A gradient flow approach to quantization of measures

Mikaela lacobelli

University of Cambridge

Oxbridge PDE Conference 2017

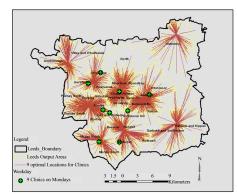
20 March 2017

Outline of the talk

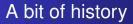
- Introduction to the quantization problem
- 2 Variational approach and dynamics
- The 1D case
- The 2D case
- Conclusions and future directions

An example of quantization problem

Question: what is the "optimal" way to locate *N* clinics in a region in order to meet the demand of the population?



- Notion of "optimality"
- Locations $\rightsquigarrow x^i$
- Masses → m_i



Quantizations occour in various scientific fields, for instance:

- Information theory (signal compression)
- Numerical integration
- Crystallography
- Mathematical models in economics (optimal location of service centers)

o ...

Setup of the problem

Let ρ be a probability density on a domain $\Omega \subset \mathbb{R}^d$.

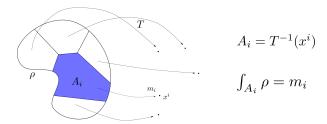
Quantization problem: fixed $N \in \mathbb{N}$, find the best approximation of ρ by an atomic measure $\sum_{i} m_i \delta_{x^i}$ supported on at most *N* points in Ω .

Wasserstein distances

Step 1. Fix $r \ge 1$ and consider

$$W_r\left(
ho,\sum_i m_i\delta_{x^i}
ight)^r:=\inf\int_{\Omega}|y-T(y)|^r
ho(y)\,dy$$

where $T : \Omega \to \Omega$ varies among all maps that transport ρ onto $\sum_{i} m_i \delta_{x^i}$.



Voronoi diagrams

Step 2. Fix *N* points $x^1, \ldots, x^N \in \Omega$, and minimize

$$\inf \left\{ W_r \left(\rho, \sum_i m_i \delta_{x^i} \right)^r : m_1, \ldots, m_N \ge 0, \sum_i m_i = 1 \right\}.$$

Best choice via the *Voronoi tessellation* of x^1, \ldots, x^k

$$m_i := \int_{V(x^i)} \rho(y) dy$$

 $V(x^i) := \left\{ y \in \Omega : |y - x^i| \le |y - x^j|, ext{for all } j \ne i
ight\}$

With the optimal choice

$$m_i = \int_{V(x^i)}
ho(y) dy$$

$$W_r\left(\rho,\sum_i m_i\delta_{x^i}\right)^r = F_{N,r}(x^1,\ldots,x^N),$$

where

$$F_{N,r}(x^1,\ldots,x^N) := \int_{\Omega} \min_{1 \le i \le N} |x^i - y|^r \,
ho(y) \, dy$$

Step 3. Minimize $F_{N,r}$ to find the optimal configuration for x^1, \ldots, x^N

Theorem (Bucklew - Wise, 1982; Graf - Luschgy, 2000)

Let $r \geq 1$ and ρ be a probability density on \mathbb{R}^d satisfying

 $\int_{\mathbb{R}^d} |x|^{r+\delta} \,\rho(x) \, dx < \infty$

for some $\delta > 0$. Let x^1, \ldots, x^N minimize $F_{N,r} : (\mathbb{R}^d)^N \to \mathbb{R}^+$. Then

$$\frac{1}{N}\sum_{i=1}^N \delta_{x^i} \rightharpoonup \frac{\rho^{d/(d+r)}(x)}{\int_\Omega \rho^{d/(d+r)}(y)dy} dx \quad \text{as } N \to \infty.$$

A dynamical approach

Given *N* points $x_0^1, \ldots, x_0^N \in \mathbb{R}^d$, consider their evolution under the gradient flow generated by $F_{N,r}$

$$\begin{cases} (\dot{x}^{1}(t), \dots, \dot{x}^{N}(t)) = -\nabla F_{N,r}(x^{1}(t), \dots, x^{N}(t)) \\ (x^{1}(0), \dots, x^{N}(0)) = (x_{0}^{1}, \dots, x_{0}^{N}) \end{cases}$$

As $t \to \infty$, $(x^1(t), \dots, x^N(t))$ should converge to a minimizer $(\bar{x}^1, \dots, \bar{x}^N)$ of $F_{N,r}$.

