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Free surface Euler equations

Picture

Ω

n

Γ=∂Ω

Γ
t
(t) = u⋅ n

N η(t)
η(x,t)

Ω(t)=η(Ω,t)

Γ(t)=η(Γ,t)

x

Free-surface Γ(t) is transported by the fluid velocity

Lagrangian variables: Let η(·, t) : Ω→ Ω(t) denote the flow map of u

ηt = u ◦ η, η(x ,0) = x or η = Id +

∫ t

0
v

with v(x , t) := u(η(x , t), t). Also, divu = 0⇒ det∇η = 1 .
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The Eulerian description

The system of PDE

ut + u · ∇u +∇p = 0 in Ω(t) = η(Ω(0), t)
divu = 0 in Ω(t)

pn = −σ∇ττ on Γ(t) (σ ≥ 0)

u = u0 on Ω(0)

Ω(0) = Ω0 .

Basic Unknowns for the PDE
The solution involves the following quantities:

Velocity vector u = (u1,u2)

Pressure function p
Moving domain Ω(t) = η(Ω0, t)
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A Brief History of the Free-Boundary Euler equations

Water waves equation: Assume u = ∇φ, where φ is the velocity potential.
Then curl u = 0 and φ is harmonic – problem reduces to the motion of the
free-surface (complex analysis in 2-D)
Local well-posedness for water waves: Wu (1997,1999), Ambrose &
Masmoudi (2005,2009), Lannes(2005), Alazard, Burq, Zuily (2014)
Local well-posedness for Euler: Lindblad (2005), Coutand & Shkoller
(2007), Shatah& Zeng (2008, 2011), Zhang& Zhang (2008)
Water waves global in time existence for small data on infinite domain :
Wu (2009), Germain, Masmoudi & Shatah (2012), Ionescu & Pusateri
(2015), Alazard & Delort (2015), Deng, Ionescu, Pausader & Pusateri
(2016), Ifrim & Tataru (2016).
Small data global in time existence is entirely open for the physical case
of bounded domains.
What about finite time singularity formation ? Curvature blow-up of
free-surface, cusp formation, loss of injectivity....
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The splash and splat singularities

Definition (Castro, Cordoba, Fefferman, Gancedo,
Gomez-Serrano (2013))
Splash Singularity – the smooth free surface Γ(t) self-intersects at a point x0.

t<T

Fluid

t=T

x0

Fluid

Figure 1: The splash singularity wherein the top of the crest touches the trough at a
point x0 in finite time T .

Definition (Castro, Cordoba, Fefferman, Gancedo,
Gomez-Serrano (2013))
Splat Singularity – Γ(t) self-intersects on a smooth surface Γ0.
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Finite time splash and splat singularity for the one
phase Euler equations

Theorem (2-D, Castro, Cordoba, Fefferman, Gancedo,
Gomez-Serrano (2013))
Finite-time splash and splat singularity for irrotational 2-D water waves
equations using complex analysis, analytic functions, and conformal
transformations.

Theorem (3-D, Coutand, Shkoller (2014))

Finite-time splash and splat singularity for free-surface Euler equations with
energy methods in Sobolev spaces.

Comment on both results
The natural norm of the problem stays finite for all time (independently of
how close to contact we are).
Geometric singularity without natural norm blow-up.
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Finite time splash and splat singularity ruled out for the
two-phase Euler equations (vortex sheet problem)

Γ(t)Ω+(t)
Ω−(t) Γ(t)Ω+(t)

Ω−(t)

Theorem (2-D, Fefferman, Ionescu, Lie (2016))
Finite-time splash and splat singularity ruled out for two-phase 2-D water
waves equations with surface tension using complex analysis, analytic
functions, and conformal transformations.

