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Introduction

Classical Hamiltonian H(π, φ) =
∫

R
H(π, φ) dx

where

H(π, φ) =
1

2

(
π2 + ∂xφ

2
)

+ U(φ) .

with double-well potential function

U(φ) =
m4

2g2

(
1−

g2φ2

m2

)2
=

1

2
g2
(
φ2 −Φ2

0

)2
.

(1)

Two classical vacua ±Φ0, where Φ0 = m/g.
Constant configuration Φ0 minimizes energy
with boundary conditions

lim
|x|→∞

φ(x) = Φ0 ; (2)

The classical soliton,

ΦS(x) =
m

g
tanhmx , ΠS(x) = 0 , (3)

minimizes energy amongst configurations which
interpolate between the two vacua as its asymp-
totic boundary values, i.e.,

ΦS(x) → ±Φ0 as x → ±∞ . (4)
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Soliton is not unique due to translation invari-

ance: the set of energy minimizers is {(ΦS( · −
ξ),0)}ξ∈R . The energy of an energy minimizer

equals the minimum value of H on the set of

finite energy configurations verifying (4). It is

the classical rest mass of the soliton, given by

Mcl =
4m3

3g2
=

mcl

g2
, mcl =

4m3

3
. (5)

Quantization . Fields now operator valued dis-

tributions which must satisfy Heisenberg com-

mutation relation[
φ(t, x) , φ̇(t, y)

]
= iδ(x− y)

as a constraint.

Existence: regularize the problem, construct

Hamiltonian as operator on Hilbert space and

take a limit as regularization disappears. To

study soliton must carry out this procedure

in a comparable way: i.e. must involve the

same subtractions (“Wick ordering”) and reg-

ularizations of the fields (which are related by

scattering theory.)
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Main result, stated briefly: construct comparable
spatially cut-off quantum Hamiltonians cor-
responding to vacuum and soliton boundary
conditions

Hvac
g and Hsol

g

and prove that as g → 0, with strong operator
convergence locally uniformmly in time t

Theorem 1

exp[−itHvac
g ]→ exp[−itH0]

but

exp[−itHsol
g +it

mcl

g2
+it∆Mscl ]→ exp[−it

P2

2mcl
]⊕exp[−itHsol

0 ]

mcl = 4m3/3 scaled classical soliton mass;

∆Mscl = −m(3
π−

1
2
√

3)
semi-classical mass cor-

rection due to Dopplicher-Haslacher-Neveu;

exp[−it P
2

2mcl
] describes free motion of NR quan-

tum particle

H0 (and Hsol
0 ) are free field (and free field in

soliton background)

Now explain these concepts.
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I Classical Nonrelativistic particle

Particle: mass M concentrated at a point

X(t) ∈ R3 at time t

No internal structure.

Newton : if no forces act on a particle it moves

at uniform velocity

m
d2X

dt2
= 0

Conservation laws:

P = m
dX

dt
(momentum)

E =
P2

2m
(kinetic energy)

People used to think that ... when a thing

moves it is in a state of motion. This is now

known to be a mistake. Bertrand Russel
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II Quantum Nonrelativistic Particle

The energy momentum relation E = P2

2m turns
into a dispersion relation

1

~
ωk =

k2

2m
for waves

exp[ikx− iωkt]

which are the basic solutions of the Schrödinger
equation:

i~
∂ψ

∂t
= −

~2

2m

∂2ψ

∂x2

with initial data ψ(x,0) = ψ0(x) .

• Quantum particle has no internal struc-
ture;

• lives in a state characterized e.g. by Fourier
transform

f(k) = ψ̂0(k) ∈ L2

as

ψ(x, t) =
1√
2π

∫
f(k) exp[ikx− iωkt] dk
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III Relativistic Particle The relativistic energy

momentum relation

E2 = P2 + m2

turns into the dispersion relation

ω2
k = k2 + m2 (~ = 1)

and thence the relativistic wave equation

∂2φ

∂t2
−
∂2φ

∂x2
+ m2 φ = 0 .

