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Nonlinear Systems

1. Consider the system

ẋ = −y3 + x− x3,
ẏ = xy2,

with associated flow ϕt : R2 7→ R2.

(a) [2 marks] Show that the line y = 0, the halfspace y > 0, and the halfspace y < 0
are invariant sets.

(b) [9 marks] Determine the stable, unstable and/or centre linear subspaces for each of
the fixed points (0, 0), (−1, 0) and (1, 0). Which fixed points are non-hyperbolic?
What does the linearisation tell you about the asymptotic stability of the fixed
points?

(c) [7 marks] Find a cubic approximation to the centre manifold in the vicinity of the
fixed points (±1, 0), and use it to determine the local dynamics. Are these fixed
points stable?

(d) [7 marks] For c > 0 let D denote the open set bounded by the curves

Γ1 = {(x, y) : x+ y = c, −2 < x < 2},
Γ2 = {(x, y) : x2 + y2 = 4 + (c− 2)2, x > 2, y > 0},
Γ3 = {(x, y) : x2 + y2 = 4 + (c+ 2)2, x < −2, y > 0},

Γ4 = {(x, y) : y = 0, −
√

4 + (c+ 2)2 < x <
√

4 + (c− 2)2.

Show that D is an invariant set for c sufficiently large.

Deduce that ϕt(x) → (−1, 0) as t → ∞ for all x ∈ D. Is {(−1, 0)} an attracting
set? [You may assume that there are no limit cycles.]
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2. Consider the system

ẋ = (µ− 1)x+ (µ+ 1)y − x3,
ẏ = (µ+ 1)x+ (µ− 1)y + δx2.

(a) [10 marks] Consider the case δ = 0. For what value of µ does a bifurcation of
the steady state (0, 0) occur? Find the local dynamics on the extended centre
manifold, and describe the type of bifurcation.

(b) [8 marks] Now consider the case δ > 0. Find the local dynamics on the extended
centre manifold, and describe the type of bifurcation.

(c) [7 marks] Suppose now that 0 < δ � 1. Find a cubic approximation to the local
dynamics on the centre manifold. Sketch the bifurcation diagram, including the
stability of the branches.
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Further Mathematical Methods

3. (a) [7 marks] Consider the boundary value problem

y′′(x) + 2εy′(x) + y(x) = sin(x), y(0) = y(2π), y′(0) = y′(2π). (1)

Explicitly use the solvability condition to show that a regular perturbation solution
of the form

y(x) ∼ y0(x) + εy1(x) +O(ε2),

does not work. Propose an alternative expansion, and determine the first term.

(b) [18 marks] Solve the inhomogeneous Fredholm equation,

y(x) = f(x) + λ

∫ 2π

0
(cos(x) sin(t) + xt) y(t)dt,

determining the value(s) of λ such that the solution is unique. For any value(s) of
λ where a unique solution does not exist, use the Fredholm Alternative to describe
the form of non-unique solutions, noting any solvability conditions on f . Write the
solution for f(x) = cos(x), noting carefully what happens as λ varies.
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4. (a) Suppose the function y(x) minimizes the functional,

J [y] =

∫ b

a
F (x, y, y′)dx,

over all functions y ∈ C2([a, b]) with y(a) and y(b) undetermined, where F and its
derivatives are continuously differentiable in all arguments.

(i) [10 marks] Derive the Euler-Lagrange equations and boundary conditions that
y must satisfy.

(ii) [6 marks] Determine the curve that minimizes the functional,∫ 1

0

y′2

2
+ yy′ + y′ + y + f(x)dx,

when y(0) and y(1) are undetermined. Explain why the curve y(x) does not
depend on the function f(x), and what impact it has on the value of the
functional.

