3. Layers and spikes in a reaction-diffusion equation
Angenent, Mallet-Paret, and Peletier (1987) considered

U =uy+u(l—u)(u—¢(x)), 0<x<1, t>0
ue (0,t) =ux(1,t) =0, t>0

with ¢’ continuous and
0<¢(x)<1

on [0,1].
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3. Layers and spikes in a reaction-diffusion equation
Angenent, Mallet-Paret, and Peletier (1987) considered

U =uy+u(l—u)(u—¢(x)), 0<x<1, t>0
ue (0,t) = ux (1, t) =0, t >0
with ¢’ continuous and
0<¢(x)<1
on [0,1].

Also studied by Ai, Chen and Hastings in 2006 and by Matano and others.
With Dirichlet conditions it was considered in R” by Dancer and Yan
(2003).
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This problem arises, for example, in population genetics when a population
is spread over (0, 1), with no flux across the boundary, and where each
individual is AA, Aa, or aa. The fraction of alleles of type A across the
population at point x and time t is denoted by u (x, t).
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population at point x and time t is denoted by u (x, t). Thus we assume
that 0 < u <1.

First suppose that ¢ = 0. Then there is no dispersion and the population
at each x satisfies the ode

ue = u (1) (u— ¢ (x)).
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This problem arises, for example, in population genetics when a population
is spread over (0, 1), with no flux across the boundary, and where each
individual is AA, Aa, or aa. The fraction of alleles of type A across the
population at point x and time t is denoted by u (x, t). Thus we assume
that 0 < u <1.

First suppose that ¢ = 0. Then there is no dispersion and the population
at each x satisfies the ode

ue = u (1) (u— ¢ (x)).

In this case,
sign uy = sign (u—¢ (x)),

so as t increases,

u(x,t) —0if u(x,0) < ¢(x)
u(x,t) = 1ifu(x,0) > ¢(x).
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This problem arises, for example, in population genetics when a population
is spread over (0, 1), with no flux across the boundary, and where each
individual is AA, Aa, or aa. The fraction of alleles of type A across the
population at point x and time t is denoted by u (x, t). Thus we assume
that 0 < u <1.

First suppose that ¢ = 0. Then there is no dispersion and the population
at each x satisfies the ode

up=u(l—u)(u—¢(x)).
In this case,
sign v = sign (u—¢ (x)),
SO as t increases,
u(x,t) = 0if u(x,0) < ¢(x)
u(x, t) — Lif u(x,0) > ¢ (x).

But dispersion (similar to diffusion in its effect) may change this.
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Steady state solutions ( u; = 0 ) also satisfy an ode,

Eu" +u(l—u)(u—¢(x)) =0, (1)
u(0)=1d(1)=0 (2)
0<¢(x)<1 (3)
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It is useful to consider the case where ¢ is constant. Thus,
v +u(l—u)(u—x)=0, (4)

where x € (0,1).

0 May 31, 2015 4 / 46



It is useful to consider the case where ¢ is constant. Thus,
v +u(l—u)(u—x)=0, (4)

where x € (0,1).

v =u(1—u)(k—u)
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It is useful to consider the case where ¢ is constant. Thus,

v +u(l—u)(u—x)=0,

where x € (0,1).

u —=yv

eV =u(l—u)(k—u)

If x = % then the problem is invariant under v — 1 — u, and all

trajectories of (4) are symmetric around the line u =
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It is useful to consider the case where ¢ is constant. Thus,
v +u(l—u)(u—x)=0, (4)
where x € (0,1).
u=v
eV =u(l—u)(k—u)

If x = % then the problem is invariant under v — 1 — u, and all
trajectories of (4) are symmetric around the line u = 1. (more about this

phase plane later)
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Angenent, Mallet-Paret, and Peletier (AMP) found all of the solutions to
(1)-(2) which are stable steady states of the corresponding
reaction-diffusion pde . These solutions can have single layers (defined
below) near the points in [0, 1] where ¢ = 1.
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Angenent, Mallet-Paret, and Peletier (AMP) found all of the solutions to
(1)-(2) which are stable steady states of the corresponding
reaction-diffusion pde . These solutions can have single layers (defined
below) near the points in [0, 1] where ¢ = 1.

However the set of all solutions (stable or not) is considerably more
complicated, and may (depending on ¢) include solutions with multiple
layers clustered near some of the points where ¢ = % and also single or
multiple spikes near critical points of ¢.
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As an illustrative special case we will assume that
¢ <0
on [0, 1] and for some x; € (0,1),

P00) =3

Theorem: A,M,P: For sufficiently small ¢ > 0 there are exactly three
stable solutions: u =0, u = 1, and one which is increasing with most of
the increase occurring near xp. (This forms a “layer”.)
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red: graph of ¢; blue: stable solutions
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Why is there a third solution?
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0 02 04 06 08 X 1
red: graph of ¢; blue: stable solutions
Why is there a third solution?

