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Abstract. This paper reviews earlier results of the author regarding the
hydrodynamic limit problem for the Boltzmann equation. In particular the
key points are that the work of Gorban&Karlin suggests that Korteweg hy-
drodynamics is implied by the Boltzmann equation and this correspondence is
validated by comparison with experimental, analytical, and numerical results.
But if the correspondence is indeed valid then passage to limiting compressible
Euler equations will not be generally possible after any time for which the the
Euler system fails to have smooth solutions.

Introduction

In their recent review articles published in the Bulletin of the American
Mathematical Society, Gorban&Karlin [12] and Saint-Raymond [34] address in
elegant detail Hilbert’s sixth problem [19] and related topics. Hence I will not
repeat many of the subjects raised in their papers. Here I want to reinforce some
comments I have made in the past with respect the very specific issue Hilbert
raised, i.e. develop "mathematically the limiting processes ... which lead from
the atomistic view to the laws of motion of continua." In contemporary research
this has been taken as passage from the kinetic theory of Boltzmann to the
continuum theory of Euler as the Knudsen number ε → 0. So far the results
in this direction have been limited to the case when we are in a fluid domain
where the Euler equations have have smooth solutions [28],[46]. These results
are reviewed in the monograph [34] of Saint-Raymond. So of course the diffi culty
must enter when the situations where the Euler equations have lost smoothness
due to formation of singularities. But here the issue becomes foggy: how can we
see precisely where things go bad? Analysis is often much better a predicting
when things go right by virtue of possibly overly strong suffi cient conditions.
So to help resolve this issue it is helpful to break the problem up into separate
pieces where each one may both be simply explained and validated. I view this
as a three step process.
1. Replace the Boltzmann equations by an " equivalent" systems of macro-

scropic balance laws valid on the Boltzmann equation’s invariant manifold [12]
for conservation of the macroscopic states: density, momentum, and energy.
2. Validate the replacement given in Step 1 is physically correct.
3. Show that this " equivalent " system of balance laws will not allow for

passage to the Euler equtaions as the small parameter Knudsen number ε tends
to zero.
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It is this sequence of steps that provide the basis for this paper and they will
now be addressed.

1. From the Boltzmann equation to Korteweg’s theory of capillarity: CE =⇒
Korteweg
Our starting point is the Boltzmann equation itself which describes the evo-

lution of a perfect gas in terms of a particle distribution function f(t, x, ξ) which
gives the probability of finding a particle of gas at time t, position x, moving with
velocity ξ. The equation itself is ∂tf+ξ·∇xf = Q(f, f)/ε where ε is the Knudsen
number measuring the mean free distant between collisions. Q is the collision op-

erator and given by Q(f, f) =

∫∫
(f(ξ′)f(ξ′1)−f(ξ)f(ξ1))b(ξ−ξ1,ω)dξ1dω, ξ

′ =

ξ + (ξ − ξ1) · ωω, ξ′1 = ξ1 − (ξ − ξ1) · ωω.
One develops macroscopic theory from the Boltzmann equation by multipli-

cation by the vector (1, ξ, ξ · ξ) and intgegration over all ξεR3. The integrals on
the right hand side vanish as (1, ξ, ξ ·ξ) are collison invariants and hence one can
reassociate terms on the left hand side to make them appear as the usual bal-
ance laws of mass, linear momentum and energy ( see for example [8]). This is a
system of moments of f , the first five appearing under the time differentiation
∂t. But the system is not closed and hence one may attempt to continue the
moment process which of course will never close at at any finite set of moments.
Closure rules must then be supplied either by taking a finite system of moments
and expressing any additional moments not appearing in the time evolution
term ∂t in terms of the evolving ones. The most well known of this truncation
is known as Grad’s 13 moment system [17,18] and a thorough exposition is found
in the book of Struchtrup [42]. The second appealing approach is to try to find
an approximation to the solution f of the Boltzmann equation via a formal as-
ymptotic expansion f(t, x, ξ, ε) =

