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Part I

A. STATISTICS

� Numbers and percentages in each class.

See Table 1.

Numbers Percentages %
2024 (2023) (2022) (2021) (2020) 2024 (2023) (2022) (2021) (2020)

I 51 (54) (55) (51) (73) 38.93 (36.24) (41.04) (39.84) (46.5)
II.1 50 (72) (53) (58) (66) 38.17 (48.32) (39.55) (45.31) (42.04)
II.2 24 (18) (24) (18) (13) 18.32 (12.08) (17.91) (14.06) (8.28)
III - (-) (-) (-) (-) - (-) (-) (-) (-)
P - (-) (-) (-) (-) - (-) (-) (-) (-)
F - (-) (-) (-) (-) - (-) (-) (-) (-)

Total 130 (149) (134) (157) (151) 100 (100) (100) (100) (100)

Table 1: Numbers and percentages in each class

Table data with less than 5 students has been removed so that individuals cannot be
identified.

� Numbers of vivas and effects of vivas on classes of result.

As in previous years there were no vivas conducted for the FHS of Mathematics Part
B.



� Marking of scripts.

BEE Extended Essays, BSP Mathematical Modelling and Numerical Computation
Structured Projects and coursework submitted for the History of Mathematics course
were double marked.

The remaining scripts were all single marked according to a preagreed marking scheme
which was strictly adhered to. For details of the extensive checking process, see Part
II, Section A.

� Numbers taking each paper.

See Table 5.

B. Changes in examining methods and procedures currently under discus-
sion or contemplated for the future

None.

C. Notice of examination conventions for candidates

The Notice to Candidates Offering Coursework was issued on the 3 March 2023. The first
Notice to Candidates was issued on 15 March 2023 and the second notice on 28 April 2023.

All notices and the examination conventions for 2023 are online at
Examination conventions.

Part II

A. General Comments on the Examination

The examiners would like to record their heartfelt thanks to all those who helped in the
preparation, administering, and assessing of this year’s examinations. The chair would like
to thank Rosalind Mitchell, Alice Jones, Charlotte Turner-Smith, Waldemar Schlackow,
Matt Brechin and the rest of the academic administration team for their support of the
Part B examinations.

In addition the internal examiners would like to express their gratitude to Professor John
Hunton and Dr Ed Brambley for carrying out their duties as external examiners in such
a constructive and supportive way during the year and for their thoughtful contributions
during the final examiners’ meetings.

For the most part, the examination process went smoothly this year. However, some issues
did arise and these can and should be addressed during the 2024-25 cycle. These were
brought to teaching committee to be actioned.

https://www.maths.ox.ac.uk/system/files/attachments/2023-24%20Part%20B%20Mathematics%20Examination%20Conventions_0.pdf


Standard of performance

The standard of performance was broadly in line with recent years. In setting the USMs,
we took note of

� the Examiners’ Report on the 2023 Part B examination, and in particular recommen-
dations made by last year’s examiners, and the Examiners’ Report on the 2023 Part
A examination, in which the 2024 Part B cohort were awarded their USMs for Part
A;

� the guidelines provided by the Mathematics Teaching Committee, including its rec-
ommendations on the proportion of candidates that might be expected in each class.

Setting and checking of papers and marks processing

The internal examiners initially divided between them responsibility for the units of assess-
ment (that is, the exam papers and projects).

Following established practice, the questions for each paper were initially set by the course
lecturer, with the lecturer of a related course involved as checker before the first draft of
the questions was presented to the examiners. The course lecturers also acted as assessors,
marking the questions on their course(s).

Requests to course lecturers to act as assessors, and to act as checker of the questions of
fellow lecturers, were sent out early in Michaelmas Term, with instructions and guidance
on the setting and checking process, including a web link to the Examination Conventions.

The internal examiners met at the beginning of Hilary Term to consider those draft papers
on Michaelmas Term courses, and changes and corrections were agreed with the lecturers
where necessary. Where necessary, corrections and any proposed changes were agreed with
the setters. The revised draft papers were then sent to the external examiners. Feedback
from external examiners was given to examiners and to the relevant assessor for response.
The internal examiners at their meeting in mid Hilary Term considered the external ex-
aminers’ comments and the assessor responses, making further changes as necessary before
finalising the questions. The process was repeated for the Hilary Term courses, but neces-
sarily with a much tighter schedule. Before questions were submitted to the Examination
Schools, setters were required to sign off a camera-ready copy of their questions.

Exams were held in-person in the Exams Schools. Papers were collected by the Academic
Administration team and made available to assessors approximately half a day following
the examination. Assessors were made aware of the marking deadlines ahead of time and
all scripts and completed mark sheets were returned, if not by the agreed due dates, then
at least in time for the script-checking process.

A team of graduate checkers, under the supervision of Alice Jones and Charlotte Turner-
Smith, sorted all the marked scripts for each paper of this examination, cross checking
against the mark scheme to spot any unmarked questions or parts of questions, addition
errors or incorrectly recorded marks. Also sub-totals for each part were checked against the
mark scheme, noting correct addition. In this way a number of errors were corrected,and
each change was signed by one of the examiners who were present throughout the process.



Throughout the examination process, candidates were treated anonymously, identified only
by a randomly-assigned candidate number.

Timetable

Examinations began on Tuesday 21 May and ended on Friday 14 June.

Consultation with assessors on written papers

Assessors were asked to submit suggested ranges for which raw marks should map to USMs
of 60 and 70 along with their mark-sheets, and almost all did so. In most cases these were
in line with the assignments given by the assessors.

Determination of University Standardised Marks

The Mathematics Teaching Committee issued each examination board with broad guidelines
on the proportion of candidates that might be expected in each class. This was based on
the average in each class over the last four years, together with recent historic data for Part
B.

We followed the Department’s established practice in determining the University standard-
ised marks (USMs) reported to candidates. Papers for which USMs are directly assigned
by the markers or provided by another board of examiners are excluded from consideration.
Calibration uses data on the Part A performances of candidates in Mathematics and Math-
ematics & Statistics (Mathematics & Computer Science and Mathematics & Philosophy
students are excluded at this stage). Working with the data for this population, numbers
N1, N2 and N3 are first computed for each paper: N1, N2 and N3 are, respectively, the
number of candidates taking the paper who achieved in Part A average USMs in the ranges
[69.5, 100], [59.5, 69.5) and [0, 59.5).

The algorithm converts raw marks to USMs for each paper separately. For each paper, the
algorithm sets up a map R → U (R = raw, U = USM) which is piecewise linear. The
graph of the map consists of four line segments: by default these join the points (100, 100),
P1 = (C1, 72), P2 = (C2, 57), P3 = (C3, 37), and (0, 0). The values of C1 and C2 are set by
the requirement that the number of I and II.1 candidates in Part A, as given by N1 and
N2, is the same as the I and II.1 number of USMs achieved on the paper. The value of
C3 is set by the requirement that P2P3 continued would intersect the U axis at U0 = 10.
Here the default choice of corners is given by U -values of 72, 57 and 37 to avoid distorting
nonlinearity at the class borderlines.

