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Numerical Liner Algebra

1. (a) [12 marks] Let A ∈ Rm×n (m > n), and consider the process of computing a
bidiagonal matrix B = UAV T where U, V are orthogonal matrices.

(i) Explain how to find U,B, and V using Householder reflectors.

(ii) Establish an upper bound on the operation count of the algorithm in (i) of the
form Cmpnq, where p, q are (the smallest) integers to be specified, and C is a
constant that need not be specified.

(iii) Show that the singular values of A and B are the same.

(iv) Assuming m = n, show that the eigenvalues of A and B are not necessarily
the same.

(b) [13 marks] Recall that a square matrix P is called a projector if P 2 = P . Let M †

denote the pseudoinverse of a rectangular matrix M .

(i) Find

[
0 1
0 0

]†
and

[
0 1 1
0 0 1

]†
.

(ii) Let P = X(Y TX)†Y T , where X,Y are n × r, n > r. Show that P is a
projector.

(iii) Assuming that Y TX is nonsingular, show that P is invariant under right-
multiplication of X,Y by nonsingular matrices, that is, if X̃ = XM and
Ỹ = Y N for nonsingular M,N , then X̃(Ỹ T X̃)†Ỹ T = P .

(iv) Let M ∈ Rm×n with m > n. Under what condition is M †M equal to In?
When is MM † equal to Im?
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2. Consider the QR algorithm for solving eigenvalue problems Ax = λx, where A ∈ Rn×n.
Let Ak denote the iterates generated by the QR algorithm, with A0 = A.

(a) [5 marks] Briefly describe how the iterates Ak are computed by the QR algorithm
without shifts, and with shifts (you need not specify how the shifts are chosen).
Prove that in both cases, Ak have the same eigenvalues as A.

(b) [5 marks] Suppose A is symmetric. Assuming that the iterates Ak in the QR
algorithm converge to a diagonal matrix Ak → D as k → ∞, explain how to find
the eigenvalues and eigenvectors of A.

(c) [5 marks] Let A ∈ Rn×n be a matrix of all 1’s, A =


1 1 · · · 1

1
. . . · · · 1

...
. . .

. . .
...

1 1 · · · 1

 . Find the

eigenvalues of A by executing one step of the (unshifted) QR algorithm.

(d) [5 marks] Explain why one step of the QR algorithm provides the eigenvalues of
A in (c).

(e) [5 marks] For a general square matrix A ∈ Rn×n and prescribed scalars s1, s2 ∈ R,
show how to find a vector parallel to the last (nth) column of (A−s1I)−1(A−s2I)−1

using two steps of the shifted QR algorithm (and in particular without explicitly
inverting a matrix or solving linear systems).
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Continuous Optimisation

3. Consider the following unconstrained optimization problem

min
x∈Rn

f(x), (1)

where f : Rn → R is continuously differentiable and bounded below, and its gradient
∇f(·) is Lipschitz continuous on Rn. Apply the steepest descent method with linesearch
to (1).

(a) [13 marks] Assume that the backtracking-Armijo linesearch is used with the steep-
est descent method.

(i) Show that the stepsize αk generated by this linesearch is bounded away from
zero by a constant that is independent of k, namely, show that there exists a
constant C1 > 0 such that

αk > C1 for all k > 0. (2)

[Hint: Relevant results from the lectures can be used without proof but must be
specified and applied carefully.]

(ii) Using (2), or otherwise, show that there exists a constant C2 > 0 such that

f(xk)− f(xk+1) > C2‖∇f(xk)‖2 for all k > 0, (3)

where ‖ · ‖ denotes the Euclidean norm.

(iii) Let ε > 0. Using (3) or otherwise, show that there exists an iteration k > 0 such
that the algorithm terminates finitely, namely, with ‖∇f(xk)‖ 6 ε. Provide
an upper bound on the number of iterations k that the algorithm takes until
termination.

(b) [7 marks] Assume that a constant stepsize is used with the steepest descent method,
namely, αk = α for all k > 0.

(i) Find the largest value of α such that a property of the form (3), for some
C2 > 0, holds for this steepest descent variant.

(ii) What conclusions can you draw regarding the finite termination and iteration
upper bound for this variant? Briefly justify your answer.

(c) [5 marks] Let f(x) = 1
2(a1x

2
1 + a2x

2
2 + a3x

2
3), where a1 > a2 > a3 > 0 and

x = (x1, x2, x3)
T ∈ R3. Calculate the constant stepsize α in (b)(i) for this ob-

jective function f .
Briefly comment on the difficulty of calculating this stepsize in the case of a general
convex quadratic objective.
[Hint: the required stepsize α depends on the reciprocal of the Lipschitz constant of
the gradient.]
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4. (a) [13 marks] Consider the least-squares problem

min
x∈Rn

f(x) =
1

2
‖r(x)‖2, (1)

where r : Rn → Rm with m > n and ‖ · ‖ denotes the Euclidean norm. Consider
minimizing the following local quadratic approximation of f(x+ s) in (1) for some
x ∈ Rn, within a trust region of radius ∆ > 0, namely,

min
s∈Rn

q(s) =
1

2
‖J(x)s+ r(x)‖2 subject to ‖s‖ 6 ∆, (2)

where J(x) denotes the m× n Jacobian matrix of r(x).

