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An example of quantization problem

Question: what is the “optimal” way to locate N clinics in a
region in order to meet the demand of the population?

Notion of “optimality”

Locations x i

Masses mi
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A bit of history

Quantizations occour in various scientific fields, for instance:

Information theory (signal compression)
Numerical integration
Crystallography
Mathematical models in economics (optimal location of
service centers)
...
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Setup of the problem

Let ρ be a probability density on a domain Ω ⊂ Rd .

Quantization problem: fixed N ∈ N, find the best
approximation of ρ by an atomic measure

∑
i miδx i supported

on at most N points in Ω.
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Wasserstein distances

Step 1. Fix r ≥ 1 and consider

Wr

(
ρ,
∑

i

miδx i

)r
:= inf

∫
Ω
|y − T (y)|rρ(y) dy

where T : Ω→ Ω varies among all maps that transport ρ onto∑
i miδx i .
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Voronoi diagrams

Step 2. Fix N points x1, . . . , xN ∈ Ω, and minimize

inf
{

Wr

(
ρ,
∑

i

miδx i

)r
: m1, . . . ,mN ≥ 0,

∑
i

mi = 1
}
.

Best choice via the Voronoi tessellation of x1, . . . , xN

mi :=

∫
V (x i )

ρ(y)dy

V (x i) :=
{

y ∈ Ω : |y − x i | ≤ |y − x j |, for all j 6= i
}
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With the optimal choice

mi =

∫
V (x i )

ρ(y)dy

it holds

Wr

(
ρ,
∑

i

miδx i

)r

= FN,r (x1, . . . , xN),

where

FN,r (x1, . . . , xN) :=

∫
Ω

min
1≤i≤N

|x i − y |r ρ(y) dy

Step 3. Minimize FN,r to find the optimal configuration for
x1, . . . , xN
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Theorem (Bucklew - Wise, 1982; Graf - Luschgy, 2000)

Let r ≥ 1 and ρ be a probability density on Rd satisfying∫
Rd
|x |r+δ ρ(x) dx <∞

for some δ > 0. Let x1, . . . , xN minimize FN,r : (Rd )N → R+.
Then

1
N

N∑
i=1

δx i ⇀
ρd/(d+r)(x)∫

Ω ρ
d/(d+r)(y)dy

dx as N →∞.

Mikaela Iacobelli A gradient flow approach to quantization of measures



Introduction to quantization
Variational approach and dynamics

The 1D case
The 2D case

A dynamical approach

Given N points x1
0 , . . . , x

N
0 ∈ Rd , consider their evolution under

the gradient flow generated by FN,r{ (
ẋ1(t), . . . , ẋN(t)

)
= −∇FN,r

(
x1(t), . . . , xN(t)

)(
x1(0), . . . , xN(0)

)
= (x1

0 , . . . , x
N
0 )

As t →∞,
(
x1(t), . . . , xN(t)

)
should converge to a minimizer

(x̄1, . . . , x̄N) of FN,r .

Therefore

1
N

N∑
i=1

δx̄ i ⇀
ρd/d+r (x)∫

Ω ρ
d/d+r (y)dy

dx as N →∞.
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From the discrete to the continuous functional

Bad news: FN,r has many local minima.

Goal: Understand both limits t →∞ and N →∞.

Program:

• Isometrically embed every RN in L2(Rd ;Rd ).

• Consider a set of reference points (x̂1, . . . , x̂N) and
parameterize a general family of N points x i as the image of x̂ i

via a map X : Rd → Rd , that is

x i = X (x̂ i).
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From the discrete to the continuous functional

• Rewrite the functional FN,r (x1, . . . , xN) in terms of the map X :

FN,r (x1, . . . , xN) = FN,r
(
X (x̂1), . . . ,X (x̂N)

)
• Show that (a suitable renormalization of) FN,r converges to a
nontrivial functional F [X ].

Question: Is the evolution of x i(t) for N large to be
well-approximated by the L2-gradient flow of F?
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Program

• The 1D problem shows already several features of our GF
approach. We shall need to understand the dynamics of
degenerate parabolic equations and relate them to the discrete
dynamics.