The results of the algorithm with the default settings of the parameters provide the starting
point for the determination of USMs, and the Examiners may then adjust them to take
account of consultations with assessors (see above) and their own judgement. The examiners
have scope to make changes, either globally by changing certain parameters, or on individual
papers usually by adjusting the position of the corner points P1, P2, P3 by hand, so as to
alter the map raw→ USM, to remedy any perceived unfairness introduced by the algorithm.
They also have the option to introduce additional corners. For a well-set paper taken by a
large number of candidates, the algorithm yields a piecewise linear map which is fairly close



to linear, usually with somewhat steeper first and last segments. If the paper is too easy or
too difficult, or is taken by only a few candidates, then the algorithm can yield anomalous
results—very steep first or last sections, for instance, so that a small difference in raw
mark can lead to a relatively large difference in USMs. For papers with small numbers of
candidates, moderation may be carried out by hand rather than by applying the algorithm.

This year a preliminary meeting of the internal examiners was held in advance of the final
exam board meeting to compare the default settings produced by the algorithm alongside
the reports from assessors. It was agreed that only a selection of scaling maps would be
further reviewed at the final exam board, and that external examiners would be given
an opportunity to review all maps prior to the meeting. Adjustments were made to the
default settings as appropriate, paying particular attention to borderlines and to raw marks
which were either very high or very low. Where the examiners were in doubt as to the
most appropriate scaling, the preliminary scalings were held over to the final exam board
meeting, where the factors considered by those in the preliminary meeting were reviewed
and weighed before a final decision was made.

Table 2 on page gives the final positions of the corners of the piecewise linear maps used
to determine USMs.

In accordance with the agreement between the Mathematics Department and the Computer
Science Department, the final USM maps were passed to the examiners in Mathematics &
Computer Science. USM marks for Mathematics papers of candidates in Mathematics &
Philosophy were calculated using the same final maps and passed to the examiners for that
School.

Comments on use of Part A marks to set scaling boundaries

None.



Table 2: Position of corners of the piecewise linear maps

Paper P1 P2 P3 P4 Additional N1 N2 N3

Corners

B1.1 15.4;39 19;50 26.8;59 45;72 50;100 7 19 14
B1.2 13.33;39 23.2;59 44;72 50;100 7 22 15
B2.1 8.16;39 14.2;55 38.2;74 50;100 15 12 3
B2.2 6.43;32 13;52 17;60 23;70 50;100 12 9 5
B2.3 11.89;39 21;62 29;72 50;100 8 4 3
B3.1 10.63;39 18;52 40;72 50;100 19 16 10
B3.2 9.54;39 19;52 40;72 50;100 10 14 2
B3.3 14.02;39 24.4;59 42.4;74 50;100 10 12 2
B3.4 12.35;39 17;52 26;60 43;72 50;100 13 15 7
B3.5 10.4;39 16;50 22;60 37.6;74 50;100 16 21 7
B4.1 6.15;39 11;50 17;62 26;72 50;100 17 24 5
B4.2 6.95;39 19;62 31;72 50;100 12 17 3
B4.3 15;50 25;62 35;72 50;100 5 7 1
B4.4 10.05;39 22;60 33;72 50;100 5 5 0
B5.1 21;52 28;62 41;72 50;100 8 15 12
B5.2 14;42 25;62 37;72 50;100 15 24 15
B5.3 12.01;39 20.9;59 31.4;74 50;100 6 8 5
B5.4 9;32 20;50 29;62 36;72 50;100 5 8 5
B5.5 9;32 17;50 19;52 24;60 36;74 50;100 10 22 12
B5.6 12.24;39 21.3;59 35;72 50;100 9 18 8
B6.1 16;42 21;52 31;62 37;72 50;100 4 3 2
B6.2 11;35 19.1;59 38.6;74 50,100 7 12 6
B6.3 15;45 19;52 25;62 38;72 50;100 3 4 7
B7.1 14.94;39 28;62 41;72 50;100 6 9 4
B7.2 11;42 19;62 33;72 50;100 4 11 4
B7.3 16;62 32;72 50;100 4 6 2
B8.1 9;42 12;52 35.2;74 50;100 24 34 6
B8.2 10.23;39 15;52 21;62 38;72 50;100 16 19 3
B8.3 20;49 28;50 48;70 50;100 14 30 11
B8.4 13.61;39 17;50 23.7;59 40.2;74 50;100 7 26 14
B8.5 11;32 18;52 24.7;59 41.2;74 50;100 6 24 13
BSP 2000;100 1 4 12
SB1 20.8;39 39;62 56;72 66;100 7 27 10
SB1 34,100 7 27 10
SB2.1 13;40 24;62 39;72 50;100 12 32 12
SB2.2 11.95;39 20.8;59 39;72 50;100 15 33 13
SB3.1 9.25;39 13;50 20;62 33;72 50;100 15 38 16



B. Equality and Diversity issues and breakdown of the results by gender

Table 3: Breakdown of results by gender

Class Number

2024 2023 2022
Female Male Total Female Male Total Female Male Total

I 7 44 51 5 49 54 5 50 55
II.1 14 36 50 23 49 72 19 34 53
II.2 9 15 24 7 11 18 15 9 24
III - - - - - - - - -
P - - - - - - - - -
F - - - - - - - - -

Total 34 97 131 37 112 149 40 93 134

Class Percentage

2024 2023 2022
Female Male Total Female Male Total Female Male Total

I 20.59 45.36 38.93 13.51 43.75 36.24 12.5 53.19 41.04
II.1 41.18 37.11 38.16 62.16 43.75 48.32 47.5 36.17 39.56
II.2 26.47 15.46 18.32 18.92 9.82 12.08 37.5 9.57 18.32
III - - - - - - - - -
P - - - - - - - - -
F - - - - - - - - -

Total 100 100 100 100 100 100 100 100 100



Table 4: Rank and percentage of candidates with this or greater overall USMs

Av USM Rank Candidates with %
this USM and above

92 1 1 0.76
91 2 2 1.53
88 3 4 3.05
87 5 5 3.82
85 6 6 4.58
84 7 8 6.11
84 7 8 6.11
83 9 9 6.87
81 10 10 7.63
80 11 16 12.21
79 17 21 16.03
78 22 24 18.32
77 25 26 19.85
76 27 28 21.37
75 29 31 23.66
74 32 32 24.43
73 33 37 28.24
72 38 40 30.53
71 41 42 32.06
70 43 49 37.4
69 50 57 43.51
68 58 66 50.38
67 67 69 52.67
66 70 78 59.54
65 79 85 64.89
64 86 87 66.41
63 88 88 67.18
62 89 93 70.99
61 94 101 77.1
59 102 106 80.92
58 107 107 81.68
57 108 108 82.44
56 109 111 84.73
55 112 114 87.02
54 115 118 90.08
53 119 120 91.6
52 121 121 92.37
51 122 123 93.89
50 124 125 95.42
48 126 126 96.18
46 127 128 97.71
40 129 130 99.24
32 131 131 100



C. Detailed numbers on candidates’ performance in each part of the ex-
amination

The number of candidates taking each paper is shown in Table 5.

