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Introduction

Classical Hamiltonian H(m,¢) = [ H(m, ¢)dx
where

1
H(m,¢) = 2 (% + 0:6%) + U(#).
with double-well potential function

4 212
u@) = 25 (125" = 262 (6 - 93)°.
(1)

Two classical vacua +®g, where &g = m/g.
Constant configuration g minimizes energy
with boundary conditions

im  ¢(z) = Po; (2)

|x|—00

T he classical soliton,
dg(x) = ™ tanh ma : MNg(zx) =0, (3)
g

minimizes energy amongst configurations which
interpolate between the two vacua as its asymp-
totic boundary values, i.e.,

dg(r) - Py as z - *oo. (4)



Soliton is not unique due to translation invari-

ance: the set of energy minimizers is {(®g(- —

£),0)}¢c.- The energy of an energy minimizer

equals the minimum value of H on the set of

finite energy configurations verifying (4). It is

the classical rest mass of the soliton, given by
Am3 My Am3

My = —o =% my,="2" (5
cl 392 92 cl 3 ()

Quantization . Fields now operator valued dis-
tributions which must satisfy Heisenberg com-
mutation relation

B(t,7), bt y) | =id(z —y)

as a constraint.

EXxistence: regularize the problem, construct
Hamiltonian as operator on Hilbert space and
take a limit as regularization disappears. To
study soliton must carry out this procedure
in @ comparable way: i.e. must involve the
same subtractions (“Wick ordering” ) and reg-
ularizations of the fields (which are related by
scattering theory.)




Main result, stated briefly: construct comparable
spatially cut-off quantum Hamiltonians cor-
responding to vacuum and soliton boundary
conditions

vac sol
Hg and Hg

and prove that as g — 0, with strong operator
convergence locally uniformmly in time ¢

Theorem 1

exp[—itH ;"] — exp[—itHg]

but
P2

m
exp[—itHSOl—l—z‘t zd—l—z'tAMSd] — exp[—1it |pexp[—it]

g 2mg;

m. = 4m3/3 scaled classical soliton mass;

AM .y = —m( — —=- Semi-classical mass cor-

2\F 3)
rection due to Dopplicher-Haslacher-Neveu;

exp[—its l] describes free motion of NR quan-
tum partlcle

Hy (and HSOZ) are free field (and free field in
soliton background)

Now explain these concepts.



I Classical Nonrelativistic particle

Particle: mass M concentrated at a point

X(t) e R3 at time t

No internal structure.

Newton : if no forces act on a particle it moves
at uniform velocity
d?X
M—s = 0
dt?
Conservation laws:

dX

P = m— (momentum)
dt

P2
FE = — (kinetic ener
> ( qy)

People used to think that ... when a thing
moves it is in a state of motion. TAhis is now
known to be a mistake. Bertrand Russel



IT Quantum Nonrelativistic Particle

. 2
The energy momentum relation E = g—m turns
into a dispersion relation

1 k2

nF T 2m

for waves
explikx — iwyt]

which are the basic solutions of the Schrodinger
equation:

L 0U he 9%y

! ot - 2m 922
with initial data ¥ (z,0) = ¥g(x) .

e Quantum particle has no internal struc-
ture;

e lives in a state characterized e.g. by Fourier
transform

f(k) = Po(k) € L?

as

D(z.t) = % [ Fk) explike — i) dk
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III Relativistic Particle The relativistic energy
momentum relation

B2 = P2 4 2
turns into the dispersion relation

wi = k% + m? (h=1)
and thence the relativistic wave equation

0%¢  0%¢ 2
e 79 =0.
Ot2 Ox2 T mee

Problem of negative energies £ = =+ \/P2 + m?
resolved by saying

e ¢ is not a wave function;

e it is a quantum field operator describing
creation and annihilation of particles;

e interpretation as multi-particle theory es-
sential.




e ¢ is a distribution taking values in space of
unbounded operators on a Hilbert space,
constrained by Heisenberg relation

[¢(t7 x) ) Qg(ta y)] — 7’6(33 o y) )

( The Reason for Anti-particles by Richard Feyn-
man.) Leads to three sources of trouble: ultra-
violet, infra-red and particle number.

The free field describes multi-particle theory:
sequence of n-particle wave functions ¥, (x1,...,zn;t)
evolving according to

O = 3 (<02 +m?

=1

where \/—Gf 4+ m?2 is pseudo-differential oper-
ator acting in jt* argument of .

Non-quandratic terms in Hamiltonian couple
the ¥y.



