physical regime.
Moreover, when the sound speed € is arbitrarily close to the light speed ¢!,
the critical Mach number M, approaches 1 so that the stability holds precisely
for supersonic relativistic flows. The symbol associated to the unknown front
is elliptic, which enables us to eliminate the front and to consider a standard
boundary value problem. We prove that the constant coefficient linearized
problem obeys an a priori energy estimate, which exhibits a loss of derivatives
with respect to the source terms, owing to the failure of the uniform Kreiss—
Lopatinskii condition. Since the boundary is characteristic, there exists a loss
of control on the trace of the solution.

After that, we study the effective linear problem, which is deduced from
the linearized problem around a perturbation of the background state by using
the “good unknown” of Alinhac [1] and neglecting some zero-th order terms.
The dropped terms will be considered as the error terms at each Nash—Moser
iteration step in the subsequent nonlinear analysis. We first prove for small
perturbations that the solution satisfies the same a priori estimate as the con-
stant coefficient case. The energy estimate is deduced by the technique applied
earlier to weakly stable shock waves in [15] and isentropic compressible vortex
sheets in [17]. It consists of the paralinearization of the linearized problem,
analysis of the Lopatinskii determinant, microlocalization, and construction
of the Kreiss’ symmetrizers. In particular, we introduce certain weight func-

M> M, :=
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tions, vanishing only on the bicharacteristic curves starting from the critical
set, to absorb the error terms caused by microlocalization. Based on this basic
energy estimate, we establish a well-posedness result for the effective linear
problem in the usual Sobolev space H® with s large enough. This is achieved
by means of a duality argument and higher order energy estimates. Although
our problem is a hyperbolic problem with characteristic boundary that yields
a natural loss of normal derivatives, we manage to compensate this loss by
estimating missing normal derivatives through the equations of the linearized
vorticity. With the well-posedness and tame estimate for the effective linear
problem in hand, we prove the local existence theorem for relativistic vortex
sheets (see Theorem 2.1) by a Nash-Moser iteration scheme. We emphasize
that our choice of new primary unknowns is essential for three main reasons:
The system becomes symmetrizable hyperbolic; it has an appropriate form for
the analysis of the Lopatinskii determinant; and, most of all, it is suitable for
getting a vorticity-type equation.

Characteristic discontinuities, especially vortex sheets, arise in a broad
range of physical problems in fluid mechanics, oceanography, aerodynamic-
s, plasma physics, astrophysics, and elastodynamics. The linear results in
[17] have been generalized to cover the two-dimensional nonisentropic flows
[38], the three-dimensional compressible steady flows [50, 52|, and the two-
dimensional two-phase flows [42]. Tt is worth mentioning that a key ingredient
in all of these proofs is the constant rank property of the boundary matrix.
Recently, the methodology in [17] has been developed to deal with several
constant coefficient linearized problems arising in two-dimensional compress-
ible magnetohydrodynamics (MHD) and elastic flows; ¢f. [5, 10, 49]. See also
the very recent preprint [11] for the linear stability of elastic vortex sheets in
the variable coefficient case. For three-dimensional MHD, Chen—Wang [8, 9]
and Trakhinin [47] proved independently the nonlinear stability of compress-
ible current-vortex sheets, which indicates that non-paralleled magnetic fields
stabilize the motion of three-dimensional compressible vortex sheets. More-
over, the modified Nash—-Moser iteration scheme developed in [19, 24] has been
successfully applied to the compressible liquids in vacuum [48], the plasma-
vacuum interface problem [44], MHD contact discontinuities [39], and vortex
sheets for three-dimensional steady flow [51] and two-dimensional two-phase
flow [25].

Let us also mention some earlier works on the relativistic fluids. The global
existence of discontinuous solutions to the relativistic Euler equations in one
space dimension was first investigated by Smoller—Temple [45]. Also, Makino—
Ukai [33] showed the existence of local smooth solutions in three space di-
mensions when the initial data is away from the vacuum. The stability of
relativistic compressible flows with vacuum was addressed in [26, 48]. More-
over, the blow-up in finite time of smooth solutions for the relativistic Euler
equations was shown in Pan—Smoller [40]. Also see Christodoulou [12, 13] for
the formation and development of shocks in the multidimensional relativistic
compressible fluids.
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The plan of this paper is as follows: In § 2, after introducing the free bound-
ary problem for relativistic vortex sheets, we reformulate the relativistic Euler
equations and reduce our nonlinear problem to that in a fixed domain. Then
we state the main result in this paper and introduce the weighted spaces and
norms. Section 3 is mainly devoted to proving Theorem 3.1, i.e. an energy
estimate for the constant coefficient linearized problem. More precisely, after
some reductions, we compute the roots of the associated Lopatinskii deter-
minant and deduce the criterion for weakly linear stability in §3.2. Then we
adopt the argument developed recently by Chen—-Hu—Wang [10] to prove the
energy estimate for the constant coefficient case. In §4, we introduce the ef-
fective linear problem and its reformulation. Section 5 is devoted to the proof
of Theorem 5.1, the energy estimate for the effective linear problem. After
deriving a weighted energy estimate with certain weights vanishing only on
the bicharacteristic curves starting from the critical set, we can absorb the
error terms caused by microlocalization and complete the proof of Theorem
5.1. In §6, we prove a well-posedness result of the effective linear problem in
the usual Sobolev space H® with s large enough. In § 7, we obtain the smooth
“approximate solution” by imposing necessary compatible conditions on the
initial data. Then the original problem (2.20) and (2.23) is reduced into a
nonlinear problem with zero initial data. In §8, by using a modification of
the Nash—Moser iteration scheme, we show the existence of solutions to the
reduced problem and conclude the proof of our main result, Theorem 2.1. Ap-
pendix A concerns the motivation of introducing new primary unknowns and
the derivation of the new symmetrization.

2 Nonlinear Problems and the Main Theorem
In this section, we first introduce the free boundary problem for relativistic
vortex sheets, then reformulate the relativistic Euler equations and reduce

our nonlinear problem to that in a fixed domain, and finally state the main
theorem of this paper and introduce the weighted spaces and norms.

2.1 Relativistic Vortex Sheets
We consider the equations of relativistic perfect fluid dynamics in the three-
dimensional Minkowski spacetime R2*1, that is, the relativistic Euler equa-
tions (see Lichnerowicz [30]):

0,T%% =0, (2.1)

where T denotes the energy-momentum stress tensor with components

T = (p + pe Huu’ + pg*P.
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Here p is the pressure, p is the energy-mass density, e ! is the speed of light,
g*% = diag (—1,1,1) is the flat Minkowski metric, and u = (u°, u',u?)T is the
flow velocity satisfying

g*Puuf = —1. (2.2)

The notation, d,, denotes the differentiation with respect to variable z,, and
the Greek indices “a” and “B” run from 0 to 2. Throughout this paper, we
use the Einstein summation convention whereby a repeated index in a term
implies the summation over all the values of that index.

We introduce the coordinate velocity v = (vi,v9)" := (ul,u?)7/(eu?). By
virtue of (2.2), the physical constraint is:

lv| < et (2.3)

We also introduce the spacetime coordinates (¢,z) with ¢ := exg and z :=
(z1,22). Then system (2.1) can be equivalently rewritten as

o ((p+Ep)I? —€p) + V- ((p+ €2p)[Pv) = 0, (2.4a)
o ((p+€p)I%0) + Va - ((p+ E€p)Pv @) + Vop =0, (2.4b)
where 0; = %, V. = (01,02)7 with 9; = a%j, matrix v®u has (4, j)-entry v;v;,
and
=)= —— (2.5)
1—€?|v|?

is the Lorentz factor. The fluid is assumed to be barotropic, which means that
pressure p is given by an explicit function of p. We also assume that p = p(p)
is a C® function defined on (p4, p*) and satisfies

2 forall pe (p4,p*), (2.6)

0<p'(p) <e
where py and p* are some constants such that 0 < p, < p* < oo0. Consequently,
density p is a strictly increasing function of p defined on (p(ps),p(p*)), and
system (2.4) is closed with three unknowns (p,v1,v2). Barotropic fluids arise
in many physical situations such as very cold matter, nuclear matter and
ultrarelativistic fluids (c¢f. [2, Chapter II], [14, Chapter IX], and [45, §1]).

Let (p,v)(t, z) be smooth functions on either side of a smooth hypersurface
X(t) := {z2 = p(t,x1)}. Then (p,v) is a weak solution of (2.4) if and only
if (p,v) is a classical solution of (2.4) on each side of X'(¢) and satisfies the
Rankine-Hugoniot conditions at every point of X(t):

{ G [(p+Ep)I% —p] — [(p+ )20 - v] =0,
ore[(p+ Ep) o] — [(p+ €p) TP (v - v)v] — [p]v =0,

where v := (—d1¢,1) is a spatial normal vector to X (¢t). As usual, for any
function g, we denote by g% the value of g in {#+(z2 — ¢(t, 1)) > 0}, and
[9] := g7 |s(t) — 97 |s(r) the jump across X(t).

(2.7)
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In this paper, we are interested in weak solutions (p,v) of (2.4) such that
the tangential velocity (with respect to X(¢)) is the only jump experienced by
the solution (p,v) across X(¢). Then the Rankine-Hugoniot conditions (2.7)
are reduced to

p=vv=0v"v, pt=p on X(t). (2.8)

A piecewise smooth weak solution (p,v) of (2.4) with discontinuities across
X(t) is called a relativistic vortex sheet if its trace on X'(t) satisfies (2.8).

We note that system (2.4) admits trivial vortex-sheet solutions that consist
of two constant states separated by a rectilinear front:

(p,7,0) if 29 > 0,

2.9
(p,—1,0)  if 35 <0, (2:9)

(pvv)(tvthQ) = {

where p and v are suitable positive constants. Every rectilinear relativistic
vortex sheet is of this form by changing the observer if necessary. In view of
(2.3) and (2.6), we may assume without loss of generality that

p e (ps,p*), ve (0,e71). (2.10)

The aim of this paper is to study the local-in-time existence and nonlinear
stability of relativistic vortex sheets with initial data close to the piecewise
constant state (2.9).

2.2 Reformulation and the Main Theorem

Let us first reformulate the relativistic Euler equations (2.4) by choosing ap-
propriate functions as primary unknowns. To this end, we define the particle
number density N = N(p), the sound speed ¢ = ¢(p), and h = h(p) by

P s 62
N(p) = exp (j ) =V )= @

We also introduce

wi=Ty=———o (2.12)

so that

r=+y1+ew? v=———a . (2.13)
1+ e2|wl|?

Then we discover that smooth solutions to system (2.4) satisfy

I'(0; +v- V) (hw) + N"'V,p = 0. (2.14)
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Let us take U := (p, hwy, hw,)T as primary unknowns and define the following
matrices:

I'(1—e*c?w)?) 2e2Nc*v;  2e2NcPvy

Ag(U) = 0 r(l—evd) —elvv |, (2.15)
0 —e2Tvvy (1 — €2v3)
Tvi(1—e*c?v?) N1+ €®vf)  vivaNce?

A(U):=| N11—¢€*}) TIvi(l—e*i) —Iviv |, (2.16)

—e2v vy N1 —2Tvdvy Ty (1 — 203)

Tuy(1 —e*c?v?)  EvvaNe? Ne2(1 + e2l)
As(U) := —2vvaN=t (1 —€2v})  —Tvv | (2.17)

N7L(1 - €%v)) —€e2Ivvs Tug(1l — €203)

When the solution is in C?, system (2.4) equivalently reads

AO(U)(%U+A1(U)61U+A2(U)82U = 0. (218)

We postpone proving the equivalence of systems (2.4) and (2.18) to Appendix
A. The choice of the new unknowns U has several advantages. First, system
(2.18) is symmetrizable hyperbolic in region {px < p < p*,|v| < €71} (see
Appendix A for the precise expression of the Friedrichs symmetrizer). Second,
we will see in the sequel that the form of (2.18) is appropriate for computing
the roots of the Lopatinskii determinant. Third, equations (2.14) will enable us
to obtain the linearized vorticity equation through which the loss of derivatives
can be compensated in the higher-order energy estimates.
Note that the first two identities in (2.8) are the eikonal equations:

at@ + AQ(U+, alQO) = Oa at(,O + A2((]_7 6180) = 07

where Ay (U, §) := v1£ — w9, and £ € R is the second characteristic field of (2.18)
with the corresponding eigenvector:

ro(U,€) := (0, 1 — €202 + Ev11€, (1 — 2v?)E + e2v102)T.

It follows from (2.11) and (2.13) that VyA2(U, &) -1r2(U, &) = 0, i.e. the charac-
teristic field A, is linearly degenerate in the sense of Lax [28]. As a consequence,
a relativistic vortex sheet is a characteristic discontinuity.

Function ¢ describing the discontinuity front is a part of the unknowns,
and thus the relativistic vortex sheet problem is a free boundary problem. To
reformulate this problem in a fixed domain, we replace unknowns U, which
are smooth on either side of X(t), by

UF(t,x) == U(t, z1, 95 (8, x)), (2.19)
where $F are smooth functions satisfying the constraints:

DE(t,21,0) = p(t, 1), +PT(t,z)=k>0 if x5 >0.
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Then the existence of relativistic vortex sheets amounts to constructing solu-
tions Uﬁi7 which are smooth in the fixed domain {z3 > 0}, to the following
initial-boundary value problem:

L({U*,¢F) =0 if 75 >0, (2.20a)
B{UT, U ,¢) =0 if x5 =0, (2.20D)
(U, 9)li=0 = (U, v0), (2.20¢)

where index “f” has been dropped for notational simplicity. According to trans-
formation (2.19), operators L and B take the forms:

L(U, &) = L(U,®)U 2.21)
with L(U, ) := Ag(U)d; + A1(U)0y + Ay (U, D)0, '
[v1]d1p — [v2]
BUT, U, p) = | dup+vid1p—vg |, (2.22)

pt—p
where A;(U), j = 0,1, 2, are defined by (2.15), (2.16), (2.17), respectively, and
~ 1

AQ(U7 @) =

= 5,5 (A:(0) =22 A(U) — 6104, (U)).

As in Francheteau-Métivier [22], we choose the change of variables * such
that

Pt + o1 Pt —vy =0 if 22 =0, (2.23a)
+ 00T > k>0 if z5 >0, (2.23b)
Pt =0 = if o =0. (2.23c)

Not only does this choice simplify much the expression of system (2.20a), but
it also implies that the boundary matrix for problem (2.20):

diag (—Ax(U*, @), —A,(U~,®7)),

has constant rank on the whole closed half-space {x2 > 0}. This will play
a crucial role in deriving the energy estimates for the variable coefficient lin-
earized problem by developing further the Kreiss’ symmetrizers argument from
[15, 17, 27].

In the new variables, the rectilinear vortex sheet (2.9) corresponds to the
following stationary solution of (2.20a)—(2.20b) and (2.23):

Ut = (p,+hw,0)", ¢:=0, &F =+, (2.24)

where p := p(p), h := h(p), and @ := I'v with I'"! := /1 — €202

Imposing the smooth initial data (U, o) close to (2.24), we aim to show
the existence of solutions to the nonlinear problem (2.20) and (2.23) under
the necessary condition for the linear stability on the background state (2.24).
The main result is stated as follows:
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Theorem 2.1 Let T > 0 be any fized constant and p € N with u > 13. As-
sume that the background state (2.24) satisfies the physical constraints (2.10)
and the necessary stability condition:

V2

Assume further that the initial data U(;*'r and @q satisfy the compatibility condi-
tions up to order yu (see §7), and that (UF —U*, o) € H*+Y2(R2) x H*+H(R)
has a compact support. Then there exists a positive constant € such that, if
\Ug — UiHH#“/Q(Ri) + leol grtrry < €, problem (2.20) and (2.23) has a
solution (U%, &%, ) on the time interval [0,T] satisfying

=

M =

o

(U —U*,¢* —@T) e H*77((0,T) xRL), e H*%((0,T) x R).

Remark 2.1 In the non-relativistic limit e — 0, from (2.25), one obtains the
classical stability condition M > /2 for compressible vortex sheets. The critical
Mach number

V2

M, = — Y=
V1 + e2c?

of the relativistic stability condition is always strictly smaller than /2, which
means that the relativistic vortex sheets are stable in a larger physical regime
of the parameters. When ¢ is arbitrarily close to the light speed ¢!, the
critical Mach number M. approaches 1 so that the stability holds precisely for
supersonic relativistic flows.

2.3 Weighted Sobolev Spaces and Norms

We are going to introduce certain weighted Sobolev spaces in order to prove
Theorem 2.1. Let £2 denote the half-space {(t,z1,72) € R? : 25 > 0}. Boundary
012 is identified to R?. For all s € R and v > 1, the usual Sobolev space H*(R?)
is equipped with the following norm:

2= e [ RO G A = (07 + )

lv]

where 9 is the Fourier transform of v. We equip space L?(R; H*(R?)) with
the norm:

ol o= [ lotc.a2)l2., daa
+

We will abbreviate the usual norms of L?(R?) and L?(2) as

on and -1l =01 o
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The scalar products in L?(R?) and L?(£2) are denoted as follows:

@)= | o@idy  (ab)= | awiGay

where b(y) is the complex conjugation of b(y).
For s € R and v > 1, we introduce the weighted Sobolev space H3 (R?) as

H3(R?) := {ue D'(R?) : e "u(t,z1) € H*(R*)},
and its norm |uf gz re) = le™"uls. We write L2(R?) := HI(R?) and
Julls @y = e~ "ul.

We define L*(Ry; HS(R?)), briefly denoted by L*(H?), as the space of
distributions with finite L?(H3)-norm, where

el 1= [, Futaa) e doa = el
+

We set L2(£2) := L*(HY) and lullzz(0) = le=7tul|.
For all k € N and v > 1, we define the weighted Sobolev space H%(£2) as

Hﬁ(Q) ={ueD'(2): e Mue Hk(Q)} .

Throughout the paper, we introduce the notation: A < B (B 2 A) if
A < CB holds uniformly for some positive constant C that is independent of
~. The notation, A ~ B, means that both A < B and B < A. Then, for k € N,
one has

Juliqy ~ Do AFlou]  for all ue H¥(R?). (2.26)
lo|<k
For any real number T, we introduce wy := (—00,T) x R and 2 :=

wr x Ry. For all k e N and v > 1, we define the weighted space Hfj(QT) as
Hs(QT) = {u € ’D/(QT) : e_”’tu € Hk(QT)} .
In view of relation (2.26), we introduce the norm on H¥(£2r) as
lul asar == X5 Y71 e™ 0% L2 qr). (2.27)
|| <k

The norm on Hﬁ (wr) is defined in the same way. For all k € N and v > 1, we
define space L?(Ry; HY (wr)), briefly denoted by L?(H¥(wr)), as the space of
distributions with finite L?(H¥(wr))-norm, where

el orn o= |, TuC2)in oy do2
+

_ Z ,Yk—()é[)_al He—'ytatOéoafquHLz(QT).

apt+o1 <k

This is an anisotropic Sobolev space for measuring only the tangential regu-
larity (with respect to boundary 042). We write L2 (£27) := L*(HS(wr)) and
lullrz (2r) = lullz2(mo @wr))-
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3 Constant Coefficient Linearized Problem

In order to deduce the necessary condition for the linear stability of the back-
ground state (2.24), in this section, we consider the following linearized prob-
lem of (2.20) and (2.23) around (2.24):

L, V* = i]L,(Uei,gpg)

f T = f* if x5 >0, (3.1a)

0=0

_ d _
B/(V_'_,V ) = @B<U9+>U9 ,0)

=g if x5 =0, (3.1b)
0=0

where Uy := U* + 0VE, &F := ¢ + 0% and ¢y (vesp. ¥) denotes the
common trace of &7 (resp. ¥*) on the boundary {zs = 0}. The differential
operators L/, and I are given by

L= A (U)o, + A (UF) o) £ Ag(U) 03,

which are both constant coefficient differential operators. It follows from (2.6)
and (2.11) that

N(p) =1, c=c(p) e (0,e"). (3.2)

To derive the boundary operator B’, we infer from (2.13) that

\/h(U1)2 +€2U22 +62U§ Uj+1

I'v) = , ViU) = =7, J=12. (3.3
Utilizing the identity: h/(Uy) = €2/N(U;) yields
v €2v; v; 1—6211]2 Jua  du 7621}11)2 (3.4)
ouy  NhI?' 0Uj., kI ' Uy oUs kI’ '

for j = 1,2. The second component of B(U, , U, , ¢g) is 8(dp +v1 (U, ) or14p) —
v2(U,"). Then we use (3.4) to obtain

d _ _ = =

T (]B%(UJ,UQ ,@9))2 e = 0pp + 001 — (hT) 1I/'?)Jr.

After similar argument to the other components of IB%(U(,+ .Uy s p9), we have
B/(VF, V™) = B(V™,¢) := bV + BV™,

where V) := (0y1h, 019) T, V¢ := (V;7, V5H, V7, V57)T denotes the “nonchar-
acteristic part” of V := (V*+, V)T, and coefficients b and B are given by

0 20 0 —(hl)"" 0 (D)
b:=1[1 v |, B:=|p _(ﬁf)_l 0 0 : (3.5)
00 1 0 -1 0

We are now ready to state the main result for the constant coefficient case.
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Theorem 3.1 Assume that the stationary solution defined by (2.24) satisfies
(2.10) and (2.25). Then, for ally =1 and for all (V,¢) € H2(£2) x H2(R?),
the following estimate holds:

VHV\|2Lg(Q) + |\Vnc|z:2=0H%g(R2) + WH%@(R%

Sy L VE ”%Q(H%) + 772 B (V™ =0, )i g2 - (3.6)
Remark 8.1 1In the case of M < M, := \/%, the relativistic vortex sheet

(2.24) is violently unstable, i.e. the Lopatinskii determinant admits the roots
in the interior of frequency space. On the other hand, when M > M, all the
roots of the Lopatinskii determinant are localized on the boundary of frequency
space. In particular, if M = M, the only root of the Lopatinskii determinant
is a triple one, which leads to the following weaker estimate than (3.6):

VHV\\%g(m + anc|m2:0||2Lg(R2) + ||1/1H%1§(R2)
STV E L (arzy + 7 OB (Vwa—0, ) 12 2y (3.7)

for all v > 1 and (V,¢) € H3(£2) x H}(R?). See Remarks 3.2-3.4 for more
details. This latter case corresponds to a transition between a weakly stable
zone and a violently unstable zone (c¢f. Coulombel-Secchi [18] for the non-
relativistic case).

The rest of this section is devoted mainly to proving Theorem 3.1.

3.1 Some Reductions

Before proving Theorem 3.1, we first make some reductions of problem (3.1).

3.1.1 Reformulation of Theorem 3.1

We first transform our problem (3.1) into the one with diagonal boundary ma-
trix. For this purpose, we calculate the eigenvalues and corresponding eigen-
vectors of Asg (U i). The eigenvalues of

- - 00 ¢
AQ(U+) = AQ(U_) =1000
100
are \; = 0, Ay = —¢, and A3 = ¢, with the corresponding right eigenvectors:

1 1
= (07170)1-7 T = (1707 _E)T7 r3 = (1707 E)T

Set R := (r1 r2 r3). Then R™*Ay(U*)R = diag (0, —¢,¢). We thus perform
the linear transformation W+ := R='V* with

Wi = VE, Wi = B (VE— V), Wi = (VE + V).
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Let us multiply (3.1a) by SR~ with S := diag (1,2/¢2,2/¢?). Then problem
(3.1) becomes equivalent to

LW = Agd W + A1 W + Ag0:W = f if 9 >0,

{ B(W™ 4) := bV + BW"™ =g if g =0,

with new f and g, where Wn¢ := (W,5, W;r, W, , W5 )T denotes the “non-

characteristic part” of W := (W*,W~)T. The coefficient matrices A; =
diag (A;7 A7), j =0,1,2, are block diagonal with

AF :=SR'A(U*)R

(3.8)

(1 - e%0?) 0 0
f 9 _ 4-2~2 _
i2621} ( ;2 v ) —eA T2 , (3 9)
+2627 —e 2 F(2 — 6462@2)
+ =
Ali SR™'A(UHR
+I(1 — 9% 1 — 292 1 — €22
B I'v(2 — e*c*v?) =
_ 1+e02 =+ = Fere? . (3.10)
d T5(2 — A2
1+ €252 FetIp3 + o _26 oY)
c
and
+ Gp-1 T4\ D . 22
AQ_ = +SR AQ(Uf)R = idlag(O, —57 j). (311)

We notice that (2.18) is a symmetrizable hyperbolic system with the Friedrichs
symmetrizer S3(U) defined in (A.10). Consequently, operator £ is symmetriz-
able hyperbolic with the Friedrichs symmetrizer S5 defined by

Ss := diag (R"So(UY)RS™, RTS,(U~)RS™1). (3.12)
Regarding the boundary coefficients, b is given in (3.5), and B is defined by
(F'eh)~' —(I'eh)~' —(I'eh)~! (I'eh)™!
B:= | (I'eh)™' —(I'eh)~* 0 0 : (3.13)
1 1 -1 -1

For v > 1, we define

oy
It is easily shown that Theorem 3.1 admits the following equivalent propo-
sition.
Proposition 3.1 Assume that the stationary solution (2.24) satisfies (2.10)
and (2.25). Then, for all v > 1 and (W,v) € H?(2) x H*(R?), the following
estimate holds:

2 — —
VWIZ + W ag=0l” + (013 5 £ vy NLWIE , + 772 1BY (W ay=0, )] 5

Y

L= L+yAy, BI(W™,9):=b (W - am) + BW™e.
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3.1.2 Partial homogenization

In order to prove Proposition 3.1, we show that it suffices to study the homo-
geneous case LYW = 0. Given (W,v) € H?(£2) x H?(R?), we set

f=LWeH (2), g:=B"(W*s,0,9) € H'(R?),

and consider the following auxiliary problem:

LYW, = if 0
{ 1= trz =0 (3.14)

BYSWPC =0 if 2y = 0,

where

o, (0100
B "(0010)'

The boundary matrix for problem (3.14) (i.e. —Az2) has two negative eigenval-
ues and is nonnegative on ker B8 = {W.," = W, = 0}. Thus, the boundary
conditions in (3.14) are maximally dissipative. From Lax—Phillips [29], there
exists a unique solution Wy € L%(R,; H'(R?)) to problem (3.14) such that the
trace of Wy on {xs = 0} is in H!(R?), and

MW <A AR Wm0l < 7R S (3.15)

It is clear that W5 := W — W7 satisfies

L’YWQ =0 if To > 0, (3.163)
BY(WEC ) =G  if 20 =0, (3.16b)

where § := g — BWP®. By virtue of (3.15), we obtain

lg £y A S (3.17)

Multiplying (3.16a) by the symmetrizer S3 (cf. (3.12)), then taking the scalar
product of the resulting equations with W5, and employing integration by
parts yield

1, < g

MWll? < [W5[zs=o]*. (3.18)
The next lemma follows directly from (3.15) and (3.17)—(3.18).
Lemma 3.1 If the solution of (3.16) satisfies the estimate:

[W3]as=0l* + 1]

%,’y < 7_2”.& %,’ya

then Proposition 3.1 holds.
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3.1.3 Eliminating the front

We perform the Fourier transform of problem (3.16) in (¢, z1), with dual vari-
ables denoted by (d,7). Setting 7 = v + iJ, we have

—~ aw

(T Ao +inA) W + Ay =0 if 23>0, (3.19a)
2

b(r, )i + BW™e =G if 2o =0, (3.19b)

where we write g for § and W for W5 for simplicity when no confusion arises.
The coefficient:

b(r,n) :=b(r, in)T = (2ivn, T + ivn, O)T

is homogeneous of degree 1 in (7,7). In order to take this homogeneity into
account, we define the hemisphere:

S1={(r,nN)eCxR: |r>+n*=1Rer >0},
and the set of “frequencies”:
Z:={(r,n)eCxR:Ret=0,(r,n) #(0,0)} = (0,00) - =;.

