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Numerical Linear Algebra

1. LetA ∈ Rn×n be symmetric positive definite, and let ‖·‖A be theA-norm ‖v‖A =
√
vTAv.

(a) [10 marks] Let AQk = QkTk + qk+1[0, . . . , 0, tk+1,k] be the Lanczos decomposition
after k steps, where Qk = [q1, . . . , qk] ∈ Rn×k, Qk+1 = [q1, . . . , qk+1] ∈ Rn×(k+1)

are orthonormal with q1 = b/‖b‖2 ∈ Rn and Tk ∈ Rk×k is tridiagonal. The CG
(conjugate gradient) algorithm finds an approximate solution x̂ to the linear system
Ax = b in the Krylov subspace x̂ ∈ Kk(A, b) := span([b, Ab,A2b, . . . , Ak−1b]) by
imposing that the residual r = Ax̂− b is orthogonal to Kk(A, b).

(i) Find an expression of x̂ in terms of (a subset of) A,Qk, Qk+1, Tk and b.

(ii) Prove that x̂ minimises the A-norm of the error in Kk(A, b), that is,
‖x− x̂‖A 6 ‖x− y‖A for any vector y ∈ Kk(A, b).

(b) [5 marks] Show that for any vector v ∈ Rn,
√
λmin(A)‖v‖2 6 ‖v‖A 6

√
λmax(A)‖v‖2,

where λmin(A) and λmax(A) denote the smallest and largest eigenvalues of A, re-
spectively.

(c) [5 marks] Use (b) to show that ‖x − x̂‖2 6 C‖x − y‖2 for any y ∈ Kk(A, b), that
is, the CG algorithm minimises the the 2-norm of the error up to a constant C
(which can depend on A but not on k). Determine the value of C.

(d) [5 marks] Suppose that A has just five distinct positive eigenvalues. Show that
the CG algorithm gives the exact solution of Ax = b in five steps.
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2. Let A ∈ Rn×n, and denote by A = UΣV T its SVD, where U, V are orthogonal and
Σ = diag(σ1, . . . , σn) with σ1 > σ2 > · · · > σn > 0. Let ‖A‖2 = σ1 denote the spectral

norm, and ‖A‖F =
√∑

i,j |Aij |2 the Frobenius norm.

(a) [6 marks] Let X,Y ∈ Rn×k where k 6 n, and assume that Y TX is nonsingular.
Define P = X(Y TX)−1Y T .

(i) Show that P is a projection, i.e., P 2 = P .

(ii) Show that ‖P‖2 > 1.

(b) [9 marks] Let Q ∈ Rn×k be orthonormal QTQ = Ik, and [Q Q⊥] ∈ Rn×n be
orthogonal.

(i) Show that ‖QQTA−A‖2 6 ‖A‖2.

(ii) State a necessary and sufficient condition (in terms of Q,U,Σ, V ) for
‖QQTA−A‖2 = ‖A‖2 to hold.

(iii) State a necessary and sufficient condition (in terms of Q,U,Σ, V ) for
‖QQTA−A‖F = ‖A‖F to hold.

(c) [10 marks] Let rank(A) = r, and let A = UrΣrV
T
r be its reduced SVD, where

Ur, Vr ∈ Rn×r and Σ is positive definite.

(i) For an orthonormal Q ∈ Rn×k, state a necessary and sufficient condition in
terms of Q,Ur,Σr, Vr for QQTA = A to hold, and give a lower bound for k.

(ii) Let X ∈ Rn×r and AX = QR be the thin QR factorisation. State a necessary
and sufficient condition in terms of X,Ur,Σr, Vr such that QQTA = A.

(iii) Describe a (randomised) algorithm that computes orthonormal matricesQ, Q̃ ∈
Rn×r such that QQTAQ̃Q̃T = A with probability 1, and hence find a reduced
SVD of A without using Ur,Σr, Vr.
[You may use the fact that a square Gaussian matrix G, with i.i.d entries
Gij ∼ N(0, 1), is nonsingular with probability 1.]
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Continuous Optimisation

3. Consider the following unconstrained problem,

min
x∈Rn

f(x) = bTx+
1

2
xTAx, (1)

where b ∈ Rn and A = (Ai,j), i, j ∈ {1, . . . , n} is an n×n real and diagonal matrix with
positive diagonal entries A1,1 = a1, A2,2 = a2, . . ., An,n = an. Apply a quasi-Newton
Generic Linesearch Method (GLM) to (1), starting from a given approximation B0 to
the Hessian A of f , and generating, on each iteration k > 0, a new approximation Bk+1

to A by updating Bk using xk, xk+1 and the respective gradients of f at these iterates.