• In 2D, the functional F involves the determinant of ∇X in a
singular way. We shall consider perturbations of the regular
triangular lattice (which is optimal when N →∞) and
understand the continuous GF in this regime.
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Computing FN,r in the 1D Case

Ω = [0,1], 0 ≤ x1 ≤ . . . ≤ xN ≤ 1.

V (x i) = [x i−1/2, x i+1/2], x i+1/2 :=
x i + x i+1

2
.

Therefore

FN,r (x1, . . . , xN) ≈
N∑

i=1

∫ x i+1/2

x i−1/2
|y − x i |rρ(y)dy .
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From FN,r to F [X ]

Assume

x i = X
(

i − 1/2
N

)
, i = 1, . . . ,N

with X : [0,1]→ [0,1] smooth non-decreasing.

By a Taylor expansion

N r FN,r (x1, . . . , xN) −→
N→∞

Cr

∫ 1

0
ρ(X (θ))|∂θX (θ)|r+1dθ := F [X ].
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L2-GF for F [X ]

The L2-GF for F [X ] is the following parabolic equation

∂tX (t , θ) = Cr

(
(r + 1)∂θ

(
ρ(X (t , θ))|∂θX (t , θ)|r−1∂θX (t , θ)

)
− ρ′(X (t , θ))|∂θX (t , θ)|r+1

)
with Dirichlet boundary condition

X (t ,0) = 0, X (t ,1) = 1.
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Remark: if ρ ≡ 1, we get the p-Laplacian equation

∂tX = Cr (r + 1) ∂θ
(
|∂θX |r−1∂θX

)
with p − 1 = r .

Degeneracy issue: is the condition ∂θX > 0 preserved by the
flow?
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Eulerian Formulation of the Quantization Gradient
Flow

Define f ≡ f (t , x) by

f (t , x) dx = X (t , ·)#dθ ⇔ f (t ,X (t , θ)) =
1

∂θX (t , θ)

Then  ∂t f = −r Cr ∂x

(
f∂x

( ρ

f r+1

))
, x ∈ R

f (t , x + 1) = f (t , x)

Remark: if ρ ≡ 1 the Eulerian equation becomes

∂t f = −Cr (r + 1) ∂2
x
(
f−r)

which is an equation of very fast diffusion type.
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Comparison Principle for the Eulerian Equation

Set m := ρ1/(1+r) and u := f/m; the Eulerian quantization
gradient flow equation becomes

∂tu = −(r + 1) Cr

m
∂x

(
m ∂x

( 1
ur

))
.

Note: constants are solutions!
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Lemma
If u > 0 is a solution and c > 0, then

d
dt

∫ 1

0
(u − c)+(t , x) m(x) dx ≤ 0,

d
dt

∫ 1

0
(u − c)−(t , x) m(x) dx ≤ 0.

By the lemma,

c0 ≤ u(0, x) ≤ C0 ⇒ c0 ≤ u(t , x) ≤ C0 ∀ t ≥ 0.

Therefore, if 0 < λ ≤ ρ ≤ 1/λ and 0 < a0 ≤ ∂θX (0) ≤ A0,

0 < b0 ≤ ∂θX (t) ≤ B0 ∀ t ≥ 0.
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Main result

Theorem (Caglioti - Golse - I., M3AS 2015)

Assume r = 2, ‖ρ− 1‖C2 ≤ ε̄, and let
(
x1(t), . . . , xN(t)

)
be the

gradient flow of FN,2 starting from
(
x1

0 , . . . , x
N
0
)
. Under some

suitable assumptions on ρ and the initial data, the continuous
and discrete GF remain quantitatively close for all times:

1
N

N∑
i=1

∣∣∣xi(N3t)− X (t , i−1/2
N )

∣∣∣2 ≤ C′

N4 , t ≥ 0.

In particular

W1

(
1
N

∑
i

δx i (t),
ρ1/3 dθ∫
ρ1/3

)
≤ 2C′

N
∀ t ≥ N3 log N

c′
.
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Strategy of the proof: the case ρ ≡ 1

When ρ ≡ 1, the L2-GF of F depends on ∂θX and ∂θθX , but not
on X itself.

By a discrete maximum principle for the incremental quotients,
we show that the discrete monotonicity estimate

x i+1(t)− x i(t) ≈ 1
N

∀ i

is preserved in time.

