Selected Topics from Analytical Foundations of Quasiconformal Mappings

Tadeusz Iwaniec (Syracuse University)

April 21, 2015 CDT in Oxford

Beltrami Equation

$$f_{\overline{z}}(z) = \mu(z)f_z(z) \tag{1}$$

$$|\mu(z)| \leqslant k < 1$$
 $\sup \mu \in \mathbb{C}$

Principal Solution $f:\mathbb{C}\stackrel{\mathsf{onto}}{\longrightarrow} \mathbb{C}$

$$f(z) = z + \frac{c_1}{z} + \frac{c_2}{z^2} + \cdots , \quad z \sim \infty$$
$$f(z) = z + C\omega$$

$$\omega \in \mathcal{L}^p(\mathbb{C}) , p > 2 , \text{ supp } \omega \subseteq \mathbb{C}$$

Cauchy Transform $\mathcal{C}:\mathcal{L}^p(\mathbb{C}) o \mathcal{W}^{1,p}(\mathbb{C})$

$$(\mathcal{C}\omega)(z) = \frac{1}{\pi} \iint_{\mathbb{C}} \frac{\omega(\tau) \, \mathrm{d}\tau}{z - \tau} =$$

$$\left[\frac{1}{\pi} \iint_{\mathbb{C}} \omega(\tau) \, \mathrm{d}\tau\right] \cdot \frac{1}{z} + \frac{c_2}{z^2} + \cdots$$

$$\frac{\partial}{\partial \overline{z}} \circ \mathcal{C} = \mathrm{Id} \, : \, \mathcal{L}^p(\mathbb{C}) \to \mathcal{L}^p(\mathbb{C})$$
 For a partial differential operator with

For a partial differential operator with constant coefficients, we have

$$\mathfrak{D} \circ \mathcal{C} = \mathcal{C} \circ \mathfrak{D}$$

$$|\mathcal{C}\omega(z_1) - \mathcal{C}\omega(z_2)| \leqslant C_p |z_1 - z_2|^{1-2/p} \|\omega\|_p$$

Beurling Transform $\mathcal{S}:\mathcal{L}^p(\mathbb{C})\to\mathcal{L}^p(\mathbb{C})$

$$(\mathcal{S}\omega)(z) = -\frac{1}{\pi} \iint_{\mathbb{C}} \frac{\omega(\tau) \, d\tau}{(z - \tau)^2} = \frac{\partial}{\partial z} \, \mathcal{C}\omega$$

$$\mathcal{S}\phi = \mathcal{C}\phi_z$$
 for $\phi \in \mathcal{W}^{1,p}_{\circ}(\mathbb{C})$

$$\mathcal{S}:\mathcal{L}^2(\mathbb{C})\stackrel{\mathsf{onto}}{\longrightarrow} \mathcal{L}^2(\mathbb{C})$$

This is an isometry (proof in class). Hence by $Riesz\ Thorin\ Convexity\ Theorem$

$$S_p = ||S: \mathcal{L}^p(\mathbb{C})||_p = 1 + \mathcal{O}(|p-2|)$$

CONJECTURE

$$S_p = p - 1 \text{ for } p \geqslant 2$$

$$S_p = \frac{1}{p-1} \text{ for } 1$$

The operator S provides an important \mathcal{L}^p - transition between two homotopy classes of elliptic PDEs

Proposition 1 The operator

$$I - \mu \mathcal{S} : \mathcal{L}^p(\mathbb{C}) \to \mathcal{L}^p(\mathbb{C})$$

is invertible whenever $kS_p < 1$ Proposition 2 The operator

$$I - \mu \mathcal{S} : \mathcal{W}^{1,p}(\mathbb{C}) \to \mathcal{W}^{1,p}(\mathbb{C})$$

is invertible whenever $kS_p < 1$ and $\mu \in \mathcal{C}_0^\infty(\mathbb{C})$ the proof in class

Proposition 3.

Let $kS_p < 1$ and $\mu \in \mathcal{C}_0^\infty(\mathbb{C})$. Consider the (unique) principal solution of the Beltrami equation $f_{\overline{z}} = \mu(z)f_z$. Then $f \in \mathcal{C}^1(\mathbb{C})$ and $J_f > 0$.

Proof (differentiate the equation)

$$f_{z\overline{z}}=\mu f_{zz}+\mu_z\,f_z$$
 . Denote by $F=f_z$ $F_{\overline{z}}=\mu F_z+\mu_z\,F$. Look for $F=e^\sigma$ $\sigma_{\overline{z}}=\mu\sigma_z+\mu_z\,$ (here are rigorous arguments)

Consider the equation $\sigma_{\overline{z}} = \mu \sigma_z + \mu_z$, $\sigma \in \mathcal{W}^{1,p}(\mathbb{C})$ $\sigma = \mathcal{C}\phi = \frac{c}{z} + \text{higher powers of } \frac{1}{z}$, where $\phi = \mu \, \mathcal{S} \phi \, + \, \mu_z$, $\phi = (I = \mu \mathcal{S})^{-1} \mu_z \in \mathcal{W}^{1,p}_{\odot}(\mathbb{C}).$ Denote by $\mathfrak{F} = z + \mathcal{C}(\mu e^{\sigma}) \in \mathcal{C}^{1}(\mathbb{C})$ $\mathfrak{F}_{\overline{z}} = \mu e^{\sigma}$ $\mathfrak{F}_z = 1 + \mathcal{S}(\mu e^{\sigma})$

$$e^{\sigma} - 1 \in \mathcal{W}^{1,p}(\mathbb{C})$$

 $e^{\sigma} - 1 = \frac{\partial}{\partial \overline{z}} \mathcal{C}(e^{\sigma} - 1) = \mathcal{C}(e^{\sigma} - 1)_{\overline{z}} = \mathcal{C}(\mu e^{\sigma})_z = \mathcal{S}(\mu e^{\sigma})$

