
3. Layers and spikes in a reaction-diffusion equation

Angenent, Mallet-Paret, and Peletier (1987) considered

ut = ε2uxx + u (1− u) (u − φ (x)) , 0 < x < 1, t > 0

ux (0, t) = ux (1, t) = 0, t > 0

with φ′ continuous and
0 < φ (x) < 1

on [0, 1] .

Also studied by Ai, Chen and Hastings in 2006 and by Matano and others.
With Dirichlet conditions it was considered in Rn by Dancer and Yan
(2003).
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This problem arises, for example, in population genetics when a population
is spread over (0, 1) , with no flux across the boundary, and where each
individual is AA, Aa, or aa. The fraction of alleles of type A across the
population at point x and time t is denoted by u (x , t).

Thus we assume
that 0 ≤ u ≤ 1.
First suppose that ε = 0. Then there is no dispersion and the population
at each x satisfies the ode

ut = u (1− u) (u − φ (x)) .

In this case,
sign ut = sign (u − φ (x)) ,

so as t increases,

u (x , t)→ 0 if u (x , 0) < φ (x)

u (x , t)→ 1 if u (x , 0) > φ (x) .

But dispersion (similar to diffusion in its effect) may change this.
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Steady state solutions ( ut = 0 ) also satisfy an ode,

ε2u′′ + u (1− u) (u − φ (x)) = 0. (1)

u′ (0) = u′ (1) = 0. (2)

0 < φ (x) < 1. (3)
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It is useful to consider the case where φ is constant. Thus,

ε2u′′ + u (1− u) (u − κ) = 0, (4)

where κ ∈ (0, 1) .

u′ = v

ε2v ′ = u (1− u) (κ − u)

If κ = 1
2 then the problem is invariant under u → 1− u, and all

trajectories of (4) are symmetric around the line u = 1
2 . (more about this

phase plane later)
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Angenent, Mallet-Paret, and Peletier (AMP) found all of the solutions to
(1)-(2) which are stable steady states of the corresponding
reaction-diffusion pde . These solutions can have single layers (defined
below) near the points in [0, 1] where φ = 1

2 .

However the set of all solutions (stable or not) is considerably more
complicated, and may (depending on φ) include solutions with multiple
layers clustered near some of the points where φ = 1

2 , and also single or
multiple spikes near critical points of φ.
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As an illustrative special case we will assume that

φ′ < 0

on [0, 1] and for some x0 ∈ (0, 1) ,

φ (x0) =
1
2
.

Theorem: A,M,P: For suffi ciently small ε > 0 there are exactly three
stable solutions: u = 0, u = 1, and one which is increasing with most of
the increase occurring near x0. (This forms a “layer”.)
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red: graph of φ; blue: stable solutions

Why is there a third solution?

We can motivate a search for another solution for small ε by using the
calculus of variations, since (1) is the Euler-Lagrange equation for a
minimization problem.
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f (x , u) = u (1− u) (u − φ (x))

F (x , u) =
∫ u

0
f (x , s) ds

Minimize

Iε (u) =
∫ 1

0

(
1
2

ε2u′2 − F (x , u)
)
dx

over H1 (0, 1) .

No boundary conditions are imposed, because minimizers
can be shown to satisfy so-called natural boundary conditions, which here
are the Neumann conditions given above.
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f (x , u) = u (1− u) (u − φ (x))

F (x , u) =
∫ u

0
f (x , s) ds

Consider the graphs of −f (x , u) and −F (x , u), as functions of u for two
fixed values of x , one (red) with φ (x) > 1

2 and one (blue) with φ (x) < 1
2 .
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Iε (u) =
∫ 1

0

(
1
2

ε2u′2 − F (x , u)
)
dx

But φ > 1
2 on [0, x0) and φ < 1

2 on (x0, 1]. Hence the second term in Iu is
minimized by taking u close to 0 in (0, x0) and close to 1 in (x0, 1) .

Does a minimum of Iε exists in H1, and if so, is the first term of Iε
significant?