Notice that symbol b(7,n) is elliptic, i.e. it is always different from zero on =j.

We set k := +/|7|? + n2, and define

0 0 k
1 . . =
Q(r,m) = 7 |7+ —2iop 0 for (r,n) € £,
—2ivn T—1ivnp O
where 7 denotes the complex conjugation of 7, so that @Q € C*(Z,GL3(C)) is
homogeneous of degree 0 in (7,7n) and satisfies

Q(T’ 77)5(77 77) = (07 0, 9(7—7 77))1— with 9(7—’ 77) = k_1|b(7—’ 77)|2'

Since v # 0, and Z; is compact, we obtain that min(, ez, |0(7,7)] > 0.
Multiplying (3.19b) by Q(7,n) yields

0
0 oG+ <§((TTZ))

0(7,m)

where 3 is the 2 x 4 matrix given by the first two rows of Q(7, n)B, and / is
the last row of Q(7,n)B. Both § and ¢ are C* and homogeneous of degree 0
on =. In view of (3.13), symbol § satisfies

) W (50.0) = Qs (3.20)

1 1 -1 -1
B(r,n) = | r—ivn —7+ivn —7—ivn T +ivn on =j. (3.21)
I'eh I'eh I'eh I'ch




Relativistic Vortex Sheets 17

The last component in (3.20) reads

0(r,n) + £(r,n)We(8,7,0) = Q3(7,1)3,

where Q3(7,n) is the last row of Q(7,7n). Hence, it is homogeneous of degree
0. Thanks to the homogeneity of # and ¢, we obtain

~ —_— 2 ~ . —_
KPP < [Woelpymo|” + (17 in Z,
from which we employ Plancherel’s theorem to deduce

2 —
1917 < W™ lay=ol” +77*Ig

1 (3.22)

After eliminating the front function v, we have

—~ AW

(TAO + 177./41) W + A2£ =0 if To > 07 (3233)
2

B(r,m)Wne = G if 25 = 0, (3.23b)

where G consists of the first two rows of Q(7, 7). From (3.9)~(3.10), we have

TAOi + inAli

wl(1-1) (-1 (- @)
(2 — 48252 _
— | in(1 + %) + 2¢%o7 %ai —e'vfar | (3.24)
C —
_ (2 — 4252
in(l+€0%) £ 26207 —e'I'v%ay %ai
C

where a4 := 7+i0n. Recalling that formula (3.11) defines the boundary matrix
AF, we write the first and fourth equations of (3.23a) as

ar TWiE +inWi +inWit = o0. (3.25)

Then we utilize (3.25) to express W in terms of W, and Wi, and plug
the resulting expressions into the other four equations of (3.23a). As a conse-
quence, we obtain a system of ordinary differential equations for Wne in the
following form:

d — _
—Wne = A(r,n)Wre if o >0,
das (r.m) ? (3.26)
B(r,n)Wne = G if xo = 0.

Here matrix A(7,n) is given by

M+ —my 0 0

m — 0 0
A(rm) = | 7 ’O” , (3.27)

0 0 —-m_- p_
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where
Tay e2cv’Ia? + ine(in(1 + €20%) + 2€%07)
2f‘ai .

fii = == = M my 1=

Using the relation, I'~2 = 1 — €232, yields
I(r+ivn) el(in £ or)? el (in + e2o7)?

Be =73 or +iom) T T o(r +ium)

(3.28)

The reader may recognize the form of the symbol in (3.27) given also by [17,
Page 957, (4.12)]. The poles of symbol A(7,n) on =) are exactly the points:
(r,m) € Z1 with 7 = Fivn, where the coefficient of W;" or W, in (3.25)
vanishes.

By virtue of (3.22) and Lemma 3.1, we infer that, in order to prove Propo-
sition 3.1, it suffices to study problem (3.26). More precisely, we have the
following lemma.

Lemma 3.2 If the solution of (3.26) satisfies the estimate:

IW™ay—ol* <4 ?IGI3

Ly

(3.29)
then Proposition 3.1 holds.

3.2 Lopatinskii Condition

In this subsection, we show that the Kreiss-Lopatinskii condition (or briefly
the Lopatinskil condition) holds only in the weak form under assumption (2.25)
by computing the Lopatinskii determinant associated to problem (3.26).

We first calculate the stable subspace of the coefficient matrix A(7,7),
that is, the sum of eigenspaces of A(7,7n) corresponding to the eigenvalues of
negative real parts.

Lemma 3.3 The following properties hold:

(a) If (1,m) € 1 with ReT > 0, then the eigenvalues of A(T,n) are roots w
of

W=t —mi = 5—2( +inv)? — I (in + 2o7)?
=C (CF (1t +iCam)® + n?), (3.30a)
=y —mt = Dy - P2 — o2
= 3(01 (r —iCan)® + 1°), (3.30b)
where C_'j, 7 =0,1,2, are positive constants defined by
O e (1 - €e*?) o 1 — e*e?p? O e (1— 6252)5. (3.31)

0= 1 2 =
V1 — éte2p2’ (1— 621)2)0’ 1 — 43252
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Moreover, (3.30a) (resp. (3.30b)) has a unique root wy (resp. w—) of neg-
ative real part. The other root of (3.30a) (resp. (3.30b)) is —w, (resp.
—w_ ).

(b) If (1,m) € E1 with ReT > 0, then the stable subspace E~(1,n) of A(1,n)
has dimension two and is spanned by

By (r,n) = ((r +ion)my, (7 + i0n) (s — w4),0,0)" (3.32a)
E_(7,n) := (0,0, (r —ivn)(p— — w_), (7 — i@n)m_)T . (3.32b)

(¢) Both wy and w_ admit a continuous extension to any point (1,m) € =1
with ReT = 0. In particular, if T =1 € iR, then

W+ (7—, 77)
— CoyJn? = C3 (8 £ Can)? ifn* = C}(5 + Cam)?,

_ (333)
—isgn(§ + Can)Co C'%(& +Con)2 —n2  if 172 < 6'12 (5 + C'Qn)Q.

(d) Vectors Ey(1,m) do not vanish at any point in =1. Both EL(7,n) and
E_(7,n) can be extended continuously to any point (1,m) € 51 withRet =
0. These two vectors are linearly independent of the whole hemisphere =1 .

(e) Matriz A(t,n) is diagonalizable as long as eigenvalues wy do not vanish,
i.e. when T # i(FCq + C7 M. Apart from these points, A(t,n) has a C*
basis of eigenvectors.

Proof The relations in (3.30) and assertions (b)—(c) and (e) can be deduced
from straightforward calculations and the implicit functions theorem.

It follows from (2.10) and (3.2) that C; is positive. We now show that root
w of (3.30a) is not purely imaginary when Re 7 > 0. If this were not true, there
would exist o € R such that ic would be a root of (3.30a). Then we would

have
CoC1 (1 +iCan) = tin/o2 + C2n? € iR,

which would imply Re7 = 0. This concludes assertion (a).
It remains to prove assertion (d). We see from (3.28) that, if 7 + ivn = 0,
then (7 + ivn)my = —en?(1 — €292)/(2I") # 0. Hence, when (7 + ivn)m4 = 0,

T# =g, my =0, py=1I(+ion)/ec#0, pi=wi.
Using the relations: Repuy = 'Re7/¢ > 0 and Rew,; < 0, we have

(T +ion)(ps —ws) = 2(7 +ivn)py # 0.

Therefore, E (7,n) defined by (3.32a) does not vanish. We can also show in a
similar way that E_(7,7n) does not vanish. Assertion (d) then follows. O
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As in Majda—Osher [32], we define the Lopatinskii determinant associated
with problem (3.26) by

A(Ta 77) := det [6(7—’ 77) (E+ (7—7 77) E_ (T7 77))] ’ (334)

where 8 and F4 are given in (3.21) and (3.32), respectively. We say that
the Lopatinskii condition holds if A(7,n) # 0 for all (7,n7) € = with Rer >

0. Furthermore, if A(r,n) # 0 for all (r,n) € =, we say that the uniform
Lopatinskii condition holds. To deduce the energy estimate, we need to study
the zeros of A(r,n). For this, we have the following lemma.

Lemma 3.4 Assume that (2.10) and (2.25) hold. Then, for any (1,n) € =1,
A(r,n) =0 if and only if 7€ {0, +iz1n}, (3.35)

where z1 is some positive constant satisfying
0<2z<Co—Cit<Cy<v<Cy+Crt (3.36)

Moreover, each of these roots is simple in the sense that, if ¢ € {0,—21, 21},
then there exists a neighborhood ¥ of (ign,n) in =1 and a C*-function h,
defined on ¥V such that

A(r,n) = (1 —ign)he(T,m), he(T,n) #0 for all (1,n) e V. (3.37)

Proof We divide the proof into seven steps.
1. According to (3.21) and (3.32), we have

6(73 77) (EJr(Tv 7)) E*(’ra 77))

7+ ion)(m4 + pg —wy) —(r - ion)(m— + p— —w-) 538
T i) (ma — g+ w) T;;,;’% Ciom)m w338
By using (3.28) and Lemma 3.3 (a), we have
=T +ivn cw?
fp =T , PR« 3.39
M4 + it z ) (3.39)
It then follows that
1 C Cw_
A(r,n) = ﬁ{T + ion — W%}{T —ion — cw?}
x {w_ (T +iom)? + wy (7 — ivn)?}. (3.40)

We will check the zeros of each factors in this expression separately.

2. We show in this step that both I'(1 + ion) — éwy and I'(1 —ion) — éw_ do
not vanish at any point (7,7) € Z7. By contradiction, we assume without loss
of generality that there exists a point (79,79) € =1 such that

(1o +ivmo) = cw, (70, 70)- (3.41)
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From (3.30a), we have
(70 + iom0)? — wy.(10,10)% = I (ino + €2vm0)” = 0,

which implies 7o = idy € iR with 79 = —€®0do. Since (10,70) € 51, we see
that both 7y and dg are nonzero real numbers. If 17(2) > C%(0p + Camp)?, then
w4 (70,7M0) € R due to (3.33). Then ¢ w4 (79,10) # I'(70 + i07)9), since

(1o +ivmo) = i(1 — €20%)dp € iR\{0}.

According to (3.41), n3 < CZ(6o + Camo)? so that CF(1 — €2C0)? > €02 It
then follows from (3.33) that

w4 (T0,Mm0) = —isgn(dp) sgn(1l — 626_'217)6_’0\/(5'12(1 — €2Co0)2 — 64172)55

= —1605‘0\/6*12(1 - 626217)2 — 6452,

where we have used that 1 — €2Cot = (1 — €292)/(1 — €*¢v?) > 0 from (3.2).
Consequently, we have

I'(1o + ivmo) — ewy (10, 70)

= 160 {F(l — 62’1_)2) + 560\/612(]_ — 626’277)2 _ 64’1_)2} £ 0.

This contradicts (3.41).

3. From the above analysis, we know that A(r,n) = 0 if and only if factor
w_ (7 +ivn)? + w4 (7 — ivn)? vanishes. We first prove that this factor does not
vanish when n = 0. -

If n = 0, then we see from (3.30) that w3 = ¢ 2I"*7%(1 — ¢*c*v?). Using
(3.2) and noting Re7 > 0, we find that wy = —¢ 'I'Tv/1 — €4c202, which
yields

w_ (T +itn)? + wy (1 —ion)? = =26 1173 (1 — 4c252) V2 2 0.
We thus assume that 7 # 0. Introducing z := 7/(in), we find from (3.30)
that
Aw? (7 +ion)*
r2in)®
Ewa__(T —ivn)4
172(in)°
Define

(z+0)*{(z —0)? = (1 — €02)*} = P1(2), (3.42)

=(z-0)"{(z+0)? = (1 + 02)*} =: P(2).  (3.43)

P(z) := Pi(z) — Pa(2). (3.44)

Then A(7,7n) = 0 holds only if w? (7 +ivn)* = w? (r—ivn)*, which is equivalent
to P(z) = 0. A straightforward calculation yields

P(z) = —420P(2),  Po(z) := E12" + E32° + Ej,
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where E; = 2e*@20? — €262 — 1, By = 26420 — 628202 + 202 + 262, and
By = 26%9° — 6% — v, (3.45)

It is trivial that z = 0 is one zero of P(z). Function Py(%) is a polynomial one
of z? with the following zeros:

Ey+/E2 —AE\F;

3.46
2E1 ( )
By virtue of (2.10) and (3.2), we have
By = —(1 = 'é®0?) — €28%(1 — 20%) < 0,
By = 20%(1 — €2¢%) + 2% (1 — €20%)? > 0, -
E3 —4F\Es (347)

= 42% (v — 1)? (v + 1) (e — 2626%0% + 472 + &) > 0,

which yields that the zeros in (3.46) are real and distinct. If (2.25) holds, then
E5 < 0, which immediately implies that the zeros in (3.46) are also positive.
Let us denote these zeros by 2?2 and 23 with 0 < z; < 25 so that

Ey —+/E3 —AE\E Es ++/E3 — 4AF\E
2 _ L2 2 1453 22— 2 + 3 153 (3.48)

A1 9F, : 2 9F,

Consequently, the Lopatinskil determinant vanishes only if z € {0, £ 21, £25}.

4. In this step, we show that the Lopatinskii determinant vanishes when z = 0,
i.e. when 7 = 0. We note that ¢ < © by combining (2.25) and (3.2). Then

(v —&)(1 + %ev) -0

A A1
C-Cr = 1 — daz2p2 (3.49)

It then follows directly from (3.33) that

w4 (0,m) = —isgn(+£Can)Cor/C2C3N? — n2? = FinCoy/CiC3 — 1.

Then we infer

{w_(7 + ion)? 4+ w, (1 — iﬁn)2}|T:0 = 0% (w4 (0,1) +w_(0,1)) = 0,
and hence A(0,7n) = 0.

5. We prove that w_ (7 +itm)? + w, (7 —i9n)? # 0 when 2z = £2z5, i.e. when
T = +izon. To this end, we need to show that

Z9 + C_’Q > 29 — 62 > éfl (350)
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The first inequality is trivial, so it suffices to prove the second one. From (3.31)
and (3.48), we have

(GG = By ++/E} —4EB;  ((1-&%)e +7(17— 2e2))”
2F; (1 — e*c?v?)?
(1 — e4e202)2 (\/EZ — 4B, B3 + B) + 2B, ((1 — 8 + (1 — 262)0)”
B 2F (1 — é1202)2
2¢(1 — 29?)(1 — €%cv)?(Rg — L2)
2F (1 — €4c202?)? ’

where Ry := (1 + €2e0)2Ve1c20? — 2€26202 + 402 + ¢2 and
Lo = 9830% + 2648203 — 2623302 + 462602 + 20 + €26
Then we obtain from (3.2) that
R2 - L2 = (ec—1)(ec + 1)(et — 1)%(ev + 1)}(26*@*0° — €262 — 1) > 0,

which, combined with (3.2) and (3.47), implies that 23 > (C; ' + 6'2)2. Then
(3.50) follows.
In view of (3.50), we see from (3.33) that, for 7 = izan,

—isgn(zon £ C_’gn)C_'o\/C_Z'lz(ZQ + Cp)2n2 — 2

= —1’[7@0\/612(22 + 62)2 — 1.

Therefore, we obtain that

w (7,7)

w_ (1 +10m)* + w (1 —10n)? = =1 (wy (22 — 0)® + w_(22 + 0)?)
= in3{éo\/612<22 + 62)2 -1 (2’2 — 77)2 + 60\/612(2’2 — 62)2 —1 (Zg + 17)2},

which is away from zero. Applying a similar argument and using (3.50) imply
that the Lopatinskii determinant A does not vanish either for the case: z =
—Z9.

6. Let us now show that w_ (7 + itn)? + w (7 —ivn)? = 0 if 2 = £21, d.e. if
T = +izn. For this purpose, we first prove
zZ1 + 62 > é_l, z1 — C_’Q < *C_’_l. (351)

The first inequality in (3 51) follows from (3.49). For the second in (3.51), it
suffices to derive that 27 < (Cy — C;1)2. From (3.31) and (3.48), we have

((72*(7;1)2 2o ((1—6262)11—4 212—6 02 ) ~\/E3 —4E,F3
(1 — e*c20?)? 2F;
(1 — 46202)2(Ey — \/E3 — 4B E3) + 2B, (1 — 2&)0 — (1 — €202)e)”
2F4 (1 — €*¢?v?)?
2¢(1 — €20?)(1 + 2e0)%(Ry + Ly4)
—2F1 (1 — e*c202)2 ’
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where Ry := (1 — €2¢0)%V/elc2vt — 2626202 + 402 + ¢2 and
Ly = 8330 — 248%0° — 26* @302 + 420 — 20 + €28°.

We compute that R? — L3 = R — L3 > 0. Hence, we deduce the second
inequality in (3.51).
By virtue of (3.33) and (3.51), we derive that, for 7 = iz,

wy(T,m) = —inC_'o\/C_'lz(zl +Co)2—1, w_(r,n) = inC_'o\/C_'f(zl — ()2 — 1.

Since z = 27 solves P(z) = 0, if 7 = iz17, it follows from the definition of P(z)
that w? (7 +ion)* = w? (r—ivn)?. Hence, the Lopatinskii determinant vanishes
for z = z1 (i.e. 7 = iz17m). The same argument can be applied to show that the
Lopatinskii determinant A(7,7n) also vanishes for z = —z, i.e. for 7 = —izn.

7. We obtain from (3.2) by a direct computation that Cy < v < Cy + C;!,
which, combined with (3.51), yields (3.36).

It remains to show that the roots of the Lopatinskii determinant are simple.
By introducing 24 := w4 /(in), we find that, for n # 0,

w_ (7 + ivn)? 2 wy (1 — ivn)? N2
T — o ~ DT I o (2= 5)? = Qu(2).
(17])3 (Z + 'U) Ql(z)7 (177)3 +(Z U) QQ(Z)
It follows from (3.36) and Lemma 3.3 that wy (7,7) # 0 and n # 0 when (7,7)
are near any root of the Lopatinskii determinant. Hence, {21 are analytic
functions of z only and satisfy
2% =¢I? ((z £0)* = (1 £ °v2)?).

Since A(r,n) = 0 if and only if w_ (7 + ivn)? + w, (7 — ivn)? = 0, it suffices to
prove

d
% #0 for all g € {0, —z1, 21}
2=q

Using (3.42)—(3.44) and the fact that Q1(q) = —Q2(q) # 0 for g € {0, —z1, 21},
we derive that, for q € {0, —z1, 21},

d(@+Q)| _ 1 d@-)) _ I1* dp
dz imq 2Qa(9) dz _ o 2e°Qa(q) dz,_,
72
- %1((]) {—20Py(q) — 40¢*(2E1¢* + E»)} # 0.

Using the factorization property of holomorphic functions, we obtain

Q1(2) + Q2(2) = (z — q)Hy(2) for all g € {0, —21, 21},

where H, is holomorphic near ¢ and Hy(g) # 0. This yields that the Lopatinskii
determinant A has a factorization:

A(T7 77) = (T - lqn)hlI(Ta 77) for all qE€ {Ou —Z1, 21}7

where hy(7,n) is C* and does not vanish near (ign,n) € =;. The proof is
completed. 0
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Remark 3.2 If M = M, then both F5 and z; defined by (3.45) and (3.48)
vanish. Employing a similar argument, we can show that the Lopatinskil deter-
minant A(7,n) has only one triple root 7 = 0. On the other hand, if M < M,
then E5 > 0. In the latter case, the Lopatinskii determinant A(7,7) vanishes
if and only if 7/(in) € {0, £21} with nonreal number z; given by (3.48). There-
fore, the relativistic vortex sheet (2.24) is violently unstable, which means that
the Lopatinskii condition does not hold.

3.3 Proof of Theorem 3.1

The following lemma relies heavily on the fact that each root of the Lopatinskii
determinant is simple (see Lemma 3.4).

Lemma 3.5 For every point (10,m0) € =1, there exists a neighborhood ¥ of
(T0,m0) in E1 and a positive constant ¢ depending on (19,1no) such that

1B(T, M) (Ey(7,n) E_(T,n)Z| = ¢y|Z] for all (1,n) e ¥, Ze C?. (3.52)

Proof The proof is divided into two steps.

1. Let (70,7m0) € 51 with A(7g,7m0) # 0. Since the Lopatinskii determinant
A(T,7) is continuous in (7,7), then there exists a neighborhood ¥ of (79, n9)
in 5 such that A(7,7n) # 0 for all (7,n) € ¥. It follows from definition (3.34)
that S(m,n)(E;+ E_) is invertible in ¥. We combine this with the fact that
v < 1 to obtain (3.52).

2. Let (19,m0) € =71 such that A(rg,1n9) = 0. We see from Lemma 3.4 that
To = igno for some ¢ € {0, —z1, z1}. Let us write (3.38) as

B(E, E.) = <§3 §4)

where the upper left corner (; is given by

. T+ivm , = . _
Gu= (7 —ion)(my + py —wy) = —— (D(7 + ivn) — cwy).

From (3.36) and the proof of Lemma 3.4 (especially, Step 2), we know that
T # —ion and I'(1 + ivn) # € wy when (7,7) is close to (79,70). Hence,
there exists a neighborhood ¥ of (19,70) in = such that {;(7,n) # 0 for all
(r,m) € ¥. Using the identity (cf. [15, Page 439]):

(oo 16)7® 25 5) = o o)
B(E+ E-) = (3.53)
—(3/(€1¢s) 1/Gs 0 ¢ 0 (¢iCa—¢283)/¢5

with (5 = 1, and noting A(r,n) = det[B(E+ E_)] = (1¢4 — (2(3, we have

|B(r, m)(E(,n) E_(7,1))Z| = cmin(1,[A(7,7)[)| Z] (3.54)
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for all (1,m) € ¥, Z € C?. It thus remains to show that |A(r,n)| = ey for
all (r,n) € ¥. Employ Lemma 3.4 and shrink ¥ if necessary to find that
factorization (3.37) holds. Thus, we have

Oy A(T,m) = hq(T,n) + (T — ign)0yhge(T, M) for all (1,n) € V. (3.55)

Let (id,m) € ¥ so that (id,n) € ¥ is close to (igno, no). It follows from (3.36)
that C2 (5 + Con)” > n2, which, combined with (3.33), implies

w4 (16, ) € iIR\{0}. (3.56)
Then we obtain from (3.37) and expression (3.40) that
hq(id,m) #0,  i(d — gn)hq(id,n) = A(id, n) € iR,
from which we have
hq(i6,m) € R\{0}. (3.57)

Since 1o # i(+Cy £ C7 1), eigenvalues wy depend analytically on (7,7) in a
neighborhood of (79,170) by the implicit function theorem. We then use (3.30)
to obtain that, for (7,7n) near (1o, 70),

wi (rym)oyws (ry) = CRC2(r + iCan). (3.58)

From (3.56) and (3.58), we infer that the derivative, 0w, (i0,7), is real by
shrinking ¥ if necessary. Employ (3.40) to derive 0,A(id,n) € R. We then
deduce from (3.55) and (3.57) that

0, hq(i8,n) € iR. (3.59)
Using (3.37) and the Taylor formula for h,, we find that, for (7,n) € 7,
A(ryn) = (v +i(8 — qn)) (hq(id,n) +10,hg(id,m) + O(v?))
= 1(6 — qn)hq(i6,) + {hqe(i6,n) +10,hq(i0,1)(8 — am)} v + O(¥*) (v — 0),

where we have used the Landau symbol f = O(g) (z — x0), which means that
there exists a constant C' such that |f(x)| < C|g(z)| for all z sufficiently close
to xp. We can conclude from (3.57) and (3.59) that

Re A(7, ) = {hq(i6,1) + 1044 (10,7)(6 — qn)} v + O(7*) (v —0).
Shrinking ¥ if necessary, we derive from (3.57) that
|A(T,n)| = |Re A(T,n)| = ¢y forall (r,n) e V.
Plug this into (3.54) to complete the proof of this lemma. O

Remark 3.3 In the case of M = M., we know from Remark 3.2 that the
Lopatinskii determinant A(7,7) has only one triple root 7 = 0. In a similar
way, we can find neighborhoods ¥4 of (0,+1) in 57 and a positive constant ¢
such that

1B(r,m)(Ey(1,n) B_(1,n))Z] > y*|Z| for all (r,n) € ¥4, Z € C*. (3.60)
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We now adopt the argument developed recently by Chen-Hu-Wang [10]
to avoid constructing the Kreiss’ symmetrizers in the derivation of energy
estimates for the constant coefficient case. To this end, we need the following
lemma.

Lemma 3.6 For each point (19,m0) € Z1, there exist a neighborhood ¥ of
(T0,m0) i =1 and a continuous invertible matriz T(T,n) defined on ¥ such
that

Wy 24 0 0
0 —w, 0 0
0 0 w_ 2z_
0 0 0 —w_

T-YAT(1,m) = (3.61)

for all (t,n) € Y\{r = tivn}, where z4 = z4(7,n) are complez-valued func-
tions defined on ¥Y\{T = zivn}. Moreover, the first and third columns of
T(r,n) are EL(7,n) and E_(1,7n), respectively.

Proof We set ay(7,n) := 7 £ivn and define the following vectors on a neigh-
borhood ¥ of (79,m0):

0,1,0,0 i if a+m+(7—0a770

)

1,0,0,0)T  if ay(uy —wy)(70,7m0) #
)
)

Y+ (T7 77) = { ;
) #
)

Y_(7,1m) := {

Recall that E4(7,7n) defined by (3.32) are continuous and never vanish on =7.
Hence, one can define the following continuous and invertible matrix on 7

0,0,1,0)T if a_m_(79,m0

(
(
(
0,0,0,1)T  if a_(pu_ —w_

(To, 770)

T(r,n) = (Ey(r,m) Yi(r,m) E_(1,m) Y_(7,n)).