∑
εnfn(t, x, ξ). This expansion is called the

Hilbert expansion but a careful reading of Maxwell’s 1879 paper [27] shows that
Maxwell himself had the germ of the idea three decades before Hilbert’s 1912
paper [20]. We substitute the expansion into the Boltzmann equation, balance
terms of equal powers of ε and obtain an infinite set of couple non-linear partial
differential equations for the coeffi cients fn(t, x, ξ). It is important to note that
the moment procedure and the Hilbert expansion are not mutually exclusive:
one may take a list of moments, make a closure such as the one suggested by
Grad, and then do a Hilbert type expansion to express the higher order flux
terms in terms of the traditional macroscopic states of mass, momentum, and
energy. This is in fact the route taken by Gorban&Karlin in [13,14,15,21,22].
Explicit computation of all the coeffi cients fn(t, x, ξ) in the Hilbert expansion

would be a formidable task. On the other hand computation of f0(t, x, ξ) is easy

since Q(f0, f0) = 0 and f0(t, x, ξ) = ρ(t,x)
(2πθ(x,t))3/2

exp
(
− |ξ−u(t,x)|

2

2θ(x,t)

)
for some

ρ > 0 density, θ > 0 temperature, uεR3 velocity. Substitution of f0 into the five
balance laws arising from the first five moments yields the classical compressible
Euler equations

∂tρ+ div(ρu) = 0,
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∂t(ρu) + div(ρu⊗ u+ (ρθ)identity) = 0,

∂t(ρ |u|2 + 3ρθ) + div(u(ρ|u|2 + 5(ρθ))) = 0.
Of course the formal limit as ε→ 0 suggests the motivation behind Hilbert’s

program as illucidated in his sixth problem: the formal limit of the solution
of the Boltzmann equation as ε → 0 does indeed yield the compressible Euler
equations of macroscopic gas dynamics. Even more is true. Computation of
f1(t, x, ξ) is possible and insertion into the five balance laws gives the order ε
correction to the compressible Euler equations, i.e. the compressible Navier-
Stokes-Fourier system ( NSF) given by

∂tρ+ ∂i(ρui) = 0,
∂t(ρui) + ∂j(ρuiuj) = ∂j(Tij),
∂t(

1
2ρuiui + ρe) + ∂j((

1
2ρuiui + ρe)ρuj) = ∂j(uiTij)− ∂iqi,

T = TE + TV , e = eE , q = qF , where eE = 3
2θ, q

F = −κ∇θ
Here TE , TV denote the elastic,viscous contributions to the Cauchy stress

tensor T and are given by
TEij = −pδij , p = ρθ,

TVij = λ(trD)δij + 2µDij , Dij = 1
2 (∂jui + ∂iuj), λ = − 23µ, µ > 0,

and
µ(ρ, θ), κ(ρ, θ) are the coeffi cients of viscosity and heat conduction. Again

the formal limit as ε→ 0 yields the compressible Euler equations.
A more effi cient way to compute the Hilbert expansion is write the expan-

sion in terms of the macroscopic state variables M = (ρ, ρu, ρE), E = 1
2 |u|

2
+ e

of density, momentum, and energy so that dependence of fn(t, x, ξ) on x, t
only occurs through M and its higher space derivatives. This rewriting is
called the Chapman-Enskog expansion [8,9] and hence we have f(t, x, ξ, ε) =∑