We can motivate a search for another solution for small € by using the
calculus of variations, since (1) is the Euler-Lagrange equation for a
minimization problem.
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fxou)=u(l—u)(u—¢(x)
F(x,u):/0 f(x,s)ds

I (u) = /01 ngu/z — F(x, u)> dx

Minimize

over H' (0,1).
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Minimize

over H! (0,1) . No boundary conditions are imposed, because minimizers
can be shown to satisfy so-called natural boundary conditions, which here
are the Neumann conditions given above.
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Fxu)=u(l—u)(u=-¢(x)
F(x,u):/0 f(x,s)ds

Consider the graphs of —f (x, u) and —F(x, u), as functions of u for two
fixed values of x, one (red) with ¢ (x) > 3 and one (blue) with ¢ (x) < 3.
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Fxu)=u(l—u)(u=-¢(x)
F(x,u):/0 f(x,s)ds

Consider the graphs of —f (x, u) and —F(x, u), as functions of u for two
fixed values of x, one (red) with ¢ (x) > 3 and one (blue) with ¢ (x) < 3.

-f(x,u)

u
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Fxu)=u(l—u)(u=-¢(x)
F(x,u):/0 f(x,s)ds

Consider the graphs of —f (x, u) and —F(x, u), as functions of u for two

fixed values of x, one (red) with ¢ (x) > 3 and one (blue) with ¢ (x) < 3.

“F(xu)

min at u=0
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L (u) = /01 Ge?u'? ~F(x. u)> d

But ¢ > 3 on [0,x) and ¢ < % on (xp, 1]. Hence the second term in I, is
minimized by taking u close to 0 in (0, xp) and close to 1 in (xp,1).

Does a minimum of I, exists in H!, and if so, is the first term of I,
significant?

May 31, 2015 10 / 46



L (u) = /01 Ge?u'? ~F(x. u)> d

But ¢ > 3 on [0,x) and ¢ < % on (xp, 1]. Hence the second term in I, is
minimized by taking u close to 0 in (0, xp) and close to 1 in (xp,1).

Does a minimum of I, exists in H!, and if so, is the first term of I,
significant?

Suppose that v, is a sequence of smooth functions tending to the
Heaviside function H (x — x) .
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Then for any § > 0,
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Then for any § > 0,

Xo+§
lim / vl =1
n—oo X()_(S

Xo+0 ,
Xp—0

while by Cauchy-Schwarz,

<25 [ V2
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Then for any § > 0,

while by Cauchy-Schwarz,

<25 [ V2
0

Xo+0 ,
N

x0—0
Hence, for each ¢ > 0, lim,_ I (v,,) = 00, a contradiction. A minimizing
sequence does not tend to H and we can expect a smooth minimizer.
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Then for any § > 0,

while by Cauchy-Schwarz,

<25 [ V2
0

Xo+0 ,
N

x0—0
Hence, for each ¢ > 0, lim,_ I (v,,) = 00, a contradiction. A minimizing
sequence does not tend to H and we can expect a smooth minimizer.

Other arguments show, however, that as ¢ — 0 the global minimizer tends
to the Heaviside function.
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Then for any § > 0,

while by Cauchy-Schwarz,

<25 [ V2
0

Xo+0
R

x0—0
Hence, for each ¢ > 0, lim,_ I (v,,) = 00, a contradiction. A minimizing
sequence does not tend to H and we can expect a smooth minimizer.
Other arguments show, however, that as ¢ — 0 the global minimizer tends
to the Heaviside function.

Dancer and Yan used calculus of variations arguments in R"” to construct
most, but not all, of the solutions we will describe.

0 May 31, 2015 11/ 46



Second Motivation: Numerical “Shooting”
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PROOF OF EXISTENCE USING SUB- AND SUPER- SOLUTIONS
(A,M,P)

Also called “upper” and “lower” solutions
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PROOF OF EXISTENCE USING SUB- AND SUPER- SOLUTIONS
(A,M,P)

Also called “upper’ and “lower” solutions
Important method for both ODEs and PDEs
A slightly simplified version can be used here:

Definition (non-standard): A C? strong subsolution of (1)-(2) is a
function uy € C?([0,1]) such that

(i) €2uf (x) + f (x, u1 (x)) > 0 at each x € [0,1].
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A C? strong supersolution u' :

Eut " (x)+f (x,u* (x)) <O.
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A C? strong supersolution u' :

Eut " (x)+f (x,u* (x)) <O.