Table 5: Numbers taking each paper

Paper Number of Avg StDev Avg StDev
Candidates RAW RAW USM USM

B1.1 40 33.78 10.82 62.98 14.37
B1.2 43 32.44 10.43 65.09 13.14
B2.1 29 34.17 10.72 74 13.03
B2.2 26 20.19 11.66 61.35 18.56
B2.3 14 25.07 12.68 62.36 25.48
B3.1 44 33.61 11.05 69.43 15.62
B3.2 25 36.04 7.26 70.16 9.7
B3.3 23 37.48 7.96 72.65 11.96
B3.4 34 36.18 10.82 71.47 15.55
B3.5 42 31.55 8.49 69.57 10.62
B4.1 45 24.16 10.06 69.2 13.02
B4.2 32 26.75 8.66 68.91 10.23
B4.3 13 30 9.89 67 14.74
B4.4 10 32.2 7.91 72.9 10.66
B5.1 27 31.7 10.03 64.74 15.57
B5.2 47 30.98 10.35 67.32 15.59
B5.3 20 27.75 7.33 68.45 10.79
B5.4 19 29.63 11.86 63.21 20.3
B5.5 33 28.21 9.08 64.79 13.75
B5.6 35 27.6 8.26 65.4 11.18
B6.1 10 30.3 13.01 62.4 22.52
B6.2 19 29 9.59 66.05 12.62
B6.3 15 25.33 12.1 57.27 19.87
B7.1 19 33.74 9.12 66.37 14.18
B7.2 20 24.35 9.62 62.15 17.43
B7.3 13 24.92 11.06 65.77 16.47
B8.1 55 27.33 11.61 66.22 16.89
B8.2 33 32.3 10.67 69.85 15.29
B8.3 34 43.68 6.53 70.56 13.69
B8.4 27 27.78 9.13 61.3 12.99
B8.5 35 30.63 8.59 64.03 11.27
BSP 11 1332.18 275.89 68.36 13.03
SB1 6 40.17 17.36 75 4.1
SB2.1 18 30.17 10.35 64.33 13.03
SB2.2 24 34 9.87 70.5 13.01
SB3.1 43 26.65 8.55 66.16 12.5
BO1.1 12 - - 67.92 15.85
BO1.1X 12 - - 67.92 10.36
BEE 10 - - 81.1 10.31



Individual question statistics for Mathematics candidates are shown below for those papers
offered by no fewer than six candidates.

Paper B1.1: Logic

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.55 16.6 7.13 35 3
Q2 15.76 16.06 5.72 32 1
Q3 18.07 19.69 5.46 13 2

Paper B1.2: Set Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.23 16.24 5.15 34 1
Q2 16.5 17.41 6.83 34 2
Q3 12.24 13.94 7.35 18 3

Paper B2.1: Introduction to Representation Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18.52 18.52 6.5 27 0
Q2 15.79 15.79 6.16 24 0
Q3 16 16 6.03 7 0

Paper B2.2: Commutative Algebra

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 12.2 12.2 7.19 20 0
Q2 8.79 9.46 5.51 13 1
Q3 7.71 8.32 6.27 19 2

Paper B2.3: Lie Algebras

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 9.18 9.18 5.83 11 0
Q2 13.2 13.2 5.69 10 0
Q3 16.86 16.86 8.34 7 0

Paper B3.1: Galois Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 14.87 15.5 6.96 22 1
Q2 16.97 16.97 5.63 31 0
Q3 17.49 17.49 6.19 35 0



Paper B3.2: Geometry of Surfaces

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.43 17.43 4.07 21 0
Q2 16.9 17.47 4.87 19 1
Q3 18.64 20.3 7.07 10 1

Paper B3.3: Algebraic Curves

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.32 17.32 4.15 19 0
Q2 18.86 18.86 5.54 21 0
Q3 20.29 22.83 6.99 6 1

Paper B3.4: Algebraic Number Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 11.63 15.55 8.1 11 5
Q2 17.67 17.67 5.68 24 0
Q3 19.24 19.24 6.13 33 0

Paper B3.5: Topology and Groups

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 14.91 14.88 5.04 33 1
Q2 15.7 16.06 4.9 32 1
Q3 15.76 16.84 6.05 19 2

Paper B4.1: Functional Analysis I

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 11.48 12.08 5.63 25 2
Q2 12.97 13.21 6.17 28 1
Q3 10.97 11.22 5.55 37 1

Paper B4.2: Functional Analysis II

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 11.62 11.62 4.27 21 0
Q2 13 13 4.41 26 0
Q3 13.86 16.12 6.26 17 4



Paper B4.3: Distribution Theory and Fourier Analysis: An Introduction

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.3 15.3 5.23 10 0
Q2 16.1 16.1 5.86 10 0
Q3 12.67 12.67 5.32 6 0

Paper B4.4: Fourier Analysis and PDEs

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.8 17.8 2.39 10 0
Q2 7 7 0 1 0
Q3 15.22 15.22 5.7 9 0

Paper B5.1: Stochastic Modelling and Biological Processes

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.45 16.45 4.84 22 0
Q2 15 15 8.8 12 0
Q3 14.95 15.7 6.44 20 1

Paper B5.2: Applied PDEs

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.03 15.83 6.53 29 2
Q2 16.16 16.43 6.06 42 1
Q3 12.73 13.35 5.55 23 3

Paper B5.3: Viscous Flow

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 12.94 12.94 5.08 18 0
Q2 15.47 15.47 3.29 19 0
Q3 9.33 9.33 2.08 3 0

Paper B5.4: Waves and Compressible Flow

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 12.92 12.92 7.89 13 0
Q2 16.65 16.65 5.2 17 0
Q3 14 14 5.83 8 0



Paper B5.5: Further Mathematical Biology

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.45 15.45 6.73 11 0
Q2 14.88 14.88 4.54 32 0
Q3 11.64 12.39 5.79 23 2

Paper B5.6: Nonlinear Systems

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.08 15.32 4.92 25 1
Q2 12.42 12.65 4.46 23 1
Q3 11.59 13.27 5.87 22 5

Paper B6.1: Numerical Solution of Differential Equations I

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18.6 18.6 8.38 5 0
Q2 13.63 13.63 5.73 8 0
Q3 14.43 14.43 7.11 7 0

Paper B6.2: Numerical Solution of Differential Equations II

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 11.78 12.29 6.6 17 1
Q2 16.18 16.18 4.2 17 0
Q3 13.6 16.75 7.2 4 1

Paper B6.3: Integer Programming

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 13 14.5 7.86 8 1
Q2 13 13.86 6.52 14 1
Q3 8.75 8.75 7.03 8 0

Paper B7.1: Classical Mechanics

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 12.89 12.89 4.62 9 0
Q2 18.4 19.64 6.65 14 1
Q3 15.75 16.67 6.08 15 1



Paper B7.2: Electromagnetism

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 12.53 12.53 5.41 19 0
Q2 9.55 9.55 4.59 11 0
Q3 12.42 14.4 6.99 10 2

Paper B7.3: Further Quantum Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 12.55 12.55 6.11 11 0
Q2 12.82 13.5 7.01 10 1
Q3 10.2 10.2 2.17 5 0

Paper B8.1: Martingales through Measure Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 12.56 15.49 8.26 43 12
Q2 12.06 13 7.94 28 3
Q3 12.78 12.78 5.5 37 0

Paper B8.2: Continuous Martingales and Stochastic Calculus

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.21 15.21 5.79 33 0
Q2 16.25 16.25 3.01 20 0
Q3 18.38 18.38 8.08 13 0

Paper B8.3: Mathematical Models of Financial Derivatives

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 21.37 22.28 4.74 25 2
Q2 23.38 23.35 3.35 23 1
Q3 17 19.55 7.59 20 8

Paper B8.4: Communication Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 14.63 14.63 5.58 27 0
Q2 9.22 12.67 6.06 6 3
Q3 13.29 13.29 4.93 21 0



Paper B8.5: Graph Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 14.63 14.63 3.3 30 0
Q2 14.03 14.85 6.38 27 2
Q3 17.85 17.85 5.27 13 0

Paper SB1.1/1.2: Applied Statistics/Computational Statistics

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 19 19 3.46 3 0
Q2 18 18 2.65 3 0
Q3 17.5 17.5 0.71 2 0
Q4 20 20 0 1 0
PR 25 25 4.36 3 0

Paper SB2.1: Foundations of Statistical Inference

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.06 16.06 5.16 18 0
Q2 13.94 14.67 6.93 15 1
Q3 7.4 11.33 7.16 3 2

Paper SB2.2: Statistical Machine Learning

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18.25 18.25 5.6 16 0
Q2 17.88 18.75 6.02 16 1
Q3 13.65 14 4.62 16 1

Paper SB3.1: Applied Probability

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 11.31 11.31 4.02 29 0
Q2 13.08 13.36 4.95 36 1
Q3 16.05 16.05 4.95 21 0



Assessors’ comments on sections and on individual questions

The comments which follow were submitted by the assessors, and have been reproduced with
only minimal editing. The examiners have not included assessors’ statements suggesting
where possible borderlines might lie; they did take note of this guidance when determining
the USM maps. Some statistical data which can be found in Section C above has also been
removed.