IV Fock space is the (complete) Hilbert direct
sum of the symmetric n-fold tensor powers of
L2(R), i.e.

= é Sym™(L2(R)).

n=0

A typical element, W € H, is a sequence of
functions {W,}°2_,, where W,, € L2(R™) is sym-
metric with respect to interchange of any pair
of coordinates.

2

W2 =3 1WallZ2(ny
The vacuum has Wg = 1 and Vv, = 0 for
n>1. Callit 2 or |0).

Annihilation and creation operators are given,
respectively, by

(apW)n_1(k1, ... kn_1) = vVnWn(k,k1,...,kn_1),
(@l W) g1 (K1, hpg1) =
ntl 5k — k)

jgl vn+1

(Really define operator valued distributions or
quadratic forms.)

W (ks ek kpt1) -




V The Free Field

Given dispersion relation wy, = \/k2 + 4m?2, we
define the fields

eikaz _|_ aie—’ikx) dk,

1 1
¢<x>=f/mak

”($)_¢—/ \F

( otk _ ake—zkm) dk

Really operator valued distributions
() = [ o (ak F(—) +af, F(R)) d
ka k ’

where f(k) = (2n) Y2 [ e k2 (1) dx € S(R)
iIs the Fourier transform.

Notice vacuum expectation infinite:

1 dk
(01p(2)%)0) = p(@)Q* = = | — = +oo.
T Wi

Wick ordering - move annihilation operators
to right - gives
(0 :|e(x)?:]0) = 0.

Physically : removes self interaction of parti-
cles on themselves.




VI Regularized fields Let §; € C§°(R) be a non-
negative, even function with §1(x) = 0 for
x| > 1, and satisfying [§1(x)dx = 1. For
k > 0 define 6.(x) = kd1(kx), SO that the op-
erator d,* is an approximation to the identity.
Reqgularized fields:

. xr (k)
ou(@) = [ N

me(z) = / —ixx (k) \/% (akeikx — a;rce_ikx) dk |
where xx(k) = x(k/k) with x(k) = 01(k).

(akeikx 4 a;rfe—ikaz) dk .

Regularization amounts to a smooth momen-
tum cut-off at scales large compared to  since

xx(k) = d1(k/k) :

2
e = (Olen(@)?0) = [ PACOER < 4o

But Wick ordering interferes with bounded-
ness below:

: go,ﬁ-,(a:)4 L = SOK(ZC)Af — 6%:90% + 37/%
= (¢r — 3%&)2 - 6’)’/%
> —677
so the pointwise lower bound diverges as cut-
off removed.
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Wick Operators Given a function or distribu-
tion w € S(R™T™), writtenw = w(k,k’) for
k= (ki1,...km) and k&' = (K,...K.), the Wick
operator on Fock space is given by
W, = / o al (k) - al (k) w(k, K

x a(ky)...a(k))dkdk .
Here dk' = H;T"zl dk;. and dk = H?’:1 dk; .

Writing N = [aT(k)a(k) dk for the number op-
erator as usual, we have the following bounds
in the case that the kernel is square integrable:

1(1 4+ N) " 2Wo (1 + N) 2| < [jw
and, more generally for a4+b > m + n,
1(1 + N) =% 2wy, (1 + N) /2
< (1+ |m—n|mV2)||w|

where on the left hand side || - | means Fock
space operator norm, while on the right hand
side ||w|| means the norm of the kernel w as
an operator Sym™(L2(R)) — Sym™(L2(R)) .
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The Wick polynomial [ : px(z)* : b(z) dx de-
termined by a reqgularized field and a spatial
cut-off b € L1(R) N L2(R) determines a Wick
operator (with obvious conventions for 7 =
0,4):

4
> (4> U CYIRUCHITCND

j=0 \/
X a(_kj—l-l) “. a(—k4)dk1 e dk4

where

4
k..
Xr(kj) c S'(R%).
—1 ka.
J

4
v(k) =b(— ) kj)
=1

J

The preceding Wick operator bounds applied
to this give for any ¢ > 0 a number C¢ such
that

[ (@) b(x)de — [ o (x)*: b(x) dx
(1 +N)4
< Ce .

~ (min{k,x/})27¢
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VII Schrodinger equation:
L0V _ h2 924

— |4
! ot 2m Oz2 T VY
with initial data ¥ (xz,0) = ¥Yg(x) .