Problem of negative energies E = ±
√
P2 +m2

resolved by saying

• φ is not a wave function;

• it is a quantum field operator describing

creation and annihilation of particles;

• interpretation as multi-particle theory es-

sential.
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• φ is a distribution taking values in space of

unbounded operators on a Hilbert space,

constrained by Heisenberg relation

[φ(t, x) , φ̇(t, y)] = iδ(x− y) ,

(The Reason for Anti-particles by Richard Feyn-

man.) Leads to three sources of trouble: ultra-

violet, infra-red and particle number.

The free field describes multi-particle theory:

sequence of n-particle wave functions ψn(x1, . . . , xn; t)

evolving according to

i∂tψn =
n∑

j=1

√
−∂2

j +m2 ψn

where
√
−∂2

j +m2 is pseudo-differential oper-

ator acting in jth argument of ψn.

Non-quandratic terms in Hamiltonian couple

the ψn.



IV Fock space is the (complete) Hilbert direct

sum of the symmetric n-fold tensor powers of

L2(R), i.e.

H =
∞⊕
n=0

Symn(L2(R)) .

A typical element, Ψ ∈ H, is a sequence of

functions {Ψn}∞n=0, where Ψn ∈ L2(Rn) is sym-

metric with respect to interchange of any pair

of coordinates.

‖Ψ‖2 =
∑
‖Ψn‖2L2(Rn) .

The vacuum has Ψ0 = 1 and Ψn = 0 for

n ≥ 1. Call it Ω or |0 〉.

Annihilation and creation operators are given,

respectively, by

(akΨ)n−1(k1, . . . , kn−1) =
√
nΨn(k, k1, . . . , kn−1) ,

(a†kΨ)n+1(k1, . . . , kn+1) =
n+1∑
j=1

δ(k − kj)√
n+ 1

Ψn(k1, . . . , k̂j, . . . , kn+1) .

(Really define operator valued distributions or

quadratic forms.)
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V The Free Field

Given dispersion relation ωk =
√
k2 + 4m2, we

define the fields

ϕ(x) =
1√
2π

∫ 1
√

2ωk

(
ake

ikx + a
†
ke
−ikx

)
dk , and

π(x) =
1√
2π

∫
−i
√
ωk
2

×
(
ake

ikx − a†ke
−ikx

)
dk .

Really operator valued distributions

ϕ(f) =
∫ 1
√

2ωk

(
ak f̂(−k) + a

†
k f̂(k)

)
dk ,

where f̂(k) = (2π)−1/2 ∫ e−ikxf(x) dx ∈ S(R)
is the Fourier transform.

Notice vacuum expectation infinite:

〈0 |ϕ(x)2|0 〉 = ‖ϕ(x)Ω‖2 =
1

4π

∫
dk

ωk
= +∞ .

Wick ordering - move annihilation operators
to right - gives

〈0 : |ϕ(x)2 : |0 〉 = 0 .

Physically : removes self interaction of parti-
cles on themselves.
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VI Regularized fields Let δ1 ∈ C∞0 (R) be a non-
negative, even function with δ1(x) = 0 for
|x| ≥ 1, and satisfying

∫
δ1(x) dx = 1. For

κ > 0 define δκ(x) = κδ1(κx), so that the op-
erator δκ∗ is an approximation to the identity.
Regularized fields:

ϕκ(x) =
∫
χκ(k)
√

2ωk

(
ake

ikx + a
†
ke
−ikx

)
dk ,

πκ(x) =
∫
−iχκ(k)

√
ωk
2

(
ake

ikx − a†ke
−ikx

)
dk ,

where χκ(k) = χ(k/κ) with χ(k) = δ̂1(k).

Regularization amounts to a smooth momen-
tum cut-off at scales large compared to κ since
χκ(k) = δ̂1(k/κ) :

γκ = 〈0 |ϕκ(x)2|0 〉 =
∫ |χκ(k)|2 dk

2ωk
< +∞ .

