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Draft, May 15, 2015
Outline of course:

1. Three ways to prove the existence of a solution for a fundamental
boundary value problem for boundary layers in fluid mechanics

2. Brief introductions to stable and unstable manifolds for nonlinear
systems of odes, and to the “shooting method”as a technique for
existence proofs, with traveling fronts in neurobiology as an example

3. Layers and spikes in reaction-diffusion equations

4. Travelling pulses in neurobiology
(a) local models (PDEs)
(b) nonlocal models

5. Some unsolved problems and some recent references
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1. Falkner-Skan Equation — functional analysis, dynamical systems,
or standard ode methods?

Prandtl boundary layer equations for incompressible laminar flow, where u
and v are the horizontal and vertical velocity components, v is kinematic
viscosity, ρ is density and p is pressure.

u
∂u
∂x
+ v

∂u
∂y
= −1

ρ

∂p
∂x
+ ν

∂2u
∂y2

∂u
∂x
+

∂v
∂y
= 0

(with boundary conditions) .

To a first approximation pressure is constant in the boundary layer. Make
this assumption and look for the symmetrical boundary layer flow over a
wedge of included angle βπ. An ode can be obtained by assuming the
solution is a function of a single variable combining x and y in a particular
way. The result is called a “similarity solution”of the pde.
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In the case of the Prandtl equations, if

η =

√
u∞

ν (2− β)
x

β−1
2−β y

we obtain the ode:

f ′′′ + ff ′′ + β
(
1− f ′2

)
= 0,

with boundary conditions

f (0) = f ′ (0) = 0, f ′ (∞) = 1.

Here f ′ = df
dη is the (scaled) velocity of the incompressible fluid flowing

past a surface and f is the velocity potential, or stream function.
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Studied by (among others)

Weyl (1942), Iglisch (1953-55), Coppel (1960), Hartman (1964, book),

Hastings: 1970—72, Serrin (1970), Craven and Peletier, 1972,

H. and Troy (1987-88 — showed the existence of periodic solutions for
β < −1 and β > 1 and a complicated bifurcation from infinity as β
increases beyond 2.)

Swinnerton-Dyer and Sparrow (1995, 2002 — showed that there are many
such bifurcations, and described the branches globally; 114 pages of
classical techniques).
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Good problem for future research:

Swinnerton-Dyer and Sparrow: (1995)

“..it is most important to recognize that the bifurcations studied here will
occur in a wide variety of systems..”

“ ..it is of some interest to know why more examples of this type of
behavior are not known from numerical experiments.”

“.. the present proof relies on detailed calculations of a very specific
nature, tied to the exact form of (the Falkner-Skan equation).”
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Original boundary value problem:

f ′′′ + ff ′′ + β
(
1− f ′2

)
= 0.

f (0) = 0, f ′ (0) = 0, f ′ (∞) = 1.

Existence for β ≥ 0 proved by H. Weyl (1942)
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Weyl’s Existence proof. (Annals of Mathematics, vol 43, 1942,
381-407)

Differentiate to obtain

f ′′′′ + ff ′′′ + (1− 2β) f ′f ′′ = 0.

Proposition: It is suffi cient to find a solution h such that
h (0) = h′ (0) = 0, h′′ (0) = 1, and h′ (∞) exists.

Proof: Given such a solution h, let f (η) = κh (κη) where κ2h′ (∞) = 1.
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h′′′′ + hh′′′ + (1− 2β) h′h′′ = 0

h (0) = h′ (0) = 0, h′′ (0) = 1, h′′ (∞) = 0.

Consider this as an ode for φ = h′′.

φ′′ + hφ′ + (1− 2β) h′φ = 0

φ (0) = 1, φ (∞) = 0.

The goal is to apply a fixed point theorem to the φ problem. To set this
up, suppose that g ∈ C ([0,∞)) is known, with |g (η)| ≤ 1 for all η ≥ 0.
Let

H (η) =
∫ η

0
(η − s) g (s) ds.

Then H (0) = H ′ (0) = 0, H ′′ = g . Consider the linear bvp

φ′′ +Hφ′ + (1− 2β)H ′φ = 0

φ (0) = 1, φ (∞) = 0.
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φ′′ +Hφ′ + (1− 2β)H ′φ = 0

φ (0) = 1, φ (∞) = 0.

