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Why should one care?

▶ The work of Almgren ’68 and Pitts ’81 (also Schoen-Simon
’81) guarantees the existence of at least one closed, smooth,
minimal and embedded minimal hypersurface Mn ↪→ Nn+1 in
any closed Riemannain manifold N when n ≤ 6. It is a
conjecture of Yau that there should be infinitely many distinct
M ↪→ N.

▶ Due to the recent work of Marques-Neves ’14, Yau’s
conjecture has been proved when RicN ≥ α > 0. Thus it
makes sense to try to understand the space (where M is
closed)

M(N) = {Mn ↪→ Nn+1|M is smooth, minimal and embedded.}

▶ One way to get a handle on this space is to understand the
relationship between the Betti numbers (or topology) of M,
bi (M) and the geometric-analytic properties; index(M),
Hn(M) and the total curvature

∫
M |A|n.
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Set-up and definitions

Throughout this talk Nn+1 will be a closed Riemannian manifold
with 2 ≤ n ≤ 6 and Mn ↪→ N a smooth embedded minimal
hypersurface which is also closed.

We call M minimal if for all ϕt : (−ε, ε)× N → N, one parameter
families of diffeomorphisms with ϕ0 = Id , Mt = ϕt(M) we have

∂

∂t
Vol(Mt)|t=0 = −

∫
M
H · v dVM = 0.

Where for x ∈ M, v(x) =
(
∂ϕt(x)
∂t |t=0

)⊥M

∈ Γ(NM) and

H = trM A is the mean curvature of M.
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Set-up and definitions

The index of M, index(M) is the Morse index - the number of
negative eigenvalues associated with the Jacobi (second variation)
operator for minimal hypersurfaces M ⊂ N:

∂2

∂t2
Vol(Mt)|t=0 =

∫
M
|∇⊥v |2 − |A|2|v |2 − RicN(v , v) dVM .

▶ Call M stable if
Q(v , v) :=

∫
M |∇⊥v |2 − |A|2|v |2 − RicN(v , v) dVM ≥ 0 for all

v ,

▶ and locally minimising if Q(v , v) > 0 for all v ̸= 0.

▶ If M is two-sided, v = f ν some f ∈ C∞(M) and

Q(f ν, f ν) =

∫
M
|∇f |2 − (|A|2 + RicN(ν, ν))f

2 dVM ,

thus if RicN > 0 there are no stable, two sided, minimal
hypersurfaces in N.
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Compactness and non-compactness

Given a sequence {Mn
k } ↪→ Nn+1 if we know that

Hn(Mk) + sup
x∈Mk

|Ak(x)| ≤ Λ < ∞

then there exists some M (minimal, smooth, closed, embedded)
such that (up to subsequence) Mk → M smoothly and graphically.
When RicN > 0 and n = 2 we can do better:

Theorem (Choi-Schoen ’85)

Let N be a compact 3-dimensional manifold with positive Ricci
curvature. Then the space of compact embedded minimal surfaces
of fixed topological type in N is compact in the C k topology for
any k ≥ 2 - i.e. smooth graphical convergence with multiplicity
one.
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Compactness and non-compactness

Remarks

1. For n ≥ 3 control on topology can never give such a strong
compactness theorem. Letting S4 ↪→ R5 be the round sphere,
W. Y. Hsiang ’83 proved there exists a sequence M3

k ↪→ S4

such that M3
k
∼= S3, and H3(M3

k ) ≤ Λ but M3
k → M where

M = T 2×[0,1]
∼ is singular at antipodal points.

2. When n = 2 and RicN > 0, by results of Ejiri-Micallef ’08 and
Choi-Wang ’83 we get that

index(M) +H2(M) ≤ C (N)
16π

α

(
1

|π1(N)|
− χ(M)

)
.

Question: are index and volume the correct quantities to control
for higher dimensions?
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Compactness and non-compactness

Recall that Q is diagonalised by an L2-orthonormal basis of
eigenfunctions {vk} ⊂ Γ(NM) with eigenvalues

λ1 ≤ λ2 ≤ · · · ≤ λk · · · → ∞

where

−∆⊥
Mvk − |A|2vk − RicN(vk , ·) = LMvk = λkvk .