Suppose that vn is a sequence of smooth functions tending to the
Heaviside function H (x − x0) .
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Then for any δ > 0,

lim
n→∞

∫ x0+δ

x0−δ
v ′n = 1

while by Cauchy-Schwarz,∣∣∣∣∫ x0+δ

x0−δ
v ′n

∣∣∣∣2 ≤ 2δ
∫ 1

0
v ′2n .

Hence, for each ε > 0, limn→∞ Iε (vn) = ∞, a contradiction. A minimizing
sequence does not tend to H and we can expect a smooth minimizer.
Other arguments show, however, that as ε→ 0 the global minimizer tends
to the Heaviside function.

Dancer and Yan used calculus of variations arguments in Rn to construct
most, but not all, of the solutions we will describe.
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Second Motivation: Numerical “Shooting”

u(0) = α, u′(0) = 0
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PROOF OF EXISTENCE USING SUB- AND SUPER- SOLUTIONS
(A,M,P)

Also called “upper”and “lower” solutions

Important method for both ODEs and PDEs

A slightly simplified version can be used here:

Definition (non-standard): A C 2 strong subsolution of (1)-(2) is a
function u1 ∈ C 2 ([0, 1]) such that

(i) u′1 (0) = u
′
1 (1) = 0

(ii) ε2u′′1 (x) + f (x , u1 (x)) > 0 at each x ∈ [0, 1] .
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A C 2 strong supersolution u1 :

ε2u1 ′′ (x) + f
(
x , u1 (x)

)
< 0.

We start, however, by defining two solutions which are not sub- or super-
solutions, but are the starting points in defining sequences of each. Recall
that φ (x0) = 1

2 . Choose small positive numbers δ and ρ.
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Then choose certain functions u < ū as shown below. They are constant
except in certain intervals contained in [x0 − δ, x0 + δ] , where they solve
(1) exactly. This is only possible for suffi ciently small ε.

The functions ū and u are continuous but not smooth.
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Choose λ > 0 such that on [0, 1]× [0, 1],

fu (x , u) + λ > 0. (5)

Suppose that u ≤ v ≤ ū on [0, 1] and consider the linear boundary value
problem

ε2u′′ − λu = −f (x , v)− λv
u′ (0) = u′ (1) = 0

. (L)

Note that f (x , v) + λv > 0 for v > 0.

The problem

ε2u′′ − λu = 0

u′ (0) = u′ (1) = 0

has only the solution u = 0. Hence the inhomogeneous problem (L) has a
unique solution u. Let Tv = u.
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u1 = Tu

ui+1 = Tui

We will show that u1 is a strong C 2 subsolution of (1) - (2).
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u1 = Tu

We have only to verify the inequality

ε2u′′1 (x) + f (x , u1 (x)) > 0. (6)

From the definition of u1 it follows that

ε2u′′1 + f (x , u1) = (f (x , u1) + λu1)− (f (x , u) + λu) .

But fu + λ > 0, so if
u < u1 < 1 (7)

on [0, 1] then (6) holds. Also, f (x , u) + λu ≥ 0, and this quantity is
positive on (x̂ , 1]. Hence we have to show (7).
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Suppose, for example, that u1 (x̃) < 0 for some x̃ ∈ (0, x̂).

Then
u (x̃) = 0 and so from the ode defining u1,

ε2u′′1 (x̃) = λu1 (x̃) < 0. (8)

It follows that u1 < 0 and u′′1 < 0 to the left of x̃ , implying that
u′1 (0) > 0. This contradicts a boundary condition satisfied by u1.
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With similar maximal principle type arguments we can show that

0 < u < u1 < u2 < ... < ū.

It is then not hard to show that

u = lim
i→∞

ui

exists and is the desired increasing solution to (1)-(2).
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It is then not hard to show that

u = lim
i→∞

ui

exists and is the desired increasing solution to (1)-(2).

() May 31, 2015 20 / 46



PROOF OF EXISTENCE USING SHOOTING
Ai, Chen, Hastings, (2006) (See also Ai and Hastings, 2002).

ε2u′′ = u (1− u) (φ (x)− u)

u′ (0) = u′ (1) = 0

Theorem: An increasing solution exists for any ε > 0.