We start, however, by defining two solutions which are not sub- or super-
solutions, but are the starting points in defining sequences of each.
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that ¢ (x) = 1.
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A C? strong supersolution u' :

Eut " (x)+f (x,u* (x)) <O.

We start, however, by defining two solutions which are not sub- or super-
solutions, but are the starting points in defining sequences of each. Recall
that ¢ (x) = 1. Choose small positive numbers 6 and p.
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Then choose certain functions u < & as shown below. They are constant
except in certain intervals contained in [xg — J, xp + J], where they solve
(1) exactly. This is only possible for sufficiently small e.

1

P

4

0 May 31, 2015 15 / 46



Then choose certain functions u < & as shown below. They are constant
except in certain intervals contained in [xg — J, xp + J], where they solve
(1) exactly. This is only possible for sufficiently small e.

1

P

4

The functions & and u are continuous but not smooth.
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Choose A > 0 such that on [0, 1] x [0, 1],

fo (x,u) + A > 0. (5)
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Choose A > 0 such that on [0, 1] x [0, 1],
fu(x,u)+A>0. (5)

Suppose that u < v < @ on [0, 1] and consider the linear boundary value

problem
€2u”—Au:—f(x, v) —Av L)
J(0)=d(1)=0 '
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Choose A > 0 such that on [0, 1] x [0, 1],

fo (x,u) + A > 0. (5)

Suppose that u < v < @ on [0, 1] and consider the linear boundary value
problem

eu —Au= —f(x,v) — Av
J0)=d(1) =0 (L)

Note that f (x,v) + Av > 0 for v > 0.
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Choose A > 0 such that on [0, 1] x [0, 1],

fo (x,u) + A > 0. (5)

Suppose that u < v < @ on [0, 1] and consider the linear boundary value
problem
eu —Au= —f(x,v) — Av L
JO)=u(1)=0 )

Note that f (x,v) + Av > 0 for v > 0.
The problem

has only the solution u = 0.
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Choose A > 0 such that on [0, 1] x [0, 1],

fo (x,u) + A > 0. (5)

Suppose that u < v < @ on [0, 1] and consider the linear boundary value
problem
eu —Au= —f(x,v) — Av L
JO)=u(1)=0 )

Note that f (x,v) + Av > 0 for v > 0.
The problem

eu" —Au=0
u'(0) = u' (1) =

has only the solution u = 0. Hence the inhomogeneous problem (L) has a
unique solution u. Let Tv = u.
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up =

Uiyl
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w1 =Tu

Uiy1 = Tu,-

We will show that u is a strong C? subsolution of (1) - (2).
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i =Tu

We have only to verify the inequality

e2ul (x) + f (x,u1 (x)) > 0. (6)

0 May 31, 2015 18 / 46



i =Tu

We have only to verify the inequality
e2ul (x) + f (x, u1 (x)) > 0. (6)
From the definition of wu; it follows that

ul +f (x,u) = (f (x,u1) + Au) — (f (x, u) + Au) .
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i =Tu

We have only to verify the inequality
e2ul (x) + f (x,u1 (x)) > 0. (6)
From the definition of wu; it follows that
eluy +f (x,u1) = (f (x, u1) + Auy) = (f (x,u) + Aw).

But f, + A > 0, so if
u<um<li (7)

on [0, 1] then (6) holds.
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u = Tg
We have only to verify the inequality

/!

e2ul (x) + f (x, u1 (x)) > 0. (6)
From the definition of wu; it follows that

ul +f (x,u) = (f (x,u1) + Au) — (f (x, u) + Au) .

But f, + A > 0, so if
u<um<li (7)

on [0, 1] then (6) holds. Also, f (x,u) + Au > 0, and this quantity is
positive on (X, 1].
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u = Tg
We have only to verify the inequality

/!

e2ul (x) + f (x, u1 (x)) > 0. (6)
From the definition of wu; it follows that

ul +f (x,u) = (f (x,u1) + Au) — (f (x, u) + Au) .

But f, + A > 0, so if
u<um<li (7)

on [0, 1] then (6) holds. Also, f (x,u) + Au > 0, and this quantity is
positive on (%, 1]. Hence we have to show (7).