Feynman (PhD thesis, 1942) reformulated quan-
tum mechanics :
: (t,1

bz t) = /exp{%/o<§mX — V(X(5)))ds)}
xpo(X(@#) | ] dX(s)

0<s<t

in terms of “‘complex probability amplitudes”
by summing over paths with X(0) = z. Put
h=1 from now on.

Mathematical analysis of semi-group via the
Feynman-Kac formula: after Wick rotation

t — —1t

to Euclidean time exp[—tH]vyg(x) is given by
s exp{~ [ V(X())ds} o (X (1)
= [exp{— [ V(X(5))ds} o(X () dWa(X)

(expectation w.r.t. Wiener measure dW, on
paths starting at x = X (0).)

13



VIII Rewrite Feynman-Kac formula as

¢
<F, e_tHG)LQ = / E. (F(az) e~ Jo JSVdSJtG) dx

where JsV : C(R) — R is the function on path
space X — V(X(s)) etc.

X: Gaussian process with covariance Qim min{s,t},

i.e. evolution is obtained by averaging over all

Brownian paths with diffusion 1

2m
For an oscillator
310 192 2 2
— = ———— 4 — V
8t 2 Ox? T w Y+ Vy

the formula generalizes via introduction of the
oscillator process defined as the Gaussian pro-
cess indexed by t € R with covariance

—wlt—s|

E(q(t)q(s)) = 0

Averaging over oscillator process we can write
W = e 5 where

(&

t
(F, exp[—tH]G) = E (JOF e~ Jo J3VdSJtG)

where again JsV : C(R) — R is the function
on path space with value V(q(s)).

14



IX Classical Harmonic Oscillator: Hamiltonian

Hose = l( 2 + W2372)

2
Classical free field
0%¢  92%¢ 2
Ot2 Ox2 T 4mTe

we have, with © = 9;¢ = ¢, the Hamiltonian
2
H = l/ 72 4 (%) + 4am242 | da
2 ox
or, with, 3(k) = (21) "2 [ e~ k2 (z)da etc

=1 [ (FRP+ (8 +4m2) (36 2) dk

Free field: an infinite collection of oscillators
of frequency wy = \/k2 + 4m2.

Nelson: used this to generalize Feynman-Kac
to quantum fields, to describe semi-group et
acting on the Fock space.
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X Feynman-Kac-Nelson Formula We need two
facts

e J a Gaussian measure v on S’(R) giving a
model of Fock space (Schrodinger repre-
sentation) such that

F = Sym"L*(R) = L? (5’(R),dfy)

E(@(Né(9) = [ ¢(No(9) (de)
_ (1030 4
ka

e 3 a Gaussian measure p on S'(R?) such
that

E@N6@) = [ ¢(Nd(9) n(dd)
= /[ [, R)e ol g (4 k) oo

ka

t
(F, e_tHG)LQ(fy) = E (JOF e Jo JSVdSJ,jG)
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Here ¢ is the spatial Fourier transform of Eu-
clidean field

Ot k) = (21) 2 / e~ hT g (4, 2)da

il.e. arguments are time ¢t and spatial Fourier
variable k. The Euclidean field is Gaussian
process on S’(R?) with covariance

1

3(Op(NPEW) = 55 [y

At each time t there exists an isometry J; :
L?(dvy) — L2%(dw) given on Wick monomials
by

Je i o(f)" =1, )T
Wick monomials obtained by orthogonaliza-
tion process with respect to the corresponding
Gaussian measure. They generate polynomi-

als which are dense in the corresponding L2
space.



XI Glimm-Jaffe PSC Expansion

Introduce an overall large upper momentum
cut-off k, and sequence

K1 < kp < k3 < < kp_1 < Kk < Kkn Pa—

and corresponding cut-off Hamiltonians hy, =
H for 1 <v <n-—1, and then and h, = H"
if v > n. Want bounds independent of x or
equivalently n.

Iterated Duhamel:

t
e—tH’* _ e—thl . / 6—(t—81)h2(Hl4&_ hl)e—slhl dsq
o)

t ot
_ —(t—s2)h3( 7k _ —(sp—s1)h2
/O /81 e (H ho)e

x (H" — hl)e_slhl dso>dsq

— (-1)" /Ot- --/t e~ U=sn-DH (gr _p, 1)

Sn—2

1
T (e s — )
v=>2
n—1
x e 51 H ds; .
1=1
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The aim is to prove an operator lower bound
H" > —cg > —oo which is uniform in &, in spite
of the fact that pointwise H} is not uniformly
bounded below. Indeed normal ordering gives

on(@)? = or(@)* — 6pk(x)? s + 372

2
—67;

'V

18