(a) [5 marks] At some iteration k > 0, assume that we require Bk+1 to be a diagonal
matrix and that xk+1

i 6= xki for all i ∈ {1, . . . , n}. Is the secant equation sufficient
to determine Bk+1 in this case? Justify your answer.

(b) [7 marks] Without requiring that Bk+1 be diagonal at some iteration k, we require
that xk+1

i 6= xki for all i ∈ {1, . . . , n}, and that Bk = (Bk
i,j), i, j ∈ {1, . . . , n}, is a

diagonal matrix with diagonal entries Bk
1,1 = a1, B

k
2,2 = a2, . . ., B

k
n−1,n−1 = an−1

and Bn,n = β 6= an. Assume also that Bk+1 is computed from Bk by the Symmetric
Rank-One (SR1) formula. Calculate Bk+1.

(c) [6 marks] State a theorem of global convergence for the quasi-Newton GLM ap-
plied to (1), when backtracking-Armijo linesearch is employed on each iteration,
justifying the assumptions that are needed.

(d) [7 marks] In the conditions of the theorem you state in (c), prove that the stepsize
αk generated by the backtracking-Armijo linesearch is bounded away from zero by
a constant that is independent of k. [Hint: Relevant results from the lectures can
be used without proof but must be stated and applied carefully.]
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4. Consider the trust-region subproblem

min
s∈Rn

m(s) = gT s+
1

2
sTHs subject to ‖s‖ 6 ∆ (2)

where n > 1, g ∈ Rn and H is an n× n real symmetric matrix, where ‖ · ‖ denotes the
Euclidean vector norm and ∆ > 0.

(a) [3 marks] State (without proof) the necessary and sufficient optimality conditions
that hold at a global minimizer s∗ of (2).

(b) [5 marks] Calculate the first-order (namely, KKT) and the second-order necessary
optimality conditions that hold at a local minimizer of problem (2).

(c) [5 marks] Compare the local optimality conditions in (b) with the characterization
of the global minimizer in (a). Are there KKT points that are not global minimizers
of problem (2)?

(d) [12 marks] In (2), suppose H is the diagonal matrix

H =


1 0 0 . . . 0 0
0 2 0 . . . 0 0
. . .
0 0 0 . . . n− 1 0
0 0 0 . . . 0 ±n

 and g =


1
0
...
0
α

 , (3)

where ± denotes the sign of the two cases that need to be addressed. Using
the characterization of global minimizers in part (a) or otherwise, find the global
minimizer of (2) when α 6= 0.

Briefly describe when and why the case α = 0 may be difficult.
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5. (a) [13 marks] Consider the optimization problem below that has only one equality
constraint,

min
x∈Rn

f(x) subject to c(x) = 0, (4)

where f : Rn → R and c : Rn → R are continuously differentiable functions.

(i) Write down the quadratic penalty function Φσ(x) associated with (4).

(ii) State the theorem of global convergence for the quadratic penalty method in
the special case of problem (4).

(iii) Assuming that the stated conditions hold, prove that the Lagrange multiplier
estimate yk ∈ R generated at iteration k of the penalty method when applied
to (4) converges to the optimal Lagrange multiplier y∗ of the constraint as
k →∞.

(b) [12 marks] Consider the constrained optimization problem,

min
x∈Rn

x21 + x22 + . . .+ x2n subject to a1x1 + a2x2 + . . .+ anxn = 1, (5)

where for all i ∈ {1, . . . , n}, ai 6= 0 are given constants.

(i) Calculate the (unconstrained) global minimizer(s) x(σ) of the quadratic penalty
function associated to (5), denoted by Φσ(x), for any σ > 0.

(ii) Show that x(σ) converges to the solution x∗ of problem (5), as σ → 0.

(iii) Let ∇2
xxΦσ(x(σ)) be the Hessian matrix of Φσ evaluated at x(σ). Show that

the condition number of ∇2
xxΦσ(x(σ)) grows unboundedly as σ → 0.
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6. (a) [15 marks] Consider the inequality-constrained optimization problem

min
x∈R2

−x1 − 2x2 subject to x1 + x2 6 1, x1 > 0, x2 > 0. (6)

(i) Write down the logarithmic barrier function fµ(x) associated with (6), where
µ > 0 and x is any strictly feasible point of (6). Show that fµ is a convex
function in the domain where it is well-defined.

(ii) Does the central path of global minimizers x(µ) of fµ exist for all values of µ?
Briefly relate your findings to the theorem of local existence of central path in
the lectures.

(b) [10 marks] Consider the inequality-constrained optimization problem,

min
x∈Rn

f(x) subject to c(x) > 0, (7)

where f : Rn → R and c : Rn → Rp are continuously differentiable functions.

Describe the steps of the basic barrier (also called interior point) algorithm applied
to (7). Briefly describe two difficulties that the barrier method encounters and a
way to overcome them.
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