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Numerical Linear Algebra

1. 1. Let A ∈ Rm×n,m > n, and denote by σ1(A) > σ2(A) > · · · > σn(A) its singular
values.

(a) (i) [3 marks] Prove that the eigenvalues of a real symmetric matrix are real.

(ii) [2 marks] Show that the eigenvalues of ATA are real and nonnegative.

(b) [5 marks] Prove the existence of the SVD, i.e., A = UΣV T where UTU = In,
V TV = V V T = In and Σ = diag(σ1(A), . . . , σn(A)).

(c) [5 marks] Prove the Courant–Fisher maxmin theorem for singular values:
σi(A) = maxdimS=i minx∈S,‖x‖2=1 ‖Ax‖2.

(d) Let A =

[
A1

A2

]
∈ R4×2 where A1 =

[
2

1

]
and A2 ∈ R2×2 is some matrix

whose entries are unknown.
(i) [5 marks] Prove that σ1(A) > 2. Give an example of A2 for which this

bound is tight, and another example where it is not tight.

(ii) [5 marks] Derive a lower bound for σ2(A) and give an example of A2 for
which the bound is attained, and another where it is not.
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2. (a) [5 marks] Householder reflectors are matrices of the form H = I−2vvT , where
v is a vector of unit norm ‖v‖2 = 1. Prove that for any u,w of the same norms,
there exists a Householder reflector such that Hu = w and Hw = u.

(b) [5 marks] What are the eigenvalues and eigenvectors of the Householder re-
flector H = I − 2vvT with ‖v‖2 = 1?

(c) [5 marks] Explain how to use Householder reflectors to form a full QR factori-
sation of A ∈ Rm×n, m > n.

(d) Consider a least-squares problem minx ‖Ax − b‖2, A ∈ Rm×n, m > n, where
rank(A) = n.
(i) [5 marks] Explain how to obtain a solution using a (full or thin) QR fac-

torisation of A.

(ii) [5 marks] Let b0 = Ax0 where x0 ∈ Rn, and A = [Q,Q⊥]

[
R
0

]
be a full

QR factorisation, so that [Q,Q⊥] ∈ Rm×m is orthogonal and R is upper
triangular. Now let b1 = Q⊥c for some vector c ∈ Rm−n.
What is the solution x∗ for minx ‖Ax − (b0 + b1)‖2? And with this x∗,
what is the value of ‖Ax∗ − (b0 + b1)‖2?
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Numerical Solution of Differential Equations
3. Consider the initial-value problem y′(x) = 2[y(x)]1/2, y(0) = b, where b is a non-

negative real number and x ∈ [0,∞), and where y′ denotes the derivative of the
real-valued function y with respect to the independent variable x.

(a) [4 marks] Show that if b > 0 then the initial-value problem has a unique
positive solution.
Show further that if b = 0 then, in addition to the trivial solution y(x) ≡ 0,
the initial-value problem has at least one other nonnegative solution.

(b) (i) [2 marks] Formulate Euler’s explicit and implicit methods for the approx-
imate solution of the initial-value problem y′(x) = 2[y(x)]1/2, y(0) = b,
where b is a nonnegative real number, for x ∈ [0, 1], on the mesh {xn :
xn = nh, n = 0, 1, . . . , N}, h = 1/N , N > 1, with starting value y0 = b.

(ii) [2 marks] Show that if b = 0 then the explicit Euler approximations co-
incide with the values of the trivial solution y(x) ≡ 0 of the initial-value
problem at the mesh points.

(iii) [2 marks] Show further that Euler’s implicit method generates the se-
quence of approximations (yn)Nn=1 defined by

yn+1 =
(
h±

√
h2 + yn

)2
, n = 0, 1, . . . , N − 1. (1)

Hence deduce that if b = 0 and the − sign is chosen in this expression for
all n ∈ {0, 1, . . . , N − 1} then the implicit Euler approximations coincide
with the values of the trivial solution y(x) ≡ 0 of the initial-value problem
at the mesh points.

(iv) [8 marks] Show that if b = 0 and the + sign is chosen in the expression
(1) for all n ∈ {0, 1, . . . , N−1} then Euler’s implicit method approximates
the function y : x ∈ [0, 1] 7→ x2, in the sense that |y(x1)− y1| = 3h2 and

lim
n→∞, h→0

nh→x

|y(x)− yn| = 0.

[Hint: You may find it helpful to show first that yn > x2
n for all n =

0, 1, . . . , N , and hence deduce that(
1− 1

n+ 1

)
|y(xn+1)− yn+1| 6 |y(xn)− yn|+ h|Tn|, n = 0, 1, . . . , N − 1,

where Tn is the consistency error of Euler’s implicit method.]

(c) [7 marks] Let b = 4. Find a positive integer N0 > 1 (as small as possible)
such that the global error of the implicit Euler approximation of the solution
to the initial value problem y′(x) = 2[y(x)]1/2, y(0) = 4, on the interval [0, 1],
with mesh spacing h = 1/N and starting value y0 = 4, is bounded above by
TOL = 10−4 for all N > N0.
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4. Consider the ordinary differential equation y′(x) = f(x, y(x)), where f is a real-
valued continuous function defined for all (x, y) ∈ R2, which, for each x ∈ R satisfies
the Lipschitz condition with respect to y, with a Lipschitz constant that is indepen-
dent of x. Here, y′ denotes the derivative of the real-valued function y with respect
to the independent variable x.