Therefore

$$\frac{1}{N}\sum_{i=1}^N \delta_{\bar{x}^i} \rightharpoonup \frac{\rho^{d/d+r}(x)}{\int_\Omega \rho^{d/d+r}(y)dy} \, dx \qquad \text{as } N \to \infty.$$

From the discrete to the continuous functional

Bad news: $F_{N,r}$ has many local minima.

Goal: Understand both limits $t \to \infty$ and $N \to \infty$.

Program:

• Isometrically embed every \mathbb{R}^N in $L^2(\mathbb{R}^d; \mathbb{R}^d)$.

• Consider a set of reference points $(\hat{x}^1, \dots, \hat{x}^N)$ and parameterize a general family of *N* points x^i as the image of \hat{x}^i via a map $X : \mathbb{R}^d \to \mathbb{R}^d$, that is

 $x^i = X(\hat{x}^i).$

From the discrete to the continuous functional

• Rewrite the functional $F_{N,r}(x^1, \ldots, x^N)$ in terms of the map X:

$$F_{N,r}(x^1,\ldots,x^N)=F_{N,r}\big(X(\hat{x}^1),\ldots,X(\hat{x}^N)\big)$$

• Show that (a suitable renormalization of) $F_{N,r}$ converges to a nontrivial functional $\mathcal{F}[X]$.

Question: Is the evolution of $x^i(t)$ for *N* large to be well-approximated by the L^2 -gradient flow of \mathcal{F} ?

• The 1D problem shows already several features of our GF approach. We shall need to understand the dynamics of degenerate parabolic equations and relate them to the discrete dynamics.

• In 2D, the functional \mathcal{F} involves the determinant of ∇X in a singular way. We shall consider perturbations of the regular triangular lattice (which is optimal when $N \to \infty$) and understand the continuous GF in this regime.

THE 1D CASE

Computing $F_{N,r}$ in the 1D Case

$$\begin{split} \Omega &= [0,1], \, 0 \leq x^1 \leq \ldots \leq x^N \leq 1. \\ V(x^i) &= [x^{i-1/2}, x^{i+1/2}], \qquad x^{i+1/2} := \frac{x^i + x^{i+1}}{2}. \end{split}$$

Therefore

$$F_{N,r}(x^1,\ldots,x^N) \approx \sum_{i=1}^N \int_{x^{i-1/2}}^{x^{i+1/2}} |y-x^i|^r \rho(y) dy.$$

From $F_{N,r}$ to $\mathcal{F}[X]$

Assume

$$x^i = X\left(\frac{i-1/2}{N}\right), \qquad i = 1, \dots, N$$

with $X : [0, 1] \rightarrow [0, 1]$ smooth non-decreasing.

By a Taylor expansion

$$N^r F_{N,r}(x_1,\ldots,x_N) \xrightarrow[N \to \infty]{} C_r \int_0^1 \rho(X(\theta)) |\partial_{\theta} X(\theta)|^{r+1} d\theta := \mathcal{F}[X].$$

L^2 -GF for $\mathcal{F}[X]$

The L^2 -GF for $\mathcal{F}[X]$ is the following parabolic equation

 $\partial_t X(t,\theta) = C_r \Big((r+1) \partial_\theta \big(\rho(X(t,\theta)) | \partial_\theta X(t,\theta) |^{r-1} \partial_\theta X(t,\theta) \big) \\ - \rho'(X(t,\theta)) | \partial_\theta X(t,\theta) |^{r+1} \Big)$

with Dirichlet boundary condition

 $X(t,0) = 0, \qquad X(t,1) = 1.$

Remark: if $\rho \equiv 1$, we get the *p*-Laplacian equation

$$\partial_t X = C_r (r+1) \partial_\theta (|\partial_\theta X|^{r-1} \partial_\theta X)$$

with p - 1 = r.