This allows us to prove that the discrete and the continuous
gradient flows remain uniformly close in L2 for all times by a
Gronwall argument.
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Strategy of the proof: the case ρ 6≡ 1

The case ρ 6≡ 1 is much more delicate: in this case there is no
clear way to show the validity of the discrete monotonicity
estimate, and the approach for the case ρ ≡ 1 fails.

Strategy: Bootstrap argument via finite-time stability in L∞ and
L2 exponential convergence.

Step 1: Show that

X̂ (t) :=
(

X
(

t , 1/2
N

)
, . . . ,X

(
t , N−1/2

N

))
solves the discrete gradient flow equation up to an error of
order 1/N2.
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Step 2: The discrete and continuous gradient flow stay
1/N2-close on a finite interval of time:∣∣∣x i(N3t)− X (t , i−1/2

N )
∣∣∣ = O

(
1 + T

N2

)
∀ i , ∀ t ∈ [0,T ].

Step 3: By Step 2, transfer the discrete monotonicity estimate
from X (t , i

N ) to x i(N3t) on [0,T ].

Step 4: Perform a Gronwall argument in L2 to deduce that

t 7→ 1
N

N∑
i=1

∣∣∣x i(N3t)− X (t , i−1/2
N )

∣∣∣2
decrease exponentially in time on [0,T ].
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Step 5: Choosing T carefully, for N large enough, Step 4
allows us to iterate the argument above on all time intervals
[T ,2T ], [2T ,3T ], [3T ,4T ], etc.

Note: The assumptions ‖ρ− 1‖C2 � 1 is necessary to ensure
the convexity of F and perform the L2-Gronwall argument.
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What happens in two dimensions?

Challenges:

• Difficult to find a nice expression for the functional FN,r

• In general, F [X ] depends in a singular way on det(∇X )

 F [X ] is highly nonconvex

Bad news: no general theory for gradient flows of “highly
nonconvex” functionals

Good news: for N →∞, Voronoi cells associated to optimal
configurations are given by the hexagonal lattice (Fejes Tóth,
1953).
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A numerical simulation

720 points at time 0
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A numerical simulation

720 points after 19 iterations
Mikaela Iacobelli A gradient flow approach to quantization of measures



Introduction to quantization
Variational approach and dynamics

The 1D case
The 2D case

A numerical simulation

720 points after 157 iterations
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Weakly Deformed Hexagonal Lattices

Strategy: look at configurations close to the minimal energy
state and understand the limit N →∞.

Consider the triangular regular lattice

L := Ze1 ⊕ Ze2 , e1 := (1,0) , e2 := (1
2 ;
√

3
2 ).

We note that the Voronoi cells for the points in L are regular
hexagons.
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To increase the number of points, we consider its dilations

εL , ε > 0.

Let
Π := {ae1 + be2 : |a| ≤ 1/2, |b| ≤ 1/2}

be a fundamental domain.

Remark: the periodicity of Π and εL are compatible for any
ε = 1/n.
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We look at Π-periodic deformations of these points:

X (εL ) , ε = 1/n , n ∈ N,

where X ∈ Diff(R2) satisfies

X is Π-periodic, ‖X − id‖L∞ � 1.
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Quantization of ρ ≡ 1 with d = r = 2 for N ≈ n2 →∞

Goal: compute the energy F of X as ε = 1/n→ 0, and prove
that, under the gradient flow of F , the limit of the
near-hexagonal Voronoi tesselation of X (L /n) converges to
the regular hexagonal tesselation.

Let (xn
1 , . . . , x

n
N) = X (L /n) ∩ Π and consider the functional

FN,2(xn
1 , . . . , x

n
N).