But Wick ordering interferes with bounded-
ness below:

: ϕκ(x)4 : = ϕκ(x)4 − 6γκϕ
2
κ + 3γ2

κ

= (ϕκ − 3γκ)2 − 6γ2
κ

≥ −6γ2
κ

so the pointwise lower bound diverges as cut-
off removed.
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Wick Operators Given a function or distribu-

tion w ∈ S(Rm+n), writtenw = w(k, k′) for

k = (k1, . . . km) and k′ = (k′1, . . . k
′
n), the Wick

operator on Fock space is given by

Ww =
∫
Rn+m

a†(km) . . .a†(k1)w(k, k′)

× a(k′1) . . . a(k′n)dkdk′ .

Here dk′ =
∏n
j=1 dk

′
j and dk =

∏m
j=1 dkj .

Writing N =
∫
a†(k)a(k) dk for the number op-

erator as usual, we have the following bounds

in the case that the kernel is square integrable:

‖(1 + N)−m/2Ww(1 + N)−n/2‖ ≤ ‖w‖

and, more generally for a+ b ≥ m+ n,

‖(1 + N)−a/2Ww(1 + N)−b/2‖
≤ (1 + |m− n||m−n|/2)‖w‖

where on the left hand side ‖ · ‖ means Fock

space operator norm, while on the right hand

side ‖w‖ means the norm of the kernel w as

an operator Symn(L2(R))→ Symm(L2(R)) .
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The Wick polynomial
∫

: ϕκ(x)4 : b(x) dx de-

termined by a regularized field and a spatial

cut-off b ∈ L1(R) ∩ L2(R) determines a Wick

operator (with obvious conventions for j =

0,4):

4∑
j=0

(
4
j

) ∫
R4
a†(k1) . . . a†(kj)w(k, k′)

× a(−kj+1) . . . a(−k4)dk1 . . . dk4

where

v(k) = b̂(−
4∑

j=1

kj)
4∏

j=1

χκ(kj)

2ωkj
∈ S ′(R4) .

The preceding Wick operator bounds applied

to this give for any ε > 0 a number Cε such

that∥∥∥∥∥∥
∫

: ϕκ(x)4 : b(x) dx−
∫

: ϕκ′(x)4 : b(x) dx

(1 + N)4

∥∥∥∥∥∥
≤

Cε

(min{κ, κ′})
1
2−ε
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VII Schrödinger equation:

i~
∂ψ

∂t
= −

~2

2m

∂2ψ

∂x2
+ V ψ

with initial data ψ(x,0) = ψ0(x) .

Feynman (PhD thesis, 1942) reformulated quan-
tum mechanics :

ψ(x, t) =
∫

exp
{ i
~

∫ t
0

(1

2
mẊ2 − V (X(s))

)
ds
}

× ψ0(X(t))
∏

0≤s≤t
dX(s)

in terms of “complex probability amplitudes”
by summing over paths with X(0) = x. Put
~ = 1 from now on.

Mathematical analysis of semi-group via the
Feynman-Kac formula: after Wick rotation

t→ −it
to Euclidean time exp[−tH]ψ0(x) is given by

Ex
[
exp{−

∫ t
0
V (X(s))ds

}
ψ0(X(t))

]
=

∫
exp

{
−

1

~

∫ t
0
V (X(s)) ds

}
ψ0(X(t)) dWx(X)

(expectation w.r.t. Wiener measure dWx on
paths starting at x = X(0).)
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VIII Rewrite Feynman-Kac formula as(
F , e−tH G

)
L2 =

∫
Ex
(
F (x) e−

∫ t
0 JsV dsJtG

)
dx

where JsV : C(R)→ R is the function on path

space X 7→ V (X(s)) etc.

X: Gaussian process with covariance 1
2m min{s, t},

i.e. evolution is obtained by averaging over all

Brownian paths with diffusion 1
2m.