Proof: For each α consider the solution u = uα of (1) such that
u (0) = α, u′ (0) = 0. Note that if 0 < u < min φ then u′′ > 0. If α = 0
then u = 0. Hence if α is suffi ciently small, then u < min φ on [0, 1] .

It follows that if α is suffi ciently small and positive then u′α (1) > 0.
Similarly, if 1− α is suffi ciently small and positive then u′α (1) < 0. By
continuity of u′α (1) with respect to α there exists an α∗ ∈ (0, 1) such that
u′α∗ (1) = 0.

It can be further shown ( ∼ 1 paragraph proof on request!) that if we
choose the smallest possible α∗, then u′α∗ > 0 on (0, 1).

() May 31, 2015 21 / 46



PROOF OF EXISTENCE USING SHOOTING
Ai, Chen, Hastings, (2006) (See also Ai and Hastings, 2002).

ε2u′′ = u (1− u) (φ (x)− u)

u′ (0) = u′ (1) = 0

Theorem: An increasing solution exists for any ε > 0.

Proof: For each α consider the solution u = uα of (1) such that
u (0) = α, u′ (0) = 0. Note that if 0 < u < min φ then u′′ > 0. If α = 0
then u = 0. Hence if α is suffi ciently small, then u < min φ on [0, 1] .

It follows that if α is suffi ciently small and positive then u′α (1) > 0.
Similarly, if 1− α is suffi ciently small and positive then u′α (1) < 0. By
continuity of u′α (1) with respect to α there exists an α∗ ∈ (0, 1) such that
u′α∗ (1) = 0.

It can be further shown ( ∼ 1 paragraph proof on request!) that if we
choose the smallest possible α∗, then u′α∗ > 0 on (0, 1).

() May 31, 2015 21 / 46



PROOF OF EXISTENCE USING SHOOTING
Ai, Chen, Hastings, (2006) (See also Ai and Hastings, 2002).

ε2u′′ = u (1− u) (φ (x)− u)

u′ (0) = u′ (1) = 0

Theorem: An increasing solution exists for any ε > 0.

Proof: For each α consider the solution u = uα of (1) such that
u (0) = α, u′ (0) = 0.

Note that if 0 < u < min φ then u′′ > 0. If α = 0
then u = 0. Hence if α is suffi ciently small, then u < min φ on [0, 1] .

It follows that if α is suffi ciently small and positive then u′α (1) > 0.
Similarly, if 1− α is suffi ciently small and positive then u′α (1) < 0. By
continuity of u′α (1) with respect to α there exists an α∗ ∈ (0, 1) such that
u′α∗ (1) = 0.

It can be further shown ( ∼ 1 paragraph proof on request!) that if we
choose the smallest possible α∗, then u′α∗ > 0 on (0, 1).

() May 31, 2015 21 / 46



PROOF OF EXISTENCE USING SHOOTING
Ai, Chen, Hastings, (2006) (See also Ai and Hastings, 2002).

ε2u′′ = u (1− u) (φ (x)− u)

u′ (0) = u′ (1) = 0

Theorem: An increasing solution exists for any ε > 0.

Proof: For each α consider the solution u = uα of (1) such that
u (0) = α, u′ (0) = 0. Note that if 0 < u < min φ then u′′ > 0.

If α = 0
then u = 0. Hence if α is suffi ciently small, then u < min φ on [0, 1] .

It follows that if α is suffi ciently small and positive then u′α (1) > 0.
Similarly, if 1− α is suffi ciently small and positive then u′α (1) < 0. By
continuity of u′α (1) with respect to α there exists an α∗ ∈ (0, 1) such that
u′α∗ (1) = 0.

It can be further shown ( ∼ 1 paragraph proof on request!) that if we
choose the smallest possible α∗, then u′α∗ > 0 on (0, 1).

() May 31, 2015 21 / 46



PROOF OF EXISTENCE USING SHOOTING
Ai, Chen, Hastings, (2006) (See also Ai and Hastings, 2002).