0 May 31, 2015 18 / 46



Suppose, for example, that u; (%) < 0 for some % € (0, X).
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Suppose, for example, that u; (%) < 0 for some %X € (0,%). Then
u(X) =0 and so from the ode defining uy,

e2ul (%) = Auy (X) < 0. (8)
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Suppose, for example, that u; (%) < 0 for some %X € (0,%). Then
u(X) =0 and so from the ode defining uy,

e2ul (%) = Auy (X) < 0. (8)

It follows that u; < 0 and uj’ < 0 to the left of X, implying that
u; (0) > 0. This contradicts a boundary condition satisfied by uj.
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With similar maximal principle type arguments we can show that

O<u<um<wm<..<hu.
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With similar maximal principle type arguments we can show that

O<u<um<wm<..<u

It is then not hard to show that

u= lim y
|—00

exists and is the desired increasing solution to (1)-(2).

May 31, 2015

20 / 46



PROOF OF EXISTENCE USING SHOOTING
Ai, Chen, Hastings, (2006) (See also Ai and Hastings, 2002).

eu’ = u(l—u)(¢(x)—u)

J(0)=4d(1)=0
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PROOF OF EXISTENCE USING SHOOTING
Ai, Chen, Hastings, (2006) (See also Ai and Hastings, 2002).

eu’ = u(l—u)(¢(x)—u)

J(0)=4d(1)=0

Theorem: An increasing solution exists for any € > 0.
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PROOF OF EXISTENCE USING SHOOTING
Ai, Chen, Hastings, (2006) (See also Ai and Hastings, 2002).

eu" =u(1—u)(¢p(x)—u)

J(0)=4d(1)=0
Theorem: An increasing solution exists for any € > 0.

Proof: For each a consider the solution u = u, of (1) such that
u(0) =ua, v (0)=0.
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PROOF OF EXISTENCE USING SHOOTING
Ai, Chen, Hastings, (2006) (See also Ai and Hastings, 2002).

eu" =u(1—u)(¢p(x)—u)

J(0)=4d(1)=0
Theorem: An increasing solution exists for any € > 0.

Proof: For each a consider the solution u = u, of (1) such that
u(0) =a, v’ (0) = 0. Note that if 0 < u < min¢ then u” > 0.
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PROOF OF EXISTENCE USING SHOOTING
Ai, Chen, Hastings, (2006) (See also Ai and Hastings, 2002).

eu" =u(1—u)(¢p(x)—u)

J(0)=4d(1)=0
Theorem: An increasing solution exists for any € > 0.

Proof: For each a consider the solution u = u, of (1) such that

u(0) =w, u'(0) = 0. Note that if 0 < u < min¢ then v > 0. If &« =0
then u = 0.
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PROOF OF EXISTENCE USING SHOOTING
Ai, Chen, Hastings, (2006) (See also Ai and Hastings, 2002).

eu" =u(1—u)(¢p(x)—u)

J(0)=4d(1)=0
Theorem: An increasing solution exists for any € > 0.

Proof: For each a consider the solution u = u, of (1) such that
u(0) =w, u'(0) = 0. Note that if 0 < u < min¢ then v > 0. If &« =0
then u = 0. Hence if « is sufficiently small, then u < min¢ on [0,1].
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PROOF OF EXISTENCE USING SHOOTING
Ai, Chen, Hastings, (2006) (See also Ai and Hastings, 2002).

eu" =u(1—u)(¢p(x)—u)

J(0)=4d(1)=0
Theorem: An increasing solution exists for any € > 0.

Proof: For each a consider the solution u = u, of (1) such that
u(0) =w, u'(0) = 0. Note that if 0 < u < min¢ then v > 0. If &« =0
then u = 0. Hence if « is sufficiently small, then u < min¢ on [0,1].

It follows that if « is sufficiently small and positive then u}, (1) > 0.
Similarly, if 1 — « is sufficiently small and positive then v} (1) < 0.
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PROOF OF EXISTENCE USING SHOOTING
Ai, Chen, Hastings, (2006) (See also Ai and Hastings, 2002).

eu" =u(1—u)(¢p(x)—u)

J(0)=4d(1)=0
Theorem: An increasing solution exists for any € > 0.
Proof: For each a consider the solution u = u, of (1) such that

u(0) =w, u'(0) = 0. Note that if 0 < u < min¢ then v > 0. If &« =0
then u = 0. Hence if « is sufficiently small, then u < min¢ on [0,1].

It follows that if « is sufficiently small and positive then u}, (1) > 0.

Similarly, if 1 — a is sufficiently small and positive then v} (1) < 0. By

continuity of v, (1) with respect to « there exists an a* € (0, 1) such that
/

u. (1) =0.
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PROOF OF EXISTENCE USING SHOOTING
Ai, Chen, Hastings, (2006) (See also Ai and Hastings, 2002).

eu" =u(1—u)(¢p(x)—u)

J(0)=4d(1)=0
Theorem: An increasing solution exists for any € > 0.