Degeneracy issue: is the condition $\partial_{\theta} X > 0$ preserved by the flow?

Eulerian Formulation of the Quantization Gradient Flow

Define $f \equiv f(t, x)$ by

$$f(t,x) dx = X(t,\cdot)_{\#} d\theta \Leftrightarrow f(t,X(t,\theta)) = \frac{1}{\partial_{\theta} X(t,\theta)}$$

Then

$$\begin{cases} \partial_t f = -r \, C_r \, \partial_x \left(f \partial_x \left(\frac{\rho}{f^{r+1}} \right) \right) \,, \quad x \in \mathbb{R} \\ f(t, x+1) = f(t, x) \end{cases}$$

Remark: if $\rho \equiv 1$ the Eulerian equation becomes

$$\partial_t f = -C_r \left(r+1\right) \partial_x^2 \left(f^{-r}\right)$$

which is an equation of very fast diffusion type.

Comparison Principle for the Eulerian Equation

Set $m := \rho^{1/(1+r)}$ and u := f/m; the Eulerian quantization gradient flow equation becomes

$$\partial_t u = -\frac{(r+1) C_r}{m} \partial_x \left(m \partial_x \left(\frac{1}{u^r} \right) \right).$$

Note: constants are solutions!

Lemma

If u > 0 is a solution and c > 0, then

$$\frac{d}{dt}\int_0^1 (u-c)_+(t,x)\,m(x)\,dx\leq 0,$$
$$\frac{d}{dt}\int_0^1 (u-c)_-(t,x)\,m(x)\,dx\leq 0.$$

By the lemma,

 $\begin{array}{ll} c_0 \leq u(0,x) \leq C_0 & \Rightarrow \quad c_0 \leq u(t,x) \leq C_0 \quad \forall \ t \geq 0. \end{array}$ Therefore, if $0 < \lambda \leq \rho \leq 1/\lambda$ and $0 < a_0 \leq \partial_{\theta} X(0) \leq A_0$, $0 < b_0 \leq \partial_{\theta} X(t) \leq B_0 \quad \forall \ t \geq 0. \end{array}$

Main result

Theorem (Caglioti - Golse - I., M3AS 2015)

Assume r = 2, $\|\rho - 1\|_{C^2} \leq \overline{\varepsilon}$, and let $(x^1(t), \dots, x^N(t))$ be the gradient flow of $F_{N,2}$ starting from (x_0^1, \dots, x_0^N) . Under some suitable assumptions on ρ and the initial data, the continuous and discrete GF remain quantitatively close for all times:

$$\frac{1}{N}\sum_{i=1}^{N}\left|x_{i}(N^{3}t)-X(t,\frac{i-1/2}{N})\right|^{2}\leq\frac{C'}{N^{4}}\,,\quad t\geq0$$

In particular

$$W_1\left(\frac{1}{N}\sum_i \delta_{x^i(t)}, \frac{\rho^{1/3} \, d\theta}{\int \rho^{1/3}}\right) \leq \frac{2C'}{N} \qquad \forall t \geq \frac{N^3 \log N}{c'}.$$

Strategy of the proof: the case $\rho \equiv 1$

When $\rho \equiv 1$, the L^2 -GF of \mathcal{F} depends on $\partial_{\theta} X$ and $\partial_{\theta\theta} X$, but not on X itself.

By a discrete maximum principle for the incremental quotients, we show that the discrete monotonicity estimate

$$x^{i+1}(t) - x^i(t) pprox rac{1}{N} \qquad orall i$$

is preserved in time.