ε2u′′ = u (1− u) (φ (x)− u)

u′ (0) = u′ (1) = 0

Theorem: An increasing solution exists for any ε > 0.

Proof: For each α consider the solution u = uα of (1) such that
u (0) = α, u′ (0) = 0. Note that if 0 < u < min φ then u′′ > 0. If α = 0
then u = 0.

Hence if α is suffi ciently small, then u < min φ on [0, 1] .

It follows that if α is suffi ciently small and positive then u′α (1) > 0.
Similarly, if 1− α is suffi ciently small and positive then u′α (1) < 0. By
continuity of u′α (1) with respect to α there exists an α∗ ∈ (0, 1) such that
u′α∗ (1) = 0.

It can be further shown ( ∼ 1 paragraph proof on request!) that if we
choose the smallest possible α∗, then u′α∗ > 0 on (0, 1).

() May 31, 2015 21 / 46



PROOF OF EXISTENCE USING SHOOTING
Ai, Chen, Hastings, (2006) (See also Ai and Hastings, 2002).

ε2u′′ = u (1− u) (φ (x)− u)

u′ (0) = u′ (1) = 0

Theorem: An increasing solution exists for any ε > 0.

Proof: For each α consider the solution u = uα of (1) such that
u (0) = α, u′ (0) = 0. Note that if 0 < u < min φ then u′′ > 0. If α = 0
then u = 0. Hence if α is suffi ciently small, then u < min φ on [0, 1] .

It follows that if α is suffi ciently small and positive then u′α (1) > 0.
Similarly, if 1− α is suffi ciently small and positive then u′α (1) < 0. By
continuity of u′α (1) with respect to α there exists an α∗ ∈ (0, 1) such that
u′α∗ (1) = 0.

It can be further shown ( ∼ 1 paragraph proof on request!) that if we
choose the smallest possible α∗, then u′α∗ > 0 on (0, 1).

() May 31, 2015 21 / 46



PROOF OF EXISTENCE USING SHOOTING
Ai, Chen, Hastings, (2006) (See also Ai and Hastings, 2002).

ε2u′′ = u (1− u) (φ (x)− u)

u′ (0) = u′ (1) = 0

Theorem: An increasing solution exists for any ε > 0.

Proof: For each α consider the solution u = uα of (1) such that
u (0) = α, u′ (0) = 0. Note that if 0 < u < min φ then u′′ > 0. If α = 0
then u = 0. Hence if α is suffi ciently small, then u < min φ on [0, 1] .

It follows that if α is suffi ciently small and positive then u′α (1) > 0.
Similarly, if 1− α is suffi ciently small and positive then u′α (1) < 0.

By
continuity of u′α (1) with respect to α there exists an α∗ ∈ (0, 1) such that
u′α∗ (1) = 0.

It can be further shown ( ∼ 1 paragraph proof on request!) that if we
choose the smallest possible α∗, then u′α∗ > 0 on (0, 1).

() May 31, 2015 21 / 46



PROOF OF EXISTENCE USING SHOOTING
Ai, Chen, Hastings, (2006) (See also Ai and Hastings, 2002).

ε2u′′ = u (1− u) (φ (x)− u)

u′ (0) = u′ (1) = 0

Theorem: An increasing solution exists for any ε > 0.

Proof: For each α consider the solution u = uα of (1) such that
u (0) = α, u′ (0) = 0. Note that if 0 < u < min φ then u′′ > 0. If α = 0
then u = 0. Hence if α is suffi ciently small, then u < min φ on [0, 1] .

It follows that if α is suffi ciently small and positive then u′α (1) > 0.
Similarly, if 1− α is suffi ciently small and positive then u′α (1) < 0. By
continuity of u′α (1) with respect to α there exists an α∗ ∈ (0, 1) such that
u′α∗ (1) = 0.

It can be further shown ( ∼ 1 paragraph proof on request!) that if we
choose the smallest possible α∗, then u′α∗ > 0 on (0, 1).

() May 31, 2015 21 / 46



PROOF OF EXISTENCE USING SHOOTING
Ai, Chen, Hastings, (2006) (See also Ai and Hastings, 2002).