(a) [2 marks] Let x0, y0 ∈ R. State the general form of a linear k-step method for
the numerical solution of the initial-value problem y′(x) = f(x, y(x)), y(x0) =
y0, on the mesh {xn : xn = x0 + nh, n = 0, 1, . . . } of uniform spacing h > 0.

(b) [6 marks] Consider the two-parameter family of implicit linear two-step meth-
ods defined by

yn+2 − ayn+1 =
h

12
(bfn+2 + 8fn+1 − fn) , n = 0, 1, . . . , (2)

where fj = f(xj , yj), and a and b are real numbers. Show that this two-step
method is zero-stable if, and only if, |a| 6 1.

(c) [6 marks] Now suppose that a = 1 in the previous part of the question. Show
that there exists a unique choice of b such that the two-step method (2) is third-
order consistent; show further that for this value of b the two-step method (2)
is third-order convergent.
[If Dahlquist’s Theorem is used, it must be stated carefully.]

(d) [11 marks] Suppose that a = 1 and b is such that the two-step method (2) is
third-order convergent. Show that the stability polynomial π(·, h̄) of the linear
multistep method (2) is then of the form

π(r, h̄) =

(
1− 5h̄

12

)
z2 −

(
1 +

8h̄

12

)
z +

h̄

12
,

where h̄ := hλ and λ is a negative real number.
Find the interval of absolute stability of the two-step method (2) for these
values of a and b using Schur’s criterion.
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5. Consider the initial-boundary-value problem

∂u

∂t
+ u3 =

∂2u

∂x2
, 0 < x < 1, 0 < t 6 T,

u(x, 0) = u0(x), 0 < x < 1,

subject to homogeneous Dirichlet boundary conditions at x = 0 and x = 1, where
T is a fixed positive real number, and u0 is a real-valued continuous function of
x ∈ [0, 1] such that u0(0) = u0(1) = 0.

(a) [5 marks] Show that if a solution to this initial-boundary-value problem exists,
then it must be unique. You may find it helpful to note that (a3−b3)(a−b) > 0
for all a, b ∈ R.

(b) [10 marks] Formulate the implicit Euler scheme for the numerical solution of
this initial-boundary-value problem on a mesh with uniform spacings ∆x =
1/N , N > 2, and ∆t = T/M , M > 1, in the x and t coordinate directions,
respectively.
Show that if a solution to the implicit Euler scheme exists, then it must be
unique.
You may find it helpful to note that a2 + ab+ b2 > 0 for all a, b ∈ R.

(c) [10 marks] Let Umj denote the implicit Euler approximation to u(j∆x,m∆t),
0 6 m 6 M , j = 0, . . . , N , where M > 1 and N > 2. Assuming that the
solution u to the initial-boundary-value problem exists and possesses as many
partial derivatives with respect to x and t as are required by your argument,
and that these partial derivatives are continuous on [0, 1] × [0, T ], show that
there exists a positive constant C, independent of ∆x and ∆t, such that

max
16m6M

max
16j6N−1

|u(j∆x,m∆t)− Umj | 6 C(∆t+ (∆x)2).
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6. (a) [4 marks] Suppose that v is a real-valued function, defined and three times
continuously differentiable on (−∞,∞). Show that for each x ∈ (−∞,∞) and
∆x > 0 there exists a real-number ξ = ξ(x,∆x), contained in the interval
(x−∆x, x+ ∆x), such that

v(x+ ∆x)− v(x−∆x)

2∆x
= v′(x) +

1

6
(∆x)2v′′′(ξ),

where v′ and v′′′ denote the first and third derivative of v with respect to the
independent variable x, respectively.

(b) [7 marks] Let a be a real number and κ a positive real number. Consider the
time-dependent advection-diffusion equation

∂u

∂t
+ a

∂u

∂x
= κ

∂2u

∂x2

on the space-time domain (−∞,∞)×(0, T ], where T > 0, subject to the initial
condition u(x, 0) = e−x

2
.

Denoting by Umj the numerical approximation to u(j∆x,m∆t) for j = 0,±1,±2, . . .
and m = 0, 1, . . . ,M , formulate the explicit Euler finite difference scheme for
the numerical solution of this initial-value problem on a mesh of spacing ∆x > 0
in the x-direction and ∆t = T/M , with M > 1, in the t-direction, so that the
consistency error of the scheme is O(∆t+ (∆x)2).

(c) [14 marks] Let ν = a∆t/∆x and µ = κ∆t/(∆x)2. By representing Umj in

terms of its inverse semidiscrete Fourier transform Ûm(k), k ∈ [−π/∆, π/∆x],
as

Umj =
1

2π

∫ π/∆x

−π/∆x
eıkj∆xÛm(k) dk

and using the discrete version of Parseval’s identity, show that if ν2 6 2µ 6 1
then the explicit Euler finite difference scheme from part (b) of the question
is practically stable.
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