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H. Grötzsch (1928) Problem
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Let f = u + iv : Q onto−→ Q′ be homeomorphism in W 1,1(Q,Q′) (or in

W 1,2(Q,Q′)). Distortion:

Kf =
|Df |2

Jf
(operator norm)

Theorem. The linear map

L(x, y) =
a′

a
x+ i

b′

b
y

has smallest L 1-mean distortion.
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Proof. By the method of free-Lagrangians

1) Free Lagrangians

∫∫
Q

Jf 6 |f(Q)| = |Q′| = a′b′

∫∫
Q

(Re fx) = Re

∫ b

0

(∫ a

0

fx(x, y) dx

)
dy

=

∫ b

0

Re[f(a, y)− f(0, y)] dy = a′ · b

Similarly, ∫∫
Q

Im fy = b′ · a .
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2)

|DL| = max{a
′

a
,
b′

b
} .

We may, and do, assume that

|DL| = a′

a
= ReLx (or ImLy)

Hence

Re

∫∫
Q

(fx − Lx) = 0

∫∫
Q

(Jf − JL) 6 0
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3) Sharp free-Lagrangian inequality

Kf −KL =
|Df |2

Jf
− |DL|

2

JL
> by polyconvexity

+
2|DL|
JL

(|Df | − |DL|)

− |DL|
2

J2
L

(Jf − JL)

or by (|Df |JL − |DL|Jf)2 > 0

> C1 Re(fx − Lx)− C2(Jf − JL)

Hence ∫∫
Q

(Kf −KL) > 0

as desired.
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Quadrilaterals

-Jordan domains Q with a pair of disjoint arcs on ∂Q

m(Q) =
a

b
.
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Definition (Grötzsh or geometric approach)

A mapping f : Ω→ Ω′ is K-quasiconformal, 1 6 K <∞, if

1

K
m(Q) 6 m[f(Q)] 6 Km(Q)
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Analytic Definition

Every homeomorphism f ∈ W 1,1
loc (Ω,Ω′) is differentiable a.e. (D.

Menchoff, 1931) and (F.W. Gehring - O.Lehto, 1959). Looking at the

infitniitzimal quadrilaterals at the points of differentiability we find that

the geometric definition implies

|Df |2 6 KJf

The ratio of singular values is 6 K.
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The Riemann Mapping Theorem

Conformal type of a domain of connectivity ` > 2 is determined by 3`− 6

parameters (moduli of the domain); that is, two `-connected domains are

conformally equivalent if and only if they agree in all 3` − 6 moduli. As

for the bounded doubly connected domains, we have the Schottky Theorem

(1877): A conformal mapping

h : A = A(r,R)
onto−→ A(r∗, R∗) = A∗

between circular annuli exists if and only if

ModA∗ := log R∗
r∗

= log R
r := ModA

Harmonic mappings of doubly connected domains in the complex plane,

being next in the order of complexity (after simply connected case) are of

great interest.
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Schottky’s Theorem via Free-Lagrangians

A conf. f : A onto−→ A∗ exists iff mA = log R
r = log R∗

r∗
= mA∗.

(
f(z) =

r∗
r
z or f(z) =

r∗R

z

)
13



Proof. The Cauchy-Riemann system fz̄ = 0 in polar coordinates read as

1

ρ

∂f

∂θ
= i

∂f

∂ρ
, for z = ρ eiθ.

We denote the LHS by fT (tangential) and ∂f/∂ρ by fN (normal). Then

J(z, f) = Im(fTfN) = |fN |2 = |fT |2. (1)

Claim. If a homeomorphism f : A = A(r,R)
onto−→ A(r∗, R∗) = A∗ belongs

to W 1,2(A,A∗) and satisfies (1), then R/r = R∗/r∗.

√
J(z, f)

|z| |f(z)|
=


∣∣∣fNρ f ∣∣∣∣∣∣fTρ f ∣∣∣ >


Re fNρ h

Im fT
ρ f
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After integrating

(∫
A

√
J(z, h) dz

|z| |f(z)|

)2

>


(∫

A
|f |N
ρ |f |

)2

(∫
A Im fT

ρ f

)2
=


(
±2π log R∗

r∗

)2

(
±2π log R

r

)2
.

On the other hand,(∫
A

√
J(z, h) dz

|z| |f(z)|

)2

6
∫
A

dz

|z|2
·
∫
A

J(z, f)

|f(z)|2
dz = 2π log

R

r
· 2π log

R∗
r∗
.

Therefore, the claim follows.
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Another proof of Schottky’s Theorem

Let h : A(1, R)
onto−→ A(1, R∗) be conformal. Consider

U(ρ) = −
∫
Tρ
|h|2 1 6 ρ < R.

Then the second order differential operator

L[U ] :=
1

ρ

d

dρ

[
ρ3 d

dρ

(
U

ρ2

)]
> 0.

Therefore,

ρ3 d

dρ

(
U

ρ2

)
> ρ3 d

dρ

(
U

ρ2

) ∣∣∣∣
ρ=1

= U̇(1) − 2U(1) = U̇(1) − 2 .
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Since (hρ = i
ρhθ Cauchy-Riemann)

U̇(1) = 2 Re −
∫
T1

h̄ hρ = 2 Im −
∫
T1

h̄ hθ = 2 Im −
∫
T1

hθ
h

= 2 .

the function ρ→ ρ−2U(ρ) is nondecreasing and hence U(ρ) > ρ2.
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Complex notation

∂

∂z̄
=

1

2

(
∂

∂x
− i ∂

∂y

)
,

∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)

Df(z)h = fzh+ fz̄h̄

sup
h
|Df(z)h| = |fz|+ |fz̄| inf

h
|Df(z)h| = |fz| − |fz̄|

J(z, h) = |fz|2 − |fz̄|2
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The basic Beltrami equation

The distortion inequality

|Df(z)|2 6 KJ(z, f) 1 6 K <∞ .

reads as

(|fz|+ |fz̄|)2 6 K
(
|fz|2 − |fz̄|2

)
|fz|+ |fz̄|
|fz| − |fz̄

6 K
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Let

µ(z) =

{
fz̄
fz

if fz 6= 0

0 if fz = 0

Then
1 + |µ(z)|
1− |µ(z)|

6 K

|µ(z)| 6 K − 1

K + 1
= k , 0 6 k < 1 .

fz̄ = µ(z) fz z ∈ Ω

We look for all solutions f ∈W 1,2
loc (Ω).
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