ε2u′′ = u (1− u) (φ (x)− u)

u′ (0) = u′ (1) = 0

Theorem: An increasing solution exists for any ε > 0.

Proof: For each α consider the solution u = uα of (1) such that
u (0) = α, u′ (0) = 0. Note that if 0 < u < min φ then u′′ > 0. If α = 0
then u = 0. Hence if α is suffi ciently small, then u < min φ on [0, 1] .

It follows that if α is suffi ciently small and positive then u′α (1) > 0.
Similarly, if 1− α is suffi ciently small and positive then u′α (1) < 0. By
continuity of u′α (1) with respect to α there exists an α∗ ∈ (0, 1) such that
u′α∗ (1) = 0.

It can be further shown ( ∼ 1 paragraph proof on request!) that if we
choose the smallest possible α∗, then u′α∗ > 0 on (0, 1).

() May 31, 2015 21 / 46



But for small ε there are further solutions. To find these it is helpful to
rescale the system.

For x∗ ∈ [0, 1] let u (x∗ + εs) = y (s) . Then

y ′ = z

z ′ = y (1− y) (φ (x∗ + εs)− y)

ε = 0

Y ′ = Z

Z ′ = Y (1− Y ) (φ (x∗)− Y )

Relation between the two systems:

Suppose that y (x∗) = Y (0) , z (x∗) = Z (0) and (Y ,Z ) exists on
0 ≤ s ≤ s1. Then for suffi ciently small ε, (y , z) exists on [x∗, x∗ + εs1] ,
and

lim
ε→0
(y (x∗ + εs) , z(x∗ + εs)) = (Y (s) ,Z (s))

uniformly on 0 ≤ s ≤ s1.
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Y ′ = Z

Z ′ = Y (1− Y ) (φ (x∗)− Y )

(0, 0) , (1, 0) —saddle points; (φ (x∗) , 0) - center

1
2
Y ′2 + F (x∗,Y ) = C
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Y ′ = Z , Z ′ = Y (1− Y ) (φ (x∗)− Y )
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Y ′ = Z , Z ′ = Y (1− Y ) (φ (x∗)− Y )
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ε2u′′ = u (1− u) (φ (x)− u)

u (0) = α, u′ (0) = 0

Y ′ = Z

Z ′ = Y (1− Y ) (φ (x∗)− Y )

Dotted curve is in (Y ,Z ) phase plane when x∗ < x0.
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Shooting argument: If u > 1 then u′′ > 0.

If u < 0 then u′′ < 0. If u = 1
or 0 and u′ = 0, then u is constant.
Let

Λ =
{

α > 0 | u′α > 0 on [0, 1] or else u′α > 0 on (0, x̂ ] and uα (x̂) = 1.
}

ᾱ ∈ Λ if ε is suffi ciently small
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But for fixed small ε, some α ∈ (0, ᾱ) are not in Λ.

Let
α∗ = sup [(0, ᾱ) \Λ] .

Then u′∗ (α
∗) = 0.

Proof by contradiction. Main diffi culty: Eliminate an inflection point of
uα∗ at x̂ ∈ (0, 1) .
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If u′ (x̂) = u′′ (x̂) = 0 , then

u (x̂) = φ (x̂)

ε2u′′′ (x̂) = u (x̂) (1− u (x̂)) φ′ (x̂) < 0,

which means that uα∗ is decreasing in a neighborhood of x̂ .

Hence α∗ cannot lie on the boundary of Λ.
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Multilayered solutions (also obtained by Dancer and Yan)

Lemma: If φ′ < 0 on [0, 1] then successive minima and successive
maxima decrease. If φ′ > 0 then they increase. (J.B.McLeod)
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Proof. Suppose that u (a) and u (b) are successive minima and
u (b) ≥ u (a) .