Hence

$$e^{\sigma} = 1 + \mathcal{S}(\mu e^{\sigma}) = \mathfrak{F}_z \quad \mathfrak{F}_{\overline{z}} = \mu \mathfrak{F}_z$$

 ${\mathfrak F}$ is a principal solution, thus equal to f .

$$J_f = |f_z|^2 - |f_{\overline{z}}|^2 = |e^{2\sigma}|(1 - |\mu|^2) > 0$$

COROLLARY. For $\mu \in \mathcal{C}_0^\infty(\mathbb{C})$ the principal solution

$$f:\widehat{\mathbb{C}}\stackrel{\mathrm{onto}}{\longrightarrow}\widehat{\mathbb{C}}$$

is a \mathcal{C}^1 - diffeomorphisms and $f(\infty)=\infty$. The inverse map $g=g(w)=f^{-1}(w)$ is a principal solution of the equation

$$g_{\overline{w}} = -\mu(g(w))\,\overline{g_w}$$

by chain rule

Uniform Hölder Estimates

$$|f(z_1) - f(z_2)| \le |z_1 - z_2| + C_p(k) |z_1 - z_2|^{1-2/p}$$

$$|g(w_1) - g(w_2)| \le |w_1 - w_2| + C_p(k) |w_1 - w_2|^{1-2/p}$$

Hence

$$|z_1 - z_2| = |g(w_1) - g(w_2)| \le$$

$$|w_1 - w_2| + C_p(k) |w_1 - w_2|^{1 - 2/p} =$$

$$|f(z_1) - f(z_2)| + C_p(k) |f(z_1) - f(z_2)|^{1 - 2/p}$$

$$|z_1 - z_2| \le |f(z_1) - f(z_2)| + C_p(k) |f(z_1) - f(z_2)|^{1-2/p}$$

Approximation

Let $\mu^j o \mu$, almost everywhere in $\mathbb C$, $\mu^j \in \mathcal C_0^\infty(\mathbb C)$, $|\mu^j(z)| \leqslant k < 1$ (convolution method).

$$f_{\overline{z}}^{j}=\mu^{j}f_{z}^{j}$$
 principal solutions

$$f^j = z + \mathcal{C}\omega^j$$
 , $\omega^j = \mu^j + \mu^j \mathcal{S}\omega^j$

$$f_{\overline{z}} = \mu \, f_z$$
 principal solution

$$f = z + \mathcal{C}\omega$$
 , $\omega = \mu + \mu \mathcal{S}\omega$

$$\omega^{j} - \omega = \mu^{j} - \mu + \mu^{j} \mathcal{S} \omega^{j} - \mu \mathcal{S} \omega = (\mu^{j} - \mu) + \mu^{j} \left[\mathcal{S}(\omega^{j} - \omega) \right] + (\mu^{j} - \mu) \mathcal{S} \omega$$

$$\|\omega^{j} - \omega\|_{p} \leqslant \|\mu^{j} - \mu\|_{p} + k S_{p} \|\omega^{j} - \omega\|_{p} + \|(\mu^{j} - \mu) \mathcal{S} \omega\|_{p}$$

Hence

$$(1 - kS_p) \|\omega^j - \omega\|_p \leqslant \|\mu^j - \mu\|_p + \|(\mu^j - \mu)\mathcal{S}\omega\|_p \longrightarrow 0$$

Thus f^j converge to f uniformly (point-wise suffices)

In Conclusion

$$|z_{1} - z_{2}| \leq |f^{j}(z_{1}) - f^{j}(z_{2})| + C_{p}(k) |f^{j}(z_{1}) - f^{j}(z_{2})|^{1 - 2/p}$$

$$\downarrow |f(z_{1}) - f(z_{2})| + C_{p}(k) |f(z_{1}) - f(z_{2})|^{1 - 2/p}$$

This yields that $f(z_1) \neq f(z_2)$ whenever $z_1 \neq z_2$. Thus $f: \mathbb{C} \stackrel{\text{onto}}{\longrightarrow} \mathbb{C}$ is a homeomorphism.

Measurable Riemann Mapping Theorem

Let Ω and Ω' be bounded simply connected domains and μ - a measurable Beltrami coefficient such that $|\mu(z)|\leqslant k<1$ almost everywhere in Ω . Then the Beltrami equation

$$f_{\overline{z}} = \mu(z) f_z$$

admits a homeomorphic solution $f:\Omega\stackrel{\text{onto}}{\longrightarrow}\Omega'$ in the Sobolev class

$$\mathcal{W}^{1,p}_{\mathsf{loc}}(\Omega,\mathbb{C})\subset\mathcal{C}^{\alpha}_{\mathsf{loc}}(\Omega)$$

General Elliptic Systems

$$f_{\overline{z}} = \mu(z) f_z + \nu(z) \overline{f_z}$$
$$|\mu(z)| + |\nu(z)| \leq k < 1$$

$$f_{\overline{z}} = \mu(z, f) f_z + \nu(z, f) \overline{f_z}$$

$$f_{\overline{z}} = \mathcal{H}(z, f, f_z)$$

 $|\mathcal{H}(z, f, \xi) - \mathcal{H}(z, f, \zeta)| \leq k|\xi - \zeta|$

Every Riemann surface is conformally flat (locally)