B1.1: Logic

Question 1: The definition of a proof in the system inadvertantly omitted the case of
an assumption. Some followed the definition given, while most used the correct definition;
both were allowed. One student successfully exploited the error to give a trivial proof of
(b). Parts (a), (c), and (d) posed few serious problems. A fair few struggled with (b), with
some attempting to induct on formula complexity. Part (f) was generally easy for those
who’d managed (e), which was most. This question lacked a truly challenging part, and
many got a perfect score.

Question 2: Some did not know how to get started with (a), while those who did gave good
solutions. Part (b) was fine. In (c), many just claimed the existence of a counterexample
structure rather than exhibiting one. Parts (d) and (e) were close to bookwork and were done
well, though some failed to argue that what they constructed in (e) was consistent. Most
got the idea for (f) of considering universal quantifiers, but many then argued informally
and only a few gave an actual proof. Part (g) was done quite well.

Question 3: f was referred to on the exam as a predicate symbol, while it could of course
only be a function symbol; almost all corrected the error. Parts (a) and (b) were almost
always well done. Part (c) generated quite a few confused solutions, and quite a few proved
compactness via completeness rather than appealing to (b), but generally it was done well.
Part (d) was straightforward, but many wrote long-winded explanations. Most had the right
idea for (e), but the solutions varied in completeness, and quite a few tried an induction
applying only to sentences rather than arbitrary formulas. In (f), many neglected to give
an infinite model, and only a few successfully proved countable categoricity – though most
correctly argued that this would suffice.

B1.2: Set Theory

Question 1 (a) Mostly fine.

(b) Surprisingly many failed to write a correct formula for (i). Parts (ii) and (iv) were
mostly well done. Part (iii) stumped some, and many who answered it correctly used an
overcomplicated class function in the recursion rather than just taking power set. It seems
that by the time it got to (iii) and (iv), many had ceased to pay careful attention to the
requirement to observe uses of the axioms, and most failed to note the use of Infinity in
(iii) and of Comprehension/Foundation in (iv).

(c) Most answered (i) correctly, but quite a few tried to define the subsets of size n using a
formula depending on n then “take the union”. Parts (ii) and (iii) were exercises in formal-
isation which were rarely done well as such; many gave more or less informal constructions



and arguments rather than explaining how to apply the recursion theorem and giving a
corresponding induction. A creative solution seen twice was to take the cardinality of the
disjoint union.

Question 2 (a) In (i), some seemed to ignore the “precisely” in the question and showed
only one direction. In (ii) and (iii), a common mistake was to cite totality of the ε-order from
lectures, ignoring the prescription to give proofs “directly from the relevant definitions”. (b)
Quite standard and generally very well done. In (ii), a fair number noticed the solution
32 = 1 + 23 in finite ordinals – the question should have required α and β to be infinite.
(c) Most could answer (i) fairly well. A surprisingly common mistake in (ii) was to claim
that if β < ε =

⋃
nεω f(n) then β = f(n)for some n. For (iii), most could construct a new

element following (i), but many took a base smaller than ε or failed to justify why the result
is not ε. A few thought to give ω1 as an example.

Question 3 (a) In (i), many ignored or didn’t properly address showing that ℵ is a cardinal.
Part (ii) was mostly bookwork. The direction (WO) ⇒ (AC) was mostly fine. Many
reproduced the argument for the converse verbatim from notes, but then the deduction
that α < ℵ(X) was frequently incomplete; only a few successfully worked this into the
proof as intended.

(b) This was mostly done well, though only a few took appropriate care over 0 in (ii).

(c) Proving this from (AC) was mostly done well, though there were some overcomplicated
proofs using ℵ∗. The converse stumped many, but most who had the idea of considering a
surjection ℵ∗(X)→ X could conclude from there.

B2.1 Introduction to Representation Theory

Question 1 gives an alternative proof of the fact that the character table of a finite group
is square using the Row Orthogonality Theorem. It was the most popular question on the
2024 B2.1 exam, and was attempted by everyone with perhaps one exception. It was also
done very well by most people. Several candidates didn’t realise that one cannot use the
“standard result” that the irreducible characters form a basis for the space of class functions
in (c) as this would make the question trivial; thus they did not earn many marks in part (c).
Instead they should have used Q1(b) together with an application of Maschke’s Theorem
to the regular representation of G on CG.

Question 2 was also very popular, seeing that it consisted nearly entirely of ‘seen’ material.
However it was also quite tricky and only very few people got marks over 20/25 for this
question. Part (a) was done very well; many people lost one or two marks in part (b) for
failing to explain why |λ1 + · · ·+λn| = n for complex numbers λ1, · · · , λn with |λ1| = · · · =
|λn| implies that they are all equal. The majority of the correct solutions for part (c) again
used an application of Maschke’s Theorem to the regular representation of G on CG: it is
also possible to deduce it from the Column Orthogonality Theorem. Although part (d) was
entirely bookwork, it was not done well at all.

Question 3 was the least popular question, with less than ten attempts overall. Most
people really struggled with it, but a couple of candidates did manage to get through to
the end.



B2.2: Commutative Algebra

Question 1 Part (e) was the most difficult part of this question. This required remembering
that a finitely generated RS-algebra T has (by definition) the property that there is a
surjection of RS-algebras φ : RS [x1, . . . , xd] → T for some d ≥ 0. If I := ker(φ), the one
can define

U := R[x1, . . . , xd]/(I ∩R[x1, . . . , xd]).

If T is a domain then I is prime, and then so is I ∩R[x1, . . . , xd], implying that U is then a
domain if T is. An equivalent approach is to define U as the R-subalgebra of T generated
by a finite number of generators of T as a RS-algebra.

Question 2 Part (c) (i) was the most difficult part of this question. One defines Qn(y) =
P ((x − yn) + yn, y) and one has to verify that the polynomial P (u + yn, y) viewed as a
polynomial in y with coefficients in k[u], has a constant dominant term for n sufficiently
large. This follows from a short computation. Many students also had difficulties with Part
(d). Here the argument is that if one had a flag

p0 ) p1 ) p2 ) (0)

of prime ideals in k[x, y], then one could choose a non zero polynomial P (x, y) in p2, which
would lead to the lower bound dim(k[x, y]/(P (x, y))) ≥ 2. This however contradicts (c) (ii),
because by (c) (ii) we have

dim(k[x, y]/(P (x, y))) ≤ dim(Rn) = 1,

since integral extensions preserve dimension.