When 7 # +ivn, by a direct computation and using (3.30), we obtain (3.61)
with

1
_ if axmy(10,m0) # 0,
a4+ (7—7 77)
24 (T, m) = M.
_ + if ag (ps — wy)(70,M0) # 0,
at(ps —wi)(7,m) ( :
which are well-defined apart from the poles of A, i.e. from 7 = +iom. |

Proof of Theorem 3.1 According to Lemma 3.2, it suffices to show esti-
mate (3.29) in order to prove Theorem 3.1. Using Lemmas 3.5-3.6, for each
point (19,70) € =1, there exists a neighborhood ¥ of (79,710) in =1 and a
continuous invertible matrix T'(7,n) defined on ¥ such that (3.52) and (3.61)
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hold. Thanks to the compactness of hemisphere =4, there exists a finite cov-

ering {¥1,..., %} of =1 by such neighborhoods with corresponding matrices
{Tv(m,n),...,Ts(7,n)}, and a smooth partition of unity {x; (7, 77)}3]=1 such that

[1]

J
i €CZ(%),  Yxi=1 on =L
j=1

We now derive an energy estimate in II; := {(7,n7) € & : s-(7,n) €
¥; for some s > 0} and then patch them together to obtain (3.29). We first
extend x; and Tj to the conic zone I1; as homogeneous mappings of degree 0
with respect to (7,7). Note that both T (7,n) and its inverse are bounded on
II;, and identity (3.61) holds for all (7,7) € II; with 7 # +i©n. Define

W(T,n,z2) := x,;T;(T, ﬁ)ilﬁ(T,T],Ig) for all (7,7n) € II;.

Assume that (7,7) € II; with Re7 > 0. In light of (3.26), we obtain that W
satisfies
aw
d.TQ N

Since (3.61) holds when (7,7n) € II; with Re7 > 0, the equations for W, and
W, read

Tj (T7 W)flATj (7_7 77)VV

aw aw
2 = —w W, L W, (3.62)
d.’EQ

d.’EQ

Recall from Lemma 3.3 (a) that Rewy (7,7) < 0 whenever Re7 > 0. Integra-
tion by parts for (3.62) yields

HWQ(Ta m, ')||L2(R+) = ||W4(T7 m, ')HL2(R+) =0,
from which we immediately deduce
W2 (T7 7, IQ) = W4(Ta n, IQ) =0 (363)

for all o € Ry and (7,n) € II; with Re7 > 0, where we have used the
continuity of Wy and W,. Using the boundary equations in (3.26) yields

6 = BTy (WG 0) = ) (B B2) (WH 7))

for all (7,n) € II; with ReT > 0. By the homogeneity of T; and /3, we obtain
from (3.52) that

(Il + [DIB(r,m) (B (r,m) E—(r,m))Z| 2 ¢j9|Z|  for all (1) € II;, Z € C.
Combine this with (3.64) to deduce

7]+ In]

J

(Wi (7, m,0), Wa(7,7,0))| < I, G(r,n)] (3.65)
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for all (7,n) € II; with Re7 > 0. Combining (3.63) and (3.65) yields

\|+|77||
J

W(r,n,0
Wi, 0)] < 7

(m,n)| for all (7,7n) € II; with Re7 > 0.

We then obtain from the definition of W and boundedness of Tj(7,7) that

Jr
(., 0)] < WIJ (7. )|

for all (7,n) € II; with v = Re 7 > 0 and new positive constants ¢;. Adding the
above estimates for all j € {1,...,J} and integrating the resulting estimate
over R? with respect to (8,1), we can derive the desired estimate (3.29) from
the Plancherel theorem. This completes the proof of Theorem 3.1. |

Remark 3.4 In the case of M = M., we can derive the energy estimate (3.7)
by using (3.60) and employing a completely similar argument as above.

4 Variable Coefficient Linearized Problem

0) around a basic

In this section, we derive the linearized problem of (2.2
$*) given in (2.24). More

state (U+, '15+) that is a small perturbation of (U*,

Qrecibe_ly, we assume that the perturbations: VE := U — U* and ¥* =
&t — PF satisfy
supp (Vi i) c{-T<t<2T, 22=0, |z| < R}, (4.1)
°r 4 , + 3, + es
VEew2e(Q), vt e wi*(0), |V ”W2v°°(9) +[w stwm <K, (4.2)

where T', R, and K are positive constants. Moreover, we assume that (U t (Pi)
satisfies constraints (2.23) and the Rankine-Hugoniot conditions (2.20b):

OPT + 00 DT —0F =0 if 2y >0, (4.3a)
+ 52 = Ko > 0 if To = 07 (43b)
Pt =9~ =¢ if zo =0, (4.3¢)
B(UT,U,¢) =0 if 2o =0, (4.3d)
where kg is a positive constant. We will use V := (V*, V)T and ¥ :=

(@, )T to avoid overloaded expressions.
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4.1 Linearized Problem

Let us consider the families, Uéi = U* +0V* and @‘;—r = ot 4 v, with a
small parameter 6. The linearized operators are given by

)

0=0

L0, 5) (V4 0%) o= LU 93)

o e d _
B/(Uiaéi)a/:w) = @B<U0+7U9 1900)

)

0=0

where V := (V*, V)T, and ¢y (resp. ¢) denotes the common trace of &7
(resp. ¥*) on boundary {zy = 0}. A standard computation yields the following
expression for L'

1
2P
where C(U, @) is the zero-th order operator defined by

C(U, D)V := (0u, Ag(U)o,U + 0y, A1(U)01U + 8y, Ao(U, #)0,U) V. (4.5)

We notice that matrices C(l_'ofi,d%i) are C®—functions of (f/i,Vf/i,V@i)
vanishing at the origin.

We recall that the first component of B(U, ,U, ,¢s) is [v1(Up)] d190 —
[v2(Up)]. Ignoring indices “+” and “—” for the moment, it follows from (3.4)
and (4.3a) that

L/(U,&)(V,¥) = L(U,®)V + C(U, )V — —L(U, &)W, U, (4.4)

d _ . . 5 s
@(B(U;_, Ug ,@9))1 = 01811/1 + 81g0VUfu1(U) -V - VUUQ(U) -V
0=0
2 o o _ o o 1 _ 202 20 o
oy — 00 =) GO ) Ehnts
NhI? ¥
61(276210)110)2 + (1 - 6210}5)
- - Vs
I
2(? ° o1& 20 EWE 1 — €25 EWE
— o4 SOy, ARTENGP, DT ERP o (e = 0),

NhI? hI’ hI’

where v; := vj((j'), N := N(Uy), h := h(Uy), and I := I'(U). Performing a
similar analysis to the other components of B(U(j .Uy, pg) implies

B (U%,0%)(V, ) := bV + BV 4,0, (4.6)
where Vi) := (033, 01%)T. Coefficients b and B are defined by
. 0 (9 =97 )|ws=0
b(t,z1) =1 ] |as=0 , (4.7)
0 0
o) o =S —€ap  —s- &
) NihyI2 hyly hyly N_h_I2 h_I_ h_I_
B(t,z1) := 0 0+ —S+ 0 0 0 (4.8)
]°V+il+fi iL+IO—'+ iL+IO—'+
1 0 0 —1 0 0

T2 =0
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In expression (4.8), we have set g4 := Q([OJJ—r, @J—r) and ¢4 := g((o]i, Q%i), where
o(U,®) := 01P + *v10,9, S(U,®) :=1— 2v90,P. (4.9)

In particular, if Q?i = 0, then ¢+ = 0 and ¢ = 1. Moreover, bis a C®—function
of V|zy—0, and B is a C*—function of (V|z,—=0, V).

We simplify expression (4.4) as Alinhac [1] by employing the “good un-
known”:

OU* s

Vvi.=vt_ -
O P+

(4.10)

After some direct calculation, we find (c¢f. Métivier [34, Proposition 1.3.1]) that

g/i
Oa bt

= L(U*, )V 4 C(UF, dH)VE + S (LU, dH)U).  (4.11)

In view of the nonlinear results obtained in [1, 19, 22], we neglect the zero-th
order term in ¥+ and consider the following effective linear problem:

L (U*,%)VE = L(U*, 65 )VE 4+ C(U*, 85V = f* ifay >0, (4.12a)
BL(U*,6%)(V,¢) := bV + byt + BV |10 = g if 25 = 0, (4.12Db)
vt —w = if 25 = 0, (4.12¢)

where C(Ui,q5i), b, and B are defined by (4.5), (4.7), and (4.8) respectively,
V= (V+, V)T and

(92&+ 02[7_
62Q°5+ ’ 6243—

by(t, 1) = Bt 21)( T ]za—o- (4.13)

Note that by is a C®—function of (V|23=05 22V |2y—0, V3, 32¥|2,—0) that van-
ishes at the origin. By virtue of (4.2), it follows that C(U*,d*) e W (),
and the coefficients of operators L(U*,®%) are in W2*(£2). We observe that
the trace of vector BV involved in boundary conditions (4.12b) depends solely
on the traces of P*(4)V T and P~ (%)V ™~ on {xy = 0}, where P% () are defined
as

PE)V i= (Vi St las=oVs — blus=oV2) ", (4.14)
with ¢4 and ¢4 defined by (4.9). We will consider the dropped term in (4.11) as

an error term at each Nash—Moser iteration step in the subsequent nonlinear
analysis.
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4.2 Reformulation

It is more convenient to transform the linearized problem (4.12) into a problem
with a constant and diagonal boundary matrix. This is possible because the
boundary matrix for (4.12) has constant rank on the whole closed half-space
{332 = O}

Let us calculate the eigenvalues and the corresponding eigenvectors of the
boundary matrix for (4.12). Using constraint (4.3a) reduces the coefficient

matrices ﬁg (l'_ofi, (151’) to:

o ) 0 —NtB4, NEA<,
Ay (U, 0%) = P —04/N* 0 0 : (4.15)
T\ g /N 0 0

After a direct calculation, we obtain that the eigenvalues are

cry/0% +<F \/Q++§+
A =0, A——

EY e

with corresponding eigenvectors

0 V8 + 3 A8 +<$2

=] = be/(NFes) | T8 T | <o/ (NECy)
et S+ /(N*éy) S+/(N*+éy)

Define the matrices

0 (R +d iR+
i

R(U*,8%) == | ¢, g /(N*ey

ex) —oe/(NEe) | (4.16)
b —Su/(N¥éy) Su/(N*téy)
and A (Tj’i,@i) = diag (1, Ay %, )\_1). Then it follows that
AoRYA,R(U*,8%) = I, := diag (0,1,1).
We thus perform the transformation:

Wt .= RTH (U, )V (4.17)
)

Multiplying (4.12a) by matrices AgR! (U @
of (4.12a):

yields the equivalent system

AT W*E + AT W + LoyW™ + CTW* = F*, (4.18)

where F* = /TOR_l ([J‘J—r,qgi)fi, and

B
SH

= ApRT'AGR(U*,0%), Af = AgR7'AR(U*,9%), (4.1
C*i= Ao (R Ao0 R+ R M2 R+ R™ A20,R + R™'CR) (U, i)
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Matrices AF and AT belong to W2 (£2), while matrices C* are in Wh*(42).
Moreover, Ag and AI—F are C'®—functions of their arguments (f/i, V@Di), and
C* are C*-functions of their arguments (f/i,Vf/i,VLﬁJ—r,VQj/i). Under
transformation (4.17), the boundary conditions (4.12b)—(4.12¢) become

BY(W,¢) := bV + byp + BW = g if 25 = 0, (4.20a)
Ut =P = if 29 =0, (4.20b)
where b and by are given by (4.7) and (4.13) respectively, W := (W*+, W~)T,
and
- (R(U*,dT) 0
B(t = ’ oo
thar) ( 0 RU-,é)

+ + ot + - = - =
0 mi +my mi —my 0 —mj —my —mj +my

+ + ot +
0 mi +my mi —my

0 0 0 .
0B +3 A +3 0 2+ v
ro=

In the last expression, for notational simplicity, we have introduced m;*r as

24 H+ . /22 o2
0PN/ 05 +<E 52 4+ &2
— — mE = TS (4.22)

my = S5t oy 5 PR a— oy
FihiN_ FicihiN_

T2 =0

(4.21)

It is clear that matrix B is a C—function of (V|4,—0, V). According to (4.14)
and (4.17), we have

Lo (JEea ey
PEP)V o= | g4

N*té,

vE W) (4.23)

[ V)

T2 =0

We find that the trace of vector BW involved in boundary conditions (4.20)
depends only on the traces of the noncharacteristic part of vector W, i.e.
sub-vector Wn¢ := (W5, W3- Wy, W;)T.

5 Basic Energy Estimate for the Linearized Problem
In this section, we are going to prove the following theorem, which provides
the basic energy estimate for the effective linear problem (4.12).

Theorem 5.1 Assume that the stationary solution (2.24) satisfies (2.10) and

(2.25). Assume further that the basic state (U*,®*) satisfies (4.1)~(4.3). Then

there exist constants Ko > 0 and o = 1 such that, if K < Ko and v = 7o,

then, for all (V,¢) € H2(£2) x H2(R?), the following estimate holds:
7||V|\%g(n) + HPJ_F(@)ViHFOHig(Rz) + Hz/JH?ﬂ(]R?)

< ,yfsul,;(ﬁi,q%i)ViHiQ(H%) + TZH]B%;((J*i,q%t)(mm:o,w)]\;(m. (5.1)
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Remark 5.1 Since the Lopatinskil determinant associated with problem (4.12)
admits the roots on the boundary of frequency space, the energy estimate
(5.1) has a loss of regularity of the solution with respect to the source terms.
Furthermore, there is a loss of control on the traces of the solution in (5.1),
which is mainly owing to the fact that (4.12) is a characteristic boundary
problem.

We notice that systems (4.12a) are symmetrizable hyperbolic with the
Friedrichs symmetrizers Ss (U ir) for operators L. (U i,@i), where function
S2(U) is defined in (A.10). By virtue of (4.3a), we compute

Sy (UF) Ay (U, 9%)

= L 5,0t (A7) — 08t AUE) — 018% A (U))

0o+
) 0 —NFE oy NPE
= S - iéig.y 0 0 P
o et
RPN\ Ntz o 0
where ¢4 and ¢; are defined in (4.9). Multiplying (4.12a) by the Friedrichs

symmetrizers S2(U*) and employing integration by parts yield the following
lemma:

Lemma 5.1 There exists a constant v9 = 1 such that, for all v = g, the
following estimate holds:

y|VE HQLEI(_Q) S 771”}112({’]{9%45)"/45”;(9) + ”Pi(‘ﬁ)vi‘ﬂfzzonii(ﬂ@)'

To prove Theorem 5.1, it remains to deduce the desired energy estimate
for the discontinuity front ¢ and the traces of P*(3)VE on {z3 = 0} in terms
of the source terms in the interior domain and on the boundary.

Introducing W+ := e7 "W+, system (4.18) equivalently reads

LW
= YAFWE + AFOWE + AFO,WT + L,WT + CTWE = e ' FE. (5.2)

We also introduce W := (W*,W’)T, Ut = e 0% and ¢ := e ). Then
the boundary conditions (4.20) are equivalent to

BW(W, J) = 'ybozZ + bV?Z + bﬁ’lZ +BW = e g if 29 =0, (5.3a)
Ut =0 =4 if 2, =0,  (5.3b)
where by := (0,1,0)T. In view of (4.23), we obtain the estimate:

IPE(2)VE|sp=ollL2 r2) < W aa=0ll 2 m2y < [W™laa=ol: (5.4)

where W1¢ := (W;,W;,W;,W;)T. By virtue of (5.4) and Lemma 5.1, we
obtain that Theorem 5.1 admits the following equivalent proposition.
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Proposition 5.1 Assume that the stationary solution (2.24) satisfies (2.10)
and (2.25). Assume further that the basic state (U*,®%) satisfies (4.1)—(4.3).
Then there exist some constants Ky > 0 and o = 1 such that, if K < Kg and
v = 70, then the following estimate holds: for all (W,v) € H?(£2) x H?(R?),

nc 2 — - nc
[W2loamol™ + 917 5 S A2 NEIWENT + 2B (W om0, 0)IF 0 (5.5)

R

where operators L1 and BY are given by (5.2) and (5.3a), respectively.

In the rest of this section, we give the proof of Proposition 5.1.

5.1 Paralinearization

We now perform the paralinearization of the interior equations and the bound-
ary conditions.

5.1.1 Some results on paradifferential calculus

For self-containedness, we list some definitions and results about paradiffer-
ential calculus with a parameter that will be used in this paper. See [4, Ap-
pendix C] and the references cited therein for the rigorous proofs.

Definition 5.1 For any m € R and k € N, we define the following:

(i) A function a(z,¢,7v) : RZxR2x[1,00) — CV*¥ is called a paradifferential
symbol of degree m and regularity k if a is C® in ¢ and, for each a € N2,
there exists a positive constant C, such that

1020 &) lwioezzy < CaA™1217(E)  for all (€,7) € R? x [1,00),

where \*7(€) := (72 + |£]?)*/? for s € R.

(if) T} denotes the set of paradifferential symbols of degree m and regularity
k. We denote by «,, a generic symbol in the class I'[".

(ili) We say that a family of operators {P7},>1 is of order < m, if, for every
s € R and v > 1, there exists a constant C(s, m) independent of v such
that

P sy < C(s,m)|usimy  for all ue H ™.

We use R,,, to denote a generic family of operators of order < m.
(iv) For s € R, operator A7 is defined in such a way that

A u(@) = ﬁ f SN (€)T(E)dE

for all v in the Schwartz class S.
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(v) To any symbol a € I'j’, we associate the family of paradifferential opera-
tors {T) }y>1 defined in such a way that

Tiule) = s | L €K = 06l €.)(6) dude

for all u € S. In the last expression, K¥(-,&,v) is the inverse Fourier
transform of (-, £,~) with ¢ given by

P(@,67) == Y x(227 1, 0)p(279€,279),

qeN

where ¢(£,7) := x(271,271y) — x(£,7), and x is a C®—function on R3
such that

1 if |z

| <3
0 if |z] = 1.

x(2) = x(2) if |z] < |7, x(2) = {

Lemma 5.2 The following statements hold:
(i) If a e WLP(R?), ue L*(R?), and v = 1, then

Yaw = Tul + adju — Tig yull + [av — T ul

1y S allwro @2 ul.

(i) If a € W2%(R?), u e L?>(R?), and v = 1, then

Yaw = Tul1y + ladju — T u

1

1y S lallwze @) lull-

iii) If a € T, then T is of order < m. In particular, if a € L®(R?) is
k a
independent of £, then

1T ullsy < llallpemey|uls,y for all s e R, u e H*(R?).

(iv) Ifa €T and b e T, then product ab € T"*™ | family {T)T) =T} y=1
is of order < m+m/—1, and family {(T))* =T },>1 is of order < m—1.
(v) IfaeT5 and be T5", then {TJT; —TJ, — TjiZj e, aazjb}’@l is of order

<m-+m' —2.
(vi) Gdrding’s inequality: If a € T3™ is a square matriz symbol that satisfies

Rea(z,&,7) = c(y* + €)™ for all (z,&,7) € R* x [1,0)
for some constant c, then there exists v9 = 1 such that

Re(T)u,uy > ZHuH?,W for all w e H™(R?) and v = .
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(vil) Microlocalized Gdrding’s inequality: Let a € T3™ be a square matriz sym-
bol and x € T'Y. If there exist a scalar real symbol X € TY and a constant
¢ >0 such that X = 0, xX = x, and

X*(x,6v) Rea(z,€,7) = (2, €,7) (7" + [€)"1
for all (x,&,7) € R* x [1,00), then there exist yo = 1 and C > 0 such that
c
Re <T(ZT)’<YU7T>’<YU> = iHT)’ZUHEn,'y - C”“H%L—l,'y

for allu e H™(R?), v = .

Here we have used the notation, Re B := (B + B*)/2, for any complex square
matriz B with B* being its conjugate transpose.

The reader may find the detailed proof of Lemma 5.2 (vii) in Métivier—
Zumbrun [35, Theorem B.18].

5.1.2 Paralinearization of the interior equations

In view of (4.2) and (4.3b), we have the following estimate for the coefficients
of L] given in (5.2):

[(AG, AT [wee (o) + [CF w2y < C(K, ko).
It then follows from Lemma 5.2 (ii) that

0
lragw* — 17, WH; = L IYAGW™ (o w2) = T, W 22)l yde

o0
< j JAZ (- 22)[n ey IWF (- ) |2

< C(K, ko) W%
Similarly, we derive from Lemma 5.2 (i)—(ii) that

llAgoew™ =T W, < AT lwze@ W < COE, mo) W],

i6AS
|||A1+51W+ =10 Wl S 1A w2 @ IV < COK, mo) WL
oW -1, W I, < 1C* e @y IW 1l < CUE, )Wl
Combining these estimates yields
liw* — Lo,w — T ps vimat s o Wi, < CUE m)IWEL (5.6)

where 7 = v + i, and £] is the linearized operator defined by (5.2). We can
also obtain the following estimate for the equations on W ~:

W= —naw= -1, W, < COE Il (6)

The paralinearization for the interior equations is thus given as follows:

TZAg+inA%+ e WE+ LoWE = F* if 25 > 0. (5.8)

Note that the above paralinearized equations do not involve the discontinuity
function ¢.



38 G.-Q. G. Chen et al.

5.1.3 Paralinearization of the boundary conditions

According to (5.3a), we define
o o o T
bO = (Oa 170)1—’ bl(ta m1) = ((Ul+ — U )|z2=07vf|m2=070> )
b(t, 1,6,n,7) == Tbo + inby (t, 21) = (in(6] —o7),7 +i6{7,0) |z, —0-
Since by, by € W2 (R?), we obtain from Lemma 5.2 (iii) that
Ivbot + bV — T[4

= [vbot) + bodetp + b101Y) — Ty |14
< [ (bo, b) w22y [0 < CE) || < CENY Wy (5.9)
It follows from (4.2), (4.3b), and (4.13) that |[by [y 1.2 w2y < C(K, ko). Employ-
ing Lemma 5.2 (ii)—(iii) yields
el < g — Tl + 1T 6l
< gl @) [9] + 0] oo ey 1W0]l1,7 < CK Ko) [¢]1,5- (5.10)

In light of (4.21), we find that | Bz« ®2) < C(K, ko), and B acts only on
the noncharacteristic part W"¢ of vector W. Hence, we deduce

| BWl2,=0 = TgWles=0ll1.4
<V Bllwes g2y [Wlay—o]| < C(K, o)y [W"|ay—o] - (5.11)

Combine (5.9)—(5.11) together to find

|BY(Wlzy=0,%) = Tyt = TEWlay—ol1,4
< C(K ko) ([9]1n + 77 W™ aa=0l) - (5.12)

The paralinearization of the boundary conditions (5.3a) is then given as fol-
lows:

TJY +TEW =G if 2o = 0. (5.13)
5.1.4 Eliminating the front

We can eliminate front ¢ from the paralinearized boundary conditions (5.13)
as in the constant coefficient case. For this purpose, we first notice that symbol
b is elliptic, which means that, for any (¢, 1,6,7,7) € R* x (0, 0),

[b(t, 21,8,n,7)° = c(K)(v* + 6% + ). (5.14)

To show this estimate, by observing that b is homogeneous of degree 1 with
respect to (7,7) and that =7 is compact, we only need to prove

b(t,z1,6,7,7)” >0  on Z.
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This estimate follows from the similar property for the constant coefficient
case, by taking the perturbation, V', small enough in L*({2).
Using (5.14) and the Garding inequality (Lemma 5.2 (vi)), we have

Re (Teyth, ) = c(K)|¥[7,  for all v > 7o,
where 7o depends only on K. Since b € '}, the operator:

Ty, — (Tp) Ty = Ty, — Tou Ty + {Tps — (Ty)*} Ty

is of order < 1. Then
[t < CE) (175w + ¥l 1v]) < CK) (1T 17 + W13 5) .
from which we take  sufficiently large to derive

I

Since the first and fourth columns of B € W2®(R?) vanish, we apply Lemma
5.2 to obtain

2

1y < C(E)| T

1y < CE) (1T + TgWlas=ofl + [W"[z=0])
< C(K) (7T W + TEWlas=ol1 + [W*laa=ol) (5.15)

Combine this estimate with (5.12) and let v large enough to deduce

2

This last estimate indicates that it only remains to deduce an estimate of
Wne|,,—o in terms of the source terms.
To eliminate ¢ in the boundary conditions (5.13), we define the matrix:

0 0 1
Q(taxh&an?’y) = < )

T+ im’)f’ —in(f)f' —-v7) 0

1y + W a,=ol) - (5.16)

|15’Y < O(K) (’7_1“87(W|$2=07w)

for all (1,7) € =1.

T2 =0

Then we extend () as a homogeneous mapping of degree 0 with respect to
(1,m) on Z. It follows that @ € I'Y and Qb = 0. We define symbol 3 as

5(t753175777a7) = Q(t71‘1757na7)B(t71‘1) € Fg

for all (t,z1,0,m,7) € R* x Ry. After a direct calculation, we find that the
first and fourth columns of 3 vanish, so that we consider 3 as a matrix with
only four columns and two rows. More precisely, for all (7,1) € =7, symbol 8
is given by

ﬂ(ta$175an7’y)

_(wémez JE+E - JE+a 4/§2+s2>

a (m{r +m2+) ii,(ml+ —m;) —ay(my +my) —ay(my —my)

, (5.17)
132=0
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where ¢4 and ¢4 are given in (4.9), m{ and m3 are given in (4.22), and
g = T + 107 (t, ). (5.18)
Since B €Ty, be '}, and Qb = 0, we find from (5.12) and Lemma 5.2 that
ITg W™ |zs=0]1,4
= HTgBW|ﬂC2=0 - T(ST]’;W|I2:0 + T% (T]’;W|w2:0 + Tl;yw) - TQ’STI:”#
S W*a=0ll + [T Wlas=0 + Ty Yl + [TGTy Y — Tyt |1y
W*zy=0l + IB7(Wlaz=0, ¥) 1,5 + [¥]1,5- (5.19)

1y

S|
In view of (5.8) and (5.13), we obtain the following paralinearized problem
with reduced boundary conditions:

T inarsos W+ BROWT = F* if oy >0, (5.202)
T:Aa-f-inAf-kC—W_ + I,00W™ = F~ if 9 >0, (520b)
TgWw™e =G if 29 =0. (5.20¢)

We can deduce the following proposition for problem (5.20) by using the error
estimates (5.6)—(5.7), (5.12), (5.15)—(5.16), and (5.19) (see also [17, Proposi-
tion 5.3]).