Proof: For each a consider the solution u = u, of (1) such that
u(0) =w, u'(0) = 0. Note that if 0 < u < min¢ then v > 0. If &« =0
then u = 0. Hence if « is sufficiently small, then u < min¢ on [0,1].

It follows that if « is sufficiently small and positive then u}, (1) > 0.
Similarly, if 1 — a is sufficiently small and positive then v} (1) < 0. By
continuity of v, (1) with respect to « there exists an a* € (0, 1) such that
u. (1) =0.

o

It can be further shown ( ~ 1 paragraph proof on request!) that if we
choose the smallest possible a*, then u/. > 0 on (0, 1).
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But for small ¢ there are further solutions. To find these it is helpful to
rescale the system.
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But for small ¢ there are further solutions. To find these it is helpful to
rescale the system.

For x* € [0,1] let u(x* +es) =y (s).
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For x* € [0,1] let u(x* +e&s) =y (s). Then

Y =Z
Z'=Y(1=Y)(¢(x)-Y)
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But for small ¢ there are further solutions. To find these it is helpful to

rescale the system.

For x* € [0,1] let u(x* +e&s) =y (s). Then

Y =Z
Z'=Y(1=Y)(¢(x)-Y)

Relation between the two systems:
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But for small ¢ there are further solutions. To find these it is helpful to

rescale the system.

For x* € [0,1] let u(x* +e€s) =y (s). Then

Y =Z
Z'=Y(1=Y)(¢(x)-Y)

Relation between the two systems:

Suppose that y (x*) = Y (0), z(x*) = Z(0) and (Y, Z) exists on

0<s<s.
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But for small ¢ there are further solutions. To find these it is helpful to

rescale the system.

For x* € [0,1] let u(x* +e€s) =y (s). Then

Y =Z
Z'=Y(1=Y)(¢(x)-Y)

Relation between the two systems:

Suppose that y (x*) = Y (0), z(x*) = Z(0) and (Y, Z) exists on

0 <'s < s;. Then for sufficiently small ¢, (y, z) exists on [x*, x* + es1],

and

lim(y (x" +es), 2(x" +es)) = (Y (s), Z(s))

uniformly on 0 < s < g1.
0
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Y =2Z
Z=Y(1-Y)(p(x)-Y)
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Y =2Z
Z=Y(1-Y)(p(x)-Y)

(0,0), (1,0) — saddle points; (¢ (x*),0) - center
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Y =2Z
Z=Y(1-Y)(p(x)-Y)

(0,0), (1,0) — saddle points; (¢ (x*),0) - center

1
5\/’2+F(><*, Y)=C
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Y =2, Z=Y(1-Y)(¢(x)-Y)
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eu" =u(1—u)(¢p(x)—u)
u(0)=ua,u(0)=0

Y =27
Z'=Y(1=Y)(¢p(x)—Y)
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eu" =u(1—u)(¢p(x)—u)
u(0)=ua,u(0)=0

Y =27
Z'=Y(1=Y)(¢p(x)—Y)

/\

0.6 0.8 u T,

P
4 X

Dotted curve is in (Y, Z) phase plane when x* < xp.
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Shooting argument: If u > 1 then v/ > 0.
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Shooting argument: If u > 1 then v/ > 0. If u < 0 then v < 0.
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or 0 and v’ = 0, then u is constant.
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Shooting argument: If u > 1then v’/ > 0. If u <O then v <0. lfu=1
or 0 and v’ = 0, then u is constant.
Let

A={a>0]u, >00n [0,1] orelse uy >0on (0,%] and u, (%) = 1.}

QL
\

& € A if g is sufficiently small
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But for fixed small &, some & € (0, &) are not in A.

u

2
\
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But for fixed small &, some & € (0, &) are not in A.

u

2
\

Let

Then u} (a*) = 0.
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But for fixed small &, some & € (0, &) are not in A.

u

Let

Then o, (a*) = 0.

Proof by contradiction.

0 May 31, 2015 28 / 46



But for fixed small &, some & € (0, &) are not in A.

u

Let
a* =sup[(0,a)\A].

Then u} (a*) = 0.

Proof by contradiction. Main difficulty: Eliminate an inflection point of
U at X € (0,1).
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If o' (%) =u" (%) =0, then

which means that vy« is decreasing in a neighborhood of X.
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If o' (%) =u" (%) =0, then

which means that vy« is decreasing in a neighborhood of X.

Hence a* cannot lie on the boundary of A.
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Multilayered solutions (also obtained by Dancer and Yan)
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Multilayered solutions (also obtained by Dancer and Yan)

u i
il
i

\
u‘.‘w”\\“.