Theorem (2-D, Coutand, Shkoller (2016))

Finite-time splash and splat singularity ruled out for two-phase 2-D water
waves equations with surface tension using elliptic methods.
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Finite time splash and splat singularity ruled out for the
two-phase Euler equations (vortex sheet problem)

Comment on both results
The formation of a self-intersection is not ruled out by these results. It is
the case when the self-intersecting Γ(t) is locally smooth (relative to a
parameterisation), as well as the velocity field on it, which is excluded.
These results show the formation of a self-intersection requires a blow-up
of the natural norm of the problem.
How to identify situations leading to a blow-up of the natural norm of the
problem ?
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The 2-D Euler vortex sheet with surface tension

The system of PDE

ρ±(u±t + u± · ∇u±) +∇p± = −ρ±(0,g) in Ω±(t)

divu± = 0 in Ω±(t)

(p+ − p−)n = σ∇ττ on ∂Ω+(t)

u− · n = u+ · n on ∂Ω+(t)

u− · n = 0 on ∂Ω

(u±(0),Ω±(0)) = (u±0 ,Ω
±
0 )

Ω±(t) = η±(Ω±0 , t) .

Basic Unknowns for the PDE
Velocity vector and pressure in each phase Ω±(t): u± = (u±1 ,u

±
2 ), p±.

Moving bubble domain Ω+(t)
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Known properties of Euler vortex sheet

Theorem (Local in time well-posedness)

Cheng, Coutand, Shkoller (2008).
Shatah, Zeng (2008, 2011).

Comment on both results
These established independently that the problem is locally in time
well-posed for a norm like

N(t) = ‖η−‖
H

9
2 (Ω−0 )

+ ‖u+‖H3(Ω+(t)) + ‖u−‖H3(Ω−(t)) .

How to identify situations leading to a blow-up of the norm of the problem,
given the analysis shows an estimate of the type

N(t) ≤ tαP(sup
[0,t]

N) + C0 ?
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Gravity driven singularity formation: initial assumptions

Picture

Initial symmetry assumptions
If

Ω, Ω+
0 ⊂ Ω symmetric with respect to vertical axis x1 = 0,

n2 < −C < 0 in a neighborhood Γ1 (of size at least 1) of the lowest part of
the vertical projection of Ω+

0 over ∂Ω (a graph satisfies this condition).
u1(0) odd in x1, u2(0) even in x1,

then this stays the same for all time of existence. The pressure p is even as
solution of an elliptic problem.
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Gravity driven singularity formation: Statement

Theorem (Finite-time singularity formation, Coutand (2017))

There exists ε > 0 (depending on the dimensions of Ω) such that if
ρ+ > ρ−, (higher density for the bubble Ω+(t))

‖u±(0)‖L2(Ω±(0)) + |∂Ω+
0 |+

1
|Ω+

0 |

∣∣∣∫Ω+
0

x2 dx
∣∣∣+ ‖curlu±0 ‖L2(Ω±) ≤ ε ,

then for some finite time T > 0, the vertical projection of Ω+(t) stays
contained in Γ1 and either

N(t)→∞ as t → T ,
or there will be finite-time self-intersection of ∂Ω+(T ),
or ∂Ω+(T ) intersects ∂Ω.

Comment
Finite time self-intersection or intersection with ∂Ω lead to a blow-up of
‖∇u±‖L∞(Ω±(t)) + |∇ττ‖L∞(Γ(t)) as t → T .
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Gravity driven singularity formation: Idea of proof

Outline of approach
Basic energy estimate for controlling L2 norm of velocity and length of
interface independently of time.
Tracking motion of centre of gravity of moving bubble.
Obtain an equation for this motion showing some surface energy.
Perform elliptic estimates away from the bubble to control undesirable
terms that may oppose fall of bubble.
Obtain a nice DI for the surface energy providing finite time blow-up.

Definition (Centre of gravity of Ω+(t))

x+(t) =
1
|Ω+|

∫
Ω+(t)

x dx =
1
|Ω+

0 |

∫
Ω+

0

η+ dx ,

since det∇η+ = 1 and Ω+(t) = η+(Ω+
0 , t).
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Gravity driven singularity formation: Centre of mass

Velocity and momentum of centre of mass

v+(t) =
dx+

dt
=

1
|Ω+

0 |

∫
Ω+

0

v+ dx =
1
|Ω+

0 |

∫
Ω+(t)

u+ dx .