This allows us to prove that the discrete and the continuous gradient flows remain uniformly close in L^2 for *all* times by a Gronwall argument.

Strategy of the proof: the case $\rho \neq 1$

The case $\rho \neq 1$ is much more delicate: in this case there is no clear way to show the validity of the discrete monotonicity estimate, and the approach for the case $\rho \equiv 1$ fails.

Strategy: Bootstrap argument via finite-time stability in L^{∞} and L^2 exponential convergence.

Step 1: Show that

$$\hat{X}(t) := \left(X\left(t, \frac{1/2}{N}\right), \dots, X\left(t, \frac{N-1/2}{N}\right)\right)$$

solves the discrete gradient flow equation up to an error of order $1/N^2$.

Step 2: The discrete and continuous gradient flow stay $1/N^2$ -close on a finite interval of time:

$$\left|x^{i}(N^{3}t)-X(t,\frac{i-1/2}{N})\right|=O\left(\frac{1+T}{N^{2}}\right) \quad \forall i, \forall t \in [0,T].$$

Step 3: By Step 2, transfer the discrete monotonicity estimate from $X(t, \frac{i}{N})$ to $x^i(N^3t)$ on [0, T].

Step 4: Perform a Gronwall argument in L^2 to deduce that

$$t\mapsto \frac{1}{N}\sum_{i=1}^{N}\left|x^{i}(N^{3}t)-X(t,\frac{i-1/2}{N})\right|^{2}$$

decrease exponentially in time on [0, T].

Step 5: Choosing *T* carefully, for *N* large enough, Step 4 allows us to iterate the argument above on all time intervals [T, 2T], [2T, 3T], [3T, 4T], etc.

Note: The assumptions $\|\rho - 1\|_{C^2} \ll 1$ is necessary to ensure the convexity of \mathcal{F} and perform the L^2 -Gronwall argument.

THE 2D CASE

What happens in two dimensions?

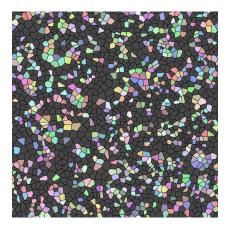
Challenges:

- Difficult to find a nice expression for the functional $F_{N,r}$
- In general, $\mathcal{F}[X]$ depends in a singular way on det (∇X) $\rightsquigarrow \mathcal{F}[X]$ is highly nonconvex

Bad news: no general theory for gradient flows of "highly nonconvex" functionals

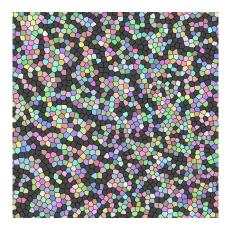
Good news: for $N \to \infty$, Voronoi cells associated to optimal configurations are given by the hexagonal lattice (Fejes Tóth, 1953).

A numerical simulation



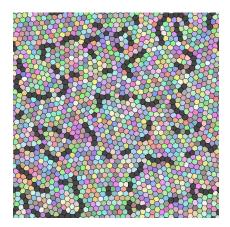
720 points at time 0

A numerical simulation



720 points after 19 iterations

A numerical simulation



720 points after 157 iterations

Weakly Deformed Hexagonal Lattices

Strategy: look at configurations close to the minimal energy state and understand the limit $N \rightarrow \infty$.

Consider the triangular regular lattice

 $\mathscr{L} := \mathbb{Z} \boldsymbol{e}_1 \oplus \mathbb{Z} \boldsymbol{e}_2, \quad \boldsymbol{e}_1 := (1,0), \quad \boldsymbol{e}_2 := (\frac{1}{2}; \frac{\sqrt{3}}{2}).$

We note that the Voronoi cells for the points in $\mathscr L$ are regular hexagons.

To increase the number of points, we consider its dilations

 $\epsilon \mathscr{L}, \quad \epsilon > \mathbf{0}.$

Let

 $\Pi := \{ ae_1 + be_2 : |a| \le 1/2, |b| \le 1/2 \}$

be a fundamental domain.