(b) [9 marks] Minimize the functional,∫ 2

1
x2y′2dx, subject to

∫ 2

1
ydx = A,

over all y(x) with y(1) = 0 and y(2) = 0.
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Further Partial Differential Equations

5. Consider the partial differential equation

∂h

∂t
=
∂2h

∂x2
+

x

2t3/2
h. (1)

(a) [3 marks] Suppose that the following boundary conditions are satisfied:

h(0, t) = 1 and h→ 0 as x→∞. (2)

Use a scaling-law analysis or otherwise to show that a similarity solution exists
of the form h(x, t) = f(η) with η = x/tα for some value of α that you should
determine.

(b) [3 marks] Find the ordinary differential equation satisfied by f and state the bound-
ary conditions on f .

(c) [3 marks] Use the fact that the solution for f is

f =
(

1− η

4

)
exp

(
−η

2

4
+ η

)
to show that the function h that solves (1) subject to (2) has two turning points
and find the location in x of each of these.

(d) [2 marks] By finding the value of f ′(0) or otherwise, find the nature of each of the
turning points found in (c).

(e) [3 marks] Now suppose that instead of the boundary conditions (2) we have

h(0, t) = t and h→ 0 as x→∞. (3)

Show that the similarity form is now of the form h = tβF (ξ) with ξ = x/tγ for
some value of β and γ that you should determine.

(f) [3 marks] Find the ordinary differential equation satisfied by F and state the
boundary conditions on F .

(g) [5 marks] Consider the behaviour of F for large ξ by rescaling ξ = λz for λ � 1
and z = O(1). Assuming that F takes the form

F (z) = Aexp (−λk(z)) , (4)

for some constant A, find a differential equation for k correct to leading order in
1/λ, and show that the solution is k(z) = z +B for some constant B.

(h) [3 marks] Show by direct substitution or otherwise that the solution for F as
ξ → ∞, given by equation (4), with the function k found in part (g), is actually
the solution for all η for some value of A that you should determine. Use this
result to state the similarity solution of (1) subject to the boundary conditions
(3).
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6. Consider a substance located in 0 6 x 6 h(t), with a solid–liquid interface at x = s(t)
and a time-dependent boundary at h(t), described by the following system.

∂2T1
∂x2

= 0, 0 6 x 6 s(t), (5a)

∂2T2
∂x2

= 0, s(t) 6 x 6 h(t), (5b)

T1(0, t) = 1, (5c)

T1(s(t), t) = T2(s(t), t) = 0, (5d)

∂T2(s(t), t)

∂x
− ∂T1(s(t), t)

∂x
=

ds

dt
, (5e)

dh

dt
= −T2(h(t), t), (5f)

∂T2(h(t), t)

∂x
= β(s(t)− 1), (5g)

s(0) = 0, h(0) = 1. (5h)

Here, T1 denotes the temperature in the liquid, T2 denotes the temperature in the solid
and β is a constant.

(a) [7 marks] Use the system (5) to find expressions for the temperatures T1 and T2
in terms of s, h and the parameter β and generate ordinary differential equations
ds/dt = f(s) and dh/dt = g(s, h) for some functions f and g (which may also
depend on β) that you should find.

(b) [5 marks] Consider the steady-state solution. Show that this corresponds to a case
in which the entire substance has melted i.e., s = h = constant = s∗ and find the
possible values of s∗. State any restrictions on β that are required to obtain a real
solution.

(c) [3 marks] By drawing an approximate sketch of f(s) and looking near the points
where f(s) = 0, determine the stability of the steady states you have found.

(d) [5 marks] Now consider the case in which the system is not in steady state. By
scaling t = εT for ε � 1 along with s = εaS and h = 1 + εbH in the ordinary
differential equations for s and h derived in (a), find values for a and b that lead to
a dominant balance in ε and hence find differential equations for s and h that are
accurate to leading order in ε. Hence, show that s ≈

√
2t and find an expression

for h(t) in this early-time limit.

(e) [5 marks] Now consider the system close to the steady state, so that almost all
of the substance has melted. By scaling s appropriately, show that (s − s∗) ∝
exp(−(1/s∗2 − β)t) in this limit.
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