Thus, |v+(t)| ≤ 1√
|Ω+

0 |
‖u+‖L2(Ω+(t))︸ ︷︷ ︸

controlled

.

ρ+|Ω+
0 |︸ ︷︷ ︸

=m+

dv+

dt
(t) = ρ+

∫
Ω+

0

dv+

dt
(x , t) dx = ρ+

∫
Ω+(t)

u+
t + u+ · ∇u+ dx .

m+ dv+

dt
(t) = −

∫
Ω+(t)

∇p+ +ρ+g(0,1) dx =

∫
∂Ω+(t)

p+n− dl(t)−m+g(0,1)

m+ dv+

dt
(t)+m+g(0,1) =

∫
∂Ω+(t)

(p−n+σ ∇ττ)︸ ︷︷ ︸
zero integral

dl(t) =

∫
∂Ω+(t)

p−n︸︷︷︸
sign?

dl(t) .
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Equation for the centre of mass

Lemma (Equation of centre of mass)
θ : [0,1]→ ∂Ω being a parameterisation of ∂Ω,

m+ dv+
2

dt
=ρ−

∫
∂Ω

|u−|2

2
n2︸︷︷︸

<0 on bottom

dl − ρ− d
dt

∫
Ω−(t)

u−2 dx − (ρ+ − ρ−)︸ ︷︷ ︸
>0

|Ω+
0 |g

+
d
dt

∫ 1

0

∫ s

0
ρ−u− · τ(θ(α), t)|θ′(α)|dα n2(θ(s)) |θ′(s)| ds .

Proof. With n denoting the outer unit normal to Ω−(t),∫
Ω−(t)

∇p− dx =

∫
∂Ω+(t)

p− n dl(t) +

∫
∂Ω

p− n dl .

This provides by substitution in our equation of motion:

m+ dv+

dt
= −

∫
∂Ω

p− n dl +

∫
Ω−(t)

∇p− dx −m+g(0,1) ,
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Equation for the centre of mass

m−
dvs

dt
=−

∫
∂Ω

p− n dl − ρ−
∫

Ω−(t)
u−t + u− · ∇u− + g(0,1) dx −m+g(0,1) ,

=−
∫
∂Ω

p− n dl − ρ− d
dt

∫
Ω−(t)

u− dx − (m+ + ρ−|Ω−|)g(0,1) . (3)

Next, we express the Euler equations as

ρ−u−t +∇
(
ρ−|u−|2

2
+ p

)
= −ρ−g(0,1) + ρ−curlu− (−u−2 ,u

−
1 ) .

ρf u−t · τ +∇τ (p + ρ−
|u−|2

2
) = −ρ−gτ2 + ρ−curlu− u− · n︸ ︷︷ ︸

=0 on ∂Ω

.

By integration along ∂Ω,

(p− + ρ−
|u−|2

2
)(θ(s), t) =(p + ρ−

|u−|2

2
)(θ(0), t)

−
∫ s

0
(ρ−gτ2 + ρ−u−t · τ)(θ(α), t)|θ′(α)|dα . (4)
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Equation for the centre of mass

Report (4) in (3). This yields a term∫ 1

0

∫ s

0
τ2(θ(α))|θ′(α)|dα n(θ(s)) |θ′(s)| ds .