εnfn(∇nM(t, x), ξ) where the symbol ∇nM(t, x) is used to denote terms
depending on space derivatives up to order n. The results of truncation of the
Chapman-Enskog expansion at order zero and one yield the compressible Euler
and Navier-Stokes-Fourier systems, respectively, and motivated Burnett [4,5]
to go the next order in ε thus obtaining the system that bears his name: the
Burnett equations. To write them down in their entirety is both a chore and
irrelevant. The main point is that the Burnett equations yield the rest state
of a gas unstable to high wave number perturbations. This instability was first
recognized by Bobylev [1,2,3] and not surprisingly is called the Bobylev instabil-
ity. The occurence of the Bobylev instability at Burnett order in itself does not
invalidate the value of the Chapman-Enskog expansion, it only casts aspersion
on truncations the Chapman-Enskog expansion. In fact what mathemtician
when teaching the concept of infinite series would rely on truncation when in-
deed it is the tail of the series that contains the information as to convergence
or divergence of the series. It was the need to approximate the entire sum of
the Chapman-Enskog expansion that motivated Rosenau [31,32] and Bobylev
[2,3] to pursue their approximate summation techniques. But if approximate
summation is nice it goes without saying that an exact summation is better.
Hence it was to my great excitement when I discovered the work of Alexander
Gorban and Ilya Karlin [13,14,15,21,22] who were able to produce such an exact
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sum for the linearized Grad moment equations. It this summation I now discuss
since it is the key to my story.
We start with the 13-moment Grad equations obtained from taking moments

of the Boltzmann equations, then we close the system according to the rule
suggested by Grad and linearize about the rest state of zero velocity and unit
density. This gives us the linearized 13 -moment Grad equations written as

∂tρ+ div u = 0,
∂tu = −∇p−∇θ − div σ,
∂tθ = − 23 (div u+ div q),
∂tσ = −(∇u+(∇u)>)+ 4

3 (div u)identity− 25 (∇q+(∇q)>)+ 8
15 (div q)identity−

σ
ε ,
∂tq = − 52∇θ − div σ − 2

3εq.
This is a system of 13 equations for the 13 unknowns ρ, uεR3, θ, qεR3, σ is

a 3x3 symmetric and traceless matrix. Gorban&Karlin then proceed to further
simplifications taking p = ρ+ θ to obtain Grad’s 10 moment system

∂tp+ 5
3 div u = 0,

∂tu = −∇p− div σ,
∂tσ = −(∇u+ (∇u)>) + 4

3 (div u)identity − σ
ε ,

and then consider the special one dimensional version of the 10 moment
system

∂tp+ 5
3∂xu = 0,

∂tu = −∂xp− ∂xσ,
∂tσ = − 43∂xu−

σ
ε .

Here we have a very tractible system of 3 equations in the 3 scalar unknowns
p, u, σ where σ is now the xx component of the stress. Admittedly this system
is definitely not the Boltzmann equation but what is lost in generality is more
than regained in understanding. So Gorban&Karlin proceed to perform the
Chapman-Enskog expansion on this simple system by writing σ in the form
σCE =

∑
n=1

εnσ(n). The first few terms of the expansion are easy to find and we

see σCE = − 43 (ε∂xu+ ε2∂xxp+ ε3∂xxxu+ ..).Thus there is alternation between
space derivatives of u and space derivatives of p. In order to sum the series it
is natural to resort to Fourier transform and we denote the Fourier transforms
with a super-imposed "^". Again it is quite obvious that if we rescale x/ε = x′

the ε disappears from σCE . Take the Fourier transform with respect to x′

we have
ˆ

σCE = −ikA(k2)
ˆ
u − k2B(k2)

ˆ
p, A(k2) =

∑
n=0

−ikan(−k2)n., B(k2) =∑
n=0

bn(−k2)n.. Now we get to hard part. What are A and B? That is to

say what are the exact sums of the power series defining A,B? When I first
encountered this issue it seemed to me a Herculean task even for the simple
example considered here. But indeed Gorban&Karlin did find beautiful and
valuable formulas for A,B. The formulas are A = B

1−k2B ,and with C defined as
C = k2B,C satisfies the fundamental cubic equation - 53 (1−C)2(C + 4

5 )− C
k2 =

0. This gives us a good excuse to recall Cardano’s formula for the roots of
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a cubic and since we are only interested in the unique real root we find C <
0, k 6= 0, C(0) = 0, C is monotone decreasing for increasing k2, C(k2) → −45 as
k2 → ∞. From this result we immediately see the obvious yet profound result:
A,B are eternally paired. You cannot have one without the other. In terms
of the original Chapman- Enskog expansion for σCE it means that dependence
on u is forever linked to dependence on p. Anyone who thinks they can justify
using purely dependence on u , say as in NSF , based on the Chapman-Enskog
expansion is guilty of wishful thinking. It is just not true.