Lemma: If g ∈ C ([0,∞)) and 0 ≤ g (η) ≤ 1 for all η ≥ 0, and
H (η) =

∫ η
0 (η − s) g (s) ds, then this problem has a solution φ which

satisfies the additional conditions φ′ +Hφ ≤ 0 and φ ≥ 0 on [0,∞).
Further, there is only one solution satisfying these conditions.

Proof: (several pages; see the paper by Weyl).

Next step: Let φ = Qg and show that Q has a fixed point. If Qg = g
then φ = H ′′, and reversing the previous scaling gives a solution f to the
original problem. (Uniqueness can also be proved. See ode text by P.
Hartman.)
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To find a fixed point, let X = C ([0,∞)) with the topology of uniform
convergence on compact sets.

Then X is locally convex (family of
semi-norms but no norm).

Schauder’s fixed point theorem extends to this setting (the
“Schauder-Tychonoff” theorem):

Theorem: Let X be a locally convex linear topological space, and E a
closed convex subset of X . Suppose that F is a compact subset of E and
T is a continuous mapping of E into F . Then there is a point φ ∈ F such
that Tφ = φ.

With some work, Weyl verifies the hypotheses of this theorem for the
mapping Q to complete the proof. The set E in this case is
{g ∈ X | 0 ≤ g (η) ≤ 1 on [0,∞)}
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Before discussing a different proof we will consider the general topic of
“phase space”.

Consider an autonomous system of n ODEs of the form

x ′i = fi (x1, x2, ..., xn) , i = 1, ..., n

such that all the partial derivatives ∂fi
∂xj
are continuous in Rn. If

x (t) = (x1 (t) , ..., xn (t))

is a solution of this system, then the mapping γ : t → x (t) is a curve in
Rn, and its image is called an orbit, or trajectory, or phase curve for the
system. Rn with the set of orbits is called the “phase space”of the
system. In the case n = 2 we get the “phase plane”.
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Example: A linear system:

x ′ = ax + by

y ′ = cx + dy

has a set of solutions determined by the eigenvalues and eigenvectors of

the matrix A =
(
a b
c d

)
.

For example, if A =
(
0 1
1 0

)
then the

phase curves are hyperbolas, while if A =
(

0 1
−1 0

)
then the phase

curves are circles.
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A nonlinear example:

x ′ = y

y ′ = x − x3

Then

d
dt

(
1
2
y2 − x

2

2
+
x4

4

)
= yy ′+

(
x3 − x

)
x ′ = y

(
x − x3

)
+
(
x3 − x

)
y = 0

so the phase curves are the graphs of the equations

1
2
y2 − 1

2
x2 +

1
4
x3 = c

for different values of c.
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x ′ = y

y ′ = x − x3

The arrow indicate the direction of the flow as t increases.

Near (0, 0) the phase curves are close to hyperbolas, while near (1, 0)
they are close to ellipses.
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Write the general system as

x′ = f (x) . (1)

The smoothness assumption on f implies that for each x0 ∈ Rn there is a
unique solution x (·, x0) of (1) such that x (0) = x0. This solution exists
on some maximal interval (α,ω) ⊂ R.

Definition: A subset Ω of Rn is called “invariant” if, for each x0 ∈ Ω,
x (t, x0) ∈ Ω for α < t < ω.

Any invariant set is the union of trajectories of the system.
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An example in R3 :

x ′ = y

y ′ = −x
z ′ = 1

The phase curves are helices. Any cylinder x2 + y2 = d2, z ∈ R is
invariant for this system.
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Outline of a “dynamical systems” proof of existence for the
Falkner-Skan problem

f ′′′ + ff ′′ + β
(
1− f ′2

)
= 0

f (0) = f ′ (0) = 0, f ′ (∞) = 1

(Exercise in a graduate ode text from 2006) —described as “non-trivial”
and “hard”.)

“Hint”: Let
f (η) =

1√
ε
u (s) , s =

√
εη

Then

εu′′′ + uu′′ + β
(
1− u′2

)
= 0

u (0) = u′ (0) = 0, u′ (∞) = 1.
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It is suffi cient to prove existence for some ε > 0. Write as a system

u′ = v

v ′ = w

εw ′ = −uw − β
(
1− v2

)
.