We show that

FN,2(xn
1 , . . . , x

n
N) ≈ 1

n4F [X ],

for some functional F [X ].
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The Formula for F
For each M ∈ M2(R), define

F (M) = 1
3

∑
ω∈{e1,e2,e12}

|M · ω|4Φ(ω,M)
(

3 + Φ(ω,M)2
)

where

Φ(ω,M) :=

√
|MRω|2|MRTω|2

3
4det(M)

− 1

for each ω ∈ S2, with

R :=

 1
2 −

√
3

2

√
3

2
1
2

 ,

e1 = (1,0), e2 = Re1, e12 = R−1e1 = e1 − e2.
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Then
F [X ] =

∫
Π

F (∇X ) dx ,

hence the gradient flow is given by

∂tX (t , x) = div
(
∇F (∇X (t , x))

)
with initial and boundary conditions{

X (t) is Π-periodic,
X (0) = X in.
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A more manageable formula

F (M) :=
1

16
√

3
det(M)tr[MT M(2S − I)]

+
1

64
√

3
[tr(MT M)]2[tr(MT MS)]

det(M)

− 1
192
√

3
[tr(MT M)]3 + 4[tr(MT MS)]3

det(M)
,

where

S =

(
1 0
0 −1

)
.

Remark: F depends on det(M) and blows up as det(M)→ 0.
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The Small Deformation Regime

Write X = id + τY . Then

3
√

3 F (Id + τ∇Y ) = 10 + 20 τ div(Y )

+ τ2(14 det(∇Y ) + 10 div(Y )2 + 3 |∇Y |2) + O(τ3).

Crucial facts:
(1) ∫

Π
div(Y ) =

∫
Π

det(∇Y ) = 0.

(2) For A ∈ M2(R), define

F0(A) = F (A)− 20
3
√

3
Tr(A− Id)− 14

3
√

3
det(A− Id).

Then F0 is uniformly convex if |A− Id| ≤ η � 1.
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Thus,

F [X ] =

∫
Π

F0(∇X ) dx ,

and F is uniformly convex on functions that are sufficiently
close to the identity in C1.

Therefore, if

‖∇X (t)− Id‖∞ ≤ η ∀ t ≥ 0, (1)

X (t)→ id exponentially fast in L2 by the theory of gradient flows
for convex functionals.

So, the main issue is to obtain (1). For this, we combine results
from parabolic regularity theory for systems.
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Main result: The hexagonal lattice is asymptotically optimal
and dynamically stable

Theorem (E. Caglioti, F. Golse, M. I., 2016)

Assume that X in ∈ Diff(R2) satisfies

X in is Π-periodic and
∫

Π
X in(x)dx = 0,

and
‖X in − id‖W s,p(Π) ≤ η/2� 1

for some p > 2 and s > 1 + 2/p.
Then the Cauchy problem for the L2-gradient flow of F has a
unique solution X with initial data X in, and

‖X (t)− id‖L2(Π) ≤ ‖X in − id‖L2(Π)e
−µt , µ > 0.
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Strategy of the proof

Step 1: Construct an auxiliary convex functional G that
coincides with F on maps that are C1-close to the identity.

Step 2: Denote by Y (t) the GF of G. Then Y (t) converges
exponentially fast in L2 to id.

Goal: Prove that the GF of G satisfies

‖∇Y (t)− Id‖∞ ≤ η ∀ t ≥ 0

with η small enough. This will imply that G = F nearby Y (t) for
all t ≥ 0, hence Y (t) is also the GF for F .
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Step 3: By the Sobolev regularity on the initial datum and
propagation of regularity for short times, we get

‖∇Y (t)− Id‖∞ ≤ η ∀ t ∈ [0, t0]

for some t0 > 0 small.

Step 4: Combine the L2 exponential convergence of Y (t) to id
with an ε-regularity theorems for parabolic systems to show that

‖∇Y (t)− Id‖∞ ≤ η ∀ t ≥ t0.
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Conclusions

• Our result in 1D shows that the discrete evolution is well
approximated by the continuous GF, uniformly in time. One
needs to understand the dynamics of a parabolic (possibly
degenerate) equation, and relate it to the discrete dynamics.
The lack of convexity of the discrete functional is a source of
challenges.

• The 2D result gives a new mathematical justification of the
asymptotic optimality of the hexagonal lattice among its nearby
configurations
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Future directions

• Prove the convergence of the discrete GF to the continuous
one, at least in the perturbative regime

• Understand if there is an Eulerian formulation, and what
happens when ρ 6≡ 1

• Go out of the perturbative regime

• Understand minimal configurations in higher dimensions and
develop analogous programs
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Thanks for your attention
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