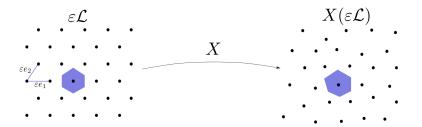
Remark: the periodicity of Π and $\epsilon \mathscr{L}$ are compatible for any $\epsilon = 1/n$.

We look at Π -periodic deformations of these points:

 $X(\epsilon \mathscr{L}), \quad \epsilon = 1/n, \ n \in \mathbb{N},$

where $X \in \text{Diff}(\mathbb{R}^2)$ satisfies

X is Π -periodic, $\|X - \mathrm{id}\|_{L^{\infty}} \ll 1$.



Quantization of $\rho \equiv 1$ with d = r = 2 for $N \approx n^2 \rightarrow \infty$

Goal: compute the energy \mathcal{F} of X as $\epsilon = 1/n \rightarrow 0$, and prove that, under the gradient flow of \mathcal{F} , the limit of the near-hexagonal Voronoi tesselation of $X(\mathcal{L}/n)$ converges to the regular hexagonal tesselation.

Let $(x_1^n, \ldots, x_N^n) = X(\mathcal{L}/n) \cap \Pi$ and consider the functional $F_{N,2}(x_1^n, \ldots, x_N^n)$.

We show that

$$F_{N,2}(x_1^n,\ldots,x_N^n)\approx \frac{1}{n^4}\mathcal{F}[X],$$

for some functional $\mathcal{F}[X]$.

The Formula for ${\cal F}$

For each $M \in M_2(\mathbb{R})$, define $F(M) = \frac{1}{3} \sum_{\omega \in \{e_1, e_2, e_{12}\}} |M \cdot \omega|^4 \Phi(\omega, M) (3 + \Phi(\omega, M)^2)$

where

$$\Phi(\omega, M) := \sqrt{\frac{|MR\omega|^2 |MR^T\omega|^2}{\frac{3}{4} \det(M)}} - 1$$

for each $\omega \in \mathbb{S}^2$, with

 $e_1 = (1,0), \quad e_2 = Re_1, \quad e_{12} = R^{-1}e_1 = e_1 - e_2.$

Then

$$\mathcal{F}[X] = \int_{\Pi} F(\nabla X) \, dx,$$

hence the gradient flow is given by

$$\partial_t X(t,x) = \operatorname{div}(\nabla F(\nabla X(t,x)))$$

with initial and boundary conditions

 $\begin{cases} X(t) \text{ is } \Pi \text{-periodic,} \\ X(0) = X^{in}. \end{cases}$

A more manageable formula

$$F(M) := \frac{1}{16\sqrt{3}} \det(M) \operatorname{tr}[M^{T}M(2S - I)] \\ + \frac{1}{64\sqrt{3}} \frac{[\operatorname{tr}(M^{T}M)]^{2}[\operatorname{tr}(M^{T}MS)]}{\det(M)} \\ - \frac{1}{192\sqrt{3}} \frac{[\operatorname{tr}(M^{T}M)]^{3} + 4[\operatorname{tr}(M^{T}MS)]^{3}}{\det(M)},$$

where

$$\boldsymbol{S} = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right).$$

Remark: *F* depends on det(*M*) and blows up as det(*M*) \rightarrow 0.