Let t = s
ε , u̇ = du

dt .

u̇ = εv

v̇ = εw

ẇ = −uw − β
(
1− v2

)
The boundary conditions are now

u (0) = v (0) = 0, v (∞) = 1

This is a “singular perturbation”problem, because when ε = 0 there is no
solution.
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u̇ = 0

v̇ = 0

ẇ = −uw −
(
1− v2

)
We examine the three dimensional phase space.

The plane v = 1 and the line w = 0, v = 1 are each invariant.

There is a family of solutions u = c > 0, v = 1, w = de−ct .

Thus there is an invariant plane.
How does the picture change when ε > 0?
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u̇ = εv

v̇ = εw

ẇ = −uw − β
(
1− v2

)
The line v = 1, w = 0 is still invariant.

The general theory of “center
manifolds” implies that the invariant plane found for ε = 0 becomes an
invariant surface. Those solutions on this surface which enter u > 0 still
tend to the invariant line as t → ∞.
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Projection of trajectories on the invariant surface onto w = 0

We must show that this manifold intersects the w - axis. (“This is the
hard part.”)
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Swinnerton-Dyer and Sparrow: (1995)

“We learn (by personal communication) that a more geometric approach
may be possible via Poincaré compactification, but we have yet to see all
the details.”
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Proof using a “shooting method”

Initial value problem:

f ′′′ + ff ′′ + β
(
1− f ′2

)
= 0

f (0) = f ′ (0) = 0

f ′′ (0) = c

Graphs of f ′ for three values of c :
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f ′′′ + ff ′′ + β
(
1− f ′2

)
= 0 (2)

f (0) = f ′ (0) = 0

f ′′ (0) = c

Lemma 1. If f solves this initial value problem, then there is no η with
f ′′ (η) = 1− f ′ (η) = 0. (That is, the graph of f ′ is not tangent to the
line f ′ = 1.)

Proof: For any η0 and f0, the initial value problem (2) with f (η0) = f0,
f ′ (η0) = 1, f ′′ (η0) = 0 has the unique solution f = f0 + η − η0, with
f ′ = 1. Hence f ′ (0) 6= 0, a contradiction
,
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Lemma 2. Let A = {c > 0 | f ′′ < 0 before f ′ = 1} . Then A is an open
subset of R and contains an interval (0, c0] with c0 > 0.

Proof: If c = 0 then f ′′ (0) = 0, f ′′′ (0) = −1 and so f ′′ turns negative
immediately. Thus, for any η0 > 0, if c = 0, then f ′′ (η0) < 0 and f ′ < 1
on [0, η0] . Solutions depend continuously on c, so fixing η0, if c is
suffi ciently small then f ′′ (η0) < 0 and f ′ < 0 on [0, η0] . This continuity
also shows that A is open.
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Lemma 3. Let B = {c > 0 | f ′ > 1 before f ′′ = 0} . Then B is also
open, and contains all suffi ciently large c.

Proof: Multiply by e
∫ η
0 f to get(

f ′′e
∫ η
0 f
)′
= βe

∫ η
0 f
(
f ′2 − 1

)
≥ −βe

∫ η
0 f .

Suppose that f ′ ≤ 1 on 0 ≤ η ≤ 1. As long as η ≤ 1 and f ′ ≥ 0, we have
0 ≤ f ≤ 1 and so f ′′e

∫ η
0 f ≥ c − βe. Integrating this for large c shows that

f ′ (1) > 1, a contradiction which proves the second assertion. Openness
again follows because these solutions depend continuously on c .
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A B

Lemma 3 implies that A is bounded. Let c∗ = supA. Then c∗ /∈ A∪ B,
since both of these sets are open and they are disjoint.

If c = c∗ then f ′′ > 0 and f ′ < 1 on [0,∞), because f ′′ and 1− f ′ cannot
vanish simultaneously, by Lemma 1. Hence limη→∞ f ′ (η) exists.

This limit can only be 1, for if 1− f ′2 → δ > 0, then for large η,(
f ′′e

∫ η
0 fds

)′
≤ − δ

2 βe
∫ η
0 fds , implying that f ′′ becomes negative, a

contradiction. This completes the proof.
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