Define f (x) = x2, so that ∇f = (0,1) and ∇τ f = τ2. Therefore,

f (θ(s)) = f (θ(0)) +

∫ s

0
τ2(θ(α))︸ ︷︷ ︸
∇τ f (θ(α))

|θ′(α)| dα︸ ︷︷ ︸
dl

. (5)

Next, since ∫
Ω

(0,1) dx =

∫
Ω

∇f dx =

∫
∂Ω

f n dl , (6)

substituting (5) in (6) provides:

|Ω|(0,1) =

∫ 1

0

∫ s

0
τ2(θ(α))|θ′(α)|dα n(θ(s)) |θ′(s)| ds . (7)

�
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Locating the moving bubble

Lemma (Conservation of energy)
The total energy is independent of time:

E(t) =
ρ+

2

∫
Ω+(t)

|u+(x , t)|2 dx +
ρ−

2

∫
Ω−(t)

|u−(x , t)|2 dx

+ (ρ+ − ρ−)︸ ︷︷ ︸
≥0

g x+
2 (t)︸ ︷︷ ︸
≥0

|Ωs|+ σ|∂Ω+(t)| ,

Given our initial assumptions, length of curve stays small and centre of gravity

stays away from top:

Lemma (Most of Ω never gets touched by the moving bubble)
Ω+(t) stays away from the top and lateral sides of ∂Ω by a positive
distance independently of time.
Its vertical projection on the bottom of ∂Ω only intersects the part of ∂Ω
where n2 < 0.
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Elliptic estimate on ∂Ω away from bubble

Lemma
We have the existence of C > 0 (depending on Ω) such that∫

Γc
1

|uf |2 dl ≤ Cx+
2 (0)|Ω+

0 |+ C‖ω−(0)‖2
L2(Ω−0 )

,

where ω = curl u− and Γc
1 is the part of ∂Ω which is away from the bubble for

all time by a positive distance D > 0. C is small if Ω has large dimensions.

Proof.

u− =∇⊥φ , in Ω−(t) ,

φ =0 ,on ∂Ω ,

∆φ =ω = ω0(η−1(x , t)) , in Ω−(t) ,

with ‖∇φ‖2
L2(Ω−(t)) = ‖uf‖2

L2(Ω−(t)) ≤ 2 E(0)
ρ− .
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Elliptic estimate on ∂Ω away from bubble

With ñ being an harmonic extension of the normal vector on ∂Ω to Ω, we have

|ñ(x)|2ω = |ñ(x)|2∆φ(x , t) = τ̃i (x)τ̃j (x)
∂2φ

∂xi∂xj
(x , t) + ñi (x)ñj (x)

∂2φ

∂xi∂xj
(x , t) .

(8)

Using

ξñk
∂φ

∂xk
= ξ∇ñφ

as a test function in (8) for ξ cut-off function such that ξ = 1 in Γc
1, we have

after integration by parts a relation of the type:

1
2

∫
Γc

1

|∇nφ|2− |∇τφ|2︸ ︷︷ ︸
=0 on ∂Ω

dl =

∫
Ω

ξ ω︸︷︷︸
L2(Ω−(t))

|ñ|2∇nφ+

∫
Ω

B(∇φ,∇φ)F (∇ξ, ξ,∇ñ,n) dx .

�
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Return to the ODE and finite-time singularity

m+ dv+
2

dt
=ρ−

∫
∂Ω

|u−|2

2
n2︸︷︷︸

<0 on bottom

dl − ρ− d
dt

∫
Ω−(t)

u−2 dx − (ρ+ − ρ−)︸ ︷︷ ︸
>0

|Ω+
0 |g

+
d
dt

∫ 1

0

∫ s

0
ρ−u− · τ(θ(α), t)|θ′(α)|dα n2(θ(s)) |θ′(s)| ds .

Integrating this relation from 0 to t , and picking our initial data so that

ρ−(Cx+
2 (0)|Ω+

0 |+ C‖ω−(0)‖2
L2(Ω−0 )

) ≤ ρ+ − ρ−

4
g|Ω+

0 | ,

we have an inequality of the type (C i
Ω > 0):

C1
Ωρ
−
∫
∂Ω

|u−|dl ≥ C2
Ωρ
−
∫ t

0

∫
∂Ω

|u−|2dldt +
ρ+ − ρ−

2
|Ω+

0 |gt − C0 ,
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Return to the ODE and finite-time singularity

and since ∫ t

0

∫
∂Ω

|u−|2dldt ≥

(∫ t
0

∫
∂Ω
|u−|dldt

)2

t |∂Ω|
,

we obtain a nice DI for
∫ t

0

∫
∂Ω
|u−|dldt :

C1
Ωρ
−
∫
∂Ω

|u−|dl ≥ C2
Ωρ
−

(∫ t
0

∫
∂Ω
|u−|dldt

)2

t |∂Ω|
+
ρ+ − ρ−

2
|Ω+

0 |gt − C0 .