The next important result follows from insertion of
ˆ

σCE into the Fourier
transformation of the two balance laws

∂tp+ 5
3∂xu = 0, ∂tu = −∂xp− ∂xσ, i.e.

∂t
ˆ
p− 5

3

ˆ
u = 0,

∂t
ˆ
u = ik

ˆ
p+ ik(−ikA(k2)

ˆ
u− k2B(k2)

ˆ
p).

Here for convenience we have written x instead of x′.Multiplication by the

complex conjugates ( c.c) of
ˆ
p,
ˆ
u respectively yields the energy equality

1
2∂t

∞∫
−∞

3
5 |

ˆ
p |2 + | ˆu |2 dk + 1

2∂t

∞∫
−∞

− 3
5 |

ˆ
p |2 k2B(k2)dk +

∞∫
−∞

ˆ

[c.c.(∂xp)]
ˆ
u +

ˆ

[c.c.(∂xu)]
ˆ
pdk =

∞∫
−∞

k2A(k2) | ˆu |2 dk

and with an application of Parseval’s identity we have

1
2∂t

∞∫
−∞

3
5 |p|

2
+ |u|2 dx+ 1

2∂t

∞∫
−∞

− 3
5 |

ˆ
p |2 k2B(k2)dk =

∞∫
−∞

k2A(k2)
∣∣∣ˆu∣∣∣2 dk.

Now associate terms as follows : mechanical energy = 1
2

∞∫
−∞

3
5 |p|

2
+ |u|2 dx,

capillarity energy= 1
2

∞∫
−∞

− 35
∣∣∣ˆp∣∣∣2 k2B(k2)dk, viscous dissipation=

∞∫
−∞

k2A(k2)
∣∣∣ˆu∣∣∣2 dk,

and we have the energy formula

∂t(mechanical energy) + ∂t(capillarity energy) = viscous dissipation.

Notice that since A,B are negative for k 6= 0 the capillarity energy is pos-
itive and the viscous dissipation is negative as they should be to make phys-
ical sense. The importance of the energy equality was succinctly summarized
by Gorban&Karlin in their BAMS survey [12] and I now paraphrase their re-
marks.The bulk capillarity terms in fluid mechanics were introduced into the
Navier-Stokes equations by Korteweg [23] ( for a review of of some further re-
sults see [37-41]). Such terms appear naturally in theories of phase transitions,
such as van der Waals liquids [47], the Ginzburg-Landau equations [24], and
Cahn-Hilliard equations [6,7]. Surprisingly, as we have just seen such terms are
also found in the ideal gas dynamics as a consequence of the Chapman-Enskog
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expansion. Finally, in the energy formula for the exact sum of the Chapman-
Enskog expansion, the viscous dissipation decreases the total energy where the
total energy is the sum of the mechanical and capillarity energies.
Let us now review where we are in our story. We started with the Boltzmann

equation and desired to replace it by macroscopic hydrodynamic equations.
Historically this was attempted either by taking moments of the Boltzmann
equation or the Chapman-Enskog expansion. Here following Gorban&Karlin
we took a hybrid approach and computed the Chapman-Enskog expansion for a
linearized set of moment equations and this expansion could be exactly summed
to show that our closed hydrodynamic system has the features associated with a
non-local linear version of Korteweg’s theory of capillarity. Hence let us ask the
question: what should an exact summation of the Chapman-Enskog expansion
for the full non-linear Boltzmann equation look like when we require this exact
summation possess stresses that are second order in spacial gradients, material
frame indifferent, and upon linearization yield macroscopic linear balance laws
that resemble linear Korteweg theory? But with this proviso how could we
make any guess other than that the non-linear hydrodynamics we desire should
itself be Korteweg’s theory ( or something very close) in its full non-linear form.
Hence after this introduction of Korteweg’s theory into the hydrodynamic story
it time to record the full non-linear Korteweg theory and we take the form given
by Dunn&Serrin in [11].
Denote by ρ density, ui velocity, Tij Cauchy stress tensor, e specific internal