For an oscillator

i
∂ψ

∂t
= −

1

2

∂2ψ

∂x2
+

1

2
ω2x2ψ + V ψ

the formula generalizes via introduction of the

oscillator process defined as the Gaussian pro-

cess indexed by t ∈ R with covariance

E (q(t)q(s)) =
e−ω|t−s|

2ω
Averaging over oscillator process we can write

ψ = e−tHψ0 where

(F , exp[−tH]G) = E
(
J0F e

−
∫ t

0 JsV dsJtG

)
where again JsV : C(R) → R is the function

on path space with value V (q(s)) .
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IX Classical Harmonic Oscillator: Hamiltonian

Hosc =
1

2

(
p2 + ω2 x2

)

Classical free field

∂2φ

∂t2
−
∂2φ

∂x2
+ 4m2φ = 0

we have, with π = ∂tφ = φ̇, the Hamiltonian

H =
1

2

∫ (
π2 +

(
∂φ

∂x

)2
+ 4m2φ2

)
dx

or, with, φ̂(k) = (2π)−
1
2
∫
e−ikxφ(x)dx etc

H =
1

2

∫ (
|π̂(k)|2 +

(
k2 + 4m2

)
|φ̂(k)|2

)
dk

Free field: an infinite collection of oscillators

of frequency ωk =
√
k2 + 4m2.

Nelson: used this to generalize Feynman-Kac

to quantum fields, to describe semi-group e−tH

acting on the Fock space.
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X Feynman-Kac-Nelson Formula We need two

facts

• ∃ a Gaussian measure γ on S ′(R) giving a

model of Fock space (Schrödinger repre-

sentation) such that

F =
⊕

n
SymnL2(R) = L2

(
S ′(R), dγ

)

E (φ(f)φ(g)) =
∫
φ(f)φ(g) γ(dφ)

=
∫
f(k)g(k)

2ωk
dk .

• ∃ a Gaussian measure µ on S ′(R2) such

that

E (φ(f)φ(g)) =
∫

φ(f)φ(g)µ(dφ)

=
∫∫∫

f(s, k)e−|t−s|ωkg(t, k)

2ωk
dkdsdt .

(
F , e−tH G

)
L2(γ)

= E
(
J0F e

−
∫ t

0 JsV dsJtG

)
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Here φ is the spatial Fourier transform of Eu-

clidean field

φ(t, k) = (2π)−
1
2

∫
e−ikxφE(t, x)dx

i.e. arguments are time t and spatial Fourier

variable k . The Euclidean field is Gaussian

process on S ′(R2) with covariance

E
(

ΦE(f)ΦE(g)
)

=
1

(2π)2

∫
R2

f̂(k)ĝ(k)

k2 + 4m2
dk .

At each time t there exists an isometry Jt :

L2(dγ) → L2(dµ) given on Wick monomials

by

Jt : φ(f)n :→: φ(t, f)n :

Wick monomials obtained by orthogonaliza-

tion process with respect to the corresponding

Gaussian measure. They generate polynomi-

als which are dense in the corresponding L2

space.



XI Glimm-Jaffe PSC Expansion

Introduce an overall large upper momentum
cut-off κ, and sequence

κ1 < κ2 < κ3 < · · · < κn−1 < κ ≤ κn κn = e
√
ν

and corresponding cut-off Hamiltonians hν =
Hκν for 1 ≤ ν ≤ n− 1, and then and hn = Hκ

if ν ≥ n . Want bounds independent of κ or
equivalently n.

Iterated Duhamel:

e−tH
κ

= e−th1 −
∫ t

0
e−(t−s1)h2(Hκ − h1)e−s1h1 ds1

−
∫ t

0

∫ t
s1

e−(t−s2)h3(Hκ − h2)e−(s2−s1)h2

× (Hκ − h1)e−s1h1 ds2ds1

. . .

− (−1)n
∫ t

0
· · ·

∫ t
sn−2

e−(t−sn−1)Hκ
(Hκ − hn−1)

×
n−1∏
ν=2

(
e−(sν−sν−1)hν(Hκ − hν−1)

)

× e−s1h1
n−1∏
j=1

dsj .
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The aim is to prove an operator lower bound

Hκ ≥ −c0 > −∞ which is uniform in κ, in spite

of the fact that pointwise Hκ
I is not uniformly

bounded below. Indeed normal ordering gives

: ϕκ(x)4 : = ϕκ(x)4 − 6ϕκ(x)2γκ + 3γ2
κ

≥ −6γ2
κ
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