Question 3 The most difficult part of this question seems to have been Part (d). Here the
argument is that a subring T of Q must be of the form ZS , where S ⊆ Z is a multiplicative
set. To see this, note that if a/b ∈ T , where a and b are coprime, then there are n,m ∈ Z
such that na + mb = 1. Hence n(a/b) + m = 1/b ∈ T . Thus T must be the ring obtained
by localising Z at the denominators of all the elements of T . This implies that T is a PID,
because by standard properties of localisations, all the ideals I of T are generated in T by
I ∩ Z, and I ∩ Z is principal since Z is a PID. Hence T is a UFD, and hence integrally
closed.

B2.3: Lie Algebras

Question 1 This question was attempted by the majority of candidates. Part a) was an-
swered well, though the question of which nilpotent Lie algebras possess faithful semisimple
representations was poorly addressed. In part b) showing that the semisimplicity of V ⊗W
implies that of V and W was successfully done by only a small number of candidates though
the converse was established by most. In part c) many candidates did not see how part b)
was relevant.

Question 2 This was the most popular question, with almost all candidates attempting
it. Answers to part a) were overall good, though some candidates failed to see why finite-
dimensionality was necessary to their argument. Most candidates made substantial progress
in part b) in that they applied the hypothesis to the adjoint representation, and correctly
deduced that g was the direct sum of a semisimple Lie algebra and an abelian one (or



something close to this). Deducing from this that g is indeed semisimple requires using the
hypothesis in a different way, and fewer candidates saw how to do this.

Question 3 This question was slightly less popular than the other two, but most candidates
who attempted it achieved good marks on it. Parts a) and b) were well-answered, with parts
c) and d) causing more difficulties. A number of candidates used the correct strategy in part
c) but fell foul of calculation errors, and a number of candidates who correctly answered
c) did not seem to appreciate how to use it in answering part d). Many candidates, in
answering part d), computed a number of coroots in h, and while the coroots can be used
in answering that part, no such calculation was necessary if one had answered the previous
parts of the question.

B3.1: Galois Theory

Question 1 This was the least popular question. Part (a) was purely bookwork, so it
was disappointing to see more than half of the students struggle so much with it. The
reverse inclusion in part (b) caught out many candidates, despite being a straightforward
application of the main theorem of Galois Theory. It was pleasing to see a variety of
correct solutions for part (c): one used the characterisation given in part (a) of the question
for (i), another one used the Primitive Element Theorem, but only one or two persons
found the intended solution that uses part (b) to identify N := Gal(K/M) as the largest
normal subgroup of G := Gal(K/F ) contained in H := Gal(K/L) and then considers the
permutation action of G on G/H with kernel N to conclude.

Question 2 was a popular question, and mostly done well. Several people lost marks in
part (b) for not explaining how to use the fact that the cyclotomic field extension is Galois.
A significant number of candidates proposed to use α = ζ + ζ4 + ζ7 in part (d). Whilst
this orbit sum is indeed invariant by the correct Galois automorphism, unfortunately it
evaluates to zero and thus does not generate a quadratic extension of Q. Part (e) was done
well by most people who did well in part (d).

Question 3 was the most popular question, and was done very well overall. For part (c),
several candidates found interesting counterexamples to (b)(i)⇒(ii), such as Fpp/Fp for a
general prime p, and Q(cos(2π/7)) for p = 3. The simplest counterexample to (b)(ii)⇒(i)

was Q(e
2πi
3 ) with p = 3.

B3.2: Geometry of Surfaces

Question 1 : A popular question, largely well done. In (c) most candidates recognized
that a regular octagon, with internal angles of π/4, was needed, but few explained (via a
continuity argument) why such an appropriately sized octagon existed. Few achieved full
marks for (d). Many discounted the possibility of a simple, smooth closed geodesic bounding
a region homeomorphic to a disc and received partial credit for this. In fact, such a geodesic
does exist which splits the surface into two regions with zero Euler characteristic. Given
a regular hyperbolic octagon, centred on the origin in D, then any diametric arc between
two vertices of the octagon is such a geodesic. It remains to show the ends of the arc meet
smoothly, which can be done with the Gauss-Bonnet theorem or by considering how the
octagon’s edges meet at a single vertex.



Question 2 : This question was done well, with many high marks and one perfect mark
achieved. (b)(ii) can be done by adding a meridian to S or correctly using its Euler char-
acteristic of zero. Mistakes at this part either resulted from using the wrong Euler charac-
teristic or applying the global Gauss-Bonnet theorem despite S not being a closed surface.
Another common error was to calculate

∫∫
KdA with dA = dudv rather than the correct

dA =
√
EG− F 2 dudv.

There was an error in 2(c)(ii), which was more evident in the solution than in the question.
The solution had the answer of f(v) =

√
1 + v2 rather than the correct answer of f(v) =

1 + v2. This unfortunately meant that the hint was not helpful, and in fact the surface S
can no longer be isometrically embedded in R3 as X, at least not as far as v = 1, but the
first fundamental forms can still be made to agree which many candidates did successfully,
gaining full marks for this part. The later parts were independent of this error.

(d) made use of the Theorema Egregium, which demonstrates here that any isometry must
fix v. Consequently an isometry of S translates u and/or reflects in u.

Question 3 : A relatively unpopular question, but one that was done exceptionally well.
Occasionally marks were lost in (c)(iii), explaining how a local co-ordinate could be assigned
to the point at infinity.

B3.3 Algebraic Curves

Question 1 For (b), I expected students to reproduce the Gram–Schmidt type proof in
the lectures on diagonalizing quadratic forms, in the special case of dimension 3. But most
students either gave an ad hoc argument, with varying success, or quoted the result I wanted
them to prove, for which I tended to give half marks.

Part (e), and to a lesser extent (d), were found hard. In (d) I expected the answer that
π(p) lies in C∗ ∩ L iff [r, s, t] lies in TpC. Then in (e) I expected students to say that

degC∗ = degC∗ · degL = #{C∗ ∩ L} = #{p ∈ C : [r, s, t] ∈ TpC}
= #

(
C ∩ {[a, b, c] ∈ CP2 : rPx(a, b, c) + sPy(a, b, c) + tPz(a, b, c) = 0}

)
= d(d− 1),

using Bézout and all intersection multiplicities 1. Only a few saw this.

Question 2 Quite a lot of good answers. For full marks in the bookwork in (a), ideally
I wanted mention that C[x, y, z] is a UFD, so factorization P = Q1 · · ·Qm in C[x, y, z] is
unique up to order and multiplication by units, but multiplying by units doesn’t change the
corresponding curves D1, . . . , Dm. Many people did not mention units.

Question 3 Fewer than a third of students answered this question, maybe because they
find the Riemann–Roch material difficult, and (c) looked scary. But nearly everyone who
made a serious attempt scored very highly. For those who knew the bookwork, this was a
better bet than question 1.



B3.4: Algebraic Number Theory

Question 1 Questions similar to this one have been asked before. The early parts were
done fairly well though a lot (perhaps even the majority) of candidates made a calculational
error in part (b).

Many candidates asserted without proper proof that we do not have Nai = 1 in (f).

A good number of candidates got the correct argument in (g).

Question 2 Part (a) is a standard and easy class group calculation which, as expected,
most candidates did well. Quite a few did not explicitly rule out the possibility that the
prime ideal dividing 2 is principal.

The rest of the question is about a simple example of a genus character (though this term
was not used in the question) which, so far as I know, is a new type of question for this
course. It seemed to work quite well, with a good spread of marks.

