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Nonlinear Systems

1. Consider the system

ż1 = −z2 + z1z2,

ż2 = z1 − z21 − z2z3,
ż3 = −z3 + z22 .

(a) [2 marks] Find the fixed points.

(b) [2 marks] Show that the line z1 = 1 is an invariant set.

(c) [8 marks] Determine the stable, unstable and/or centre linear subspaces for each
fixed point.

(d) [8 marks] Find a quadratic approximation to the centre manifold in the vicinity of
the origin, and use it to show that the local dynamics on the centre manifold are
given by

ż1 = −z2 + z1z2,

ż2 = z1 − z21 −
2

5
z21z2 +

2

5
z1z

2
2 −

3

5
z32 .

(e) [5 marks] By using an appropriate Lyapunov function, determine whether the ori-
gin is Lyapunov stable in the centre manifold.

2. Consider the system

ẋ = −µx+ xy,

ẏ = −2y + z,

ż = −z + x2,

where µ ∈ R is a parameter.

(a) [3 marks] Find the fixed points, being careful to state for which values of µ each
fixed point exists.

(b) [8 marks] Determine the stable, unstable and/or centre linear subspaces for the
fixed point at the origin, being careful to consider all values of µ. For what value
of µ is there a bifurcation of this fixed point?

(c) [10 marks] Find a quadratic approximation to the extended centre manifold in the
vicinity of the origin.

(d) [4 marks] Determine the local dynamics on the extended centre manifold in the
vicinity of the origin. Describe the type of bifurcation. Sketch the bifurcation
diagram, including the stability of the branches.
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Further Mathematical Methods

3. (a) [7 marks] Consider the differential equation

d2y

dx2
+ (n2π2 + Tε)y − y2 = 0,

subject to boundary conditions

y(0) = y(1) = 0,

with n ∈ Z, 0 < ε� 1 and T a constant.

By expanding
y(x) = εy1(x) + ε2y2(x) + ...

show that
y1(x) = A sinnπx,

and determine A for odd n by obtaining a solvability condition at higher order in
ε.

(b) Consider the integral equation

y(x) = f(x) + λ

∫ L

−L
[g(x)h(t) + g(t)h(x)]y(t) dt, (1)

where g(t) and h(t) are continuous functions.

(i) [8 marks] Find the eigenvalues and eigenfunctions for the homogeneous prob-
lem, f(x) = 0, under the assumption that g(x) and h(x) satisfy∫ L

−L
g(t)2 dt =

∫ L

−L
h(t)2 dt = 1,

∫ L

−L
g(t)h(t) dt = 0.

(ii) [8 marks] Now take g(x) = cosx, h(x) = x, L = π, and f(x) 6= 0. Derive
conditions on λ and f(x) for which solutions to (1) exist, and state whether
these solutions are unique.
[You may wish to use the results of (i) after scaling g, h and λ appropriately.
You do not need to give explicit expressions for the solutions of (1).]

(iii) [2 marks] Taking f(x) = x+βx3, find the value of β that ensures at least one
solution of (1) exists for all values of λ ∈ R.
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4. (a) Consider the functional

J1[φ] =

∫ ∞
0

F1(s, φ, φ
′) ds,

where F1(s, φ, φ
′) = 1

2(φ′)2−ω2(1− cosφ), (·)′ denotes differentiation with respect
to s and ω ∈ C is a constant.

(i) [2 marks] Using the Euler equation, derive a second order differential equation
satisfied by the φ(s) that extremizes J1[φ].

(ii) [2 marks] Obtain a first integral of this equation, under the assumption that
φ→ 0 as s→∞.

(iii) [2 marks] Show that any solution of these equations also satisfies

φ′′′′ = ω2 sinφ
[
3
2(φ′)2 + ω2

]
.

(b) For this part of the question, consider the functional

J2[φ, y] =

∫ ∞
0

F2(s, φ, φ
′, y, y′) ds, (1)

which is to be extremized over all functions {φ(s), y(s)} ∈ C2[0,∞].

(i) [3 marks] Starting from the generalization of Euler’s equation to two depen-
dent variables, show that the Hamiltonian H = pφφ

′ + pyy
′ − F2 satisfies

dH

ds
= −∂F2

∂s
,

where pφ = ∂F2
∂φ′ and py = ∂F2

∂y′ are the generalized momenta.

(ii) [4 marks] Derive Hamilton’s equation

dpφ
ds

= −∂H
∂qφ

, (2)

where qφ = φ is a generalized coordinate.

(c) Consider now the functional J2[φ, y] with F2 = 1
2 (φ′)2 + 1

2y
2 cosφ, supplemented

by the constraints ∫ ∞
0

1− cosφ ds = c and y′ = sinφ, (3)

for c a constant.

(i) [2 marks] Describe (briefly) why the appropriate F2 to extremize (1) subject
to (3) is

F2(s, y, y
′, φ, φ′) =

1

2

(
φ′
)2

+
1

2
y2 cosφ− P (1− cosφ)−Q(s)

(
sinφ− y′

)
,

highlighting any important differences in the Lagrange multipliers introduced.

(ii) [3 marks] Calculate the associated Hamiltonian, explaining why it is constant
in this case, and evaluating this constant under the assumption that φ, y → 0
as s→∞.

(iii) [2 marks] Use (2) and your answer to c(ii) to eliminate Q(s).