energy, θ temperature, q heat flux, p pressure, and c capillarity coeffi cient.Then
the balance laws of mass,momentum, and energy are given by

∂tρ+ ∂i(ρui) = 0,
∂t(ρui) + ∂j(ρuiuj) = ∂j(Tij),
∂t(

1
2ρuiui + ρe) + ∂j((

1
2ρuiui + ρe)ρuj) = ∂j(uiTij)− ∂iqi,

T = TE + TV + TK , e = eE + eK , q = qF + qK .
Here TE , TV , TK denote the elastic,viscous, and Korteweg contributions to

the Cauchy stress tensor T and are given by
TEij = −pδij , p = ρθ,

TVij = λ(trD)δij + 2µDij , Dij = 1
2 (∂jui + ∂iuj), λ = − 23µ, µ > 0,

TKij = {ρc4ρ+ ρ(∂ρc)M + 2ρ(∂Mc)d⊗ d · ∇2ρ+ ρ(∂θc)g · d}δij − cdidj .
The quantities λ, µ denote the viscosity coeffi cients,c = c(ρ, θ,M) is the

capillarity coeffi cient, d = ∇ρ, g = ∇θ, M = d · d.
The specific internal energy has the usual contribution eE = 3

2θ as well as
the Korteweg contribution eK = c−θ∂θc

2ρ d · d.The heat flux q is given by the sum
the Fourier contribution qF = −κg,and the Korteweg term qK = cρtr(D)∇ρ.
Of particular note is that this set of equations in material frame indifferent

and hence compatible with this basic postulate of continuum mechanics. In
addition it contains the classical viscous component of the stress tensor as well
as the Korteweg component that was found in our Chapman-Enskog expansion.
The extra addition to the internal energy which we found from the exact sum
of the Chapman-Enskog expansion makes its appearance in general Korteweg
theory as eK = c−θ∂θc

2ρ d · d.
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2. Validation of Korteweg’s theory as a representation of the sum of that
Chapman-Enskog expansion
Of course the title of this section is provacative. How could one possibly

prove such a result with its myriad of diffi culties? At best so far we have
only a formal computation based on the exact sum of the Chapman-Enskog
expansion for a linear finite moment Grad system. But I suggest that at this
point it is adviseable to drop the complexity of a direct proof and rely on
the simplicity of comparisons with solutions to boundary value problems for
rarefied gas dynamics where the NSF theory is known to fail and kinetic theory
is historically the main tool. ( I note Struchtrup and his co-authors have taken
a similar tack when establishing validity of their improved Grad like systems
[42,43,44].) Of course this may require perhaps the unusual step of the analyst
to consider laboratory experiment as a tool.
The boundary value problem we consider is one of thermal transpiration and

often called in modern terms terms thermal creep. The theoretical treatment
of the problem goes back to the classic paper of Maxwell [26]. Maxwell was
looking for an explanation to the surface flow phenomena discovered by Kundt
and Warburg for dilute gases and Helmhotz and Piotrowski for liquids. Maxwell
notes that it was Reynolds who realized that the classical NSF theory fails to
predict the observed experiments and Reynolds suggested that it is a problem
calling for examination via the kinetic theory of gases. In fact Maxwell wrote
" this phenemenon, to which professor Osborne Reynolds has given the name
thermal transpiration was discovered entirely by him. He was the first to point
out that a phenomenon of this kind was a necessary consequence of the kinetic
theory of gases.." As Maxwell’s own paper on kinetic theory [27] had just re-
cently appeared and Maxwell was familiar with Boltzmann’s theory as well he
had all the relevant tools to address the problem. Maxwell like us was searching
for the next correction to NSF theory that he hoped would give desired pre-
dictions. But here Maxwell got into trouble. He, like Burnett some fifty years
later, had the belief that if he could find the next order ε correction using his
own version of the Chapman-Enskog expansion he would find the correct the-
ory. Maxwell derived a part of what we now call the Burnett contribution to
the Cauchy stress tensor and then remarked that having obtained his system "
the final equations of motion" that " I have not, attempted to enter into the
calculation of the steady motion".
So what are the problems of thermal creep that we and Maxwell consider?