0 =
∫ b

d
(ε2u′u′′ + u′f (x , u))dx = − ε2

2
u′ (d)2 +

∫ b

d
u′f (x , u) dx

≤
∫ u(c )

u(d )
f (x− (u) , u) du +

∫ u(d )

u(c )
f (x+ (u) , u) du

=
∫ u(c )

u(d )
u (1− u) (φ (x+ (u))− φ (x− (u))) du

< 0.
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COROLLARY: Given N, if ε is suffi ciently small then there are
multilayer solutions with 1, 2, ...,N layers. Reason: As α changes, layers
disappear one by one. At each α where a layer disappears, u′α (1) = 0.
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Other general results:

Definition: A “stable layer” is a crossing of u = φ at which
(sign u′) (sign φ′) < 0.

A steady state solution of ut = ε2uxx + f (x , u) is stable if it has only
stable layers.

Theorem (AMP): If φ− 1
2 has n zeros in (0, 1) , then there are Fn+3

stable solutions, where Fm is the mth Fibonacci number (1,1,2,3,5,8,...)
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Assume that φ′ 6= 0 whenever φ = 1
2 . As ε→ 0, with the number of layers

fixed, all interior layers tend to zeros of φ (x)− 1
2 as ε→ 0.

If φ (x̂) = 1
2 and φ′ (x̂) < 0, then multiple layers congregating at x̂ must

start high and end low.

The first layer is a “stable layer”, but this solution is not stable.
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Reason that layers congregate at zeros of φ− 1
2 :

Lemma: (Ai, X. Chen, Hastings): Suppose that n is a nonnegative
integer. For every η > 0 there is an εη > 0 such that if 0 < ε < εη and u
is a solution of (1) - (2) with no more than n minima in (0, 1)) , then
|Q (u (x) , u′ (x) , x)| < η on [0, 1] where

Q
(
u, u′, x

)
=
[
ε2u′2 + 2F1 (x , u)

]
u (1− u)

and

F1 (x , u) =
{ ∫ u

1 f (x , s) ds if 0 ≤ x ≤ x0∫ u
0 f (x , s) ds if x0 < x ≤ 1

.

Recall:

f (x , s) = s (1− s) (s − φ (x))

φ >
1
2
on [0, x0), φ <

1
2
on (x0, 1].

Hence F1 ≥ 0 and F1
(
x0, 12

)
= 0.
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Consider again the case of a decreasing φ, with φ (x0) = 1
2 . For small ε, if

there is a layer at x∗ < x0, then (u (x) , u′ (x)) must be close to a phase
curve for the rescaled system at x∗.

If the number of oscillations were unlimited, then oscillations could be
within the homoclinic loop. But by keeping the number of oscillations
bounded, (φ, φ′) must lie in the region where eventually u crosses 1 or 0, a
contradiction. Similarly, u cannot have a layer in the region x > x0.
For the proof of the lemma see our book or the original paper (2006).
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Other Solutions

A spike is a segment of a solution containing exactly two crossings of φ. In
this case, the solution has successive minima, or maxima, at about the
same level. Since maxima increase where φ′ < 0 and decrease where
φ′ > 0, spikes can only occur near minima or maxima of φ.

Rules for spikes:

Downward interior spikes can occur only at local minima or maxima of φ
where φ > 1

2

Multiple downward spikes can only occur at a local minimum of φ.

Similar rules apply for upward spikes.
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Spikes have not been obtained by methods other than shooting.

For non-monotone φ, all types shown can be pieced together, giving
solutions with arbitrary numbers of layers and spikes within the already
stated restrictions, for suffi ciently small ε. (As ε→ 0 the possible numbers
of multiple layers and spikes increases. )

() May 31, 2015 38 / 46



Spikes have not been obtained by methods other than shooting.

For non-monotone φ, all types shown can be pieced together, giving
solutions with arbitrary numbers of layers and spikes within the already
stated restrictions, for suffi ciently small ε.

(As ε→ 0 the possible numbers
of multiple layers and spikes increases. )

() May 31, 2015 38 / 46



Spikes have not been obtained by methods other than shooting.

For non-monotone φ, all types shown can be pieced together, giving
solutions with arbitrary numbers of layers and spikes within the already
stated restrictions, for suffi ciently small ε. (As ε→ 0 the possible numbers
of multiple layers and spikes increases. )

() May 31, 2015 38 / 46



Uniqueness and stability of the increasing layer solution.