(iv) [3 marks] Differentiate the resulting equation twice with respect to s and show
that

φ′′′′ +

[
P +

3

2

(
φ′
)2]

φ′′ + sinφ = 0. (4)

(v) [2 marks] Deduce that any solution, φa(s), of the equation(s) you derived in
part (a) is also a solution of (4) if ω is such that P = ω2 + ω−2.
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Further Partial Differential Equations

5. Consider a two-dimensional material, which lies in x, y ∈ R, and is solid for x 6 s(y, t)
and liquid for x > s(y, t), where t denotes time. The temperature is denoted by T1 in
the solid and T2 in the liquid and is governed by

∂2T1
∂x2

+
∂2T1
∂y2

= 0, for x 6 s(y, t),
∂2T2
∂x2

+
∂2T2
∂y2

= 0, for x > s(y, t).

At the solid–liquid interface x = s(y, t) the following conditions hold:

T1 = T2 = 0,
∂T1
∂n
− ∂T2

∂n
=
∂s

∂t
, on x = s(y, t), (1a,b)

where we have assumed the melting temperature of the solid is T = 0 and n denotes the
coordinate in the normal direction to the interface, pointing into the liquid. Far from
the interface, we impose

∂T1
∂x
→ F as x→ −∞, T2 → 0 as x→∞, (2a,b)

where F > 0 is a constant. We also impose the initial condition s(y, 0) = 0.

(a) [3 marks] Explain the physical interpretation of the interface and boundary con-
ditions (1b) and (2a) and whether this set-up will give rise to freezing of liquid or
melting of solid.

(b) [7 marks] Suppose that the solutions for T1, T2 and s are all independent of y and
given by T1 = T ∗1 (x, t), T2 = T ∗2 (x, t) and s = s∗(t). Find expressions for T ∗1 , T ∗2
and s∗ and sketch the graph of the temperature profile as a function of x at two
different times, t > 0.

(c) [6 marks] Now suppose that the interface is perturbed about the base state via
s(t) = s∗(t) + εη(y, t), where ε � 1. By assuming that the solutions for the
temperature in this perturbed state take the form Tj = T ∗j (x, t) + εuj(x, y, t) for
j = 1, 2, show that the boundary condition (1b) gives, at O(ε),

∂u1
∂x
− ∂u2

∂x
=
∂η

∂t
on x = s∗(t).

(d) [7 marks] By posing the ansätze

uj = Ajexp (σt+ iky + k(x− s∗(t))) +Bjexp (σt+ iky − k(x− s∗(t))) , j = 1, 2,

η = exp (σt+ iky) ,

where k > 0, determine the solutions u1 and u2 and an expression for σ. Hence
deduce the stability of the interface and give your reason for this conclusion.

(e) [2 marks] Use your results and those in the lecture notes to describe a physical
experiment that should lead to the freezing of a liquid to a solid in either (i) a
stable or (ii) an unstable manner.

A11475W1 Page 5 of 6



6. Consider a one-dimensional salty material, which is mush for 0 6 x 6 h(t) and liquid
for x > h(t), where t denotes time and h(0) = 0. The salt concentration S is governed
by

∂S

∂t
=
∂2S

∂x2
, for x > 0. (1)

The temperature is denoted by T1 in the mush and T2 in the liquid, and is governed by

T1 = F (S), for 0 6 x 6 h(t),
∂T2
∂t

= k
∂2T2
∂x2

, for x > h(t), (2a,b)

for some constant k and prescribed function F . At the mush–liquid interface x = h(t)
the following conditions hold:

T1 = T2,
∂T1
∂x

=
∂T2
∂x

. (3a,b)

We also apply the conditions

S(0, t) = S0, S → 0 as x→∞, T2 → 0 as x→∞, (4a–c)

for some constant S0.

(a) [7 marks] Show that a similarity solution exists of the form S = f(η) and T2 = g(η)
for equations (1) and (2), where η = x/tω, for some ω whose value you should
specify, and find the differential equations satisfied by f and g.

(b) [2 marks] Explain why the position of the interface is of the form h = βtγ and
state the required value of γ along with any conditions on β that are required for
the mushy layer to grow with time.

(c) [7 marks] Use equations (1) and (2) and boundary conditions (3a) and (4) to find
the similarity solutions f(η) and g(η) in terms of the parameters k, S0 and β.

[You may find it helpful to recall the definitions of the error function erf(z) and
the complementary error function erfc(z):

erf(z) =
2√
π

∫ z

0
e−y

2
dy, erfc(z) = 1− erf(z). ]

(d) [4 marks] Suppose that F (S) = T0−αS for some constants T0 and α. Use bound-
ary condition (3b) to show that[

T0 − αS0 erfc

(
β

2

)]
exp

(
β2

4

(
1− 1

k

))
= −αS0

√
k erfc

(
β

2
√
k

)
. (5)

(e) [5 marks] If k > 1, use (5) to show that a critical concentration of salt, S0 = S∗0 ,
is required for a mushy layer to exist, where

S∗0 = − T0

α
(√

k − 1
) .

[You may use without proof the fact that β is a monotonically increasing function
of S0.]
Show that F (S∗0) < 0 if k > 1 provided T0 < 0 and explain why we would expect
F < 0 for this problem to make physical sense.
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