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Numerical Linear Algebra

1. Let A ∈ Rm×n,m > n, and let σ1(A) > σ2(A) > · · · > σn(A) > 0 denote its singular
values. An SVD is a decomposition A = UΣV T where U ∈ Rm×n is orthonormal (that
is, UTU = In), Σ = diag(σ1(A), . . . , σn(A)), and V is orthogonal. Let ‖ · ‖2 denote the
spectral norm, so ‖A‖2 = σ1(A).

(a) [4 marks] Suppose A is orthonormal, that is, ATA = In. Find the singular values
and an SVD of A.

(b) [4 marks] Suppose A =

[
A1

0

]
where A1 is n×n symmetric with eigenvalue decom-

position A1 = V1Λ1V
T

1 , where Λ1 = diag(λ1, . . . , λn) is a diagonal matrix and V1

is orthogonal. Find an SVD of A.

(c) [4 marks] Suppose A =
∑r

i=1 xiy
T
i , where xi, yi ∈ Rn are vectors and r < n. Show

that σr+1(A) = 0.

(d) [6 marks] Suppose that the entries of A are all 1, except the diagonal entries, which
are all 1 + 10−10.

(i) Show that the second singular value σ2(A) 6 10−10.

(ii) Find a rank-1 matrix B such that ‖A−B‖2 6 10−10.

(e) [7 marks] Suppose A = [A1 A2], where A1 is m × n1, and A2 is m × n2, with
n1 + n2 = n.

(i) Show that σk(A) > σk(A1) for k = 1, 2, . . . , n1.

(ii) Give an example where σn2(A2) > 0 but σk(A) = σk(A1) for all k 6 n1.

A11474W1 Page 2 of 7



2. Let A ∈ Rm×n,m > n.

(a) [4 marks] Let Q ∈ Rm×n be orthonormal, that is, QTQ = In. Prove constructively
that there exists a matrix Q⊥ ∈ Rm×(m−n) such that [Q Q⊥] is square orthogonal.

(b) [4 marks] Suppose that m > n. Show that AT has a nonzero null vector v such
that AT v = 0.

(c) [4 marks] Show that there exists a decomposition of the form A = QM , where M
is ‘antitriangular’, that is, Mij = 0 if i+ j 6 n.

[Here and below, you may use the fact that every matrix has a QR factorisation.]

(d) [4 marks] Show that there exists a decomposition of the form A = QL, where L is
lower (not upper) triangular.

(e) [9 marks] Let A be orthogonal (so m = n). Consider the linear system Ax = b.

(i) Find x, given A and b.

(ii) Let ∆A be a matrix such that ‖∆A‖2 6 10−10. Consider the perturbed linear
system (A+ ∆A)(x+ ∆x) = b. Is it possible that ‖∆x‖/‖x‖ > 10−9? Find an
example or disprove.
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Numerical Solution of Differential Equations

3. Consider the two-point boundary-value problem

−(p(x)u′(x))′ = f(x), x ∈ (0, 1),

u(0) = A, u(1) = B,

where A,B ∈ R, p ∈ C1([0, 1]), and there exists a positive constant c0 such that
p(x) > c0 for all x ∈ [0, 1]. Suppose further that f ∈ L2((0, 1)). On a uniform finite
difference mesh Ωh := {xi := ih : i = 0, . . . , N} of spacing h := 1/N , where N > 2, the
boundary-value problem is approximated by the following finite difference scheme

−1

h

(
p(xi+1/2)

Ui+1 − Ui

h
− p(xi−1/2)

Ui − Ui−1

h

)
= Thf(xi), i = 1, . . . , N − 1,

U0 = A, UN = B,

(1)

where xi±1/2 := xi ± 1
2h and

Thf(xi) :=
1

h

∫ xi+1/2

xi−1/2

f(x) dx.

(a) [9 marks] Show the existence of a unique solution {Ui}Ni=0 to the difference scheme
(1).

(b) [9 marks] Show that the global error e := u− U satisfies the following equalities:

−D+
x (p(xi−1/2)D−x ei) = D+

x ϕi, i = 1, . . . , N − 1,

e0 = 0, eN = 0,

where D+
x and D−x are the first-order forward and backward finite difference oper-

ator, respectively, and

ϕi := p(xi−1/2)
(
u′(xi−1/2)−D−x u(xi)

)
, i = 1, . . . , N.

Hence deduce that, if u′′′ is an integrable function on the interval [0, 1], then

ϕi = p(xi−1/2)

(
1

h

∫ xi

xi−1

∫ xi−1/2

x

∫ s

xi−1/2

u′′′(t) dtds dx

)
, i = 1, . . . , N.

(c) [7 marks] Suppose that u′′′ ∈ L2((0, 1)). Show that

|ϕi| 6 h3/2‖p‖C([0,1])

(∫ xi

xi−1

|u′′′(t)|2 dt

) 1
2

.

Hence deduce that, in a suitable discrete Sobolev norm ‖ · ‖1,h that you should
carefully define, the solution U to the finite difference scheme (1) satisfies the error
bound

‖u− U‖1,h 6 Ch2‖u′′′‖L2((0,1)),

where C is a positive constant, independent of the mesh-size h, whose value you
should specify in terms of c0 and ‖p‖C([0,1]).