Proposition 5.2 If there exist constants Ko > 0 and v = 1 such that
solution W to the paralinearized problem (5.20) satisfies

[W™lasmol® £ v IFIE , +9721GI 5 (5.21)

for K < Ky and v = 7y, then Proposition 5.1 holds.

5.2 A Reduced Problem

In order to derive the energy estimate (5.21), we now derive a problem for
the noncharacteristic variables W™ from (5.20). This is possible since the
coefficient matrix I, = diag(0,1,1) has constant rank. For convenience, we
write

TAF +inAT =: (bli]) €T3, (5.22)

where A;—r = (AZ];i), k = 0,1, are defined by (4.19). In particular, we compute

o o o o492

S+07 + 04705) +

B AR }_:FleR, (5.23)
§i+Qi

2
11 _ o4 411 11 _ ¢ e(
Ay =0t Aoy, Agr =1k {1 -
from which we obtain

b = A +inAly = Fi(r +i0fn). (5.24)
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In view of (4.9), Ff = I'(1—¢€%3?) > 0 when (‘Q/J—r,j/i) =0 (cf (3.24)). We use
the continuity of FF and take K in (4.2) small enough to derive that FF > 0
for all (¢,x) € £2. As a consequence, we have

b, =0  ifand onlyif Gy =7 +i0fn=0. (5.25)

To represent the characteristic variables I/Vli in terms of W"¢, the singular
points (t,x,7,n) that are given by (5.25) should be excluded. We thus intro-
duce two C*—functions x; and X, defined on 2 x = such that

— Both x4+ and X4 are homogeneous of degree zero with respect to (,7) €

=3

— For all (t,z,7,m) € 2 x =1,

0 < X+(t7$77'777) < %4—(@1}7’77’) < 13 (526)
X+ =1 onsupp xy,  supp X+ < {ay(t,z,7,m) #0}.  (5.27)

Since TAJ +inAf e T3, C*T eTY, and x4 € I'Y for all k € N, we find from
Lemma 5.2 (iv)—(v) that

T T7 -7 T +T"

T, T _
X+ r Al +inAT+C+ TA +inAT "X+ —i{xy.TAf +inAT} Ty, +R-1,

where {a,b} denotes the Poisson bracket of a and b:

0adb 0da 0Ob Oa 0b da b
=e e e A a 2
tabh = S5t * anom, oo oman (5.28)
Setting

wt = Ty w*
+

and applying operator 7Y, to (5.20a), we obtain

T:Ag+inA;rw+ + Tl wt + Loyw™ =T)WT +T) FY+R_ W™, (5.29)
where r = i{X+, TAS + inAf} + Oax+I2. We will employ letter 7, to denote
a generic symbol that belongs to I'Y and vanishes on {y; = 1} U {x; = 0}.

Since bf; # 0 on supp X4, we infer that % € F;l and
11

T T wh =17 wi +T) w! +R_.W.
R /b, b AN St A S R 2

~y

Applying operator T)Z ot to the first equation in (5.29) yields
+/%11

T wi +T) wi +T7 wi
X+ 1 X+ /01 2 X+b1+3/b1+1 3

T+Qa—1 Q17 X+

3
= YT wf + T, W T) TY P+ RWT. (5.30)
j=1
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By virtue of (5.27), we have the identities: X4 x4+ = x+ and

X+ OX+ | OX+ OX+
00 ot dry 0n

=0,
which imply
TP w) =T, Ty, W =T W, +R W =w/ +R_ W

Plug this identity into (5.30) to obtain

+ gl + Y +
w; =-—T! w, —T! w
1 X+b1+2/b1+1 2 X+b;r3/b;rl 3
3
+ +
T wi AT, W T T R+ R W (5.31)
j=1

The second equation of (5.29) reads
3 3
2T wf + Y Tow) +owf =T) W+ TY Ff + R W
j=1 7 j=1

Since b;’l e I'} and )?erfj/bfl e I'Y, we then apply operator Tb7+ to expression
21
(5.31) and obtain

T, wi =17 wi — T wy
b;r1 ! X+b;1bir2/bir1 2 X+b2+1b1+3/b1+1 3
3
Y T Y + Y it +
+ T wf + T W+ ReTY FY + R W
i=1
Consequently, we have

+ _ 7 + y +
Oowy =T/ wy +T/, w3

X4 X+
3
+ Y Tl wh + TP W+ ReTY F*+ R W, (5.32)
j=1
where
AY = —bgy + Xabi by /by, AP = gy + X b3, b5/bi

Note that w; appears in a zero-th order term in (5.32). We thus apply T3, to
expression (5.31) and deduce
T wi =T wy +T wy +T, , W +RAT] FF+R_ W,

which, together with (5.32), implies the following equation for w, :

é’gw; =T7

+ Y +
A w, + TA1~2 wy
4

X+

3
+ Y T wf + T W+ ReTy FH+ R W (5.33)
j=2
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In this equation, the first and zero-th order terms in w; have been eliminated.
Performing a similar computation to the third equation of (5.29), we obtain

the following equations for w1® := (w3, w3 )":

dpwl = T] wi + Tl wl + T W + RoT) F* + ROWT, (534)

where E* € T'{, symbol 7, € I'Y vanishes on region {x; =1} U {x; =0}, and

1AL2 -
Ag, = <A;f1+ A;j;) ely, A;ﬁ = *b;r+17j+1 +>?+b:r+1,1bfj+1/bfl-
X+ X+
Let us define x_ and X¥_ as x4 and X4 by changing index “+” into “—”.
We set w™ := T) W~ and employ a similar analysis to find that w?® :=
(wy , w3 )T satisfies the same system as (5.34) with index “+” replaced by
“—7_ Applying the rule of symbolic calculus (Lemma 5.2(iv)) to (5.20¢) yields
the boundary condition for w"® := (w3, w3, w;,w; )"

Tgwnc|m220 — G + Rf]_WnC.

We combine this last relation with the systems for w}® to obtain the reduced
problem:

{ a2wnc _ T[grwnc + T]gwnc + TQ/W + R()T;F + R71W if To > O, (5 35)

TgwnC =G+ R_ W™ if x2 =0,

where 3 is given by (5.17) for (1,n) € Z1. The symbol matrix A,. € I'} is given
by

_(Axe O (A
A= ( 0 Ax)’ Ars = (A5,) (5.36)

: g + ~ ot + +
with AY = —bf, oy + Kbl 08 /bh

Matrices E and r both belong to I'{ and have the same block diagonal structure
as A,.. Moreover, symbol r vanishes on region {x;+ = x— = 1}u{xy = x- = 0}.

5.3 Microlocalization

We now construct the degenerate Kreiss’ symmetrizers that are microlocal
(i.e. local in the frequency space) in order to derive our energy estimate. The
whole space 2 x = will be divided into three disjoint parts according to the
poles of the “non-cutoff” symbol A and the zeros of the associated Lopatinskii
determinant, where

At 0
A= ( 0 A‘) , Af= (a:_rj)’ aiij = _b;_r+1,j+1 + bz'i+1,1bfj+1/b%r1~ (5.37)
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Notice that Ay, = AT in region {Y+ = 1}. In light of (5.25), we obtain that
the poles of A belong to the set 1}, := 7,f U1, with

Ty ={ta,rn) e 2x Z 7 = —inif (t,w, 7, m)}

For the eigenvalues and the stable subspace of A(¢,x,7,7n), we have the
following lemma.

Lemma 5.3 Assume that (V, VLT/) is sufficiently small in W% (£2).

(a) If (1,m) € Z1 with ReT > 0, then the eigenvalues of A*(t,x,7,n) are
roots w of

+ RN . 0 o
(w _ “11;%“22) - (CF)® {(Cli)2(7' +iCn)” + nz} ;o (5:38)

where CO’;—r,j = 0,1,2, are positive smooth functions of (10/'i, V@i) such
that CJir = C'j when (f/i,@i) = 0, with C'j given by (3.31). Moreover,
AT has a unique eigenvalue wy (resp. W'y ) of negative (resp. positive) real
part.

(b) If (1,m) € =1 with ReT > 0, then the stable subspace £~ (t,x,T,n) of
A(t,xz,7,m) has dimension two and is spanned by

E+(t1 T, T, 77) = <_(T + llarn)a’i‘bu (T + l{)f—n)(arl - UJ+),O, 0>T 5
(5.39)

T
E_(t,z,7,n) = (0, 0, (1T +1ivy n)(agy —w—),—(7+ iifn)ai)

(¢) Both wy and w— admit a continuous extension to any point (1,m) € =1
with ReT = 0. If (1,1) € =1 with 7 =1d € iR, then

=+ +
aiy t ap

2 (t’ x’ T’ 77)

a)i(taxaTa 77) = WJ_r(t,ﬂf,T, T]) -

— O - (CEREECEN? P > (GO £ CE)?, 5.0
—isgn(d + C}n)C(;t\/(Cli)Q(é + Co’étn)2 —n? elsewise.

(d) Both E4(t,x,7,m) and E_(t,z,T,n) can be extended continuously to any
point (1,m) € E1 with ReT = 0. These two vectors are linearly indepen-
dent on the whole hemisphere =7 .

(e) If (t,x,7,1m) & Va, where Ty is given by
Tai= {re {i(=Cf £ () i(=C5 £(CT)mp}, (541

then matriz A(t,z,T,n) is diagonalizable.
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Proof We just need to deduce that relations (5.38) hold and that a7} + a,
are well-defined for any point (7,7) € =7, since the other assertions can be
proved similarly to the proof of Lemma 3.3.

By definition, we know that the eigenvalues of AT are roots w of

w? — (a; + ap)w + afiaz, — afyaz; =0, (5.42)

from which we have

+ 4 + 4
@ = (% + afz) (% - a12> + ajy(aly + azy), (5.43a)
W2 = (% + a;l) (w - a;l) + azy (agy + agy)- (5.43b)

We now deduce the expressions for aj; — a3, — 2a, and af; + a3;. Recall that
a - and bJr are given by (5.37) and (5.22), respectively. Entries Aj, and Aj',
are given by (5.23). For notational simplicity, we ignore indices “+” and B
in the following expressions. We calculate coefficients Aj defined in (4.19) by
using the computer algebra system “Maxima” to obtain the relations:

AP = o AT, AT 0 AR AT AP (AR - AP),  (5.440)
A2 A1 (AL - AD3), A2V 1 A3 = g (A2 4 ABY), (5.44D)
AT (Ag" — Ag%) — AP (AT + A3

= vy {AZN (AN — AY?) — AP (AP + A3}, (5.44c)
AP (AT + AT + AT (A" - ApY)
= v {AP (AT + AYY) + AY (AP — A%} (5.44d)

Then it follows from (5.44a) that
—boy + bgz + 2bg3 = (—A82 + A33 + QASS)(T + 11)117).
By virtue of (5.44b)—(5.44c), we obtain

ba1b1a — b31b1s — 2b21b13 = boy(b12 — b13) — b13(bo1 + b31)
= {le(A(l)z — A(l)s) — blg(Agl + Agl)} (7' + i’l}l’l])
= (A3 (A? — Ap®) — AP (AF' + AGH} (7 + foin)*.

Then
aiy — azz — 2a12 = Fa(7 +ivin), (5.45)
where
Fo = (AG") ™M {AG" (—AF + AT + 245°) + AT (AG” — Ag°) — AG° (AT + AFH)}

20, {I'(c* + 0*)2(*|v]> — 1) + *c(sva — ov1)}
= 5 R ) (5.46)
c(e2(ova + sv1) S 0?)
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In particular, IF; = +2I'/¢ # 0 when the perturbation (‘O/ij/i) vanishes.
As a consequence, F3 never vanish by taking K in (4.2) small enough. Using
(5.44a)—(5.44b) and (5.44d), we can deduce from a similar calculation that

a1z + ag = F3(7 +iv1n), (5.47)

where

=
w
|

= (Ag) T H{AG (—AF — AF?) + AT AT + AG A%}
202P€? (svg — ov1)
=— ) 5.48
2(ovs + cv1)2 — G2 — g2 ( )

Relations (5.38) follows by plugging (5.45) and (5.47) into (5.43a)—(5.43b).
We now show that af; + a3, are well-defined. Use (5.44b) to derive

ba1b12 + b31b13 = b12(b21 + b31) + b31(b13 — bi2)
= {b12(AF" + AY") + b31 (AP — AP} (1 + ivim),
which implies
b21b12 + b31b13

a11 + a2 = —bao — b33 Fi(r + 017
1 1

= IF47' + i?’]IE“57 (549)

o

where [y and F5 are some smooth functions of (V,V@) that vanish when
(V7W) = 0 (cf (3.27) with af; = +p+ and aF, = Fpus). The proof of the
lemma can be completed by using the fact that AOi and A%r are smooth with
respect to (VE, V¥T). O

As in the constant coefficient case, we define the Lopatinskii determinant
associated with A and 3 as

A(tax177-7 77) = det [ﬂ(tax177—7 77) (E+(t,$1,0,7’, 77) E—(ta'rhOaTa 77))] ) (550)

where B and F, are given by (5.17) and (5.39), respectively. For the zeros of
A(t, z1,7,m), we have the following lemma.

Lemma 5.4 Assume that (V, VW) is sufficiently small in W2 (£2). Then
A(t,zq1,7,m) =0 if and only if (t,x1,7,m) € Te,
where Tp := 12 UT2 U T} is called the critical set with
T :={(t,z1,7,n) € R2x Z:7= inZq(t,z1)},
where zg and zy1 are real-valued functions of (‘D/i|$2:0, V) satisfying
Yen (Tnavy) n{ze=0}) =@.

Moreover, each of these roots is simple in the sense that, if q € {0, £1}, then
there exist a neighborhood ¥ of (izgm,n) in =1 and a C* —function hy defined
on R? x ¥ such that

A(t7x177—7 77) = (T - i’%qn)hq(taxlvTv 77)7 hq(t7x177—7 77) 7 0 (551)
for all (t,m) e V.
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Proof Thanks to (5.17) and (5.39), we obtain that, for (7,7) € =1,

. (5.52)

T2 =0

5(t,$1aﬂ77)(E+(t,$1a0,7',77) E—(t71‘13077—a7’)) = <€1 €2>
G Ca

where

1= gy 0% + < (afy —afy —wy), Gi=—aon/02 + S lag —ay —w-),
G = apa{=ajy(m{ +my) + (af; —wy)(m{ —my)},

Ca = dra_ {—(ag —w_)(my +my) +ag (my —my)}.

Recall that a4+ and m;—L are defined by (5.18) and (4.22), respectively.
Thanks to (5.45), we have

+ + +
. B . o (G011 — Q59 — 2a ~
(= apr /62 +§3<w _W+)
. /. o (Fra ~
= a4 Q%r + §_2,_< 22 * W+). (553)

Using (5.45) and (5.47) yields

o F> + 2F5
b= a2+ &2 (%a_ +o). (5.54)

It follows from (5.43a) that

+ + + ~2 o+ +
af; —ag +2af, 205 —2aj5(afy + az)

2 ajy — agzy — 2a5;
By virtue of this last identity, we obtain

+ + +
0 aj; — ayy + 2a
e o ~ 11 — G922 12 + + + ot
G = a+a,{(w+ - f) (my —my) — 2ai;my }

20
— 5. 5 + +\ +
B a+a/7(m2 —my >W+ 1-— B T ————
afy — Qg — 207,

204 a-aj, {(m+_m+)(a+ +ad) —mi(al, — al _2a+)}
aJ,- - a+ - 2CL+ 2 1 12 21 1 11 22 12 .
11 22 12

Use (5.45) and (5.47) to deduce

(my —mi)(afy + a3;) —m{ (af) — a3, — 2a7,)

= a4 (myFy —my (F3 +Fy)) =0,
which, combined with (5.45), yields

G = v (mi —mi)s, (1-

20 ) (5.55)

° +
CL+F2
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Similar to the derivation of (5.55), we can infer from (5.43b), (5.45), and (5.47)
that

2 .. - i\~ 20—
§4 =a4a_ (m2 + mq )w_ (1 + m) (556)
—\t2 3

Therefore, we find that A = A} Ay Asl,,—0, where

+ 0
_]F2a+ ~

FS + 2F;
2 — W4, AQ = -2 _~3 * 3 4

a— +W_,
2
ayq/ 0% +<3 a_q) 0% +¢2
Az i=det | o(mf —mf). . 2(my +my). -
—_— Y a_Ww — a4 W_
F T OF, +2F;

All

If (VE,@%) = 0, then Ff = +2I'/, F5 = 0, m{ = 0, and mj = 1/(I'ch).
Thus,

A1|(f/"j,)=0 =c (1 +imn) — wy, Ag\(‘;@):O =—¢ 'I(r—imm) + w_,
1 . .
Azl (¢ =0 = - I?h {w-(r+iom)” + wi (7 —ion)*} .

Recalling the proof of Lemma 3.4 and using the continuity of Ay with respect
to (V, V&), we find that, if perturbation (V, Vy'/) is suitably small in W2%(£2),
then A; and A never vanish on R? x =, and As(t,z1,7,m) # 0 for n = 0.
Consequently, A(t, zq,7,7n) = 0 if and only if Az(¢,21,7,m7) =0 and 7 # 0.

Let 7 # 0. Setting z := 7/(in), we obtain that As/(in)® = Q1(2) + Qa(2),
where

. 20my +my) [y 050
Z)i= 212 +2 11—
i) = TR V& TS
. 2(mf —m3) /; Gty
Qa(z) 1= —— 254 /3% + 32—
* F3 (in)?

As in the proof of Lemma 3.4, we define
P(z) = @RI (Q1(2)% — Q2(2)?).

When (V,W) = 0, P(z) is exactly a polynomial P(z) of degree 5, given
by (3.44). As a consequence, if K in (4.2) is suitably small, then P(z) is
a polynomial function with degree 5 or 6, and there are functions zj, k €
{0,+1, +2, 43}, of (V,¥) such that

P(z) = (332 + D)Pi(2),  Pi(z) =25 [ (2=
ke{0,+1,+2}

where %3 and Py(z) satisfy that
23=0, Pi(2)=P(z)  when (V,¥) =0.
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Under condition (2.25), we can compute that the discriminants of & dig»z),

j€1{0,1,2,3}, are all positive. Since the discriminant for a polynomial is con-
tinuous with respect to the coefficients of the polynomial, we take K suitably
dj(ﬁjzl](z)7 j€{0,1,2,3}, are all pos-
itive. Consequently, roots z, k € {0, £1, £2}, of P (z) are real and distinct.
Noting that the coefficients of P(z) are all real, we obtain that 2,3 are
both real. Since Zz, k € {0,+1, +2}, are all different, we infer that Z, k €
{0, +1,£2, +3}, can be expressed as continuous functions of the coefficients
of P(z). Choosing K in (4.2) sufficiently small, we see that z_5 is always
nonzero, 23 and Zg are in a small neighborhood of 0, and 2, k € {1, £2}, are
respectively in a small neighborhood of £z with z; and 2, given by (3.48).
We then use (5.40) and employ an entirely similar argument as in the proof
of Lemma 3.4 to conclude the result as expected. O

small to conclude that the discriminants of

In view of Lemma 5.4, we can obtain the following result by using the
continuity of A;f and the fact that the perturbation, (V,¥), has a compact
support (see [15, Page 423] for the proof of Proposition 5.3 (c)).

Proposition 5.3 Assume that (V,¥) satisfies (4.1)~(4.2) with K being suffi-
ciently small. Then we can find neighborhoods ¥ of Y4,q € {0, +1}, in 2 x =
such that
(a) 72 (T, uTng) = @.
(b) Matriz A defined by (5.37) is diagonalizable on ¥21. In particular, there
exist matrices QF € T'Y such that

Qi (2)A*(2)QF (2) 7" = diag (wi(2),w)(2)) = Df (5.57)

for all z = (t,z,7,m) € V2, where wy(z) # W (2) and w_(z) # w’_(z).
(¢) Let A be Imw, or Imw_. Then the solution of the system:

At _oh ), dm_dh, )

dl’g = R , L1,22,T,1), de - 677 y L1, L2, Ty 1]),

ds  oh dp ~ dh (5.58)
des Ot (21,02, m,m), dzo  0x (o1, 72,71,

(t,3717’}’ + 16) 77)‘912:0 € Ai/cq N {.1'2 = 0}

defines a curve (t,x1,v +16,n) for all x9 = 0, which remains in ¥.2 and
1s called the bicharacteristic curve.

In order to absorb the error terms caused by microlocalization, as in [15,
17], we will construct the weight functions that vanish on the bicharacteristic
curves originating from 7. and that are nonzero far from these curves.

We define the complex-valued functions: For all z = (t,21,7,1) € R? x 5
with 7 = v + id,

04(2) 1= =1y + 54(2), 04(2) := 38 —nz,(t, 1), g€ {0, %1}, (5.59)
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and extend o, to R? x = as a homogeneous mapping of degree 1 with respect
to (7,7n). Functions Zo(t,z1) and Z41(¢, 1) are given by Lemma 5.4 and cor-
respond to the points where the Lopatinskil determinant vanishes. Symbol o,
thus belongs to I'} such that

T!={z=(t,z1,7,n) eR* x = : 04(2) =0}.

In view of Proposition 5.3(c), we can construct solutions o% of the linear
transport equations:

O20% +{o%, Imw,} =0 if 25 > 0,
O20% +{o?, Imw_} =0 if zo > 0, (5.60)
ol =0l =0, if zo =0,

where o, is given in (5.59), and {-, -} is the Poisson bracket defined by (5.28).
Then we infer that o4 (resp. 6%) is constant along each bicharacteristic curve
defined by (5.58) with & = Imw (resp. h = Imw_). In particular, function o
(resp. o) vanishes only on the bicharacteristic curves originated from 7’9 with
h =Imw, (resp. i = Imw_). By shrinking #.7 if necessary, we may assume
that o are defined in the whole set 7,9. We will see that functions ¢ are
appropriate to deal with the error terms appearing in the energy estimates.

From the above analysis, the whole space 2 x = is naturally divided into
three disjoint subsets: Y}, %, and 2 x Z\ (¥, u¥.), where ¥, := ¥, Lu 72U ¥ .
To derive our energy estimate (5.21), we introduce smooth cut-off functions
according to this division. More precisely, we introduce nonnegative functions
Xy and x? (with values in [0,1]), ¢ € {0, £1}, such that

- X and x? are C* and homogeneous of degree 0 with respect to (7,7) so
that they belong to FO for all integer k;

—supp x4 < 79 and x? = 1 in a neighborhood of the bicharacteristic curves
originated from the critical set T'%;

- X;,i = 1 in a neighborhood of T;—r, supp X; N supp x, = &, and supp X;—r N
supp x¢ = @ for all g € {0, £1}.

Since 0% and ¢? vanish only on the bicharacteristic curves originated from

T2, there exists a constant c¢ such that

lol|=¢c>0 in {x <1} nv2a. (5.61)
We also define

Xp = Xp +Xpr  Xei = Xe FXetXer  Xui=1l—Xp—Xe (5:62)
Then y, has support far from the poles and the bicharacteristic curves origi-
nated from 7,.. We observe that the Lopatinskii determinant does not vanish
on supp xu N {x2 = 0}. This enables us to apply the standard Kreiss’ sym-
metrizers to derive the energy estimate for 777 W, which will be shown in
§5.4. After that, we will show how the traces of Ty Wne and T W can be
estimated. At the end of this section, we will complete the proof of Theorem
5.1 by using a weighted energy estimate with the weight functions o given
by (5.60). In particular, we will prove that the microlocalization error terms
can be absorbed by such a weighted estimate.
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5.4 Estimate at Good Frequencies

In this subsection, we show how the solutions of problem (5.20) can be esti-
mated for the frequencies that are far from both the poles 7}, and the critical
set T,.. We define

W o= (T3 W\ T3 Wb\ T3 Wy T Wi )T
and introduce a smooth cut-off function X, with values in [0, 1] such that
Xu=1on suppxu, suppXun?p =2, (suppXun {z2=0})n7. =0,

where x,, is given by (5.62). Employing the same analysis as in §5.2, we derive
that W¢ satisfies

{ W =T Wi+ TJW3 + T)W + RoTy F + R_4W, x>0, (5.63)

TgW;lC =G+ R_ W™ T =0,

where 3 € I'Y is given by (5.17) for (7,n) € Z1. The symbol matrices A,, is
defined as A, in (5.36) with X4 replaced by X,. Both E and r have the same
block diagonal structure as A, and belong to I'{. We note that A, = A on
region {X, = 1}, and r is identically zero on region {x, = 1} u {x., = 0}.

In view of Lemma 5.4, we find that the Lopatinskii determinant never
vanishes on supp x, N {z2 = 0}. Note that the perturbation, (V, !Z/), is assumed
in (4.1) to have a compact support. In the following lemma, we construct the
Kreiss’ symmetrizers that are microlocalized at all frequencies in the compact
set K, where

K:=suppxu n {-T <t <2T, 25 >0, [z < R, (1,n) € Z1}.

Lemma 5.5 Assume that (4.1)—(4.2) hold for a sufficiently small positive
constant K. Then, for each zg € K, there exist a neighborhood ¥ of zg in K
and C*®—mappings r(z) and T(z) defined on ¥ such that

(a) Matriz r(z) is Hermitian, and T(z) is invertible for all z € ¥/,
(b) There exists ¢ > 0 so that

Re (r(2)T(2)A(2)T(2)"") = eyl for all z€ ¥ withy = Ret; (5.64)
(¢) If zo e Kn {xo = 0}, then there exists a positive constant C so that
r(z) + C(B()T(2)" ") B()T(z) " =1 (5.65)

forall ze€ ¥V n {xs = 0},
where A and B are given by (5.37) and (5.17), respectively.

To prove Lemma 5.5, we first establish the following result.
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Lemma 5.6 Let zo = (to,xo,T0,M0) € 02 x =1 so that Retp = 0 and 79 #
i(—CF +(CF) ) no. Assume that K given in (4.2) is sufficiently small. Then
there exists a neighborhood ¥ of zy in 2 x =1 such that

Rewi(z) £ —v, Rew! (z) 2~ (5.66)

for all z = (t,z,7,n) € ¥ with v = Ret. A similar result holds for w_ and
w' near zg = (to,xo,To0,M0) € 2 x =1 so that Rety = 0 and 19 # i( -C; +

(C1) ) mo-
Proof This proof is divided into two steps.
1. If Rew; (20) < 0, then one uses the identities:

+ + + +
a1 +a a;; +a
~ 11 1 Gy ~ / 11 1 Qg
Wy = wy — 5 —@y = wl 5 , (5.67)

and (5.49) to infer that Rew’ (z9) > 0 for sufficiently small K. Since v =
Re7 < 1 for (1,m) € =1, estimates (5.66) follow directly from the continuity of
w4 (2) and W' (2) with respect to z.