Question 3 This was a standard type of question and similar questions featured in lectures,
and have also been seen on past exams, though the specific field Q(

√
−46) does not seem

to have come up before.

(a) This kind of class group computation is very standard and features every year. Somewhat
unusually, the Minkowski constant was not given to the candidate - however, they could
have got it from Q2 (a). A small handful of candidates did write down the wrong Minkowski
constant, which caused them serious issues.

(b) was generally found very straightforward.

(c) is a standard type of question and many candidates were able to proceed up to the
equation 5u4−460u2 + 462 = ±1. A number of candidates struggled to justify the fact that
this has no solutions, but a number of other candidates did manage this, by a variety of
methods, some longer than others.

B3.5 Topology and Groups

Question 1 (46 attempts): This question tested the understanding of homotopy theory.
The general level of solutions was good, though this turned out to be the most difficult
question. Even though (a)(i) was bookwork central to the material (existence of inverses in
the fundamental group), there were few completely correct solutions, and most homotopies
from u · u−1 to cx given fixed the image of 1/2 at y, or contained some other similar issue.
Most solutions to (a)(ii), (a)(iii), (b)(i), and (b)(ii) were correct. However, there were
almost no complete solutions to (b)(iii), though there were several solutions that had the
key ideas in place. A nice alternative approach to the official solution that appeared in
some scripts was to homotope the map f on edges not lying in a spanning tree T into f(T )
using (a)(iii), then use the fact that T is contractible and hence that f |T is 0-homotopic.

Question 2 (46 attempts): This question tested knowledge of the Seifert–van Kampen
theorem. Solutions to part (a) were generally satisfactory, with occasionally some parts of
the statement of the Seifert–van Kampen theorem missing. In (b)(i) and (ii), the majority
of the candidates got the right idea about the homotopy retraction, though the application
of the Seifert–van Kampen theorem sometimes lacked detail. Part (b)(iii) proved to be



difficult, with just a few candidates noticing that the space homotopy retracts onto S2∨T 2.

Question 3 (29 attempts): This question tested knowledge of covering spaces, and was
on the easier side. In (a)(i), candidates sometimes failed to argue why a covering map is
surjective. Most candidates had a correct example for (a)(ii). Part (a)(iii) has a simple
unintended example, where the domain is disconnected and the map is a covering map on
each component. This was also awarded full marks. It is worth trying to construct an
example where the domain is connected. Solutions to part (b)(i) were typically correct.
However, there was only one complete solution to part (b)(ii), as candidates usually missed
the possibility that, if U1, . . . , Un are open neighbourhoods of the points of f−1(p) such that
f |Ui : Ui → f(Ui) is a homeomorphism, and V :=

⋂n
i=1 f(Ui), then there might be points of

f−1(V ) not in
⋃n
i=1 Ui. Solutions for (b)(iii) and (c) were typically correct.

B4.1: Functional Analysis I

Question 1 More than half the candidates attempted this question with variable degrees
of success. Surprisingly, a large proportion of the candidates could not apply/quote cor-
rectly triangle inequalities on Euclidean space, and thus failed to complete the bookwork
component of this question. There are three different modes of convergence in this question
(pointwise convergence, uniform convergence and L2-convergence) and only the candidates
who recognised their difference could successfully complete the question.

Question 2 70% of the candidates attempted this question. Few candidates noted that the
statement (c00)

∗ = `1 entails an explicit description of the implicit isometric isomorphism
(rather than an abstract existence of such isomorphism). In (b), about half of the candidates
who attempted to show (??) ⇒ (?) forgot to show that the functional they would like to
define is well-defined.

Question 3 80% of the candidates attempted this question. The overall performance of
the candidates was generally ok. Typical errors and omissions include: positivity of 〈·, ·〉A,
completeness of 〈·, ·〉A, boundedness of the algebraic inverse of AA∗, the norm estimate
obtained from the Riesz representation theorem was with respect to ‖·‖A. A few candidates
attempted (c)(ii), and most of them had good ideas.

B4.2: Functional Analysis II

Question 1 The early parts of 1a) on nowhere dense sets were well solved, with many
correct examples in (ii), iii) constructed using (subsets) of the rational numbers in the
real numbers. The analogue of part iv) for sequence spaces was a question on a problem
sheet so it was surprising that relatively few students tried to follow the strategy seen there
of proving that the sets Ak have non-empty interior and are closed, where the later part
requires a careful argument via a subsequence that converges a.e. Part b) on Fourier series
was solved well, as was the proof in ci) that boundedness of T ensures boundedness of Sn.
The other direction of cii) was as expected challenging as it brings together different parts
of the course, with the closed graph theorem providing a good route to proving continuity
of T . In the final part of b) partial marks were scored by quite a few students by pointing
out that the set cannot be both dense and closed since it cannot be the whole space as it
does not contain the identity. Only a few candidates took this idea further to show that the



set can’t be dense as e.g. any ball with radius r < 1 around the identity is disjoint from it
and there were only a few correct proofs that the set is also not closed.

Question 2 Question 2 was the most popular question. Part a) was mostly seen material,
including iv) which was on a problem sheet, but proved to be quite challenging. All students
provided the correct definition of a compact operator in b) and quite a few realised that the
easiest way of constructing an example in ii) is to try and choose operators so that T ◦S = 0.
The third part of b) was designed to be challenging, and only a few students realised that
they could apply the open mapping theorem when they viewed T as a surjective map into
its image, as seen in related proofs in the lecture. A key point of part c) is that basic
properties such as boundedness and closedness encountered in the course depend on the
choice of norm. This caused a lot of problems not only in the later parts, but already in the
first part which can be deduced from Arzela-Ascoli using that the sup norm is controlled
by the 1 norm and that maps which are in the unit ball with respect to the 1 norm are
1-Lipschitz, so equicontinuous.

Question 3 The first half of the question on spectral theory caused more difficulty than
expected. While part (ii) was designed to be quite challenging, the other parts of a) could
be solved by using well known techniques. As such it was surprising to see that while
essentially all students successfully used the result on Neumann series to solve (i), very few
thought to use this in (iv), even though similar arguments were seen in the lecture. There
were also only few correct examples of operators with ‖T‖ > rσ(T ), though students could
have used triangular 2× 2 matrices to obtain simple examples.

The second half of Q3 on weak convergence was solved better than the first, with the
bookwork parts (i) and (ii) correctly solved by nearly all students and many good attempts
at solutions of (iii) using uniform continuity of g and density of the continuous functions in
L2. The last part of the question, which was similar to a question on a recent exam, was
correctly solved only by very few students, though partial marks were scored for observing
that weak limits of sequences in the unit sphere will always be in the closed unit ball thanks
to Mazur’s theorem.

B4.3: Distribution Theory

Question 1 For question 1 the general level of answers was good and while no candidate
got all the 25 marks some got very close. Most candidates got full marks for part (a),
which is a combination of book work and routine examples. It was a little surprising that
many didn’t do well on part (b), which asks to prove a version of the generalized Riemann-
Lebesgue lemma. This was an exercise on a problem sheet and we did examples of a very
similar nature on a number of occasions in lectures. The more elaborate version of the
Riemann-Lebesgue lemma appearing in part (c) was expected to cause some difficulties and
many also struggled to make progress on its last part.