Since
∫∞

1
1
t dt =∞, this ensures blow up in finite time Tmax for

∫ t
0

∫
∂Ω
|u−|dldt .

Thus, if N(t) was still finite until Tmax and no self-intersection or contact with

∂Ω occurred, we still have blow-up of this quantity at Tmax to ensure

breakdown in finite time of smooth solution. �

D. Coutand Finite-time singularity formation for Euler vortex sheet



Comments

Very general method, works for any included phase (with Ω− Euler

phase) for which we have a priori control of the diameter (3-D non linear

elasticity should be suitable, if no vorticity in fluid).

The principle of derivation of the DI is very different from Sideris (86) and

Xin (98) for compressible Euler (wave equation).

The case when Ω has free surface as well (away from inclusion) presents

significant additional challenges (as surface energy DI set on ∂Ω needs

change).

The simplest case of inclusion is the rigid body (no change of shape), for

which this method works as well (without assumptions on the initial height

and length this time, but still a small vorticity). We can have more precise

statements about the fluid velocity fields and pressure, as well as

acceleration of the rigid solid, at the time of contact.
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Motion of a rigid body in an Euler fluid in 2-D

Setting
This time the bubble Ωs(t) has a fixed shape. Assuming initial symmetry
assumptions at time 0 we have that it falls vertically

Ωs(t) = Ωs(0) + (0, xs
2 (t)− xs

2 (0)) .

The motion of the rigid solid is governed by vs
2 (t).

On ∂Ωs(t), uf · n = vs
2 n2.

The fluid Ω−(t) is governed by the Euler equations while the center of
gravity of the rigid body is governed by

ms
dvs

dt
=

∫
∂Ωs(t)

pn dl −ms(0,g) ,

n exterior to the fluid phase.
We still assume ρs > ρf .
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Motion of a rigid body in an Euler fluid in 2-D: History

Global in time well-posedness so long as no contact with ∂Ω proved by

Glass & Sueur (2015) for general configurations.

Finite time contact established by Munnier & Ramdani (2015) with

symmetry assumptions ensuring vertical fall and no vorticity, and flat

bottom. Some cases with bottom with very special geometries are

allowed. They establish that the velocity of contact is either (finite) non

zero (like disk) or zero (flatter).

The method of Munnier & Ramdani (2015) is purely elliptic, ( there is no

DI for a surface energy) and view this problem as a sequence of

Neumann problems for φ such that uf = ∇φ, in domains with the bottom

of ∂Ω at a distance ε from the bottom of the rigid body. They then cast

this problem in a strip of given height and length converging to∞ as

ε→ 0. Vorticity is not allowed in this setting.
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Statement of new results for rigid body case

Our methodology can be applied to this problem. It gives:

Theorem (Coutand(2017))
With the symmetry assumptions ensuring vertical motion, if vs

2 (0) < 0
and ‖ω0‖L2(Ωf ) ≤ ε0|vs

2 (0)| (ε0 > 0 depending on Ω) then there is finite
time contact (without assumptions on shape other than symmetric).
For the case of the flat bottom, and strictly convex geometry around
lowest point of ∂Ωs(t), we have

lim
t→T−max

‖uf‖L2(∂Ω) = lim
t→T−max

‖uf‖L2(∂Ωs(t)) = lim
t→T−max

‖uf‖H1(Ωf (t)) =∞,

while
∫ Tmax

0
‖uf‖2

H1(Ωf (t)) dt <∞.