Lemma: If ¢ < 0 on [0, 1] then successive minima and successive
maxima decrease. If ¢ > 0 then they increase. (J.B.McLeod)
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Proof. Suppose that u(a) and u(b) are successive minima and
u(b) > u(a).

c
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Proof. Suppose that u(a) and u(b) are successive minima and

u(b) > u(a).

c
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COROLLARY: Given N, if ¢ is sufficiently small then there are
multilayer solutions with 1,2, ..., N layers. Reason: As a changes, layers
disappear one by one. At each a where a layer disappears, v} (1) = 0.
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Other general results:
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Other general results:

Definition: A “stable layer” is a crossing of u = ¢ at which
(sign u) (sign ¢') < 0.

0 May 31, 2015 33/ 46



Other general results:

Definition: A “stable layer” is a crossing of u = ¢ at which
(sign u) (sign ¢') < 0.

A steady state solution of u; = €2, + f (x, u) is stable if it has only
stable layers.
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Other general results:

Definition: A “stable layer” is a crossing of u = ¢ at which
(sign u) (sign ¢') < 0.

A steady state solution of u; = €2, + f (x, u) is stable if it has only
stable layers.

1
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Other general results:

Definition: A “stable layer” is a crossing of u = ¢ at which
(sign u) (sign ¢') < 0.

A steady state solution of u; = €2, + f (x, u) is stable if it has only
stable layers.

1

0 & i

Theorem (AMP): If ¢ — 3 has n zeros in (0,1), then there are Fy 3
stable solutions, where F, is the mth Fibonacci number (1,1,2,3,5,8,...)
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Assume that ¢’ # 0 whenever ¢ = 3. As ¢ — 0, with the number of layers

fixed, all interior layers tend to zeros of ¢ (x) — % as ¢ — 0.
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Assume that ¢’ # 0 whenever ¢ = 3. As ¢ — 0, with the number of layers

fixed, all interior layers tend to zeros of ¢ (x) — % as ¢ — 0.

If ¢ (%) = % and ¢ (%) < 0, then multiple layers congregating at & must
start high and end low.

The first layer is a “stable layer”, but this solution is not stable.
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Reason that layers congregate at zeros of ¢ — %:
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Reason that layers congregate at zeros of ¢ — %:

Lemma: (Ai, X. Chen, Hastings): Suppose that n is a nonnegative

integer. For every 11 > 0 there is an €y, > 0 such that if 0 <& <¢, and u

is a solution of (1) - (2) with no more than n minima in (0,1)), then

1Q (u(x), v (x),x)| <y on[0,1] where
Q (u, u’,x) = [£2u/2 +2F (x, u)] u(l—u)
and

(x,5)dsif 0 <x <xp
(x,s)dsif xo <x<1

Recall:
fxs)=s(1—s)(s—¢(x))

¢ > % on [0,x0), ¢ < % on (xo, 1].
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Reason that layers congregate at zeros of ¢ — %:

Lemma: (Ai, X. Chen, Hastings): Suppose that n is a nonnegative

integer. For every 11 > 0 there is an €y, > 0 such that if 0 <& <¢, and u

is a solution of (1) - (2) with no more than n minima in (0,1)), then

1Q (u(x), v (x),x)| <y on[0,1] where
Q (u, u’,x) = [£2u/2 +2F (x, u)] u(l—u)
and

(x,5)dsif 0 <x <xp
(x,s)dsif xo <x<1

Recall:

flxs)=s(1=s)(s=¢(x)

¢ > % on [0,x0), ¢ < % on (xo, 1].

Hence F; > 0 and F; (xo, 3) = 0.

0
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Consider again the case of a decreasing ¢, with ¢ (xo) = % For small ¢, if
there is a layer at x* < xp, then (u(x), v’ (x)) must be close to a phase
curve for the rescaled system at x*.
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Consider again the case of a decreasing ¢, with ¢ (xo) = % For small ¢, if
there is a layer at x* < xp, then (u(x), v’ (x)) must be close to a phase
curve for the rescaled system at x*.

If the number of oscillations were unlimited, then oscillations could be
within the homoclinic loop.
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Consider again the case of a decreasing ¢, with ¢ (xp) = % For small ¢, if
there is a layer at x* < xp, then (u(x), v’ (x)) must be close to a phase

curve for the rescaled system at x*.

If the number of oscillations were unlimited, then oscillations could be
within the homoclinic loop. But by keeping the number of oscillations
bounded, (¢, ¢') must lie in the region where eventually u crosses 1 or 0, a

contradiction.
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there is a layer at x* < xp, then (u(x), v’ (x)) must be close to a phase

curve for the rescaled system at x*.