Question 2 The general level of answers to question 2 was good, though on a slightly lower
level than for question 1. No candidate got full marks, where in particular marks were lost
in the last part of the question. Question 2concerns aspects of localization and restrictions
of a distribution and its order. Most candidates got close to full marks on part (a), which
is a combination of book work and routine examples. Part (b) is similar to an exercise on
a problem sheet and was generally well done. Part (c) is a new example and caused some
difficulties.



Question 3 Except for a few cases the quality of answers to question 3 was somewhat
more diverse than in questions 1 and 2. The question concerns distributional derivatives
and aspects of the chain rule. The book work part of (a) was generally well done, but the
last part, supposed to be a routine example using mollification, caused some difficulties.
Part (b) of the question is more challenging, but many candidates who attempted it did the
first parts(i) and (ii) quite well. Only very few did the last part (iii).

B4.4: Fourier Analysis and PDE’s

Question 1 All candidates attempted question 1 and the general level of answers was good,
though no candidate got all the 25 marks. Most candidates got close to full marks for the
book work in part (a). The differentiation rule in part (b), which amounts to a variant
of book work, also attracted many good answers. The new question in part (c) was in
some cases attempted solved using the Fourier inversion formula for L1 functions from the
course. However, without further work and assumptions, it doesn’t give the required result,
and consequently those answers didn’t receive many marks. Most other candidates who
attempted this part got full marks for its first part but struggled on its last part.

Question 2 Only one candidate attempted question 2.

Question 3

Most candidates attempted question 3. The quality of answers was somewhat more diverse
than in question 1. Most candidates provided good answers on the book work in part (a).
Surprisingly few candidates got full marks on the book work variant in part (b), whereas
almost all candidates who attempted the part (c) got at least half of the available marks.

B5.1: Stochastic Modelling and Biological Processes

Question 1 This question was the most popular attempted by 86% of the students. Stu-
dents did well on the whole.

In part (a) a few students tried (successfully or unsuccessfully) to derive the given time-
dependent distribution, which is do-able but quite a lot more work than simply confirming
that it satisfies the chemical master equation with the given initial conditions. Many forgot
to check that the distribution satisfied the initial conditions. The calculations were a bit
awkward, but on the whole well done.

Part (b)(i) required an understanding of the jump chain and was largely well done, with
some errors in calculation, but relatively few conceptual errors.

Part (b)(ii) was where most marks were lost, although a reasonable number of students
completed it. Some failed to correctly write down the recurrence relation for τ(n, 1), and
some were unsure how to use the recurrence relation to get a sequence of improving estimates
of the expected time to extinction.

Question 2 This question was the least popular attempted by only 37% of the students.
The success rate was somewhat lower than for Question 1.

Part (a) was bookwork and was generally well done. Students who realised that they needed
to look for radial solutions to the Fokker-Planck equation generally progressed well after
this.



Part (b)(i) required setting up the system of PDEs and boundary conditions which was
essential to progress further. Students largely managed this.

In part b(ii) most students were able to write down the general solutions in the cytoplasm
and outside the cell; but the calculations involving matching up solutions at the common
boundary, key to eventually getting the flux, were a bit challenging and sometimes went
wrong. This is where most marks were lost.

Part (b)(iii) involved interpreting the limiting behaviour and students who got this far
mostly seemed to understand the physical/biological meanings behind the calculations.

Question 3 This question was very popular: attempted by 80% of the students. It also
had the lowest success rate of the three questions.

Part (a) was bookwork and largely well done.

Although part (b) was also largely bookwork, correctly choosing the limits of integration for
each of the two integrations in order to arrive at the required double-integral posed some
challenges and was where most errors were made. Sometimes the answer was presented
without adequate justification.

Part (c) relied on having done and understood part (a); and then involved understanding
the biological meaning of the invariant distribution in order to decide what needed to be
calculated. Those who managed part (a) well on the whole did part (c) well too.

Part (d) relied on part (b) and success in (d) tended to follow that in (b). (Because part (b)
posed some problems, these reappeared in part (d).) Where the concept was understood,
errors in calculation led to some loss of marks, and some students left out the part involving
comparison with the case of no chemotaxis.

B5.2: Applied PDEs

Question 1 was the second most popular question. Students generally did well in the (a).
A few made computational mistakes upon solving for the scaling coefficients, others set up
the wrong equations for these. Marks were also dropped by not answering the question in
full, e.g. writing the scaled version of all conditions as requested in the question. Part (iii)
was not always completed or algebraic mistakes were made upon solving the ODE boundary
vaulue problem. In (b), most students formulated the BVP defining the Green’s function
correctly. However, quite a few failed to obtain the Green’s function for the sphere, either
by not coming up with a reasonable way of attacking the problem (despite the hints) or due
to algebraic errors.

Question 2 was the most popular question, done by all students. Students generally did
well. Almost everyone solved (a) correctly for the characteristics. In (b), marks were lost
(rarely) for not providing the envelope or (more frequently) for not stating the domain of
definition correctly or providing deficient sketches, or not stating u(x, t). (c) was mostly
answered correctly, though some students forgot to state the answer for the speed s or the
causality in terms of u+−. Many students also attacked (d) and found the ODE/IVP for ξ.
There was some subtlety for stating all pieces of u correctly, which some students missed.

Question 3 (a) and (b) were bookwork or straightforward and done by most students who
attempted this question. In (c), some students failed to see that the term proportional to s
emerged by correctly applying d/dt to the integral limits (which depend on on time). Part



(d) was only done by very few students, and only very few got a result that allowed them
to identify H = 1 as the correct lower boundary for h1.

B5.3: Viscous Flow

Question 1

This question was attempted by all bar two of the candidates. The bookwork contained in
part (a) was generally fine; the most common mistake was to not define n as the normal to
the surface element. Numerous candidates didn’t justify why the shear stress at the surface
was given by σ13. Candidates were not penalised for using standard vector decompositions
without defining them. In part (b), numerous students went straight to 2D rather than
starting with the 3D version of Navier–Stokes as instructed to. Many incorrectly interpret-
ted “There is no imposed pressure gradient” as meaning that they could apriori cross out
∇p . All bar one candidate were able to find the Couette flow for us(z), but relatively few
candidates managed to solve the resulting problem for û using a Fourier series approach.
Some solutions were marred by alegebraic manipulation errors. Sketching the graphs proved
difficult for many candidates that got that far. Those that made it to part (c) generally got
somewhere with both subparts, although their ranking of strategies often missed out the
crucial information that all the strategies altered the log term in the same way.

Question 2

This question was attempted by all bar one of the candidates, and was generally well done.
There was a minor typo in the question (the boundary conditions were listed as applying
on z = 0 rather than on ζ = 0). This did not trip up any of the candidates and no one
was penalised for writing z rather than ζ to define the boundary anywhere in part (a).
Some candidates stated that W → 0 as ζ → ∞ as a necessary boundary condition and
were penalised accordingly. Some candidates did not adequately explain why the pressure
gradient was given by −UsU ′s. In part (b), some candidates struggled to get the algebra
right to obtain the ode for f. Unfortunately, no candidates were able to solve the two
coupled ODEs for g and Us. Instead, they opted to substitute the results into the ODEs to
find g. Often these attempts were defeated by algebraic manipulation errors. Only a few
candidates managed to provide convincing arguments for the second part of (b)(iii).

Question 3 Only three candidates attempted this question, and the average mark was
lower than for the other two questions. Solutions to part (a) lacked essential detail in
places. Only one of the candidates correctly found u′. None of the candidates integrated
conservation of mass across the layer in the standard way to arrive at the thin film equation.
In part (b), candidates struggled to use the right boundary conditions on the right regions,
and none of the candidates realised that they needed to apply p′ and dp′/dx′ continuous at
x′ = 1 to obtain the solution. Only one candidate attempted part (c); they integrated in x
rather than z and thus didn’t make much progress.