For the same case, if ω0 = 0, lim
t→T−max

‖p‖L1(∂Ωs(t)) = lim
t→T−max

dvs
2

dt
=∞.

Contrast between free fall in void (constant acceleration) and free fall in fluid

(infinite upward acceleration as if trying to avoid collision).
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Monotone motion for the centre of gravity of rigid solid

We assume vs
2 (0) < 0. Let us assume that there exists a first t0 > 0 such that

vs
2 (t0) = 0 .

Then, from uf = ∇φ which provides for φ:

∆φ(·, t0) =0 , in Ωf (t0) ,

∇φ(·, t0) · n =0 , on ∂Ω ,

∇φ(·, t0) · n =vs(t0) · n = 0 , on ∂Ωs(t0) ,

from which we immediately have ∇φ(·, t0) = 0 and thus uf (t0) = 0. Thus

xs
2 (t0) < xs

2 (0)⇒ E(t0) = (ρs − ρf )gxs
2 (t0)|Ωs| < E(0) .

⇒ If no finite time collision,
∫∞

0 |v
s
2 (t)| dt <∞⇒ finite time blow-up in DI.
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Non zero contact velocity

Lemma
Assume that the lowest point of the strictly convex ∂Ωs(t) is on x1 = 0. Then,
independently of time, ∫

∂Ωs(t)
x2

1 (uf · τ)2 dl ≤ C .

Proof Introducing

f (t) =

∫
∂Ωs(t)

x1n2uf
1uf

2 dl ,

and writing it in two different manners: One using uf = (uf · τ) τ + (uf · n︸ ︷︷ ︸
=vs

2 n2

) n,

the second one using the divergence theorem to have an integral set on Ωf (t),

and comparing the two expressions.
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Non zero contact velocity

uf = ∇⊥φ which provides for φ:

∆φ(·, t0) =ω(·, t) , in Ωf (t) ,

φ(·, t) =0 , on ∂Ω ,

φ(·, t) =vs
2 (t)x1 , on ∂Ωs(t) .

as ∇τx1 = τ1 = n2. Thus,∫
Ωf (t)
|uf |2 dx = −

∫
Ωf (t)

ωφ dx + vs
2 (t)

∫
∂Ωs(t)

∇nφ x1 dl

= −
∫

Ωf (t)
ωφ dx − vs

2 (t)
∫
∂Ωs(t)

uf · τ x1 dl ,

Therefore,

‖uf‖2
L2(Ωf (t)) ≤ ‖φ‖L2(Ωf (t))‖ω0‖L2(Ωf ) + |vs

2 (t)|

∣∣∣∣∣
∫
∂Ωs(t)

uf · τ x1 dl

∣∣∣∣∣ .
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Non zero contact velocity

Therefore, with our Poincaré inequality (independent of how close to contact

we are), we have if vs
2 (t) converges to zero as contact nears:

‖uf‖L2(Ωf (t0)) ≤ C‖ω0‖L2(Ωf ) .

This leads to a too small kinetic energy for total energy conservation. �
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Equivalence of norms (independently of how close to
contact)

Lemma
We have the existence of Ci > 0 such that

C1

∫
∂Ωs(t)

|uf |2 dl − C2 ≤
∫

Ωf (t)
|∇uf |2 dx ≤ C3

∫
∂Ωs(t)

|uf |2 dl + C4 .
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New formula for acceleration of rigid body

Lemma
For the case ω0 = 0, we have

2E(0) + 2(ρf − ρs)gxs
2 |Ωs|

(vs
2 )2

dvs
2

dt
=ρf

∫
∂Ω

|uf |2

2
dl︸ ︷︷ ︸

blows up

−ρf
∫
∂Ω∩Γc

1

|uf |2

2
(n2 + 1) dl︸ ︷︷ ︸

bounded

+ (ms − ρf |Ωs|)g + 2(ρf − ρs)g|Ωs|

Classical mechanics (in void): constant acceleration, −g until contact.

Fall in Euler fluid: infinite upward acceleration.
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Thank you
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