If the number of oscillations were unlimited, then oscillations could be
within the homoclinic loop. But by keeping the number of oscillations
bounded, (¢, ¢') must lie in the region where eventually u crosses 1 or 0, a
contradiction. Similarly, u cannot have a layer in the region x > Xxg.

May 31, 2015 36 / 46



Consider again the case of a decreasing ¢, with ¢ (xo) = % For small ¢, if
there is a layer at x* < xp, then (u(x), v’ (x)) must be close to a phase
curve for the rescaled system at x*.

If the number of oscillations were unlimited, then oscillations could be
within the homoclinic loop. But by keeping the number of oscillations
bounded, (¢, ¢') must lie in the region where eventually u crosses 1 or 0, a
contradiction. Similarly, u cannot have a layer in the region x > Xxg.

For the proof of the lemma see our book or the original paper (2006).

0 May 31, 2015 36 / 46



Other Solutions

A spike is a segment of a solution containing exactly two crossings of ¢
this case, the solution has successive minima, or maxima, at about the
same level. Since maxima increase where ¢’ < 0 and decrease where
¢’ > 0, spikes can only occur near minima or maxima of ¢.
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Other Solutions

A spike is a segment of a solution containing exactly two crossings of ¢. In
this case, the solution has successive minima, or maxima, at about the
same level. Since maxima increase where ¢’ < 0 and decrease where

¢’ > 0, spikes can only occur near minima or maxima of ¢.

Rules for spikes:

Downward interior spikes can occur only at local minima or maxima of ¢
where ¢ > %

0 May 31, 2015 37 / 46



Other Solutions

A spike is a segment of a solution containing exactly two crossings of ¢. In
this case, the solution has successive minima, or maxima, at about the
same level. Since maxima increase where ¢’ < 0 and decrease where

¢’ > 0, spikes can only occur near minima or maxima of ¢.

Rules for spikes:

Downward interior spikes can occur only at local minima or maxima of ¢
where ¢ > %

Multiple downward spikes can only occur at a local minimum of ¢.
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Other Solutions

A spike is a segment of a solution containing exactly two crossings of ¢. In
this case, the solution has successive minima, or maxima, at about the
same level. Since maxima increase where ¢’ < 0 and decrease where

¢’ > 0, spikes can only occur near minima or maxima of ¢.

Rules for spikes:
Downward interior spikes can occur only at local minima or maxima of ¢
1
where ¢ > 5
Multiple downward spikes can only occur at a local minimum of ¢.

Similar rules apply for upward spikes.
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Other Solutions

A spike is a segment of a solution containing exactly two crossings of ¢. In
this case, the solution has successive minima, or maxima, at about the
same level. Since maxima increase where ¢’ < 0 and decrease where

¢’ > 0, spikes can only occur near minima or maxima of ¢.

Rules for spikes:
Downward interior spikes can occur only at local minima or maxima of ¢
1
where ¢ > 5
Multiple downward spikes can only occur at a local minimum of ¢.

Similar rules apply for upward spikes.

1 . . 1 S
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Spikes have not been obtained by methods other than shooting.
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Spikes have not been obtained by methods other than shooting.

For non-monotone ¢, all types shown can be pieced together, giving
solutions with arbitrary numbers of layers and spikes within the already
stated restrictions, for sufficiently small €.
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Spikes have not been obtained by methods other than shooting.

For non-monotone ¢, all types shown can be pieced together, giving
solutions with arbitrary numbers of layers and spikes within the already
stated restrictions, for sufficiently small €. (As ¢ — 0 the possible numbers
of multiple layers and spikes increases. )
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Uniqueness and stability of the increasing layer solution.

v =u(l—u)(u—¢(x))=0 9)
J(0)=d(1)=0
¢ (x) <0
pO)> 5. (1) <3 (10)
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Uniqueness and stability of the increasing layer solution.

v =u(l—u)(u—¢(x))=0 (9)
J(0)=d(1)=0
¢’ (x) <0
pO)> 5. (1) <3 (10)

Again assuming that
uy (0) = a, u) (0) =0,

we showed that there was an & = a* such that u}. (1) = 0.
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Uniqueness and stability of the increasing layer solution.

v =u(l—u)(u—¢(x))=0 (9)
J(0)=d(1)=0
¢’ (x) <0
pO)> 5. (1) <3 (10)

Again assuming that
uy (0) = a, u) (0) =0,

we showed that there was an & = a* such that u/. (1) = 0. We don't
expect this solution to be unique, even among non-trivial increasing
solutions, because of the possibility of solutions with boundary layers. We
will outline a proof that is it unique among all solutions close to the given
solution.
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To show local uniqueness it is sufficient to show that at any « close to a*
such that v} (1) =0,

J
aua (1) > 0.
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To show local uniqueness it is sufficient to show that at any « close to a*

such that v} (1) =0,

J
aua (1) > 0.
Let Su (x)
Uy (x
v(x) = T

We wish to show that v/ (1) > 0.
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The function v satisfies the linearized equation
eV + £, (x, uy (x))v=0

with initial conditions
v(0) =1,V (0) =0.