Here we take two problem of two dimensional steady flow of a dilute gas, namely
take (u1,u2) = (u, v), (x1, x2) = (x, y), (a) channel flow θ = θ1 |x|s , v(x, y) =
0, |y| = H/2, where −∞ < x < ∞,−H/2 < y < H/2,(b) half plane flow
θ = θ1 |x|s , v(x, y) = 0, y = 0, where −∞ < x < ∞, 0 < y. Maxwell and
Reynolds were interested in the case when there was no pressure gradient to
drive the flow and like them we take baratropic motion p = 1.Then we ob-
serve that a solution of the NSF equations is nothing more than (u, v) = (0, 0)
with div(κ∇θ) = 0 where θ satisfies the relevant boundary conditions. It was
precisely the fact that NSF predicts no motion of the gas that Reynolds and
Maxwell knew that kinetic theory was called for. With today’s computer power
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a numerical simulation of the solution to the Boltzmann equation may be per-
formed and the results have been given in the papers of Ohwada et al [29,30].
Furthermore Chen, Liu,Takata [10], Takata,Funugane [45] have given a careful
rigorous analysis of the linearized Boltzmann equation that leads to a velocity
profile for the channel flow problem consistent with the numerical results of
Ohwada et al [29,30]. With these results in mind it was quite reasonable for
Kim, Lee, Slemrod [22] to compare these very precise results with an elemen-
tary analysis of the flow problem using non-linear Korteweg theory. The results
are given in detail in [22] where the Korteweg theory leads to extremely sim-
ple self similar systems of ordinary differential equations that can be essentially
solved in closed form. Moreover the correspondence with the above mentioned
numerical and analytical results for the Boltzmann equation appear quite good.
For example for the channel flow problem with s = 1 the Korteweg system
has a solution of the form u = U(y), v = 0, θ = xΘ(y), ρ = x−1R(y), RΘ = 1
with µ0U −KR−1/L = const. when the capillarity coeffi cient is given by the
power law c = Kρaθb, b − a = 4,K > 0, for Maxwell molecules and L is a
typical length along the walls.. So the velocity profile U is determined by the
scaled density profile R. Conveniently R satisfies the ordinary differential equa-
tion RR′′ − 5(R′)2 = C1R

4 where C1 is a constant. This equation has a phase
portrait in the R′, R phase plane shown in Figure 2 of [22] where the free con-
stants are used to satisty the boundary conditions R = 1/θ1 at y = ±H/2.
We then solve for the velocity profile U from the profile of R. The qualitative
picture obtained from Korteweg theory is consistent with Figures 1 and 2 of
Chen, Liu, Takata [10] and Figure 8 of Ohwada et al [29,30]. Moreoever one
should keep in mind that the results of Korteweg theory are exact solutions
to a non-linear system and there was no resort to linearization as was done in
Chen, Liu, Takata [10] and Ohwada et al [29,30]. Of course most important of
all is that if there is no capillarity contibution to the Cauchy stess, i.e K = 0,
then we have µ0U = const. and no slip boundary conditions will give U = 0,
i.e. no flow. So the linkage of viscosity to capillarity as was seen from Gor-
ban&Karlin’s exact summation of the Chapman-Enskog expansion is validated
by the observed velocity profile. Futhermore since K > 0 the flow goes from left
to right in the channel, again consistent with results from numerical computa-
tion and experiment. If by chance we had used the Burnett system as Maxwell
himself was trying to we would have had K < 0 and the flow would go in the
direction opposite to the one actually observed.

