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Quasiconformal Mappings

Geometric function theory in higher dimensions is based on all the analytic

and geometric spirit of holomorphic functions. That is why, the mappings

we shall discuss in this Section come as solutions to certain nonlinear elliptic

systems of PDEs closely related to the Cauchy-Riemann equations. Modern

approach makes use of the Hodge theory of differential forms. We shall

put these beautiful equations into play later. The term Sobolev mapping,

or weakly differentiable deformation of an open region Ω ⊂ Rn, refers to a

vector field

f = (f1, f2, ..., fn) : Ω −→ Rn , f ∈ W 1,1
loc (Ω,Rn)

whose coordinates lie in the Sobolev space W 1,1
loc (Ω). Thus, we can speak
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of the differential matrix

Df =



∂f1

∂x1

∂f1

∂x2
. . . ∂f1

∂xn

∂f2

∂x1

∂f2

∂x2
. . . ∂f2

∂xn... ... ...
∂fn

∂x1

∂fn

∂x2
. . . ∂fn

∂xn

 ∈ L 1
loc(Ω, Rn×n) (1)
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We say that f is orientation preserving if its Jacobian determinant

J (x, f) = detDf(x) =

∣∣∣∣∣∣∣∣∣∣∣∣

∂f1

∂x1

∂f1

∂x2
. . . ∂f1

∂xn

∂f2

∂x1

∂f2

∂x2
. . . ∂f2

∂xn... ... ...
∂fn

∂x1

∂fn

∂x2
. . . ∂fn

∂xn

∣∣∣∣∣∣∣∣∣∣∣∣
> 0 (2)

is nonnegative almost everywhere. The operator norm of the differential;

‖Df(x)‖ = max{ |Df(x) ξ |; |ξ| = 1 }

represents the magnitude of the infinitesimal deformation of 1-dimensional
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objects. On the other hand, the n-form

J(x, f) dx = df1 ∧ ... ∧ dfn

represents an infinitesimal change of volume at the point x ∈ Ω. Definition

We want these two infinitesimal deformations to be comparable point-wise

at almost every point.
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A Sobolev mapping f : Ω −→ Rn is said to have finite distortion if:

ı) Its Jacobian determinant is locally integrable.
ıı) There is a measurable function K = K(x) > 1,

finite almost everywhere, such that:

J(x, f) 6 ‖ Df(x)‖n = K(x) J(x, f)

Geometrically, the distortion inequality tells us how the linear differential

map deforms spheres into ellipsoids
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Df(x) : Rn −→ Rn vol B
vol E = ‖Df(x)‖n

J(x,f) = K(x) < ∞
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There is no distortion when K(x) ≡ 1 , which results in conformal

mappings and the equation: ‖Df(x)‖n = J(x, f) . Equivalently, we have

the n -dimensionsl (nonlinear) Cauchy-Riemann system

D∗f(x) ·Df(x) = J(x, f)
2
n Id

Using Frobenius norm of a matrix

|Df(x)|2 def
== Trace[D∗f(x) ·Df(x)]

we write it as:

|Df(x)|n = nn/2J(x, f)
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Quasiconformal Deformation
h : X onto−→ Y , y = h(x)
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The n-harmonic equations

Conformal mappings have the smallest possible n-harmonic energy among

all mappings with given boundary values, that is:

E [f ]
def
==

∫
Ω

|Df(x)|n dx = nn/2

∫
Ω

J(x, f) dx

= nn/2

∫
Ω

J(x, h) dx =

∫
Ω

|Dh(x)|n dx = E [h]

whenever h ∈ f + W 1,n
◦ (Ω,Rn).

In particular, conformal mappings solve the n-harmonic system

D∗
(
|Df(x)|n−2 Df(x)

)
= 0 (3)
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where

D∗ = Div : D ′(Ω,Rn×n) −→ D ′(Ω,Rn)

In dimension n = 2 the real part u = <f and the imaginary part v = =f
of a conformal mapping are harmonic conjugate functions. For this reason

we refer to the components of a conformal mapping f = (f1, f2, ..., fn) )

as n-harmonic conjugate functions.

In fact, the n-harmonic system (3) for conformal mappings can be uncoupled

so that each component solves the scalar n-harmonic equation

div |∇u|n−2 ∇u = 0 , for u = f i, i = 1, ..., n (4)

More generally, mappings of finite distortion solve an A-harmonic system

D∗ A(x, Df) = 0 , A(x,X) = 〈 G(x)X | X 〉
n−2

2

G(x)X , X ∈ Rn×n
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The matrix function G = G(x) is called the distortion tensor of f . It

is a symmetric positive definite matrix of determinant one. As before, this

system can be uncoupled so that each component u = f i, i = 1, ..., n ,

of a mapping with finite distortion solves a scalar A- harmonic equation:

div A(x, ∇u) = 0 , A(x, ξ) = 〈 G(x)ξ | ξ 〉
n−2

2

G(x)ξ , ξ ∈ Rn

(5)

This analogy with conformal mappings extends further by noticing that

outside the zero points of f the function u = log |f(x)| is A-harmonic as

well.
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The Beltrami Dirac equation

We shall formulate more equations for quasiregular mappings. Let ∧` =

∧`Rn, ` = 0, 1, . . . , n , denote the space of `-covectors in Rn. The `-forms

on Ω ⊂ Rn are simply functions γ : Ω→ ∧`Rn . The symbols

C∞(Ω,∧`), L p(Ω,∧`), W 1,p(Ω,∧`)

etc. for corresponding subspaces of `-forms on a domain Ω ⊂ Rn are

self-explanatory. The exterior derivative

d : C∞(Ω,∧`−1)→ C∞(Ω,∧`)

and its formal adjoint

d? : C∞(Ω,∧`)→ C∞(Ω,∧`−1)
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are the fundamental differential operators on forms. Here

? : ∧`Rn → ∧n−`Rn

stands for the Hodge star duality operator.