Lemma 18.10: For sufficiently small ¢ > 0, v > 0 on [0, 1] and
v/ (1) > 0.
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The function v satisfies the linearized equation
eV + £, (x, uy (x))v=0

with initial conditions
v(0) =1,V (0) =0.

Lemma 18.10: For sufficiently small ¢ > 0, v > 0 on [0, 1] and
v/ (1) > 0.

Brief idea of proof (all we can give here; see book). We use the function
w = u),, which satisfies the equation

ew + £, (x, u) w = —F (x, u;)

with
w(0) =0,w’ (0) = u, (0).

(5}
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Thus we are comparing the solution of the homogeneous linear problem

eV + £, (x, Uy (x))v=0
v(0)=1,v(0)=0

with solution of the inhomogeneous problem

W+ f, (X, g ) w = —F (x, U
w (0) = 0,w'(0) = u, (0)
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Thus we are comparing the solution of the homogeneous linear problem

eV 4 £, (x, g, (x)) v =0
v(0)=1,V(0)=0

with solution of the inhomogeneous problem

ew' +f, (X, Upy ) W = —F; (X, Uay)

But w = ual, about which we know a lot. It is positive, zero at each
endpoint, and has a spike in the middle which we can estimate.
Unfortunately, further details are too complicated to present here. This

kind of analysis arises fairly often in this area of ode’s.
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Stability:
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Stability:

Consider

Up = Uy + f (x, u)
ux (0,t) = ux (1,t) = 0.
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Stability:
Consider
Up = Uy + f (x, u)

uy (0,t) = uy (1,t) = 0.

Definition: A steady state solution u* (x) is asymptotically stable if for
each € > 0 there is a 6 > 0 such that if

o13%, |u(x,0) —u" (x)| < ¢

for 0 < x <1, then

ok
Orgf%<1|u(x,t) ut(x, t)| <e

for all t > 0 and

: s _
tILngoorg)?%(Ju(x, t)—u*(x,t)| =0.
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The linearization of this problem is

U= U+ f, (x,u) U
Ue (0,t) = Uy (1,t) = 0.
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The linearization of this problem is

U= U+ f, (x,u) U
Ue (0,t) = Uy (1,t) = 0.

It can be shown that “linearized stability” implies asymptotic stability in
this case.
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The linearization of this problem is

U= U+ f, (x,u) U
Ue (0,t) = Uy (1,t) = 0.

It can be shown that “linearized stability” implies asymptotic stability in
this case.

By linearized stability, we mean that all solutions U satisfy
Jlim U (x,t) =0

uniformly on 0 < x < 1.
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The linearization of this problem is
U= U+ f, (x,u) U
Ue (0,t) = Uy (1,t) = 0.

It can be shown that “linearized stability” implies asymptotic stability in
this case.

By linearized stability, we mean that all solutions U satisfy
Jlim U (x,t) =0

uniformly on 0 < x < 1. It can be shown that solutions can be written as
Fourier series of the form

U(x, t) = Z2 ™V, (x)
where each A, and V/,, is an eigenvalue and eigenfunction of the problem
V" + (f, (x, u* (x)) —A) V=0
V' (0) =V’ (1) =0.

We need to show that all eigenvalues have negative real parts.
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In considering uniqueness we looked at this problem with A = 0, and
stated (without much proof) that if V' (0) =1, V' (0) =0, then v > 0 on
[0,1] and v/ (0) > 0. The Sturm comparison theorem implies that if A > 0
then these relations still hold, and so A is not an eigenvalue. This result
implies stability.
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Morse index (Ai, Xinfu Chen, Hastings):
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Morse index (Ai, Xinfu Chen, Hastings):

The Morse index of a steady state solution is the number of positive
eigenvalues for the corresponding eigenvalue problem. Suppose that n is
the total number of oscillations of some solution u (sign changes of
u— %) Then for sufficiently small & the Morse index of u is equal to
n — ng — nss, where ng; is the number of stable layers.

The proof is long and complex. This result had been conjectured privately
by Matano.
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