2. Assume that Rew, (z9) = 0. It follows from Re 7y = 0 and (5.49) that
Re @, (29) = 0. Thanks to (5.40), 2 < (C{)?(60 + C5ng)? for 69 = Im 7y so
that 6y # —C5 0. For all (i6,7) with (C’f)z(é + é’;n)2 > n?, we apply (5.40)
again to derive that

§# —Cfn, @alt,@,i0,1) = —isgn(@ + T\ (CF)26 + CFn2 — 2. (5.68)

Since 19 # i(—CO'QJr + (Co'f”)_l)no, @4 depends analytically on (7,7) by applying
the implicit functions theorem to (5.38). In particular, we obtain that, for z
near zg,

a}+ (ta Z,T, 77)37@+ (ty Zz,T, 77) = (CO((TCOTF)2(T + lé;n) (569)

From (5.68)—(5.69), 0,4 (t,x,1d,7n) is real and negative for (¢,z,1,7) in a
suitable neighborhood 7 of zy. Using the Taylor expansion yields that, for all
() e,

B (r,m) = B4 (6,1) + 0,84 (18,1)y + O(7*) (v — 0).

Then we deduce that Re@w, < —v, up to shrinking #". In view of (5.49) and
(5.67), estimates (5.66) follow by taking K small enough. O

Proof of Lemma 5.5 The proof is divided into two cases.

Case 1. Let zg € K\Ypq with 73,4 given in (5.41). In light of Lemmas 5.4
and 5.6, we can find a neighborhood ¥ of 2y in K such that

Rews(z) £ —v, Rewi(z)zy foralze?, (5.70)
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and
A(z) #0 for all ze ¥ n {zy = 0}. (5.71)

According to Lemma 5.3, matrix A is diagonalizable in 7. Indeed, a smooth
basis of the eigenvectors is given by
.o o T
Ei(), Yilz)i= ((r + 167 n)(—agy + ), (7 + iof )agy, 0,0)T

E_(2), Y_(2):=(0,0,(r +iby n)ary, (r +ioyn)(—ap + )", (5.73)

(5.72)

where F are given by (5.39). Notice that E4 and Yy are linearly indepen-
dent in ¥. We can thus define the smooth and invertible matrix T'(z) :=
(Ey E_ Y, Y_)""in ¥ so that

T(2)A(2)T(2)"" = diag (w4, w—, W, W) for all z€ ¥.
Construct the symmetrizer, r(z), as
r(z) := diag (—1, -1, K', K’) for all z€ ¥, (5.74)

where K’ > 1 is a constant to be chosen. Then we can obtain (5.64) from
(5.70) directly.
Thanks to (5.71), we have

|B(z)(E4(2) E_(2))Z7| 2 |Z7| forall z€ ¥ n{zys =0}, Z~ e C*. (5.75)

This implies
1Z7P < Co(1Z* ] +1B(2)T(2) 7' ZP)

for all Z = (Z—,Z%)T e C* with Z* € C?, where Cj is some positive constant
independent of z € ¥. Then we have

{(r(z) +2Co(B(:)T(2) ") " B()T(2) ") 2, Z)
— —|Z P+ K|Z* ] +2C, |B(x)T(2) ' 2|
> |Z7)2 + (K —2C0)|Z7)? = | Z)?
by choosing K’ > 2Cj + 1, which implies (5.65).

Case 2. Let zyg € K n T4 Then symbol A is not diagonalizable at zj.
We consi@er Wit}}out loss of generality that Zo = (to, 0, To, no) € K satisfies
10 = —i(Cy £ (C{)™Hno. The case, 19 = —i(Cy + (C; )7 )no, can be dealt
with in an entirely similar way. Using (3.36) and the continuity of C;—r in
(‘o/i, VLZQ/J—r), we take K sufficiently small to find

To + if)iﬁo # 0, T0 # —i(é’; + (Co'l_)_l)no,
which, combined with (5.38) and (5.45), imply

(afy — a3y — 2aT,) (20) = F3 (20)a4 (20) # 0, w_(20) # W’ (20)-
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Since &4 (z9) = 0, we use (5.43a), (5.45), and (5.47) to obtain

(o) _ (o, ) 70
and hence
a+ 7a+ T Z
(ot =) 0) = 52 ) = B ) = = (1 T Yy 20) 0.

In view of (5.39) and (5.72)—(5.73), we find that the vectors:

~

Ey = (—aly, —(Ff + 2FF)aly/F5,0,0)T, Yy = (1,0,0,0)7, E_(z), Y_(2)
form a smooth basis in neighborhood ¥. Define T'(z) :=(E+ Y, E_ Y,)_l.
Then

a- 0 0
TANT(2) =0 w_ 0 for all ze ¥,
0 0 w-

where a, is the 2 x 2 matrix with (4, j)-entry i (z2):

all(z) = (2F5 +F3)ag, +F3 a3, al?(z) = —F3 a3,

" 2F% + F5 o (2FF + F3)afy,’
a22(z) = (2F3 +F3)af, —Fyaz a2 (z) = ajya;" (2)

" 2F4 + Fy ’ " (2FF + F3)F5i

with
a'(z) := Fy (2F5 +F3)(ady — afy — 2afy) — 4(F3 )aly + (F3)?(af, + a3y).-
By virtue of (5.45), (5.47), and (5.76), we derive
2F3 a5, (20) = —2F5 afy(20) + 2F3 (af; — a5y — 2a75)(20)
(2F+ + IF‘Jr)(an a5r2)(20)7
ar'(z0) = 4F5 (F§ +F3)aiy(20) + (F3)*(afy + a31)(20)
= 4F3 (F3 + F3)afy(20) + Fa Fy (af} — a3y — 2a75)(20)
=0,
which implies

a(20) — a??(20) = a2 (z0) = 0. (5.77)

r

We now look for a symmetrizer r with the form:
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where K’ > 1 is some real constant, and s is some 2 x 2 Hermitian matrix,
depending smoothly on z. Both K’ and s are to be fixed such that (5.65) holds
for z€ ¥ n {xzs = 0} when zy € {x2 = 0} and (5.64) holds for all z € ¥

We recall that A(z) # 01in ¥ n {2 = 0} so that (5.75) holds. Noting that
the first and third columns of T'(z9) ™t are E, (29) and E_(z), we can find a
positive constant Cy such that, if zg € K n {5 = 0}, then

|Z1)? + | Z5]* < Co(|Zaf* + | Zal? + |B(20)T (20) " Z)

for all Z = (Zy, Zs, Z3,Z4)" € C*. Assume that the Hermitian matrix s satis-
fies

s(z0) = (O 61) — B, (5.78)

€1 €2
where e; and e; are some real constants to be fixed. Then we have

{(r(20) + C'Co (ﬁ(ZO)T(ZO)fl)*ﬁ(ZO)T(Zo)fl)Z, Z)ca
— 2e1 Re(Z1, Zodc + ea| Zo|? — | Zs]? + K| Za]* + C'Co |B(20)T (20) 2|
> (C" —max{les|,1}) (1Z:]* + [ Zs]*)
+ (62 — ‘€1| — C/C())‘ZQF + (K/ — C/C())‘Z4|2.
We choose C" = max{|e1|,1} + 2, e2 = |e1| + C'Cy + 2, and K’ = C'Cy + 2 to
obtain
r(20) + C"Co(B(20)T(20) ") *B(20)T(20) " > 2I.

Using the continuity and shrinking ¥ if necessary, we derive estimate (5.65)
for C = C'Cy.

It remains to choose a suitable Hermitian matrix s(7,7) and e; € R such
that both (5.64) and (5.78) hold. Since 7o # —i(C; + (C; )~ )no, we find that
Rew_(z) £ —yvand Rew’ (2) 2 7 for all z € ¥ from Lemma 5.6. Consequently,
it suffices to find e; € R and a Hermitian matrix s(z) satisfying (5.78) and

Re (s(z)ar(2)) 2 vI for all ze 7. (5.79)
To this end, we let
s(2) = E+ F(z) +7G(2)

for some smooth 2 x 2 Hermitian matrices F and G satisfying F(zp) = 0,
where E is defined by (5.78). In light of Taylor’s formula, we may write

ar(2) = ap(t,x,y +16,1) = a,(t,x,i6,1) + v0yar(t, x,i6,n) + 7> N1 (2)

for a suitable continuous function Ni. Noting from (5.22) and (5.37) that
a¥ (t,x,i0,m) are purely imaginary, we may choose

F(z) := diag (f(2),0)
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with

er(att —a??)(t,x,i6,m) + eaa? (t, z,id,n)

fz) = a2, 10.7) ’

so that matrix (E + F(z))a,(t,z,1d,n) is symmetric and purely imaginary for
all z € #. It follows from (5.77) that F'(z9) = 0. Therefore, we have

Re (s(z)ar(2))
= Re {’y(E + F(2))0ya,(t, z,10,m) + vG(2)ar(t, x,16,m) + ’YQNQ(Z)}
= yRe{Edya,(t,z,i0,n) + G(z)a,(t,z,id,n) + N3(z)}

for some continuous functions Ny and Nj satisfying N3(zg) = 0, where we have
used F(zp) = 0. According to (3.28), we see that, for 7 = —i(Cy + C7')no,

&Yafl(to, To, T, 770)|(\°/,$):o = 0y {2imy(my — py)} (7, m0)
212 (ing + €207)

o (T o)

2

x {2625217(% + ivmg ) (ino + €207)? — E(ino + €207)% — 20(F + i@no)g}

- 2 . 2_~
—oI?(1 - 62@2)w e R\{0},

T+ ivng
where we have used &2 (ing + €297)? = (7 + ivng)? and condition (2.10). Then
0va?!(z9) is always non-zero by choosing K sufficiently small and using the
continuity of A;L and Cji. In order to obtain (5.64), we choose

evem i)™ et (O, 5)

for some positive constant g. This choice of e; and G yields

Re {E0, a,(20) + G(2)ar(z0)} = (1 *) N ( 0 iga(z) ) |

* x —iga,* (20) —iga,*(20)

where the entries with * are the coefficients that depend only on 2o, €1, and
ez (which have been fixed earlier). Notice that, if (V,¥) = 0, then

ay'(20) = —a2*(20) = (ps —my)(Fm0) =0, a?(z0) =i

for 7 = —i(Cy £ C; M)mo. Then we can take K sufficiently small, g suitably
large, and shrink ¥ to conclude (5.64). This completes the proof. O
Thanks to Lemma 5.5, one can deduce the following lemma by using a

partition of unity. We refer to [4, Theorem 9.1] and [52, §4.7.3] for a detailed
derivation of the following “global” symmetrizer S.
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Lemma 5.7 Assume that (4.1)—(4.2) hold for a sufficiently small positive
constant K. Then there exists a mapping

S 2 x (R? x R, \{0}) - My4(C)

that satisfies the following properties:

(a) For all z € 2 x (R? x R, \{0}), matriz S(z) is Hermitian and S € T'2;
(b) For all z = (t,x1,0,n,7) € 002 x (R? x R, \{0}),

Xu(2)?8(2) + CXul(2)*X*7B(2)*B(2) = cXu(2)* A1,

where \™7 = (72 482+ n2)m/2;
(¢) There exists a finite set of matriz-valued mappings Vi, Hj, and E; such
that
_ Nk 'YHj(Z) 0 '
R ;VJ(Z) ( 0 Bz) 1

where V; and E; belong toT'y, H; € 'Y, and the following estimates hold:

ZVJ(Z)*VJ(Z) > e A?X,(2)%, H;(z) =, Ej(z) = A"
J

With Lemma 5.7 in hand, we can choose S as a symmetrizer for problem
(5.63) to show the energy estimate as in [15, §3.5], for which we only give the
result here for brevity. We just recall that the components 77 Wlir are given in
terms of 17 W;f3 by relations similar to (5.31). The estimate for T} W reads:

ML W, + 177, Wloa=ol?

SNG4 + W™ loyol® + 77" (IIF]

LA+ WP+ I W, ) . (5.80)

where symbol r € I'{ vanishes on region {x, = 1} U {x, = 0}.

5.5 Estimate near the Poles

This subsection is devoted to deriving the energy estimate near poles 1, =
Tp+ v T, . Matrix A is not defined at points in 7}, while the stable subspace
€~ of A admits a continuous extension at these points, due to Lemma 5.3.
We show the estimate near T; without loss of generality. For this purpose, we
define two cut-off functions X and X1 with values in [0, 1] that are both C'*®
and homogeneous of degree 0 with respect to (,7) and satisfy that

X=1 onsuppy,, X1 =1 on suppX, suppXi nsuppx. =2, (5.81)

where x;; and x. are introduced at the end of §5.3. As in [17], we go back to
the original problem (5.20) and set

Wi = T WS, Wy =T, W (5.82)
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Then we employ the argument in the derivation of (5.29) to obtain

T pt vinat Wy + 1o W, + LW, =TIWT + TLFT + R AW, (5.83)
where 7 = i {x;,TAJ +inA] } + da2x;/ I € TY. The equation for W, is the
same as (5 83) with index “+” replaced by “— ”

Let us introduce symbols R, and L{, both belonging to I'Y, such that, for
(7—7 77) € 517

1 k1 ko 1 0 O
R.:=(0  —aiaf o, Lf:={0 1 o0
0 &Jr ((Li’—l - W+) 1 ll l2 l3

Recalling from (5.22) and (5.24) that (b)) = TAg +inA; and by, = Fyay,
we choose
{512(112 13 a1+1 w+)} ko = b2+3/b21,

h “Hodi(afy —wi) Hbjiath ), o =as(af; —wy), I3 = arad,
so that L] I,R* = diag (0, —d4ajy, drafy) and

bfl 0 kgbﬂ + bf3
LI(tAf +inA)RY = | b, 4y 0
0 ds do

where

di = bk — blhiyafy + bha (af, —wy),  da = L(kabl, +b%) = L,
d3 = ZJ (klb;rl — b;—Q&‘i’aTQ + b;3&+ (CLE — CU+))

=1 (=bjrarafy +bjza.(af; —wy)).
We have used the relation: Zjb;rl = 0. From (5.24) and definition (5.37) of A,

we have

(b31b15 — b3oF T ay )aty + (=3 biz + basFiay ) (af; —w+)}
11“11“12 EGTQ(GM W+)} = a+af2‘~’+a

(afy — wi)(=b3 by + Faibys) + afy(—b3, b5 + Ff&er;?,)}

—~
=

~+ =3 =3

\/ \/v
,_.

)—Af-*—« f--~r—-\

= _(Ff) {(aﬁ W+)b11a12 + a12bf1022} a+af2(w+ - aﬂ - aég),
and
Fdy = (af; — wy)?(=b31a: 00 + F{ a3 033) + (afy) as (bi303; — FY a4 b3)

+ (afy — wi)atyar (biobsy — bisbdy — Fiasbsy + Fy G biy)

- &+bf1af2 {(a1+1 - W+)2 - afzaérl - (afl - w+)(a1+1 azz)} 0.
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We have used (5.42) for deriving the last identity. We notice from (3.27)—(3.28)
that

&+af2|(‘;,¢,)20 = —(1 +ion)m, = Ié(in + €o1)?/2
does not vanish on supp Y1 by shrinking supp ¥ if necessary. Since aaf, is

smooth in (7,7) and (V, V), matrix L} := diag (1, —(a,a3)"%, (Gpafy) ™)
is a smooth and invertible mapping on supp Y1. We then derive

L,LR, =1, L,:=LJLT, (5.84)
bl 0 kobfy + by
= | =bj,/(dyaly) —wy 0 = AL, (5.85)
0 0wy —af —ag

We also introduce symbols R_ and L] that belong to I' and satisfy that,
for (t,n) € =y,

1 kv ky
R_:=|0 a_(ag —w-) a_ajy )
0 —a_ay a_(—ay +w)
1 0 0
L= atan—w) oy |
ly a-ag a—(agyg —w-)
with
ky = (Fy)~ 1{ (ax; —)biy +ay 13}
ky = (Fy)~ ! ‘{ arsb (a1y —wl 13}v
i =Fy)” 1{ (a1 b21 anbgl},
ly = (Fy)~ ! { a21b2_1 (age — w- 51}a

so that Ly I;R_ = diag (0, dy4, —d4) and

by 0 0
Ll_(TAa + 177A1_)R, = 0 ds ds|,
0 dry ds

where dy = G2 {(ag; —w' )(az —w_) — apaz; } and

ds = a_(a7; — w") {by kT + bya—(az —w_) — by _ay }

+a—agy {bsky +bga(ag —w-) = byza_ay }
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We omit the expressions for d;, j € {6,7,8}, since they are quite similar to

that of ds. By virtue of the identity: a, —w_— = —aj; + w’ and (5.42), we
deduce
(a7 — wl)(ag —w-) — apag = —(ayn —w-)* — ajyay

= (w- —ay)(—2w_ +ay; + ay), (5.86)

which yields dy = a2 (w_ — agy)(—2w_ + aj; + ayy). Using (5.22), (5.24), and
the identity: a5, —w_ = —a]; + w’, we compute

ds = a2 {a(az —w-)* — 2apya3 (a3, — w-) + aya3105,}
which, combined with (5.42) and (5.86), implies
ds = G2w_(w_ — a5y)(2w_ —ay; — ay) = —w_dy.

Performing the similar calculations to d; for j = 6,7,8, we can discover that
d¢ = d7 = 0 and dg = w’ d4 so that

LT (TAy +inAT7)R_ = diag (0, —w_dg4, W' dy).

Note that d4 does not vanish in neighborhood supp X1 of TJ up to shrinking
supp X1. Setting Ly := diag (1, d; ', —d; ') and L_ := L; L], we obtain

{ L_I,R_ =1, (5.87)

L_(TAy +inA])R_ = diag (b, —w_, —w" ) =: A%,

Let us define

+ .7 + - .77 -
75 =T W 2 =T W

Applying operator T):(’L+ to (5.83) and using (5.84) yield

W, +1T] %%

Y + Y
T W+ T S Ui

XLy (TAT+inAf) ' P —iY] 0 9, (RL+)2s; (TAJ +inAT)
- _TY + Y YA+ Y vt +
= T>2L+1282Wp +T£L+TTW +T§L+TX;F +R_AW

- _ + Y + Y Y+ Y Y o+ +
= D7 4 T o W T TIWS T3, T FY + R WH,

where xg := t, £ := 0, and &; := 7 to avoid overloaded equations. On the
other hand, it follows from (5.82) and (5.85) that

Th. 2" =1T] W+ 17 W, + R W,

XLy (rAd +inAT) —iX] 0%, A4 0., (RRYY)
Then we have

Lzt + T3, 25 + T3, 25 = TIWH + RoT, FF 4 ROWH (5.88)
+ P
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for new r e TV vanishing on {x; =1} U {x;} =0}, where Zi is an extension
of A‘i to the whole set 2 x =, and D, € I'Y is given by

D? := YLyCT R, — I,05(YR:") R+

+i Y {0, A%0, (RRTY) — 0¢, (XL+)0s, (TAS +inAY)} R,
7=0,1

Similarly, we have
LoyZ™ + 13,27 + 15,27 = TIW™ + RoTLF~ +RAW™,  (589)
where r € ') vanishes on {x; = 1} u {x;; = 0}, A? is an extension to the

whole set 2 x = of A2, and D” e I'{. According to the definitions of Ry, we
have

77 =TT T W™, (5.90)

where Z"¢ 1= (Z5 ,Z5,Z5 ,Z5 )T and

—aial, 0 0 0
5o [l —w) 1 0 0
‘ 0 0 d—(agy —w-) a—_ajy
0 0 —G_ay, a_(—apy +wl)

Note from (5.39) that the first and third columns of R are E, and E_. By
virtue of (5.20c), we obtain the following boundary conditions in terms of Z¢:

T“/

Z5) 1o (%) = RyG - RAW™  ifam—0. (591
BELE )\ 7— ) T =RoG + R if 2o = 0. (5.91)

Zy Zs

For problem (5.88)—(5.89) and (5.91), we obtain the following energy esti-
mate:

Lemma 5.8 There exists constants Ky < 1 and g = 1 such that, if v = o
and K < Ky for K given in (4.2), then

MZHIR 5 + 127 Z5)aamolT
SIGIE, + Wm0l + v IS IR, + IWIP + TP, (5:92)
where symbol 1 € T'Y wanishes in region {x;; =1} u {x;/ = 0}.

Proof We divide the proof into five steps.

1. Estimate for Z§. According to the form of A% given by (5.85), the third
equation in (5.88) for Z7 reads

0223 =T7 2+ T2+ YW+ RoT) By + RAW™. (5.93)
P

—wyi+af; +ad,
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Take the scalar product in L?(£2) of (5.93) with A?7Z to obtain
—wy+af;+ag,

4
| Z |oa=ol} o + 2Re (A™7Z5, AV T Zi) = Y H (5.94)
j=1

where each term #; in the decomposition is defined in the following:

Hy = —2Re (A2 AT Z7) < 1273

1
Hy := —2Re (A Z5, ATIWT ) < | ZF |7, + QIHTJW+ 1%

Hs = —2Re (A" Z], A1’7R0T1+ F ) <evllzf |

1
2 Y + 12
Lot S ITLES IR,

1
Hy = —2Re (A Z5, A RWH) S e[| Z5 (12, + 5|||W+H|2-
For the second term on the left-hand side of (5.94), we employ Lemma 5.2 (iv)
to deduce
1y 74 1ypy
Re (A"Z5, A T vat o,

> Re (A" Z, 17

—wy+af +ad,

zZ{)

AVZE) - ClZSIE 5

Thanks to (5.49), Re(af; + a3y) = Fj~, where F} is a smooth function of
(V,V¥) that vanishes at the origin. We then employ Lemma 5.6 and take

K in (4.2) sufficiently small to obtain that Re(—w, + af; + ad,) = 7. Apply
Garding’s inequality (Lemma 5.2 (vi)) to obtain

Re (A" 25,17 A ZE) 2 A A ZH NP 2 )23 )13

—wy +a'1"1+a;'2 Y?

from which we have

1, 1, 2
Re(AM7Z5, AN 2 Z3) 2 (= O ZS IR
Choosing ¢ small and v large, we derive from (5.94) that

MZIN - + 125 aa=oli 5

U270, + (W IR, + 1T B + 1) (5.95)

2. Estimate for Z". The equation for Z;" in (5.88) is as follows:
T Zf + 1] Zf = T3,2° + TIW* + RoT), Ff + RaW*. (5.96)

+
kaIrﬁ‘bls

Recall from (5.24) that Rebf, = F{~ and Re(k2b{; + bf;) = vap. Similar to
Step 1, we take the scalar product in L?(£2) of (5.96) with A%7Z]" and use
(5.95) to obtain

Mz g,
SUZ70E L + M2+ W, + T FEIR, + )

U2, + (TR, + T F I, + 1) (5.97)
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for « sufficiently large.
3. Estimate for Z3. The equation for Zi in (5.88) reads
0z =T ZE+T) 25 + T ZF

(a+afy) 103,
+TIW + ROT;;F;r +RAWT.
We note that Rew, < —v and Re((d4a;,)~1b4;) = yap. Employing a similar
analysis as Step 1 and using (5.97) yield
MZ3N3 = CIZ |oa=oli
SHZEME L+ METNE, + 9 W, + 0T IR + 1)
SN2, + A (TR, + 1T FEIE, + W 1P). (5.98)
4. Combine estimates (5.95) and (5.97)—(5.98), and take v suitably large to
find

MZENE  + 125 eaoli 5
S 12 aamoliy + v NITYWEIR, + T FEAR, + W) (5:99)

The derivation for the estimate of Z~ is entirely similar so that

MZFIR , + 125 L=l

S 125 laa=oliy + 9 ITYWIR, + T IR, + W) (5.100)
5. Estimate on the boundary. It remains to make an estimate for | Z3 |, —o|1.+-
Using the boundary conditions (5.91), we have

173 Z2zs=0l3 1y < 125 las=0llt o, + [GIE + W L=, (5.101)

where 3 := B(E, E_) and Zy := (Z§,Z5)T. Setting VT := T3 T7, Wi, we
see from (5.90) that
Zy =TIV + RW™. (5.102)
Since 5 e 'Y, we apply the rule of symbolic calculus (Lemma 5.2 (iv)) to find
that
Y — Lypyye Abypy Y —
TﬁR,l R_1, (4 Tﬁ) A TB T,\Mﬁ*ﬁ R_1.
Thus, we have
||ngz|mz:0\|%,y
2 Re (A" T AV TITIV 1y, T Vilra) — CIW ™o
2 Re(T], s sTIVile,=0, T3 Viles=0)

X2 B% B
— OITIVioa=o i A I T Vi lza=oll = O Wz, =0]

1y
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for V1 := (V;*, V)T, which, combined with (5.101), implies

Re <T;275*5T;‘/1 ‘m2:07 Tgvl |m2:0>

S 125 lea=ol} 5 +IGIR 5 + 771125 wa0l  + [Wlay—ol®. (5.103)

Recall from Lemma 5.4 that the Lopatinskii determinant A does not vanish
on supp X1, owing to (5.81). It then follows from definition (5.50) of A that

FIRe(\23*B) 2 XIN2I.

Then we can employ the localized Garding’s inequality (Lemma 5.2 (vii)) and
utilize (5.102) to derive

Re (T}, 55T Vilea=0, T Vilea0)

2 HTgvl |;E2:0

5, = ClVilaa=ol? 2 [ Zolas=ol} ., — CIW™|sy—0]?. (5.104)
Combine (5.103) with (5.104) and take v small to infer that

125 loa=olli 5 < 125 |22~

Y

1+ IG5 + W7oy o> (5.105)

We combine (5.105) with (5.95) to eliminate the first term on the right hand
side of (5.105), and then use (5.100) to conclude estimate (5.92). This com-
pletes the proof. |

Recall that x, = X; + x, and supp X; N suppy, = . Shrinking the
support of x, if necessary, we obtain the following result from Lemma 5.8.

Proposition 5.4 There exist constants Ko < 1 and v9 = 1 such that, if
v =5 and K < Ky for K given in (4.2), then

T, WIE -, + 1T, W0l

2
1y

SIGI A + W Lay=ol® + 4~ (N7, FIE , + IWIP + I1TYWIE ,), (5.106)

where symbol r € TY vanishes in region {x, = 1} U {x, = 0}.

5.6 Estimate near Bad Frequencies

We now show the energy estimate near the points in 7. = Ugeqo,+131, e
near the zeros of the Lopatinskii determinant. We consider the case near set
70, without loss of generality. To this end, we introduce two smooth cut-off
functions x; and xo with values in [0, 1] such that

~ x1 = 1 on the support of ¥, x2 = 1 on the support of x?, and supp y» =
A

— x1 and 2 are both C® and homogeneous of degree 0 with respect to
(T,m),
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where X! is given at the end of §5.3. Defining
wt = T;(CJWJ—F, wh’ = (wi,wi)T,

we perform similar calculations as we have done in § 5.2 to obtain the following
system:

Oowh = Ty whe + Twle + TyW* + RoTp F* + RaWE,  (5.107)
2 c

where EF € '), AT e T'j is given in (5.36) with X+ replaced by x2, and r € I'{
vanishes in region {x? =1} u {x? = 0}.