Therefore index(M) = max{k|λk < 0}.
We will order the space M(N) in the following way, given p ∈ N
and 0 ≤ Λ, µ ∈ R

Mp(Λ, µ) = {M ∈ M(N)|λp ≥ −µ,Hn(M) ≤ Λ}.

If
M(Λ, I ) = {M ∈ M(N)|index(M) ≤ I ,Hn(M) ≤ Λ}

then we see easily that M(Λ, I ) = MI+1(Λ, 0) but in general there
is no obvious relationship between the two for µ > 0.
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Main results

Theorem (S ’14 (in the case of M(Λ, I )), Ambrozio - Carlotto
- S ’15 (in general))

Let {Mk} ⊂ Mp(Λ, µ), then there exists M ∈ Mp(Λ, µ), m ∈ N
and a finite set mathcalY ⊂ M such that (up to subsequence)
Mk → mM smoothly and graphically with multiplicity m on M\Y.

Assuming that Mk ̸= M eventually, we have |Y| ≤ p − 1 and
nullity(M) ≥ 11 or nullity(M̃) ≥ 12. Furthermore the following
dichotomy holds:

1. if the number of leaves in the convergence is one then Y = ∅
2. if the number of sheets is ≥ 2

▶ M is two-sided implies that M is stable (index(M) = 0)
▶ M is one-sided implies that M̃ is stable.

1i.e. there exists a non-trivial solution to LMv = 0
2when M is one-sided M̃ is the two-sided immersion related to M
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Main results

Corollary (A-C-S ’15)

Let Nn+1 be a closed Riemannian manifold with RicN > 0 and
2 ≤ n ≤ 6. Then given any 0 ≤ µ,Λ < ∞ and p ∈ N the class
Mp(Λ, µ) is compact in the C l topology for all l ≥ 2 .

Notice that by an easy argument we have the existence of
C = C (Λ, p, µ,N) such that for any M ∈ Mp(Λ, µ)

sup
M

|A|+
∑
i

bi (M) ≤ C ,

moreover there are only finitely many such M up to
diffeomorphism.
A result of Chodosh-Ketover-Maximo ’15 implies that in fact the
volume bound can be dropped here when n = 2.
Open Problem: Can the volume bound be dropped when n ≥ 3?
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Main results

Theorem (Buzano - S ’16)

Let {Mk} ⊂ Mp(Λ, µ) for some fixed constants 0 ≤ Λ, µ, p ∈ N
independent of k. Then with M as in the previous theorem, there
exists a finite number (possibly zero) {Σn

l }Jl=1 ↪→ Rn+1 of properly
embedded minimal hypersurfaces with finite total curvature for
which

lim
k→∞

∫
Mk

|Ak |n = m

∫
M
|A|n +

J∑
l=1

∫
Σl

|Al |n

where m is the multiplicity of the local graphical convergence away
from Y and J ≤ p − 1. Furthermore when k is sufficiently large,
the Mk ’s are all diffeomorphic to one another.



Minimal hypersurfaces with bounded index and area

Main results

Corollary

There exists some C = C (N, p,Λ, µ) such that Mp(Λ, µ) contains
at most C elements up to diffeomorphism.

The above has been proved by Chodosh-Ketover-Maximo using
different methods when considering the more restrictive class
M(Λ, I ).

Corollary

There exists some C = C (N, p,Λ, µ) such that for any
M ∈ Mp(Λ, µ) we have ∫

M
|A|n ≤ C .
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Main results

By results of Cheng-Tysk (n ≥ 3) and Ejiri-Micallef (n = 2) we
know that for any M

index(M) ≤ C

(∫
M
|A|n +Hn(M)

)
.

Thus we have

Corollary

There exists some I = I (N,Λ, p, µ) such that
M(p, µ,Λ) ⊂ M(Λ, I ).

In other words, if we consider the class of minimal hypersurfaces M
so that Hn(M) ≤ Λ then a control on index is equivalent to
controlling just one of the eigenvalues λp away from −∞ and
either of these conditions is itself equivalent to controlling the total
curvature of M.
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Main results

Thank you for your attention!
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