More natural domains for d and d? will become perfectly clear in the sequel.

One more space of concern to us consists of harmonic fields

H `(Rn) = { θ ∈ C∞(Ω,∧`), dθ = d?θ = 0 }, ` = 1, 2, ..., n−1

Associated with a quasiconformal mapping f ∈ W 1,n(Ω,Rn) is the pullback

of `-forms

f# : C∞(Ω,∧`)→ L p(Ω,∧`) , with p =
n

`
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and the pullback of (n− `)-forms.

f# : C∞(Ω,∧n−`)→ L q(Ω,∧n−`) , with q =
n

n− `

Let us fix an arbitrary harmonic field θ ∈ H`(Rn).

To simplify matters we only consider

θ = dy1 ∧ ... ∧ dy` , so ? θ = dy
`+1
∧ ... ∧ dyn

The pullbacks are closed forms on Ω

f#(θ) = df1 ∧ ... ∧ df ` , d f#(θ) = 0

f#(? θ) = df `+1 ∧ ... ∧ dfn , d f#(? θ) = 0
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We can express them (at least locally) as:

f#(θ) = du ∈ L p(Ω,∧`) , d?u = 0

?f#(? θ) = d?v ∈ L q(Ω,∧`), dv = 0

Now, the differential forms u ∈ W 1,p(Ω,∧`−1) and v ∈ W 1, q(Ω,∧`+1),

p + q = p · q, will be the unknowns in our equations. They are viewed as

generalizations of the real and imaginary part of a holomorphic function.

First we take into consideration a conformal mapping f ∈ W 1,`(Ω,Rn) in

even dimension n = 2`. The equations obtained for u and v are extremely

simple:

du = d?v and d?u = dv = 0
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In particular, both u and v are harmonic forms, consequently C∞-smooth.

It hardly matters how we choose the underlying harmonic field θ ∈H `(Rn);

our equations depend purely upon the differential Df . We indulge ourselves

by putting on stage some simple ones. To this effect, we represent the

differential Df(x) : TxΩ→ TyΩ′ by a square 2`× 2` -matrix, and infer the

following relations:

Df(x) =

[
A(x) B(x)
C(x) D(x)

]
,

{
detA = detD

detB = (−1)` detC

where A,B,C and D are the `× ` -submatrices.

Notice the resemblance to the Cauchy-Riemann system in R2.

Df(x) =

[
ux uy
vx vy

]
,

{
ux = vy

uy = −vx
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When the rows and columns are permuted in Df(x), more linear relations

between the `×` -minors are obtained. In much the same way the equations

describing quasiconformal mappings in dimension n = 2`, when lifted to the

exterior ` -forms, give rise to linear relations with measurable coefficients

between the `× ` -minors of the matrix Df(x).
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d?v = A(x) du , d?u = dv = 0 , detA(x) ≡ 1

A(x) ∈ Hom(∧`Rn, ∧`Rn) − symmetric positive definite

Actually A(x) is the `′s exterior power of G(x) (Cauchy-Green Tensor)

` subdeterminants. There is always further to go. Without getting into

details we regard u and v as functions valued in the whole Grassmann

algebra

Λ = ΛRn =
n

⊕̀
=0
∧`Rn

There we have elliptic Dirac operators

∂ = d − d? and ∂ = d + d?, defined in W 1,p(Ω,Λ)
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These equations reduce to a single one for the differential form F = u + v.

We call it the Beltrami-Dirac equation:

∂F = µ(x) ∂F , where F = u + v

µ(x) =
I −A(x)

I + A(x)
: ∧`Rn → ∧`Rn, ‖µ(x)‖ 6 k < 1

In many respects this system seems to be an excellent generalization of the

familiar complex Beltrami equation. The whole program is similar in spirit

to the study of complex functions in the plane. Continuing this analogy, let

us take a look at some relations between the `-forms du and d?v , where

` is not necessarily half of the dimension. In this case du and d?v are
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coupled nonlinearly:

d?v = A(x, du), in conformal case, d?v = | du |p−2 du , p =
n

`

Here A : Ω× ∧` → ∧` is a given monotone map. We refer to these PDEs

as Hodge system. The pair of differential forms

( du, d?v ) ∈ L p(Ω,∧`)×L q(Ω,∧`), p+ q = p · q

will be called A -conjugate fields . These equations have led us to a

nonlinear Hodge-DeRham theory on manifolds with boundary. But it would

take us a bit afield to present this theory here. The conjugate fields du

and d?v can be uncoupled by differentiating the Hodge system. It results

21



in the second order A-harmonic and B-harmonic systems

d?A(x, du) = 0 and d B(x, d?v) = 0

where B(x, ) : ∧`Rn → ∧`Rn is inverse to A(x, ) : ∧`Rn → ∧`Rn.

In conformal case

d?( |du| p−2 du) = 0, p =
n

`

d(|d?v| q−2d?v ) = 0, q =
n

n− `
The second order A-harmonic and B-harmonic equations are certainly

interesting from the nonlinear potential theory perspective. However, they

seem to be a far less geometric than the first order Beltrami-Dirac system.
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