Since matrix A;f? = A4 in region {x2 = 1}, we obtain from Proposition 5.3
that

Qi AL, =DfQy  in{x2=1}. (5.108)
More precisely, we have
+ —1
(QO 0) =(E; Y, E_Y_), (5.109)
0 Qg

where E4, Y., and Y_ are defined by (5.39) and (5.72)—(5.73), respectively.
Then the following lemma can be proved as in [15, Page 425] by using (5.108).

Lemma 5.9 There exist symbols Qfl € Fl_l and diagonal symbols ]D)(JTr eIy,
which are defined in region {x2 = 1}, such that

(Qo +QL)(AY, + EF) — (Df +D5)(Q5 + Q%) + 02Qp
—i(05Q5 0:AT, + 0,Q7 0u, AL, — 0sDT0,QF — 0,DT0,,Q7) e T
We now prove the estimates for

Z* = T (of vt W (5.110)

which will be shown to satisfy the paradifferential equations with diagonal
principle symbols.
In fact, using Lemmas 5.2 and 5.9, we see from (5.107) that

022" =T 2% + T 25 + YW + Ry, FF + RAW*, (5.111)

where ﬁ)f (resp. }]3)3) is an extension of DY (resp. D) to the whole set 2 x =.
Thanks to Lemma 5.6, these extension can be chosen such that

N+ [ W 0 _ [ e+ +lh+ 0 N+ 7 /
Dl - ( 0 w;) - ( 0 ")/6/4_ +1FLI_~_ ) H))0 _dlag(d+a d+)> (5112)

where ey, e, € ') and hy,/, € I'} are real-valued symbols, and d;,d’, € T'{
such that

er <-1, €. 2L

We obtain the following result for functions Z* that are given in (5.110):
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Lemma 5.10 There exist constants Ko < 1 and g = 1 such that, if v = o
and K < Kq for K given in (4.2), then

VNZil? + vl 22|
Sy IR + 1T F

10+ 1Zales=ol? 5 + V1 Z1]as=0l” + T3, Z1|2s=0l?
IR + 1GIT, + [Wlay=ol, (5.113)

where Zj := (Z]-*,Z;)T,j = 1,2, &y is the scalar real symbol given by (5.59),
and r € T vanishes in region {x° =1} u {x? = 0}.

Proof The proof is divided into two steps.
1. Estimate in domain {2.  The first equation in (5.111) reads

OZf =T 27 +T] 27 + YW + RoTLF* + RAWF. (5.114)

Recalling that Rew, = yey < —, we choose the identity as a symmetrizer
and obtain the following L? estimate:

MZEN <121 aaol® + 7 INTTWH ReTL FH R W)
SN2 foaol® + P NTTWHNE , + NI FHIR, + W) (5.115)

for sufficiently large ~.
The second equation in (5.111) reads

0o Zy = ngz; + Tg/+ Zy + YW + RoTLF" + RAW™.
Recalling that Rew!, = ve/, 2 ~, we perform a similar calculation as Step 1

in the proof of Lemma 5.8 to deduce

MZLNE  + 125 |aaol

Sy ITTWEIR , + IT5 FFIR , + W) (5.116)

for sufficiently large ~.
A similar analysis enables us to deduce the energy estimates for Z; and
Z5 as (5.115) and (5.116). The combination of all these estimates is
VN2 + 22T + 1 Z2leaol 4
SV Z1loa=o? + v UL WIR , + ITLFIR - + IW1%). (5.117)

2. Estimate for the boundary terms. We now estimate the traces of the in-
coming modes Z; in terms of the outgoing models Z5 and the source term G.
Using the boundary condition (5.20c) yields

Tgwnc =G+ R_ W™ if zo = 0.
From the proof of Lemma 5.4, we find that 51 # 0, and

(5154 - 5263)‘302:0 =A= (T - iéon)ho(tv'rlvTv 77)7 hO(ta z1,T, 77) #0
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in a neighborhood of (iZgn,n) € £1. According to identity (3.53), we define the
following invertible matrices in a suitably small neighborhood of 7?:

Pl = o 1/4;1 0 5 P2 — 1 7042 3
—C3/(C1¢s) 1/¢s 0 G

with (5 := ho(t,z1,7,n) such that P; and P, belong to I'Y. Shrinking 70 if
necessary, we have

L (1 0 . 0
Bin := PIB(E4 E_ )P, = (0 ALY (y 4 130)) in 77, (5.118)

where &y = d — %o is the scalar real symbol in T'i. We recall from (5.59) that
gg = 71’}/ + ON'().

We then fix the four cut-off functions x¢,, Xecs, Xes» annd xc, such that

— X¢, = 1 in a neighborhood of supp x1 N {z2 = 0};

~ Xe; = 1 in a neighborhood of supp x.,_, for j = 2,3, 4;

— SUpp Xe, © YL N {xy = 0}.
Asin [15, §3.4.3], the following estimate can be obtained by using the localized
Garding’s inequality:

2 Y
173, 38 TR L Z1]wy=0ll

b3 ”G”LV + HZ2|:132=0

1y + W as—ol.- (5.119)

Now we utilize the special structure of B3, to derive a lower bound for the
term on the left-hand side of (5.119). Setting

(v1,v9)" = T;%P;Zﬂm:o, (5.120)
we obtain from (5.118) that
”T’Y ;. T 1Zl|m2:0‘|2

Xeg NV Bin ™ Xer ™ xo, Py

— T o T vl + 7

2
Xes ALY Xey er (o) Doy 02117 (5.121)

Use Lemma 5.2 (iv) and apply the localized Garding’s inequality (Lemma
5.2 (vii)) to obtain

177 ain T vl = (T 0 ) T T3 v, T vr)y

Xeg ALY 7 Xey Xeg MY Xeg A7 ™ Xeg
> Re (T, o T3,, v, T3, v1) = O[T on[| T3, o]
> [Ty i, = Cloi|* = O o]

2 [vilf = ClZilay=ol® 2 V?Ivr]® + T35, 01]* = Cl Z1]zy—o?
for large enough . Similarly, we obtain that, for sufficiently large ~,

I,

7 oI 02l 2 P2l + 1T val? — Ol 2y mol
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Plug the above two estimates into (5.121) to infer

”T;Q Al’”ﬁsnT;cl T;% Pt Z1|zy=ol?
2 V(v 02)|? + 173, (v1,02) [* = C[[ Z1] =0 *. (5.122)

Since Xe, X1 = X1, we see from (5.110) and (5.120) that
™ 177 1 = T2 77 Z1+ RoZy = T;OZ1 + RoZ1,

Xeg ™ 00 00~ Xcg

so that

T3, (v1,v2) = T;C4P2—1T;021|132=0 + RoZ1las=0

_ 7Y Y Y
TXC4P;1TX03 TE’O Zl |w2=0 + ROZl |w2=0'

Thanks to the ellipticity of (Py')*P; " on the support of x.,, we apply the
localized Garding’s inequality to obtain

|73, (01, 0)
*
> (17 P;) T T) T Ziloy=0,TY. T3 Zilwy=0) — C| Z1|zy=0l

Xey XC4P{1 Xeg ™~ To Xez ™~ 0o

2T T3 Zi|wy=ol* = CITZ, Z1|ws=0l* 1,

X03 oo
— C|TY. T Zi|ay=0l> 1, — Cll Z1]zy=0l?

Xes Jo

for large enough . Then we take ~ sufficiently large to deduce
173, (01, v2)I? 2 |13, Z1]ws=0]* = C Z1]a—o]*. (5.123)
Similarly, we have

[(v1,02)]* 2 [ Z1]ay=0]* = Cll Z1lea=0l? 1 5

C
2 | Z1]zs=0l* ~ ?”ZHMZOHZ- (5.124)

Combining estimates (5.117), (5.119), and (5.122)—(5.124), we take v large
enough to derive (5.113) and conclude the proof. O

Recall that vectors Z* are defined by (5.110) and that matrices QF € T'
are invertible in a neighborhood of the support of x; and QJfl € Fl_l. It then
follows from Lemma 5.10 that

PNTIW N + VT W ay—ol® + 175, T W oa—oll?

g0 x2

Sy ITIWAR , + ITLFNE - + W) + 1GIE , + W loy=ol®. (5.125)

Noting that components T;q Wit are given in terms of T;Q Wi and T;q Wi by
relation (5.31), we can deduce an L? estimate for T ;0 Wi, that is, we can add
the terms, 7*|| 77 WiE||2, on the left-hand side of (5.125).

The following proposition then follows by combining the estimates for the
three cases 72 with ¢ € {0, £1}.
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Proposition 5.5 There exist constants Ky < 1 and vy = 1 such that, if
v =50 and K < Ky for K given in (4.2), then

VNTL WP + AP ITL W a0 * + D |75 T3 W0y~ *
qe{0,+1}
Sy HITWIE, + ITLFNT , + IWI2) + [GIT, + W ea=ol?, (5.126)

where 5, € I'} is given in (5.59) and r € T'Y vanishes in region {x. = 1} u{x. =
0}.

5.7 Proof of Theorem 5.1

We now patch the microlocalized energy estimates (5.80), (5.106), and (5.126)
together to deduce estimate (5.21). Since X, + Xp + Xc = 1,

PIWI? + AWy =0l
<A, W, T3 WHIIR -, + 22 ITy W2
+ (T, W, TY W) |ay=olF -, + V2 ITL WLy =0 (5.127)

Adding estimates (5.80), (5.106), and (5.126), we use (5.127) and take 7 large
enough to deduce

AT, WL WHIE , + (T, W, T W) eyl T

b XP
+ PITLWIR + AT ol
S IGR, +7HIFIR, +7 I W, (5.128)

In order to absorb the microlocalization error term ||T,YW{|,,, we decompose
symbol 7 in terms of x., Xp, and o4 (q € {0, +1}). Notice that symbol r € I'Y
vanishes in the region:

{Xczl}m{XpEO}m{XuEO}E{Xczl}'
In region {x. < 1/2}, xu + Xp = 3, so that we can write
T = QuXu + QpXp;

where matrices o, and a, belong to I'{ and have the same block diagonal
structure as A. In region {3 < x. < 1}, we can utilize (5.61) to write

oll 0
r= 2 ag(BBJQI)XZ’
ge{0,+1} -8

where ad € I'T! has the same block diagonal structure as A, and ol are
solutions to (5.60). Thus we obtain

I Wil € NI W T, W)y + D5 1T T3 W (5.129)
qe{0,+1} -

We now make the estimate for the last term in (5.129) in the following lemma:
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Lemma 5.11 There exist constants Ko < 1 and vo = 1 such that, if v = o
and K < Ky for K given in (4.2), then, for ¢ € {0, +1},

vIIITgiT,ZgVVIH2 SAIWIE + T WE,, + 1T FIIE )
+||G

IR 174 P (5.130)
where v € T vanishes in region {x? = 1}.

Proof Let us show an estimate for T}, Z;" with Z;" defined by (5.110). Recall
+

from (5.60) that symbol o9 satisfies the transport equation:

. (5.131)

020 + {0, Imw,} =0 if xo >0,
oy = —iy+ 0o if zo = 0.

Setting S := (T}, )*T7, , we take the scalar product in L?(£2) of (5.114) with
+ +
SZ and apply integration by parts to derive

6
2
| (T;ng)hz:oﬂ + 2, Z; =0, (5.132)
j=1
where each term Z; in the decomposition will be defined and estimated below.
First, noting that ¢ € I's and 77, T =T T7, + Ry, we obtain
gy 9+ + %+
I := 2Re((T;’0 T(LZT,TJO ZH)
+ +
ST 25117 + W20 220 < T 20117 + W21 (5.133)
Moreover, we have
Ty := 2Re(T); YW, T zZH)
+ +
S @ HTTWIE, + eIty ZENP, (5.134)
Iy :=2 Re({Tg(, ROT)ZUFJ”, T;’O ZH)
+ c +

S N TNTL TR, + e T 21117, (5.135)
Iy = 2Re<<Tg3-R_1W+,TJ3- ZH)
S (N TP + e T, 27|17 (5.136)
For the terms:
Ty = Re((028) 25 ZF), Ty = 2Re(ST]ZF . Z7),
we use the identity: 025 = (T;Qa?r)*T:g + (Tgi)*T%”?r to obtain

Ts + Io = 2Re(T} 0 Zi + T T2, 2§, T 7). (5.137)

0
+
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We write wy = ve, +ihy with real-valued symbols ey € I'§ and h, € T'} as in
(5.112). Employing the rule of symbolic calculus (Lemma 5.2), we have

T} T3, =~T2 Ty +917,

{024}
+YR_1+ TJHT;& + T{Vggm} + Ro.

It follows from (5.131) and (5.137) that
Ts +Zo s Re((4I2, Ty + 9T 0 oy + Tk, T00) 24, T Z1))
+ 1255, 2171

Since 09 € I'} and i%y € iR, operators T7., , and ReT!] are both of order
+ 2 —if{o et} ihy
< 0. It then follows that

Re << (T

S MZENNT Z5 N+ T ZT 1P < e ZTFN? + el T 25112,
+ + +

y
}+T

ihg

(o2 e T0)) 2 Ty 217 )
which implies
T5 + Is < Re (7T7, T(jo+ Zf’,TJi ZE) + ez + mmT;o+ ZH?. (5.138)
Since ey < —c < 0, we apply Garding’s inequality to deduce
—Re (v17, T(ji zZt, T;i Zi) =z 7||\ng ZP (5.139)

for sufficiently large 7. Plugging estimates (5.133)—(5.136) and (5.138)—(5.139)
into (5.132), we take £ small enough to deduce

Ty ZE N < (T 21—l
+y W, + v T FHIE, + AW (5.140)

For the first term on the right-hand side, we use the fact that aﬂ|x2:o =
—iy + &9 to obtain

(T30 Z1)lea=oll < V121 |za=oll + 173, 21 |ea=oll (5.141)
We plug (5.141) into (5.140) and use (5.113) to find
T 2517 < W, + 1T FIIE )
n 2
+AIWHIZ + 1GIT + 7 Wyl - (5.142)

Recall that Z; is defined by (5.110) with Qg € T'J being invertible. We then
use (5.116) and (5.31) to conclude (5.130). The proof is completed. O

Combining estimates (5.128)—(5.129) together, using (5.127), and taking ~
suitably large, we obtain (5.21). In view of Proposition 5.2, estimate (5.1) also
holds. This completes the proof of Theorem 5.1.



72 G.-Q. G. Chen et al.

6 Well-posedness for the Linearized Problem

In this section, we establish a well-posedness result for the linearized prob-
lem (4.12) in the usual Sobolev space H® with s large enough. The essential
point is to deduce a tame estimate in H®. For a hyperbolic problem with a
characteristic boundary, there is a loss of derivatives in a priori energy esti-
mates. To overcome this difficulty, it is natural to introduce Sobolev spaces
with conormal regularity, where two tangential derivatives count as one normal
derivative (see Secchi [43] and the references therein). However, for our prob-
lem (4.12), we can manage to compensate the loss of derivatives and deduce
a priori estimates in the usual Sobolev spaces. This is achieved by employing
the idea in [19] and estimating the missing derivatives through the equation
of the linearized vorticity.
The main result in this section is stated as follows:

Theorem 6.1 Let T > 0 and s € [3,a] n N with any integer & > 3. Assume
that the background state (2.24) satisfies (2.10) and (2.25), and that pertur-
bations (VE,W*) belong to H53(2r) for all v = 1 and satisfy (4.1)-(4.3),
and

[V, 99%) |50y + [(VE, 0V V95 ol gy < K. (6.1)

Assume further that the source terms (f,g) € H**1(27) x H** 1 (wr) vanish
in the past. Then there exists a positive constant Ky, which is independent
of s and T, and there exist two constants C > 0 and v = 1, which depend
solely on Ko, such that, if K < Ko, then problem (4.12) admits a unique
solution (VE 1) € H*(27) x H** 1 (wr) that vanishes in the past and obeys
the following tame estimate:

IVl 20y + IPE@VE |oa=0ll s ) + 190 5151 oy
S C{HfHH,SY+1(QT) 9l g+ o)
(s + ol V5T s} (62)

We consider the case where the source terms f and g vanish in the past, which
corresponds to the case with zero initial data. The case of general initial data
is postponed to the nonlinear analysis which involves the construction of a
so-called approximate solution. Before estimating the higher order derivatives
of solutions, we first prove that the linearized problem (4.12) is well-posed in
L2,

6.1 First Well-Posedness Result
In this subsection, we apply the well-posedness result in L? of Coulombel

[16] to the effective linear problem (4.12). We recall that system (4.12a) is
symmetrizable hyperbolic and observe that the coefficients of the linearized
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operators satisfy the regularity assumptions of [16]. We also recall that problem
(4.12) satisfies the energy estimate (5.1), which exhibits a loss of one tangential
derivative. According to the result in [16], we only need to find a dual problem
that obeys an appropriate energy estimate.

Let us define a dual problem for (4.12). We introduce the following matri-

ces:
. 000—ff 0 0 . 00000 O
B = ZT 00 00 N Q Q , Dyi= {0 8» 8» 0 oo 0 ) (63)
0456 o —4; —t3 £9=0 063 £5 045 85/ [, _o
and
. 0 I'tléy —I7' 0 Il —IThe
D:=|o rj'sy —I;% 0 o0 0 ,
10 0 1 0 0 -
where
o NEATY sy b e S
! ot 2 INtRdt' 2 oNtaPE
Thanks to (4.15), we compute that these matrices satisfy the relation:
ore el ) ~ e e ~ e e
By B+ D{D = diag (AQ(U+,¢+), A (U™, ))|x2:0, (6.4)

where B is defined by (4.8). Moreover, we infer from (4.2) that all matrices
B, By, D, and D; belong to W2 (R?). Following [34, §3.2], we define a dual
problem for (4.12) as:

~

L;(ﬁi,éi)*(]i= +, zo > 0,
DU =0, 2y =0, (6.5)
div(d"B\U) =] BiU =0, x5 =0,

where b, by, By, and Dy are defined in (4.7), (4.13), and (6.3), div denotes
the divergence operator in R? with respect to (¢, 1), and the dual operators
LL(U*, @J—r)* are the formal adjoints of L, (U*,®*). More precisely, we have

)
L (V,0)*U = — Ag(V)To,U — Ay (V)To1U — Ay (V,w)T0,U
+C(V,0)*U — (0, Ao(V)T + 0141 (V)T + 02 A5(V,w) U,

where C(V,¥)*, the adjoint of C(V,¥), is a zero-th order operator. We refer to
[34, §3.2] for the derivation of the dual problem by using integration by parts
and identity (6.4).

Since the first two rows of matrix D given in (6.3) are zero, we see that the
number of the boundary conditions in (6.5) is exactly two. This is compatible
with the number of incoming characteristics, that is, the number of negative
eigenvalues of the boundary matrix for (6.5). In fact, the boundary matrix
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of operator L. (V,¥)* in the half-space {2 is ;12(\/, )T, Then we infer from
(4.15) that problem (6.5) has two incoming characteristics and two outgoing
characteristics.

We can define and analyze the Lopatinskil determinant associated with
the boundary conditions in (6.5) as we have done in §5. Then we have the
following result, which is an analogue of Lemma 5.4 by changing v into —~.

Lemma 6.1 Assume that (4.1)~(4.2) hold for a sufficiently small K > 0.
Then the dual problem (6.5) satisfies the backward Lopatinskii condition. More-
over, the roots of the associated Lopatinskii determinant are simple and co-
incide with the roots of the Lopatinskii determinant (5.50) for the original
problem (4.12).

One can reproduce the same analysis as we have done in §5 to show that
the dual problem satisfies an a priori estimate that is similar to (5.1). The
linearized problem (4.12) thus satisfies all the assumptions (i.e. symmetriz-
ability, regularity, and weak stability) listed in [16]. We therefore obtain the
following well-posedness result.

Theorem 6.2 Let T > 0 be any fized constant. Assume that the background
state (2.24) satisfies (2.10) and (2.25). Assume further that the basic state
(V*,0h) satisfies (4.1)~(4.3). Then there exist positive constants Ko > 0 and
Yo = 1, independent of T, such that, if K < K, then, for the source terms
fre L2(Ry; HY(wr)) and g € HY(wr) that vanish for t < 0, the problem:

€

L’e(lj'i,dgi)f/i=fi fort <T, x5 >0,
IB’(ZO]i,Qgi)(VJ/J):g fort<T, x9 =0,
has a unique solution (V' V‘,z/)). € L2(02r) x L3(27) x HY(wr) that vanish-
es for t < 0 and satisfies PE(3)VE|,,—0 € L?(wr). Moreover, the following
estimate holds for all v = 7o and for all t € [0,T]:
“YHV”ZLg(Qt) + H}P’i(@)vibz:o”%g(m + ||¢H?{§(wt)
< ’7_3Hfi‘|%2(H%(wt)) + 7_2H9H§{}{(wt)' (6.6)
Theorem 6.2 shows the well-posedness of problem (4.12) in L? when the

source terms (f, g) belong to L?(H')x H'. We now turn to the energy estimates
for the higher-order derivatives of solutions.

6.2 A Priori Tame Estimates

To obtain the estimates for the higher-order derivatives of solutions to (4.12),
it is convenient to deal with the reformulated problem (4.18) and (4.20) for the
new unknowns W. Until the end of this section, we always assume that v = g
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and K < Ky, where vy and Ky are given by Theorem 6.2. Then estimate (6.6)
can be rewritten as

VW2 00y + W™ 2s=0l L2 @wr) + ¥ 52 )
ST 2P 22 ey + 9] 2 r)- (6.7)

We first derive the estimate of the tangential derivatives. Let k € [1, s] be
a fixed integer. Applying the tangential derivative 0% = 9;°07" with |a| = k
to system (4.18) yields the equations for 0*W# that involve the linear terms
of the derivatives, 0* #9;W* and 0* P9, W=, with || = 1. These terms
cannot be treated simply as source terms, owing to the loss of derivatives in
the energy estimate (6.7). To overcome this difficulty, we adopt the idea of [19]
and deal with a boundary value problem for all the tangential derivatives of
order equal to k, i.e. for W) := {0000 W+, ag + a1 = k}. Such a problem
satisfies the same regularity and stability properties as the original problem
(4.18) and (4.20). Repeating the derivation in § 5, we find that W (*) obeys an
energy estimate similar to (6.7) with new source terms F®*) and G*). Then
we can employ the Gagliardo—Nirenberg and Moser-type inequalities (cf. [19,
Theorems 8-10]) to derive the following estimate for tangential derivatives (see
[19, Proposition 1] for the detailed proof).

Lemma 6.2 (Estimate of tangential derivatives) Assume that the hy-
potheses of Theorem 6.1 hold. Then there exist constants Cs > 0 and v5 = 1,
independent of T, such that, for all v = 7 and for all (W, ) € H,§+2(QT) X
H3%2(wr) that are solutions of problem (4.18) and (4.20), the following esti-
mate holds:

VAW 215 ry) + W aaoll s (wory + 0] s+ (o

< Coly Ml a1 wory TP IEE o+ oy
+ 3 (W Laaoll o r) + [l or)) | (V' 82V, V) |y <o o 41
+ 2 W e oy | (V, V)

(wr)

|22y }- (6.8)

We recall that the boundary matrix for our problem (4.18) and (4.20) is not
invertible. Thus, there is no hope to estimate all the normal derivatives of W
directly from (4.18) by employing the standard argument for noncharacteristic
boundary problems as in [41]. Nevertheless, for our problem (4.12), we can
obtain the estimate of the missing normal derivatives through the equation of
the “linearized vorticity”.

In view of the original equations (2.14), taking into account the change of
variables and linearization, we define the “linearized vorticity” as:

: Pt N\ - 1 .
t._ (g - & + _ +
&= (61 e 62)‘/3 P o2Vt (6.9)
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where V5t and Vit are the second and third components of the good unknown
(4.10), respectively. We notice that multiplying (A.6) by S1(U) leads to sys-
tem (2.18), where S1(U) is defined by (A.9). Thus, we multiply (4.12a) with
matrices S;(U*)~! to obtain

(Bo(U%)é; + Bi(U%)o1 + Bo(U*,8%)d)VE + C(U*, 5 VE = f£ (6.10)

= S’l(ffi)_lfi, and matrices

where CN(Ui,@i) 51( )~ 1C(U+ ‘PJr) fi
4.3a), we have

B, are defined by (A.7)—(A.8). In light of (

Bo(U7, &) := ajds(BQ( ) — BBy (U) — 00, (1))

Bl B BB
N7, 0 o0 |,
N1 0 0

_ 1
Oy

where the explicit form of §21] is of no interest. Using the second and third
components of (6.10) yields the following equations for £*:

(0 + vF 0, )ET

1
=0Fy —

Oy dE

((%Qﬁi@g]-";—r + agflf) FAE o VE £ AE - 0,VE, (6.11)

where vectors A;L and A% are C®—functions of (\o/”—r7 V\O/J—r, Vkﬁi7 VQ@i) that

vanish at the origin, and the source terms fli and ]-';j are given by
Fi=T0N(fF =00, M7,  Fy=I7(f - CU*, e5)vH),.

Employing a standard energy estimate to the transport equations (6.11), we

can apply the Gagliardo-Nirenberg and Moser-type inequalities to derive the
following estimate of £*:

Lemma 6.3 (Estimate of vorticity) Assume that the hypotheses of Theo-
rem 6.1 hold. Then there exist constants Cs > 0 and s = 1, independent of T,
such that, for all v = v, and for all (W,v) € H¥"(Q2r) x H3 ?(wr) that are

solutions of problem (4.18) and (4.20), functions £+ defined by (6.9) satisfy
the following estimate:
’YHéiHHﬁ’l(QT)
< Cll sy 1 o V-9 sy + 17 o
+ 1Vl oion IV s my + 192 a1 00) 3 (6.12)

We are going to make the estimate for all the normal derivatives by means
of estimates (6.8) and (6.12) for the tangential derivatives and the linearized
vorticity. To this end, we need to express the normal derivatives OoW* in
terms of the tangential derivatives o, W*, ;W and vorticity £*. Since I, =
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diag (0,1, 1), the normal derivatives 62VV2i and é’ng are directly given by
(4.18) as

Lo,W* = [,(F* — AFo,W* — Afo,w* — Cc*wH). (6.13)

The “missing” normal derivatives GQWf—r can be expressed by f * and equations
(4.18). From transformation (4.17) and definition (4.16), we have

(72‘/2 = §62W1 + 7(‘)2(W2 — Wg) + (32§W1 + (/2 (N > (W2 — Wg)

C

0oV = 0 Wy — To32(W2 — W3) 4 020W; — 02 () (Wy — W3),
N¢ N¢é

where we have omitted indices “+”. By definition (6.9), we obtain

(0186 + &)W

61¢<

— 0y (01 Vs — €) + @ 0y (W — W) + C(U, &)W, (6.14)

¢
where C’(f], @) is a C®—function of (V7 VV, vy, V2!l£/) that vanishes at the ori-
gin. According to (4.9), we see that 1P9+ ¢ = 1 by taking Ky > 0 sufficiently
small. Then we find from (6.13)—(6.14) that

OWE = ATFE + ATow

(6.15)

where A(JJ_F,I,S are C®-functions of (V,V¥), and C* are C®functions of

(‘o/,V‘c/,VWG,VZWO) that vanish at the origin. Although the linearized prob-
lem (4.18) and (4.20) is characteristic, we manage to express all the normal
derivatives W= by (6.15) as a linear combination of the tangential deriva-
tives, vorticity, zero-th order terms, and source terms. Then we can prove the
following result similar to [19, Proposition 3|, so we omit its proof.