The Small Deformation Regime

Write $X = id + \tau Y$. Then

$$3\sqrt{3} F(\mathrm{Id} + \tau \nabla Y) = 10 + 20 \tau \operatorname{div}(Y) + \tau^2 (14 \operatorname{det}(\nabla Y) + 10 \operatorname{div}(Y)^2 + 3 |\nabla Y|^2) + O(\tau^3).$$

Crucial facts: (1)

$$\int_{\Pi} \operatorname{div}(Y) = \int_{\Pi} \operatorname{det}(\nabla Y) = 0.$$

(2) For $A \in M_2(\mathbb{R})$, define

$$F_0(A) = F(A) - \frac{20}{3\sqrt{3}} \operatorname{Tr}(A - \operatorname{Id}) - \frac{14}{3\sqrt{3}} \operatorname{det}(A - \operatorname{Id}).$$

Then F_0 is uniformly convex if $|A - Id| \le \eta \ll 1$.

Thus,

$$\mathcal{F}[X] = \int_{\Pi} F_0(\nabla X) \, dx,$$

and \mathcal{F} is uniformly convex on functions that are sufficiently close to the identity in C^1 .

Therefore, if

$$\|\nabla X(t) - \mathrm{Id}\|_{\infty} \le \eta \qquad \forall t \ge \mathbf{0}, \tag{1}$$

 $X(t) \rightarrow id$ exponentially fast in L^2 by the theory of gradient flows for convex functionals.

So, the main issue is to obtain (1). For this, we combine results from parabolic regularity theory for systems.

Main result: The hexagonal lattice is asymptotically optimal and dynamically stable

Theorem (E. Caglioti, F. Golse, M. I., 2016)

Assume that $X^{in} \in Diff(\mathbb{R}^2)$ satisfies

$$X^{in}$$
 is Π -periodic and $\int_{\Pi} X^{in}(x) dx = 0$

and

 $\|\boldsymbol{X}^{\textit{in}}-\mathrm{id}\|_{W^{s,p}(\Pi)} \leq \eta/2 \ll 1$

for some p > 2 and s > 1 + 2/p. Then the Cauchy problem for the L^2 -gradient flow of \mathcal{F} has a unique solution X with initial data X^{in} , and

 $\|X(t) - \mathrm{id}\|_{L^2(\Pi)} \le \|X^{in} - \mathrm{id}\|_{L^2(\Pi)} e^{-\mu t}, \quad \mu > 0.$

Strategy of the proof

Step 1: Construct an auxiliary convex functional \mathcal{G} that coincides with \mathcal{F} on maps that are C^1 -close to the identity.

Step 2: Denote by Y(t) the GF of \mathcal{G} . Then Y(t) converges exponentially fast in L^2 to id.

Goal: Prove that the GF of \mathcal{G} satisfies

 $\|\nabla Y(t) - \mathrm{Id}\|_{\infty} \leq \eta \qquad \forall t \geq 0$

with η small enough. This will imply that $\mathcal{G} = \mathcal{F}$ nearby Y(t) for all $t \ge 0$, hence Y(t) is also the GF for \mathcal{F} .

Step 3: By the Sobolev regularity on the initial datum and propagation of regularity for short times, we get

$\|\nabla Y(t) - \mathrm{Id}\|_{\infty} \leq \eta \qquad \forall t \in [0, t_0]$

for some $t_0 > 0$ small.

Step 4: Combine the L^2 exponential convergence of Y(t) to id with an ϵ -regularity theorems for parabolic systems to show that

$$\|\nabla Y(t) - \mathrm{Id}\|_{\infty} \leq \eta \qquad \forall t \geq t_0.$$

Conclusions

• Our result in 1D shows that the discrete evolution is well approximated by the continuous GF, uniformly in time. One needs to understand the dynamics of a parabolic (possibly degenerate) equation, and relate it to the discrete dynamics. The lack of convexity of the discrete functional is a source of challenges.

• The 2D result gives a new mathematical justification of the asymptotic optimality of the hexagonal lattice among its nearby configurations

Future directions

• Prove the convergence of the discrete GF to the continuous one, at least in the perturbative regime

- Understand if there is an Eulerian formulation, and what happens when $\rho \not\equiv \mathbf{1}$
- Go out of the perturbative regime
- Understand minimal configurations in higher dimensions and develop analogous programs

Thanks for your attention