(i) Write down (necessary and sufficient) optimality conditions for a global min-
imizer s∗ of (2). Are there Karush-Kuhn-Tucker (KKT) points that are not
global minimizers of problem (2)?

(ii) Find an expression for s∗ in (a)(i) in the case when the trust-region constraint
is inactive at s∗.

(iii) Find sufficient conditions on problems (1) and (2) such that s∗ is a descent
direction for f from x.

(b) [12 marks] Consider the following function in one variable x ∈ R,

f(x) = −x6 + 48x2. (3)

(i) Calculate the stationary points of this problem and establish whether they are
(local) minimizers or maximizers. Estimate the local rate(s) of convergence of
Newton’s method for optimization (without linesearch) applied to f , when the
starting point is close to each of the stationary points of f that you found.

(ii) Are there starting points x0 for Newton’s method for optimization (without
linesearch) applied to f in (3) such that the ensuing iterates fail to converge
to a stationary point of f? Justify your answer.
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5. (a) [13 marks] Consider the constrained optimization problem

min
x∈Rn

x1+x2+· · ·+xn subject to x1·x2·. . .·xn = 1 and xi > αi, i ∈ {1, . . . , n}, (1)

where x = (x1, x2, . . . , xn)T , and the given constants satisfy αi > 0, i ∈ {1, . . . , n}
and α1 · α2 · . . . · αn < 1.

(i) Show that problem (1) has a unique Karush-Kuhn-Tucker (KKT) point.

(ii) Write down the second-order optimality conditions at this KKT point. Is this
point a local minimizer?

(b) [12 marks] Consider the unconstrained optimization problem

min
x∈Rn

f(x), (2)

where f : Rn → R is twice continuously differentiable.

(i) Assume that there exists a stationary point x ∈ Rn of f such that the Hessian
matrix ∇2f(x) is indefinite (that is, it has both positive and negative eigen-
values). Find a direction s ∈ Rn, s 6= 0, such that f decreases along s from its
value f(x), namely, f(x+ αs) < f(x) for all α > 0 sufficiently small.

(ii) Assume that there exists a stationary point x̂ ∈ Rn of f such that the Hessian
matrix ∇2f(x̂) is positive semidefinite. Discuss whether and when x̂ is a local
minimizer, maximizer or saddle point, justifying your answer carefully.
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6. (a) [14 marks] Consider the optimization problem below that has only one equality
constraint,

min
x∈Rn

f(x) subject to c(x) = 0, (1)

where f : Rn → R and c : Rn → R are continuously differentiable functions.

(i) State the theorem of global convergence for the augmented Lagrangian method
in the special case of problem (1).

(ii) Assuming that the conditions of the theorem in (a)(i) hold, prove that the
Lagrange multiplier estimate yk ∈ R generated at iteration k of the augmented
Lagrangian method when applied to (1) converges to the optimal Lagrange
multiplier y∗ of the constraint, as k →∞.

(iii) Assume now that the quadratic penalty term in the augmented Lagrangian
function Φ(x, u, σ) is replaced by a penalty term of the form |c(x)|2p/(2pσ)
for integer p > 1. Does this generate a well-defined penalty function and does
the convergence theorem in (a)(i) holds in this case? Justify your answer,
outlining potential similarities and differences.

(b) [11 marks] Consider the constrained optimization problem,

min
x∈Rn

x21 + x22 + . . .+ x2n subject to c(x) := x1 + 2x2 + . . .+ nxn − 1 = 0, (2)

where n > 2.

(i) Write down the augmented Lagrangian function Φ(x, u, σ) associated with
problem (2) and calculate its (unconstrained) global minimizer(s) x(u, σ), for
any u ∈ R and σ > 0.

(ii) Let σ be fixed. Let u be updated by the formula

uk+1 = uk − c(x(uk, σ))

σ
, k > 0,

starting from some u0, and where x(uk, σ) is, like above, the minimizer of
Φ(x, uk, σ). Show that, as k →∞, {uk} converges to the Lagrange multiplier
y∗ of the constraint in (2) and {x(uk, σ)} to the global minimizer x∗ of (2).

(iii) Let u ∈ R be fixed. Briefly describe a difficulty that the augmented Lagrangian
method encounters when σ → 0.
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