3. Failure of convergence of Korteweg to Euler as the Knudsen number
ε→ 0.
In the first two sections of the this paper I have given arguments based on

both Gorban&Karlin’s exact summation of the Chapman-Enskog expansion and
comparison with analytical, numerical, and experimetal results as why Korteweg
theory gives a simple, material frame indifferent, representation of the hydro-
dynamics of an ideal gas which is valid even when the gas is dilute. But now we
come to the consequence of this derivation: one cannot in general pass to the
limit of Korteweg’s system ( and hence from the Boltzmann equation) to the
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compressible Euler equations of gas dynamics. The reason is quite self evident
and more or less staring us in the face. Recall the Korteweg system motivated by
the exact summation results (displayed in Section 1 above) of Gorban&Karlin
should have been written in terms of space variable x′ = x/ε.Hence if we now
revert to the original x dependence of TV , TK , eK , qF .qK on the Knudsen num-
ber ε now appears in our Korteweg system and we write the system as before
but where λ, µ are proportional to ε and c is proportional to ε2.In particu-
lar ρeK = c−θ∂θc

2 d · d for a power law choice of c = ε2c0ρ
aθb has the form

ρeK = ε2c0(1− b)ρaθb |∇ρ|2 /2. So unless we are in the very lucky case of b = 1

the coeffi cient of |∇ρ|2 will be non-zero. Furthermore if we desire that the limit
as ε → 0 of the Korteweg system approach the Euler equations we must have
ε2c0(1− b)ρaθb |∇ρ|2 /2→ 0 as ε→ 0 in the sense of distributions. But without
any further assumptions this is a hopeless task. It is as if we have a sequence
of functions fε in L2(Ω) satisfying a bound ‖εfε‖ < const. and ask that fε → 0
weakly in L2(Ω) as ε → 0. Without a priori information on fε this cannot be
done. So for example if we assumed ∇ρ is bounded in L2(Ω) for Ω our relevant
space-time domain and where the bound is independent of ε then the limit could
be taken to derive Hilbert’s desired result. The Korteweg system in itself can-
not provide such an a priori bound. Hence it is no surprise that if one assumes
the limit Euler system has smooth enough solutions so that the desired a priori
bound is satisfied then we can indeed recover the Euler system from Boltzmann
equation. This gives ( admittedly a possibly over simplified) explanation for
the results of Nishida [28], Ukai&Asano [46], on the ability to pass from the
Boltzmann equation to the cpmpressible Euler equations. ( See also the paper
of Saint-Raymond [35] for a related result for the incompressible Euler equa-
tions.). The reader will notice that our conclusion is similar to the well known
result of Lax and Levermore [25] for the singular limit of the Korteweg - deVries
equation ∂tu + u∂xu = ε2K∂xxxu as ε → 0, i.e. once smooth solutions to the
limit system ∂tu+u∂xu = 0 breakdown all bets are off and there will be no con-
vergence to the desired limit. Now it could be argued that our Korteweg system
has a viscous term and a better analogy would be with the KdV-Burgers system
∂tu + u∂xu = ε∂xxu + ε2K∂xxxu. If the capillarity coeffi cient K is suffi ciently
viscosity would dominate and passage to the limit might be accomplised as in
the paper of Schonbek [36]. But alas I have shown in [39] based on the results
of Gorban&Karlin that while it is appealing mathematically to make such an
assumption it does not follow from Gorban&Karlin’s results. In fact just the
reverse is true: capillarity dominates viscosity and our Korteweg system can be
expected to generate oscillations just as in the Lax-Levermore limiting process.
4. Acknowledgement. The author was supported by a Simons Foundation

Collaborative Research Grant 232531.
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