ε2u′′ = u (1− u) (u − φ (x)) = 0 (9)

u′ (0) = u′ (1) = 0

φ′ (x) < 0

φ (0) >
1
2
, φ (1) <

1
2
. (10)

Again assuming that
uα (0) = α, u′α (0) = 0,

we showed that there was an α = α∗ such that u′α∗ (1) = 0. We don’t
expect this solution to be unique, even among non-trivial increasing
solutions, because of the possibility of solutions with boundary layers. We
will outline a proof that is it unique among all solutions close to the given
solution.
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To show local uniqueness it is suffi cient to show that at any α close to α∗

such that u′α (1) = 0,
∂

∂α
u′α (1) > 0.

Let

v (x) =
∂uα (x)
dα

.

We wish to show that v ′ (1) > 0.
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The function v satisfies the linearized equation

ε2v ′′ + fu (x , uα (x)) v = 0

with initial conditions
v (0) = 1, v ′ (0) = 0.

Lemma 18.10: For suffi ciently small ε > 0, v > 0 on [0, 1] and
v ′ (1) > 0.

Brief idea of proof (all we can give here; see book). We use the function
w = u′α, which satisfies the equation

ε2w ′′ + fu (x , uα)w = −fx (x , ua)

with
w (0) = 0,w ′ (0) = u′′α1 (0) .
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Thus we are comparing the solution of the homogeneous linear problem

ε2v ′′ + fu (x , uα1 (x)) v = 0

v (0) = 1, v ′ (0) = 0

with solution of the inhomogeneous problem

ε2w ′′ + fu (x , uα1)w = −fx (x , ua1)
w (0) = 0,w ′ (0) = u′′α1 (0)

But w = u′α1 , about which we know a lot. It is positive, zero at each
endpoint, and has a spike in the middle which we can estimate.
Unfortunately, further details are too complicated to present here. This
kind of analysis arises fairly often in this area of ode’s.
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Stability:

Consider

ut = ε2uxx + f (x , u)

ux (0, t) = ux (1, t) = 0.

Definition: A steady state solution u∗ (x) is asymptotically stable if for
each ε > 0 there is a δ > 0 such that if

max
0≤x≤1

|u (x , 0)− u∗ (x)| < δ

for 0 ≤ x ≤ 1, then

max
0≤x≤1

|u (x , t)− u∗ (x , t)| < ε

for all t > 0 and

lim
t→∞

max
0≤x≤1

|u (x , t)− u∗ (x , t)| = 0.
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The linearization of this problem is

Ut = ε2Uxx + fu (x , u)U

Ux (0, t) = Ux (1, t) = 0.

It can be shown that “linearized stability” implies asymptotic stability in
this case.

By linearized stability, we mean that all solutions U satisfy

lim
t→∞

U (x , t) = 0

uniformly on 0 ≤ x ≤ 1. It can be shown that solutions can be written as
Fourier series of the form

U (x , t) = Σ∞
n=1cne

λntVn (x)

where each λn and Vn is an eigenvalue and eigenfunction of the problem

ε2V ′′ + (fu (x , u∗ (x))− λ)V = 0

V ′ (0) = V ′ (1) = 0.

We need to show that all eigenvalues have negative real parts.
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In considering uniqueness we looked at this problem with λ = 0, and
stated (without much proof) that if V (0) = 1, V ′ (0) = 0, then v > 0 on
[0, 1] and v ′ (0) > 0. The Sturm comparison theorem implies that if λ > 0
then these relations still hold, and so λ is not an eigenvalue. This result
implies stability.
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Morse index (Ai, Xinfu Chen, Hastings):

The Morse index of a steady state solution is the number of positive
eigenvalues for the corresponding eigenvalue problem. Suppose that n is
the total number of oscillations of some solution u (sign changes of
u − 1

2 ). Then for suffi ciently small ε the Morse index of u is equal to
n− nsl − nss , where nsl is the number of stable layers.
The proof is long and complex. This result had been conjectured privately
by Matano.
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