[The discrete Poincaré–Friedrichs inequality may be used without proof.]
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4. Suppose that Ω = (0, 1)2. Consider the elliptic partial differential equation

−∆u+ u = −1, (x, y) ∈ Ω,

subject to the Dirichlet boundary condition u|∂Ω = b, where b is a nonnegative real
number.

(a) [9 marks] On the uniform finite difference mesh

Ωh := {(xi, yj) : xi := ih, yj := jh, i, j = 0, . . . , N}

of spacing h := 1/N in both coordinate directions, where N > 2, state the five-
point finite difference approximation to the boundary-value problem.

Assuming that u ∈ C4(Ω), show that the consistency error ϕi,j of the five-point
scheme at the mesh-point (xi, yj) satisfies the inequality

max
16i,j6N−1

|ϕi,j | 6
h2

12

(∥∥∥∥∂4u

∂x4

∥∥∥∥
C(Ω)

+

∥∥∥∥∂4u

∂y4

∥∥∥∥
C(Ω)

)
.

(b) [9 marks] Denoting by U the solution to the five-point scheme, show that

max
06i,j6N

Ui,j = b.

(c) [7 marks] Show further that

max
06i,j6N

|u(xi, yj)− Ui,j | 6 max
16i,j6N−1

|ϕi,j |.
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5. Consider the initial-value problem

∂u

∂t
+ u =

∂2u

∂x2
+
∂2u

∂y2
, −∞ < x, y <∞, 0 < t 6 T,

u(x, y, 0) = u0(x, y), −∞ < x, y <∞,
(2)

where T is a fixed real number, and u0 is a real-valued, bounded and continuous function
of x, y ∈ (−∞,∞).

(a) [9 marks] Consider the finite difference mesh with uniform spacings ∆x > 0 and
∆y > 0 in the x and y coordinate directions, respectively, and let ∆t := T/M ,
where M is a positive integer such that M > T . Let Z denote the set of all
integers. State the Crank–Nicolson scheme for the numerical solution of the
initial-value problem (2), where Um

i,j denotes the Crank–Nicolson approximation
to u(i∆x, j∆y,m∆t) for i, j ∈ Z and m ∈ {0, 1, . . . ,M}.

(b) [9 marks] Suppose that

‖U0‖`2 :=

∆x∆y
∑
i,j∈Z

|U0
i,j |2

1/2

is finite and that

∆t

(
1

2
+

2

(∆x)2
+

2

(∆y)2

)
6 1.

Show that

‖Um‖`2 6

(
2−∆t

2 + ∆t

)m

‖U0‖`2

for all m, 1 6 m 6M .

(c) [7 marks] Now, suppose that

∆t

(
1

2
+

1

(∆x)2
+

1

(∆y)2

)
6 1.

Show that

max
i,j∈Z

|Um
i,j | 6

(
2−∆t

2 + ∆t

)m

max
i,j∈Z

|U0
i,j |

for all m, 1 6 m 6M .
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6. Suppose that c is a nonzero real number, T > 0, and u0 ∈ C(R). The initial-value
problem

ut + c ux − u = 0, −∞ < x <∞, 0 < t 6 T,

u(x, 0) = u0(x), −∞ < x <∞,

has been approximated by the finite difference scheme

Um+1
j − Um

j

∆t
+ c

Um
j+1 − Um

j−1

2∆x
− Um

j = 0, j ∈ Z, 0 6 m 6M − 1,

U0
j := u0(xj), j ∈ Z,

(3)

where Z denotes the set of all integers, ∆x > 0, ∆t := T/M , and M is a positive integer.

(a) [6 marks] Define the consistency error Tm
j of the finite difference scheme (3), and

show that
Tm
j = O((∆x)2 + ∆t) as ∆x→ 0 and ∆t→ 0.

You may assume that u has as many continuous and bounded partial derivatives
with respect to x and t as are required by your argument.

(b) [6 marks] Let µ := c∆t/∆x. Denoting by k ∈ [−π/∆x, π/∆x] 7→ Ûm(k) ∈ C the
semidiscrete Fourier transform of the mesh function j ∈ Z 7→ Um

j ∈ R, show that

|Ûm(k)|2 =
[
(1 + ∆t)2 + µ2 sin2 k∆x

]m |Û0(k)|2

∀ k ∈
[
− π

∆x
,
π

∆x

]
, ∀m ∈ {1, . . . ,M}.

(c) [6 marks] Let ν := c∆t/(∆x)2. Show that µ2 = νc∆t. Hence deduce that if ν
is held fixed as ∆t → 0, then the scheme (3) is stable in the `2 norm in von
Neumann’s sense.

(d) [7 marks] By choosing an initial datum u0 6= 0 such that

Û0(k) = 0 ∀ k ∈
[
− π

∆x
,
π

∆x

]
\
([
− 5π

6∆x
,− π

6∆x

]
∪
[
π

6∆x
,

5π

6∆x

])
,

show that if µ is held fixed as ∆t→ 0, then the difference scheme (3) is not stable
in the `2 norm in von Neumann’s sense.
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