Lemma 6.4 (Estimate of normal derivatives) Assume that the hypothe-
ses of Theorem 6.1 hold. Then there exist constants Cs > 0 and vs > 1,
which are independent of T, such that, for all v = s and solutions (W, ) €
H5%2(02p) x H3 2 (wr) of problem (4.18) and (4.20), the following estimate
holds for all integer k € [1,m]:

05 W 5 2 a5 gy < Co A (F5, 5, 69))

+ HWi”Lz(H;(wT))

(wr)) s H5™ ' (027)

+ HgiuLI(QT)H (f/’ V@)HH?Y"I(QT)

FIEE W) oo [V V) s g} (6:16)
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In light of definition (2.27), we see that, for all s € N and 0 € H3({27),

”9”H;‘;(QT) = Z HageﬂLz(H;—k(wT))a ’YHGHH,SY’I(QT) < HGHH;‘(QT)'
k=0

By virtue of these identities, we combine Lemmas 6.2—6.4 and employ the
Moser-type inequalities to obtain the following a priori estimates on the H3—

norm of solution V* to the linearized problem (4.12).

Proposition 6.1 Assume that the hypotheses of Theorem 6.1 hold. Then
there ezists a constant Ko > 0 (independent of s and T') and constants Cs > 0
and vs = 1 (depending on s, but independent of T') such that, if K < Ko,
then, for all y = ~ys and solutions (V,4) € H¥**(Q2r) x H3*?(wr) of problem
(4.12), the following estimate holds:

VIV gy + IPHOV Flas=0l sy + 1] 1552 o
< Cufy V2| f HH;(QT) +y | £t HLz(Hi“(wT)) + 7_1\|9”H§+1(WT)
+ 7 (IPEOVE o oy + W om) ) IV, 2V, V) v
+ (721 oy T 7V o)V V) | oz, ) (617)

6.3 Proof of Theorem 6.1

Theorem 6.2 shows that the linearized problem (4.12) is well-posed for sources
terms (f*,g) € L2(H'(wr))x H'(wr) that vanish in the past. Following [6, 41],
we can use Proposition 6.1 to covert Theorem 6.2 into a well-posedness result
of (4.12) in H*. More precisely, we can prove that, under the assumptions of
Theorem 6.1, if (f*,g) € H*T1(£27) x H*T!(wy) vanish in the past, then there
exists a unique solution (V*,4) € H*(£27) x H*"'(wr) that vanishes in the
past and satisfies (6.17) for all v = ;.

It remains to prove the tame estimate (6.2). To this end, we first fix the
value of y such that v is greater than the maximum of v3, ..., v5. Using (6.17)
with s = 3 and (6.1), we have

HViHHf;(.QT) + ‘|Pi(¢>vi|w2=0HH3(wT) + Hw“H;‘(wT)

S K1 e + 1V lwre gy + POV lamol oy + 18110 (r)
+ 15 s oy + 198 (6.18)

Note that 7" > 0 and 7 have been fixed. Thanks to the classical Sobolev

inequalities that 0|« S 10]m2(00) and [0]pewry S [10]F2(wr), We uti-
lize (6.18) and take K > 0 sufficiently small to obtain that [ f*] .o,y <
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1/ 23 (2 and

”ViHWLoo(QT) + ||Pi(¢)vi|x2:0HLm(wT) * ”wHW]m(wT)
< HViHHng) T HPi(gZ)Vi\mQ:0||H3(wT) + 9] 8 wor)

SN sy + 191 3 000)-

Plugging these estimates into (6.17) yields (6.2), which completes the proof of
Theorem 6.1.

7 Construction of the Approximate Solution

In this section, we introduce the “approximate” solution (U%, &%) in order to
reduce the original problem (2.20) and (2.23) into a nonlinear problem with
zero initial data. We naturally expect to solve this reformulated problem in
the space of functions vanishing in the past, so that Theorem 6.1, which is the
well-posedness result in the same function space for the linearized problem,
can be applied. We need to impose the necessary compatibility conditions on
the initial data (Uoi,gao) for the existence of smooth approximate solutions
(U, &), which are solutions of problem (2.20) and (2.23) in the sense of
Taylor’s series at time t = 0.

Let s > 3 be an integer. Assume that Uy := Uy — U+ € H5*/2(R%) and
©o € H5*1(R). We also assume without loss of generality that (U, ¢o) has a
compact support:

supp Ui < {w2 >0, 2 + 23 <1},  suppypy < [-1,1]. (7.1)

We extend ¢o from R to R? by constructing (135“ = Q:ia € Hst3/2 (R2), which
satisfies

an—r|m2:0 = g, suppd% c {x9 =0, xf + :c% < 2}, (7.2)
and the estimate:
deoi ||Hs+3/2(R2+) < CH@OHHS“(Ry (7.3)

By virtue of (7.3) and the Sobolev embedding theorem, we infer that, for ¢g
small enough in H**!(R), the following estimates hold for &3 := &F + &7

7
+0,0F > 3 for all x € R2. (7.4)

For problem (2.23), we prescribe the initial data:

OF |y = BF. (7.5)
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Let us denote the perturbation by (U*, &%) := (U — U*, ¢+ — &%), and
the traces of the ¢-th order time derivatives on {¢t = 0} by

ﬁgi = éfﬁi|t:0, ngi = aféih:(), /e N.

To introduce the compatibility conditions, we need to determine traces
UZL and Qgei in terms of the initial data Uy and & through equations (2.20a)
and (2.23a). For this purpose, we set W := (U*,V,U*, V&%) € R, and
rewrite (2.20a) and (2.23a) as

QUE =Fi(WE), 6" = Fo (W), (7.6)
where F; and Fg are suitable C*—functions that vanish at the origin. After

applying operator 6¢ to (7.6), we take the traces at time t = 0. One can employ
the generalized Faa di Bruno’s formula (cf. [37, Theorem 2.1]) to derive

T+ a1+ toy + él Wzi o
Ui = 2 D FOVO] (=) - @9

aiENll,‘Oq'Jr-"Jera[‘:Z =1
4 4\ Qi
- o /WE
+ apttao + | | :
Ppyy = Z D F2(W5) ;! z'l - (78)
;€N g |+ +L|ag| =L i=1 " ’

where Wi denotes trace (U, Vv, U+ V,0F) at t = 0. From (7.7)-(7.8), one
can determine (U }7 (Pz—r) ¢>0 inductively as functions of the initial data UOi and
@a—r. Furthermore, we have the following lemma (see [34, Lemma 4.2.1] for the
proof):

Lemma 7.1 Assume that (7.1)~(7.4) hold. Then the equations (7.7)~(7.8)
determine U; € H*TV2=4R2) for £ = 1,...,s, and &Ff € H**32~{R2) for
{=1,...,s+ 1, such that

supp U < {xg = 0, 27 + 23 < 1}, supp @F < {9 = 0, 27 + x3 < 2}.
In addition,

s B s+1 B

Z HUZJL HH5+1/24 R2) + 2 H@% ”Hs+3/2—ff(R2
(RZ 2)
£=0 £=0

S C(HﬁoiHHsH/z(Ri) + H‘POHHS+1(R))7

where constant C > 0 depends only on s and \|((~]Oi,d~5a—r)||w1,oo(Rz+).

To construct a smooth approximate solution, one has to impose certain
assumptions on traces UZL and @?. We are now ready to introduce the following
terminology.
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Definition 7.1 (Compatibility conditions) Let s > 3 be an integer.
Let Ui := Uf — Ui € H**'/2(R2) and ¢y € H**'(R) satisfy (7.1). The
initial data UOi and o are said to be compatible up to order s if there
exist functions &F € H**3/2(R%) satistying (7.2)~(7.4) such that functions
Uf,..., UL, &F,... &%, | determined by (7.7)-(7.8) satisfy:

(P — D7 )|z=0 =0 for j, ¢ e N with j + ¢ < s+ 1, (7.9a)
3 (Bf — D7 )wamo =0 for j,/ € N with j + £ < s, (7.9b)

and

J |6§+1_£(d~5zf —@Z)Fdxl% < for =0,...,s+1, (7.10a)
]Ri 2
S0t V|2 dzo B
|62 (pe Dy )| dri— < © for =0,...,s. (7.10b)
R2 T2

It follows from Lemma 7.1 that g, ...,pr ,, &g,..., 05, € HY?(R2)
W1©(R%). Then we can take the j-th order derivatives of the traces in (7.9).
In what follows, we employ q(-) to denote a function that tends to 0 when its
argument tends to 0. Relations (7.9)—(7.10) enable us to utilize the lifting result
in [31, Theorem 2.3] to construct the approximate solution in the following
lemma. We refer to [19, Lemma 3] for the proof.

Lemma 7.2 Let s = 3 be an integer. Assume that Uoi = UOir - Uoi €
H*+Y2(R2) and o € H*+(R) satisfy (7.1), and that the initial data Uy and
o are compatible up to order s. If UOi and po are sufficiently small, then there
exist functions U**, &% and ¢ such that U := UT —U* € H*T1(02),
Pt = ¢t — Pt ¢ H52(N), p® € H*T32(002), and

0Dt + 0§ 0,0°F — vyt = in {2, (7.11a)
KLU, &9 |- = 0 forj=0,...,s—1, (7.11b)
Pt = P4 = p° on 012, (7.11¢)
B(U, U ,0%) =0 on 05). (7.11d)
Furthermore, we have
+ 0,0°F > % for all (t,x) € (2, (7.12)
supp (ﬁai,sl:)ai) c {t e[-T,T], 20 =0, 27 + 23 < 3}, (7.13)
and
HU@ HHSH(Q) + Héai HHs+2(n) + lo* [ s +32(a02)
< EO(HUOiHH.H—lm(Ri) + ”500| Hb’*l(R))- (714)
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Let us denote U® := (U%+,U%)" and ¢¢ := (92, %), Vector (U?, D)
in Lemma 7.2 is called the approximate solution to problem (2.20) and (2.23).
Relations (7.11c) and (7.13) immediately imply that ¢ is supported within
(=T <t < T, 23 < 3}. Since s > 3, it follows from (7.14) and the Sobolev
embedding theorem that

Hﬁaiuwlwm) + Héai HW&%(Q) < EO(HU(;L ||Hs+1/2(]R'i) + H<"70H1‘15“(R))'
We are going to reformulate the original problem into that with zero initial

data by using the approximate solution (U®,®*). Let us introduce

_LU®, & if ¢ >0,
{ ( ) ' (7.15)

0 if t <O.

Since (U**,VPoE) e H5+(R2), taking into account (7.11b) and (7.13), we
obtain that f* e H*({2) and

Suppfac{OgtéT,xgz(),:E%+x§<3}.

Using the Moser-type inequalities and the fact that f* vanishes in the past,
we obtain from (7.14) the estimate:

1 £ e () < 0 (| UG HHs+1/2(]R3) + ol ro+1(m)) - (7.16)

Let (U*,®%) be the approximate solution defined in Lemma 7.2. By virtue
of (7.11) and (7.15), we see that (U, &) = (U, ®*) + (V,¥) is a solution of
the original problem (2.20) and (2.23) on [0,T] x R2, if V = (V*, V)T and
¥ = (W+,¥~)T solve the following problem:

LV, W) == L(U® + V,0% + &) — L(U*, &%) = f*  in Qr,

E(V, W) := 00 + (v] +v1)01¥ + v1019% — vy =0 in 27,

B(V,¢) :=B({U*+ V,¢* + 1) =0 on wr, (7.17)
Ut =0~ =4 on wr,

(V,¥) =0, for t < 0.

The initial data (2.20c) and (7.5) have been absorbed into the interior equa-
tions. From (7.11a) and (7.11d), we observe that (V,¥) = 0 satisfies (7.17)
for t < 0. Therefore, the original nonlinear problem on [0,77] x R? is now
reformulated as a problem on {27 whose solutions vanish in the past.

8 Nash—Moser Iteration

In this section, we prove the existence of solutions to problem (7.17) by a
suitable iteration scheme of Nash—-Moser type (c¢f. Hormander [24]). First, we
introduce the smoothing operators Sy and describe the iterative scheme for
problem (7.17).
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8.1 The Iterative Scheme

We first state the following result from [19, Proposition 4].

Proposition 8.1 LetT > 0 and v > 1, and let m = 4 be an integer. Then
there exists a family {Sp}te=1 of smoothing operators:

So = F2(0r) x F3(0r) — [ F2(2r) x FE (),
B=3

where IE(QT) = {ue HJ(Qr) : u =0 fort < 0} is a closed subspace of
HE(QT) such that

ISoull e () < CHB=)+ lull e () for all o, 8 € [1,m], (8.1a)
| Sou — UHHE(QT) < CQBiQH'U;HH’(YM(QT) foralll<f<a<m, (8.1b)
d o
s SO oy forattafe il (819
HE (27)
and

[(Sow = Sov)|zs=0l 115 (0o

< OB+ (y — V)las=0llmewr)  for all a, B € [1,m], (8.2)

where a, B €N, (8 —a); := max{0, 8 —a}, and C > 0 is a constant depending
only on m. In particular, if u = v on wr, then Sgu = Syv on wr. Furthermore,
there exists another family of smoothing operators (still denoted by Sy) acting
on the functions defined on the boundary wr and satisfying the properties in

(8.1) with norms || - | o (wy)-

The proof of (8.2) is based on the following lifting operator (see [22, Chap-
ter 5] and [19]).

Lemma 8.1 LetT >0 and v > 1, and let m > 1 be an integer. Then there

exists an operator Rr, which is continuous from F3(wr) to .7-"::“/2(QT) for
all s € [1,m], such that, if s > 1 and u € F3(wr), then (Rru)|z,—0 = u.

Now, following [19], we describe the iteration scheme for problem (7.17).

Assumption (A-1): (V,%,v%0) = 0 and, for k = 0,...,n, (Vi, W, i) are

already given and satisfy
(Vie, Uiy ¥ie)le<o = 0, ¥y [ay—0 = ¥y |oy—0 = Y- (8.3)
Let us consider
Vos1 =Va +0V, Vpp1 =V, + 0%, Uni1 = Upn + 0y, (8.4)
where these differences 0V,,, 0¥,,, and dv,, will be specified below.
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First we are going to find (§V},, 81,,) by solving the effective linear problem:

Lo(U® + Vig12, 9% + le’n+1/2)5Vn = fn in O,
IB/e(Ua + Vn+1/2a¢a + Lpn+1/2)(5vna 51%) =9n on wr, (85)
(6, 89,) = 0 for t < 0,

where operators L, and B, are defined in (4.12a)—(4.12b),

62(Ua + Vn+1/2)

8V, =6V, —
62(@(1 + Wn-‘rl/Q)

o, (8.6)

is the “good unknown” (cf. (4.10)), and (Vj,41/2, ¥y 41/2) is a smooth modified
state such that (U® +V,,1/2, P + ¥, 1 1/2) satisfies constraints (4.1)—(4.3). The
source term (fy, g,) will be defined through the accumulated error terms at
Step n later on.
We define the modified state as
WI+1/2 S0, Wy, v1 (Vlr;_r+1/2) == Sp, 01 (V).
n+1/2 = Se pﬁ + 7RT(San:;|x2=O - SOHPZ‘IQ—O)
+ at +
V2 (Vn_+1/2) = 0, n+1/2 + (" + v (Vn_+1/2))81 n+1/2
+ v ( )61@a+

(8.7)

n+1/2

where Sy, are the smoothing operators defined in Proposition 8.1 with se-

quence {6, } given by
6o =1, 0, = 1/02 + n, (8.8)

and Ry is the lifting operator given in Lemma 8.1. Thanks to (8.3), we have

+
Lpn-s-1/2‘3¢2 0=Y +1/2|9c2 0= 1/’n+1/27

pZ+1/2|w2=0 = n+1/2|€7'32=07 (8.9)
5(‘/n+1/27wn+1/2) =0,
(Vas1/2:¥ns1/2, Ynsij2) <o = 0.
It then follows from (7.11) that (U® 4V, 1/2, P +W¥,,11/2) satisfies (4.3a) and
(4.3¢)—(4.3d). The additional constraint (4.3b) will be obtained by taking the
initial data small enough.
The error terms at Step n are defined from the following decompositions:
‘C(Vn-ﬁ-la g’n-&-l) - ‘C(an Q/n)
=L (U" + Vy, ®* + ¥,) (6 Vi, 0W,) +
=L'(U" + Sy, V,, 2" + Sp, ¥, )(5Vn,5w )+ e, + e
=L'(U® + V10, D% 4+ Wy i12)(0Vi, 0,,) + €, + €, + €,
=Lo(U" 4 Viyy1)2, P + Wnﬂ/z)an +e, +e, +ey + Doy pd¥, (8.10)



Relativistic Vortex Sheets 85

and

B(Vn+1|$2:07"/)n+1) - B(VH|I2:07’¢}71)
=B'(U* + V,,, D" + ¥,)(6Vi| =0, 00n) + €l
= B/(Ua + SGHanqsa + S97LWn)(5Vn|w2=0a &pn) + é;z + é;ll
= B/e(Ua + Vn+1/27¢a + LZ/71-"-1/2)(5‘./71|$2=07 5¢n) + é{n + é’/I’/L + éZ) (8'11)

where we have set

1
D12 = 0o O LU + Vg2, 2% + Wn+1/2), (8.12)

DU+, 1)0)
and have used (4.11) to obtain the last identity in (8.10). Let us set
en =€, + e + ey + Dyyyq/p0¥,, éni=¢€, +eé+en. (8.13)

Assumption (A-2): fo := Sy, f*, (eo,€0,90) := 0, and (fr, gk, €k, €x) are
already given and vanish in the past for k =0,...,n—1.

We compute the accumulated error terms at Step n, n > 1, by

n—1 n—1
Eyi= Y en, Epi=) & (8.14)
k=0 k=0
Then we compute f, and g, for n > 1 from the equations:
Z fe + So, En = So, f°, Z gk + S@nEn =0. (8.15)
k=0 k=0

Under assumptions (A-1)-(A-2), (V,,41/2,¥n41/2) and (fn,gn) have been
specified from (8.7) and (8.15). Then we can obtain (§V},, 8¢, as the solution
of the linear problem (8.5) by applying Theorem 6.1.

Next we need to construct 0%, = (0¥, 6% )7 satisfying 0¥E|,,—0 = 61p.
We use the boundary conditions in (8.5) (cf. (4.7)—(4.8), (4.13), and (8.6)) to
derive that d1),, satisfies

( 6Qaté;rﬂ/z Q:H/z _§:+1/2 )

N:+1/2h:;+1/2(ryj+1/2)2’ AT SAFRYRSRY NS

. U
x ((W; + (wnjl“)

n+1/2" n+1/2 n+1/27 n+1/2 zo=0

+ at((ylpn) + U1 (U:+1/2) |z2=061 (6’(/}1'7,)

a243714—1/2 z2=0
= gTL,Qa
( 626@;“/2 Opi1/2 —Snt1/2 )
N71_+1/2h7:+1/2(F71_+1/2)2 h7:+1/2Fn_+1/2 h7:+1/2Fn_+1/2 22=0

+ 0(0Yn) + 01 (Ur;rl/z) |z2=061(6w")

xro =0

. U
x (Wn‘ + 6%2’1“/2)
8243714—1/2

= 9n,2 — Gn,1,
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where we have set U+ 12 =U* + Vn++l/27 ¢:+1/2 =gt Lyt 1/2° and
+ + +
(Nn+1/2’ hn+1/2’ n+1/2) n+1/2’§n+1/2) (N,h, I 0, g)(Un+1/2’¢n+l/2)

with (N, h, I, 0,<) defined in (2.11), (3.3), and (4.9). Then we define 6%,/ and
0¥, as solutions to the following equations:

+ ot
< € at n+1/2 QTL+1/2 - n+1/2 )

N+ h+ (FJ+1/2) h;r+1/2rn++1/2 h‘+ F+

n+1/2""n+1/2 n+1/2" n+1/2

+a U"+1/2 + +
6&0 @T + 5V + (3,5((@” ) + ’Ul( +1/2)(?1(§LT/ )

n+1/2
= RTgn 2+ Gn, (8.16)
( 0, n+1/2 Ont1)2 —Snt1/2 )
Nl 2)? Papliie Mogielninge

_62Un+1/2 s _
X 5Lpn — + (SVn + 6t(6LPn ) + ’Ul( +1/2)al((5gf )
02®, n+1/2

= Rr(gn2 — gn1) + G, (8.17)

where the source terms G+ will be chosen by using a decomposition for oper-
ator £.
We define the error terms: €/, 7, and é2 by

EWViit,Uns1) — EVi, W) = E' (Viu, 0)(8Vi, 60, + &
= &'(Sp, Vi, So, W) (0V,, 6W,) + €, + €l
= g ( n+1/27 n+1/2)(6Vn,(5Q/ ) + 6 + é// + é,/rll/, (818)

and denote
. n—1
bn =€t en+el,  Eui= ) e (8.19)
=0

From (7.11a), we have
EWV,O)=0,(U*+V)+v1(U*+ V)01 (P*+ ) —ua(U* + V).
Similar to the derivation of (4.6) and (4.12b), we deduce that

gt

n+1/27 +1/2)(5V+ (SW‘F)

are equal to the left-hand sides of (8.16)—(8.17), respectively. Then it follows
from (8.16)—(8.18) that

Rrgnz + G + &}
g(Vn+1,Wn+1) _g(Vn,W ) (RT( T9n.,2 n €n )

In,2 — gn,l) +G7: +é7_z
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Summing these relations and using £(Vp, %) = 0 yield

EVi1: Vi) = RT( Z (gr,2 — gk,l)) + Z Gy +Er .
k=0 k=0
On the other hand, we obtain from (8.5) and (8.11) that
gn = B(Vn+1|w2=0’ ¢n+1) - B(Vn|w2:07 wn) - én~ (820)
In view of (7.17) and (2.22), one obtains the relations:
(B(Vn+1|:1:2=0a 7»Z)n+1))2
= E(Vn++1|:c2:0a ¢n+1)
= E(Vn_+1|z2:03wn+1) + (B(Vn+1|acz:0a ¢n+1))1' (821)

Summing (8.20) and using B(Vo|z,=0,%0) = 0, we have
E(Vn7+17 g/;-&-l)

n
=Rr (g(Vn:_ﬂwz:o, ¢n+1) — En+172 + En+171) + Z G,; + E;+1. (822)

k=0
Similarly, we can also obtain
g(vn++17 !p;_+1)
= R (E(WVifialozm0, Vi) = Busrz) + 2, GF + By (8:23)
k=0

Assumption (A-3): (G§,Gqy,é0) = 0, and (G{,Gy ,éx) are already given
and vanish in the past for k=0,...,n—1.

Under assumptions (A-1)-(A-3), taking into account (8.22)—(8.23) and the
property of Ry, we compute the source terms G5 from

So, (Ef = RrEnz) + Y. Gy =0, (8.24a)
k=0
So, (Ey — RrEny + RrEa) + Y Gy =0. (8.24D)
k=0

From assumption (A-3) and the properties of Sy, it is clear that G vanish
in the past. As in [22], one can also check that the trace of GE on wr vanishes.
Hence, we can find §¥F, vanishing in the past and satisfying §¥F|,,—0 = 6y,
as the unique smooth solutions to the transport equations (8.16)—(8.17).

Once 0¥, is specified, we can obtain 0V}, from (8.6) and (Vi,11, ¥n+1, ¥ni1)
from (8.4). The error terms: e, el e & e/ eV & &/ and é! are computed

from (8.10)—(8.11) and (8.18). Then e,, é,, and é, are obtained from (8.13)
and (8.19).
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Using (8.5) and (8.15), we sum (8.10) and (8.20) from n = 0 to m, respec-
tively, to obtain

‘C(Verlvlperl) = Z fn + Em+1 = Samfa + (I - Sem)Em + em, (8'25)

n=0

gn + Emir = (I — Sg, ) Ey + Emm. (8.26)

NgE

B(Vm+1 |x2:0a wm-&-l) =

n=0

Plugging (8.24) into (8.22)—(8.23), we utilize (8.21) to deduce

EWVpi1: 1) = Re((BVinsiles=0,¥m+1))y — (BVins1len=0,¥m+1)),)
+(I—=S0,)(Em =R (Em2 — Emn))

+ ér_n - 7QT (é'm,2 - ém,l), (827)
S(V$+1,J/nt+l) = RT((B(VH+1‘12=07¢”+1))2)
+ (I - SBM)(EA‘;L - RTEm,2) + é.,tb — RTém’g.

Since Sp,, — I as m — o0, we can formally obtain the solution to problem
(7.17) from

‘C(Vm-b-lagpm-‘rl) - faa B(Vm+1|1220awm+l) - 07 g(vm-ﬁ-lagpm-‘rl) - 07

provided that the error terms: (e, €m, ém) — 0.

8.2 Inductive Hypothesis

Given a constant € > 0 and an integer & that will be chosen later on, we
assume that (A-1)—(A-3) are satisfied and that the following estimate holds:

HﬁaHHj“(QT) + ”éa||H$+4(QT) + H<‘0a||H$‘+7/2(QT) + ”faHHﬁ“(QT) <e. (8.28)
Given another integer «, our inductive hypothesis reads:
() 8V, 0% 1z (2 + 100 g+ oy < €031 A
forall k=0,...,n—1and s€[3,a] N N;
(b) [£(Vies i) = [ 11z 27y < 26637
(Hp-1) < forall k =0,...,n—1land s€[3,&a —2] nN;
() IB(Viloa=o,vi) |11 or) < €037
forall k=0,...,n—1and s€ [4,a] N N;
(@) [EVi, W) |1z (07) <0 forallk =0,...,n—1,

where Ay := 011 — 0 with 0 defined by (8.8). Notice that

1 1
— <AL =4/02+1—-0, < — fi 11 keN.
3, ST VIR TR S g T ARRE
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In particular, sequence (Ay) is decreasing and tends to 0. Our goal is to show
that, for a suitable choice of parameters 6y > 1 and € > 0, and for f* small
enough, (H,_1) implies (H,,) and that (Hp) holds. Once this goal is achieved,
we infer that (H,,) holds for all n € N, which enables us to conclude the proof
of Theorem 2.1.

From now on, we assume that (H,,_1) holds. As in [19], hypothesis (H,_1)
yields the following consequences:

Lemma 8.2 If 0y is large enough, then, for each k = 0,...,n and each
integer s € [3,&],

(s—a)+ .
el if s # «
Vi, ¥, s + . < k ’ 8.29
Vi B+ 1L o {glogek foma, O
(L = S6,)Vie, (I = So, )W) | 13 (2r) < Ce™. (8.30)
Furthermore, for each k = 0,...,n, and each integer s € [3,a + 4],
Cefls =+ if s # a,
150, Ve S0, 20 5y < | 0% g (831)
" Celog 0y if s =a.

Estimates (8.30)—(8.31) follow directly from (8.1) and (8.29).

8.3 Estimate of the Error Terms

To deduce (H,,) from (H,_1), we need to estimate the quadratic error terms
e}, €, and €}, the first substitution error terms ey, €7, and €}, the second
substitution error terms e}, €', and ¢}, and the last error term Dy /26%y.

Recall from (8.10) that
e; = E(Vk+17y7k+1) — [:(Vk, Wk) — ]L/(Ua + Vi, @ + Wk)(évk,&l'/k),

which can be rewritten as

1
e;c :f L”(U“+Vk+76Vk,
0

O + Uy, + T&Wk)((évk, 0W), (6Vi, (Sg/k))(l —7)dr, (8.32)

where operator L” is defined by

d
L"(U,o)((V', &), (V" ¥")) := d—IL'(U +7V" &+ 70"\ (V' W) ,
T 7=0
with operator I given in (4.4). We can also obtain a similar expression for
€. (resp. €},) defined by (8.11) (resp. (8.18)) in terms of the second derivative
operator B” (resp. £”).
To control the quadratic error terms, we need the estimates for operators
L”, B”, and £” (see (8.32)). They can be obtained from the explicit forms
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of I, B”, and £” by applying the Moser-type and Sobolev embedding in-
equalities. Omitting detailed calculations, we find that the explicit forms of
operators £” (U, @) and B” (U, #) depend on state (U, @), which make the follow-
ing estimates for £” and B” different from those obtained in [19, Proposition
5]. This difference is caused by the introduction of new primary unknowns
(p, hwy, hws).

Proposition 8.2 Let T > 0 and s € N with s > 3. Assume that (U,®) €
H3H(0r), Ploy—o € Hy (wr), and (U, P)|uz(0r) < K for all y = 1. Then

there exist two positive constants Ko and C, which are independent of T and
v, such that, if K +e < Ko, v = 1, (Vi,¥), (Va, %) € € H¥'(2r), and
(W1, 1), (Wa, 1) € H3 ! (wr) x H»‘jJrl(WT), then

[L" (U + U, + &) ((Vi, %), (Va, ¥2)) |
+ €T, ) (1, #1), (Va, B))

H: (027)

C{H(Vh!pl)HWLw(QT)H(VQ, !pg)le,oo(QT)H (U + Ua7q‘~5 + éa)

o+ D IVis ) g1 oy | (V3 )l e 2}
i#j

|B" (U + U, 0% + @) (W1, 1), (Wa, 2))

HH§+1(QT)

HH,‘;(L«JT)

< C{IW1,00) lwsom o | (W )l om o | (O + 0%, &+ 8%)

o DI, 0l o (W 59w

1#]

(wr)

Using Proposition 8.2, we obtain the following result.

Lemma 8.3 (Estimate of the quadratic error terms) Let « > 4. Then
there exist ¢ > 0 sufficiently small and 0y = 1 sufficiently large such that, for
allk=0,...,n—1, and all integers s € [3,a — 1],

[(ehr €0 115 (20) + 1kl a5 ry < C2057 7 A,
where L1(s) := max{(s +2 — o)y +4 —2a,s + 3 — 2a}.
Proof In light of (H,—1) and (8.29), we have

sup ||(Vie + 76Vie, U + 76%%) | 113 (027) < Ce.

0<r<1

For € small enough, we can apply Proposition 8.2 and use the Sobolev embed-
ding inequality, (8.28), and (H,_1) to obtain

Hek HH;(QT)

<C {629ﬁ72aAi (8 + H(Vk, Wk, 5Vk, 6Wk)HH$+1(QT)) + 5202+272aAi}
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for se [3,a —1]. If s + 1 # «, then we obtain from (8.29) and the inequality
20, A, < 1 that

ekl gy < CE2AF (BT 0+HA720 4 grr2=2e) < Ce2g 71 A
If s +1 = «, then using (8.29) and « > 4 yields
ekl a1 < Ce? AL {(e +elog by + €0, " Ay) + 6,7}
< C2A201 < c2gl 77 A

The estimates for ¢, and €}, are similar and follow by applying Proposition 8.2
and the trace theorem. This completes the proof. O

Now we estimate the first substitution error terms e, €7, and €} given in
(8.10)—(8.11), and (8.18) by rewriting them in terms of L”, B”, and £”. For
instance, €} can be rewritten as

o — J B (U + Sp, Vie +7(I — Sp,)Vies ®° + So, %+ 7(I — Sp, )W)
((6Vk|:p2:0a 61!%)? ((I - Sek)VkLEQ:O) (I - S@k)wk|w2:0 ) dr. (833)
Then we have the following lemma.

Lemma 8.4 (Estimate of the first substitution error terms) Let o > 4.
Then there ezist € > 0 sufficiently small and 68y = 1 sufficiently large such that,
forallk =0,...,n—1, and all integers s € [3,& — 2],

(et ez (20 + 188 22 oy < C20,2 71 A,
where Lo(s) :=max{(s +2 —a); + 6 — 2a,5 + 5 — 2a}.
Proof Tt follows from (8.30) and (8.31) that

sup ||(Seka + T(I Sgk)Vk,Sng/k + T(I Sgk)Wk)HHS(()T < Ce.

0<r<1

For ¢ sufficiently small, we can apply Proposition 8.2 to estimate B” in (8.33).
Employ the trace and embedding theorems to obtain

€%l s wr)

< [ (0Vi, 0%) (I = S, ) Vi, (I = Sp,, )W)

13 2 (€ 13 )

< [ (U + S, Vi + 7(I — So, )V, " + So, Wk + 7(I — S, ) ¥r)
+ H(évff’(swk)HHﬁQ(QT)H( (I = S6,) Vi (I = Se,.) LZIk)HHS 2r)
+ | (I = So,) Vi, (I — So, ) %) | T)H (6Vi, 6%1)

HH“’Q(Q )

HT2 (0 HHg(QT)'
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Using estimates (8.28), (H,,—1), and (8.30)—(8.31), we obtain that, for s+2 # «
and s +2 < a,

el s wr)

< C{5202_2aAk (5 + 59’(€S+27o¢)+) + 5202+4_20‘Ak} < 0620£2(S)_1Ak.
For s + 2 = «a, we obtain
|8kl o) < © {20772 Ay, (e + elogOy,) + %07 Ay}
< O (0> logby + 67 %) < Ce20,7 72714,

owing to a > 4. The estimate for e} and é} can be deduced in the same way.

O

Now we estimate the second substitution error terms e}/, €/, and €}’ given

in (8.10)—(8.11) and (8.18) by rewriting them in terms of L”, B”, and £”. For

instance, €} can be rewritten as

N/

1
€ = J E"(Vigr/2 +7(S6, Vi = Vir1/2)s Ykt 1/2) (0Vi, 6%%), (Soy, Vi — Vies1/2,0)) AT
0

Here we have used relation ¥ .1, = Sp, Wi (cf. (8.7)). Then we have the
following result.

Lemma 8.5 (Estimate of the second substitution error terms) Let
a = 4. Then there exist € > 0 sufficiently small and 0y = 1 sufficiently large
such that, for allk =0,...,n— 1, and all integers s € [3,& — 1],

~ ~ L —
(e )iy 2 + 18 |y oy < CE*0,° 1A,

where L3(s) := max{(s +2 — a); + 8 — 2a, 5 + 6 — 2ar}.

Proof Omitting detailed derivation, we can use the inductive assumption
(Hp—1), definition (8.7), and the properties of Sy and Ry to obtain

S0, Vic — Vk+1/2||Hg(QT) < C’s@,‘i*lfo‘ (8.34)

forallk = 0,...,n—1 and all integers s € [3, &+3]. We refer to [19, Proposition
7] for the proof of (8.34). It follows from (8.31) and (8.34) that

Vi1l s (om) < Ce0C™ ™ for s € [3,6 +3]. (8.35)
Thus, we have

[T+ Vigrjo + (S0, Vi = Vir1/2), B + Pi10) |1 (o)
< Cep*TITI T (8.36)
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For & small enough, one may apply Proposition 8.2 and use (H,_1), (8.34),
and (8.36) to deduce

” AZI |HS o) < 0{6292—204Ak601(€8+1*0‘)++1 + 8202+4_2aAk} < 062053(3)_1Ak'

The estimate for e}’ and &}/ can be deduced in a similar way by using the trace

theorem. |

We now estimate the last error term (8.12):

0V,

D v,y = —————
TR T 0y (@0 + Wy o)

Rk7

where Ry := 02L(U® + Vip1/2, ®* + Wi11/2). This error term results from the
introduction of the good unknown in decomposition (8.10). Note from (8.7),
(8.28), and (8.31) that

= ~ 1
|02(D* + Wy y12)| = ’5243 + 02 (an + ¢k+1/2)| = >
provided that ¢ is small enough. Then we have the following estimate.

Lemma 8.6 Let a« = 5 and & > o + 2. Then there exist € > 0 sufficiently
small and 0y = 1 sufficiently large such that, for all k =0,...,n—1, and for
all integers s € [3,& — 2], we have

| Dis1/20%k | 115 0y < C220, 071 A, (8.37)
where L(s) :== max{(s +2—a)y +8—2a,(s+1—a); +9—2a,s + 6 — 2a}.

Proof The proof follows from the arguments as in [1, 19]. Let 27 := (0,7 x
R? . Since 6%, vanishes in the past, using the Moser-type inequality, we obtain

[ Dres1/20%k | 11527y = [1Ph+1/20% ] 1z 05
< O] ooy (IRel s oy + IReD o) 187 + Tl v o)
+ H&pkHH,Sy(Q;)HRkHL"O(Q;)}' (8.38)
To estimate Ry, we introduce the following decomposition for ¢ > 0:
LU + Vig1)2, D" + Wpi1p2) — L(Vi, W) + [

=LU" + Viy1/2, 9" + Vpy1y2) — LU + Vi, @ + Wy,)

1
_ J L' (U + Vi + 7(Vis1j2 — Vi),
0

o + !pk; + T(Wk+1/2 — Epk))(vk_;'_l/g — Vk, Wk+1/2 — Wk) dr. (839)
If s < & — 3, the inductive assumption (H,_1) implies

IL(Vie, @) = £l vty < 266777 (8.40)
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Since we can obtain an estimate for L” similar to that for IL” (see Proposition
8.2), using Lemma 8.2 and (8.34) leads to

LU + Vig1/2, P + Wpg1p2) — LU + V, 0 + g’k)HH;'“(QT)
< Ce(B5F3 0 4 2 etomey, (8.41)
Plugging (8.40)—(8.41) into (8.39) yields
|Bils gy < Ce(037372 4+ 0572704570 for se[3,6-3].  (8.42)
If s =& —2 > a, then we use (8.31) and (8.35) to obtain
| Bk ms(0r) < LU + Visrj2, * + Wiyrp2) | e oy
S O[(U" + Vig1y2, 2" + Wk+1/2)HH5+2(QT)
< Cefit e,
Thus, we obtain estimate (8.42) for s € [3, @—2]. Thanks to (H,_1) and (8.42),
we utilize the embedding inequality to find
60l e () < Co62Ds | Rlpon(ony < Cb8
Using these bounds and plugging (8.42), (H,—1), and (8.31) into (8.38) yield
(8.37). O

From Lemmas 8.3-8.6, we can immediately obtain the following estimate
for ey, €y, and éj defined in (8.13) and (8.19).

Lemma 8.7 Let a = 5. Then there exist € > 0 sufficiently small and 0y > 1
sufficiently large such that, for all k = 0,...,n — 1, and for all integers s €
[3,& — 2], we have
~ ~ L(s)—1

lexlms(er) + 1exl msan) + 1kl s r) < Ce05°) 1 Ay, (8.43)
where L(s) is defined in Lemma 8.6.
_ Lemma 8.7 yields the estimate of the accumulated error terms Ej, Ek, and
E). that are defined in (8.14) and (8.19).
Lemma 8.8 Let o > 7 and & = o + 4. Then there exist € > 0 sufficiently
small and 0y = 1 sufficiently large such that

1By By oy + 1Bl oy < C261 (8.44)

Proof Notice that L(a+2) < 1if @ > 7. From (8.43), we have

H(EnvEn)HH$+2(QT) + HEnHH$+2(wT)
n—1

< Z {||<ekaék)HH$+2(nT) + ”ék“H;’“(wT)}

3 >
= O

< ) Ce?Ap < CE2,,
k=0

provided that « > 7 and o + 2 € [3,& — 2]. Thus, the minimal possible & is
a+ 4. ]
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8.4 Proof of Theorem 2.1

To prove our main result, we first derive the estimates of the source terms f,,
gn, and G defined in (8.15) and (8.24).

Lemma 8.9 Leta > 7 and @ = a+ 4. Then there exist € > 0 sufficiently
small and 60y = 1 sufficiently large such that, for all integers s € [3,a + 1],

| fallirsgry < CA{O5 2 (1 o +€7) + 205971, (8.45)
190l iy < CE2 A, (057072 + 05971, (8.46)
and for all integers s € [3,d],
|GE s (20) < AL (057772 + 65971). (8.47)
Proof 1t follows from (8.15) that
fo = (S0, = So_ )" = (So., — Sp,1) En—1 — Sp,€n—1.
Using (8.1a), (8.1c), (8.43), and (8.44), we obtain the estimates:
1086, = So._) S| 1z (20) < OO 1 | o1 gy Dn1s
0921?73“En—1||H$+2(QT)An—1
Ce05~ 972 A, 1,

C20-)7 A,

N

(S0, = So,—1 ) En—1lrs(2r)

N

N

”Senen—IHH;‘(QT)

Combining the above estimates with the inequalities: 6,,_; < 6,, < v/26,,_; and

A,_1 < 34, we derive (8.45). Similarly, we obtain (8.46). To prove (8.47),

we use (8.24) to find
Gl = (So, — S0, ) (RTEp_12— Ef 1) + S, (Rrén_12—é}_1).

Then we obtain the estimate for G} by using (8.43)—(8.44) as above. The
estimate of G, is the same. O

n—1

We are going to obtain the estimate of the solution to problem (8.5) by
employing the tame estimate (6.2).

Lemma 8.10 Leta > 7. Ife > 0 and Hf“HH;yH(QT)/E are sufficiently small,
and if 0o = 1 is sufficiently large, then, for all integers s € [3,a],

I(6Vas 68) s ) + 160l gz oy < 05 Ane (8.48)

Proof Let us consider problem (8.5), which can be solved, since U® + V,, 11/
and & + W, 1y satisfy the required constraints (8.9). Constraint (4.1) can
be obtained by truncating the coefficients, U* + V,,1/2 and % + ¥, /5, by a
suitable cut-off function, while (4.3b) can be obtained by taking € > 0 small
enough. We can consider the coefficients with a fixed compact support. In order
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to apply Theorem 6.1, we obtain (6.1), by using the classical trace estimate,
(8.28), (8.31), (8.34), and « = 7. Thus, we can employ the tame estimate (6.2)
to obtain

Hf;VnHHg(QT) + 16%nl 21 (o)
< {1l 20y + gl i3 o)) LT + Va0 8 + Br2) L2550y
1l g op) + HgnHHg“(wT)}- (8.49)
The particular case s = 3 implies
16Vl ti3 20 < C (1 Faliscany + lgnli3com). (8.50)

Given 0v,, we can compute 0¥, from equations (8.16)—(8.17). Performing
the energy estimates for 0¥, and using Lemma 8.2, (8.34), and the Sobolev
embedding theorem, we derive

V0% 15 (21
< C{HgnHHg(wT) + ||GnHH5(nT) + H(WnHHg((zT) + HCSVnHH;’;(QT)
X1 + S, Tl g1y + 05 60l aom ) (851)
for all integers s € [3, @] and e small enough. For s = 3, using (8.50), we have
10@n]l mr3(07) < C(Ifullmsor) + 90l mswr) + 1Gnlmz ) (8.52)

In view of (8.6), using estimates (8.49), (8.51)—(8.52), and the Moser-type
inequality, we obtain

1(0V, M’n)HH;(QT) + ||51/Jn||H~;+1(wT)
< C{anHHf,Jrl(QT) + lgnl g+t wry T 1Gnll s (20
+ (Ifnllma2r) + lgnlmswr) + 1Gal a2 or))
X ([T + Vig1/2: B + Ty /2) | s gy + €05 T2704) ) (8.53)

for all integers s € [3, @]. Using Lemma 8.9, (8.31), and (8.34), we obtain from
(8.53) that

< CAn{egL_a(||faHnyl+1(QT) + 52) + 829%_2a} (69;S+3_a)+ + 5924—4—&)
+ CAn{H;TO‘*l(||fa\|H$+1(QT) +e?) + 620711‘(57%)*1}. (8.54)
Exactly as in [19], we can obtain the following inequalities:
L(s+1)<s—a,
(s+3—a)y+2—a<s—a-—1,
(s+3—a)y+9—-2a<s—a-—1,
s+6—2a<s—a—1,
s+13—3a<s—a—1,
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for @ > 7 and s € [3,a]. Thus, (8.54) yields

H((SVn,éwn)HH:;(_QT) + H&/J””Hi“ (w (Hf HHaJrl(Q )+E )95 a— 1An’

r) S

and (8.48) follows by taking € + | f*| zo+1 (¢, /€ small enough. O

Estimate (8.48) is inequality (a) of (H,,). We now prove the other inequal-
ities in (Hy).

Lemma 8.11 Leta>7.Ife >0 and | f* \\Ha+1(QT /e are sufficiently small,
and if 09 = 1 is sufficiently large, then, for all integers s € [3,& — 2],

1LV, ) = [z (020) < 2e057 1, (8.55)
Moreover, for all integers s € [4,a],
IB(Vailoa—o, ¥l s oy < €057 (8.56)
and
1EWVn, Un) |12 (020) < <ehi . (8.57)
Proof From (8.25), we have
WV Wa) = F s o) < 1T = S, f* L)
+ [0S0,y = DEn-1l s (2r) + len—1lm:(or)-
For s € [a + 1,& — 2], using (8.1a) and (8.28), we obtain

I = So, ) itz my < 0575 (17 s aamy + CIF o1 o)

<898—a—1 (1+ Hf ”H'(YI-H(QT))
n c 3

while, for s € [3,« + 1], applying (8.1b), we have
(I = S0, ) [ Nrrs(2r) < COZT 1HfaHH"+1(QT) < oo e ||H“‘+1(QT)'
Lemma 8.8 and (8.1b) imply
(T~ S5, ) B alizg(an) < OO 2Bt lgoa gy < C2057"
for3<s<a+2=a-—2. It follows from (8.43) that
len—1lms(2n) < C20,5)7 A, 1 < CE20572 < 0057

By virtue of the above estimates, we choose ¢ and HfaHHsﬂ(QT)/a sufficiently

small to obtain (8.55). Similarly, using decompositions (8.26)—(8.27), we can
prove estimates (8.56)—(8.57). O
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In view of Lemmas 8.10-8.11, we have obtained (H,,) from (H,_1), pro-
vided that « = 7, & = «a + 4, (8.28) holds, ¢ > 0 and ||f“\|Hﬁ7+1(QT)/5 are
sufficiently small, and 6y > 1 is large enough. Fixing constants «, &, € > 0 and
6o = 1, we now prove (Hp).

Lemma 8.12 If ||f“HH$+1(QT)/5 is sufficiently small, then (Ho) holds.

Proof Recall from assumptions (A-1)—(A-3) that (Vp, P, ¥o, 9o, G%) =0 and
fo = Se, f*. Then it follows from (8.7) that (V}/3,%;/2) = 0. Thanks to (8.28)
and the properties of the approximate solution in Lemma 7.2, we may apply
Theorem 6.1 to obtain (0Vj, d1g) as the unique solution of (8.5) for n = 0,
which satisfies

||5VOHH;(QT) + H‘SQ/JOHH;“(QT) < CHSGOfa‘|H,‘$+1(QT)'

Then we find §%; from equations (8.16)—(8.17) with n = 0. The standard
energy estimates yield

160 1520y < Cl6Volms(ry  for s € [3,4l,
which, combined with (8.6) and (8.28), implies
16V, 0%6) 112 2ry + 6%l 4+ )
< CllSeo [l g2y < Coy 1F N ezo+ (o)

If Hfa||H$+1(QT)/5 is suitably small, then we can obtain inequality (a) of (Hp).
The other inequalities of (Hp) can be shown to hold by taking Hf“||H$+1(QT)
small enough. O

From (8.12) and Lemmas 8.10-8.11, we derive that (H,,) holds for every
n € N, provided that the parameters are well-chosen and that f¢ is sufficiently
small. We are now in a position to conclude the proof of Theorem 2.1.

Proof of Theorem 2.1 We consider the initial data (Ug", ¢o) satisfying all
the assumptions of Theorem 2.1. Let @ = y—2 and o = @ —4 > 7. Then the
initial data Uy" and ¢y are compatible up to order u = & + 2. From (7.14)
and (7.16), we obtain (8.28) and all the requirements of Lemmas 8.10-8.12,
provided that (U, o) is sufficiently small in H#*+1/2(R%) x H*+Y(R) with
USL = UOi — U*. Hence, for small initial data, property (H,) holds for all
integers n. In particular, we have
0

o8]
; (H(avk,wk)u,ﬁ(m) + Hwkumﬂ(w)) < CkE gr-a=? oo
=0 =0

for s € [3,a — 1]. Thus, sequence (Vj, W) converges to some limit (V,¥) in
HS$~(£27), and sequence ¢y, converges to some limit ¢ in HS(2r). Passing
to the limit in (8.55)—(8.56) for s = a« — 1 = u — 7, and in (8.57), we obtain
(7.17). Therefore, (U, ®) = (U*+V,P* +¥) is a solution on {2 of the original
problem (2.20) and (2.23). This completes the proof. O
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Appendix A Symmetrization of the Relativistic Euler Equations

Under assumption (2.6), Makino—Ukai [33] showed that there exists a strictly
convex entropy function for the relativistic Euler equations (2.4), which yields
a symmetrizer for (2.4) by following Godunov’s symmetrization procedure in
[23]. By contrast, the symmetrizable hyperbolic system (2.18) is deduced by
using a purely algebraic symmetrization of the relativistic Euler equations
(2.4); see Trakhinin [48] for a different algebraic symmetrization.

In order to derive (2.18), we need to recover another conservation law (that
is, conservation of particle number) from equations (2.4). Denoting by N the
particle number density and by e the specific internal energy, then

p=N(1+é%). (A1)

The particle number density N was introduced by Taub [46]. For a perfect
fluid, N and e are functions of the two thermodynamic variables p and S
(specific entropy). According to the first law of thermodynamics, the following
differential relation holds:

TdS = de + pdN 1, (A.2)
where T is the absolute temperature. By virtue of (A.1)-(A.2), we have

dInN) 1 dlnN)
0 pr e 25— e“NT. (A.3)

In the case of barotropic fluids where pressure p depends solely on p, it is nat-
ural to introduce the “mathematical” particle number density N as a function
of p only such that the first relation in (A.3) holds. This motivates us to define
N = N(p) as (2.11).

Let (p,v) be a C'-solution to (2.4). It follows from (2.4a) and h = (p +
€2p)/N that

—hI{0;(NT) + 0x(NTwg)} = NI {I(0; + vi0p)h + h(0; + v.0x) T} — €20sp.
In view of (2.13) and (2.4b), we obtain
NRI (0 + vi0) [ = NhI'€®v; (04 + vk )w;
= —N|w|*(6; + v )h — R w|? {0;(NT) + 0, (NT'v;)} — €v;0;p,
which implies
Rl |w|> — T?) {0,(NT) + x(NTwy)}
= N(I'? — E|w|?)(0; + vid)h — €2(0¢ + v di)p.

Thanks to (2.11) and (2.13), N(p)h'(p) = €*p'(p) and I'> — €?|w|?> = 1. Then
we obtain the conservation of particle number:

0.(NT) + on(NTwy) = 0. (A.4)
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Equations (2.14) then follow from (2.4b) and (A.4). Using the identities: I} =

€2v - 0pw and N'(p) = ]:T(pp)) = m, we see from (A.4) that

I'(oy+v-Vy)p+ Nhe? (e2v cOpw + Vg - w) = 0.
We use the relations: h'(p) = €2/N and w = I'v to deduce

(1 —é*cw?)omp + T'(1 — v - Vep
+ N2 (ev - 0y (hw) + V, - (hw)) = 0. (A.5)

Set U := (p, hwy, hwy)T. Then equations (2.14) and (A.5) can be written as
Bo(U)atU + Bl(U)alU + BQ(U)&QU =0, (AG)

where the coefficient matrices are given by

I(1—écv?) E2NoT
Bo(U) ;=< ( ; [v]?) o ) (A7)
Tvj(1 —€2c?) Nc2eT) )
BiU):=("" i), ~1,2, A8
0= (TR Ta) (A5)

Here we have set e; := (01,02;)" and Iy := (§;;)2x2 with &;; being the Kro-
necker symbol. Let us define
1 N1’
S1(U) := (0 L v@u ) (A.9)

Multiplying (A.6) by S1(U) and using the identity: I'? — €2c*I'? + €2¢? =

I'}(1 — €*c?|v]?), we obtain system (2.18). Conversely, we can also deduce

system (2.4) from (2.18) so that we derive the equivalence of these two systems
in the region where the solutions are in C*.

It remains to show that system (2.18) is symmetrizable hyperbolic in region

{px < p < p*, |v|] < e '} Let us set the Friedrichs symmetrizer:

27727, T
Sy(U) = <(1) el ) (A-10)

After straightforward calculations, we derive that all matrices So(U)A,;(U) are
symmetric, and the eigenvalues of S3(U)Ao(U) are

A=D1 —ePpl?),  A=IN?2  \3=TN>E1-EP).

Assumption (2.6) yields that A;, Ag, and A3 are all positive. Consequently,
So(U)Ap(U) is positive definite and system (2.18) is symmetrizable hyperbolic.
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