B5.4: Waves and Compressible Flow

Question 1 This question was relatively popular but was the least well answered: it seemed
to attract the weaker candidates. Many candidates just hadn’t learned the basic bookwork
required for parts (a) and (b), often mistakenly treating ρ as a constant. In part (c), one



could obtain the required radially symmetric steady mass conservation result 2πrρ(r)φ′(r) =
q either from ∇ · (ρ∇φ) = 0 or from the given statement about mass flux across a circle,
but few candidates made significant progress with either approach. The straightforward
but fiddly algebraic manipulations required to find the maximum of f(ξ) also caused a lot
of problems.

Question 2 This was the most popular question and attracted the highest marks. The
submitted solutions to parts (a) and (b) were generally ok, though often over-complicated.
There were a lot of problems with the calculations required for part (c), with many can-
didates again over-complicating their solutions and then getting lost in the detail, as well
as inconsistency in use of “±”. Only the very strongest candidates had any idea how to
approach part (d).

Question 3 This was the least popular question but attracted some good solutions. In
part (a), candidates often tried to expand everything out rather than observing immediately
that c2/ργ−1 must be constant. Part (b) was a basic piston withdrawal problem, but still the
careful arguments needed to convincingly derive the given expressions were often lacking.
In part (c), all candidates identified Newton’s second law, but many struggled to accurately
eliminate ρ to obtain the given ODE. In part (d), the sketching was generally ok, but there
were not many convincing explanations of the behaviour as t→∞.

B5.5: Further Mathematical Biology

Question 1 Only a minority of candidates attempted this question. In (a) several marks
were lost by many candidates for not fully explaining the biological meaning of each term
in the equation (note that there were 10 marks allocated to (a) in total, so it should have
been clear that a detailed explanation was required). In (b) most candidates could do (i)
correctly, but in (ii) many failed to realise that the equations for 0 < t < τ are not relevant
for finding the steady state. Part (c) was relatively well answered by those that attempted
it.

Question 2 Parts (a)–(c)(i) were well answered by the majority of those that attempted
it. Most did not identify the number of cases in (ii). Note there was a small typo in the
paper – in the equation for L(T ), lowercase variables x and t were used (rather than X and
T ).

Question 3 The majority of candidates attempted this question. Parts (a) and (b) were
well answered. In part (c), many candidates struggled to draw the two different forms of the
null clines and illustrate how these can be used to determine the potential for patterning
via a diffusion-driven instability. In part (d) few candidates could write down the form of
the solution to the linearised problem in order to determine the additional constraints.

B5.6: Nonlinear Systems

Most of the candidates demonstrated good understanding of the bookwork material. The
exam was well-balanced with all three questions having the similar level of difficulty. While
some candidates submitted some incomplete solutions, they often achieved at least 40% of
raw marks. Other candidates also made successful attempts at more advanced parts of each
question. In fact, each question received one complete solution (getting the perfect raw



mark of 25), illustrating the solvability of each question under the exam conditions.

Question 1

covered the material on discrete-time dynamical systems (maps), with most candidates
demonstrating that they were able to find fixed points and their stability. Some marks were
lost when candidates investigated the existence and stability of 2-cycles and 3-cycles.

Question 2

covered some material on continuous-time dynamical systems (planar ODEs), with most
candidates demonstrating that they can identify their steady states and investigate their
stability. Some marks were lost when candidates investigated the Hopf bifurcation.

Question 3

many candidates were able to calculate the eigenvalues of matrix M . This 3 × 3 matrix
has only two eigenvalues, with one of the eigenvalues having algebraic multiplicity 2 and
geometric multiplicity 1. Some candidates made errors in finding the stable, unstable and
center subspaces, because they did not find the corresponding generalized eigenvector.

B6.1: Numerical Solution of Differential Equations I

Question 1 Nearly all candidates who attempted this question received most of the marks.
The question was similar to a question on the MMSC exam, which was provided to the
students along with the solutions. There were a few small mistakes in applying the Cauchy-
Schwarz inequality or forgetting the factor of

√
2 in the inequality a + b ≤

√
2
√
a2 + b2.

Otherwise, they were able to correctly handle the new material and the quality of answers
was generally high.

Question 2 Most candidates attempted this question and generally did the bookwork
correctly. However, there were a number of candidates who did not correctly define the
θ-scheme for the zero-th order term and an inhomogeneous forcing function (even though
part (b) hinted at the correct form). No candidate optimally estimated |λ(k)|, leading to a
suboptimal bound depending on T . The most common mistake was not bounding λ from
above and from below separately. As a result, most candidates did not complete part (d) or
do it correctly. Only a few candidates set up the contradiction in (e) correctly, while most
tried to copy verbatim the argument from lecture, which does not lead to a strict inequality.
Overall, about half of the candidates were able to complete some of the new material, while
the other half earned close to zero marks on new material.

Question 3 Most candidates attempted this question. The most common mistakes were
not using an explicit remainder in Taylor’s theorem in parts (a-b) and not justifying that the
quadratic formula provided both values of r in part (d). Only about half of the students were
able to successfully complete parts (a-b) despite the hints. As with the previous question,
about half of the candidates were able to complete some to most of the new material, while
the other half earned close to zero marks on new material.

B6.2 Optimisation for Data Science

Comments awaited.



B6.3: Integer Programming

Question 1 was answered by 65% of the candidates, the highest mark obtained being 24
and the lowest 1. The distribution of marks showed a good spread across the middle to
high range, but there was of a small cluster of disappointingly low marks. All in all the
question worked well, offering a range of book work, adaptation to book work, and parts
that required detailed understanding to achieve complete marks.

Question 2 was the most popular and was selected by 94% of candidates. The highest
mark was 22 and the lowest 1. The spread of marks was good, and the question served as
a good differentiator between different levels of understanding of the course materials.

Question 3 saw the lowest uptake, with 53% of candidates choosing this problem. The
highest mark was 25 and the lowest 3. The marks came out generally low, indicating that
candidates found it quite hard in comparison with the other two problems. Candidates who
had revised the problem sheets, where related similar material had been discussed in some
detail, should have found this problem familiar, but the problem was probably too hard for
candidates who had revised only with the course notes.

B7.1: Classical Mechanics

Question 1 This question was somewhat nonstandard and few candidates were able to make
significant progress beyond the routine material. Few candidates were able to eliminate the
constants by rescaling the time and space variables or the Lagrangian, and few found the
Lagrange points at (0,±

√
22/3− a2).

Question 2 This was a largely routine computational question and there were many good
discussions of the definition of Euler angles. Candidates who didnt get lost in the later
calculations were able get good marks.

Question 3 Most candidates were able to perform the computations concerning the Poisson
brackets of conserved quantities for the Kepler problem, although a good number got lost
in the calculations. Few knew the geometric meaning of the the conserved quantities for
the last part, in particular that the angular momentum is perpendicular to the plane of
motion, and the Runge-Lenz vector pointing along the major axis.

B7.2: Electromagnetism

Question 1 This was the most popular question (attempted by 18 out of 19), and the
answers given were generally rather good (13 marks on average), but often incomplete.
Points were often lost in part (a) for not explaining why E = 0 in a conductor, and for not
proving (though correctly recalling from lectures) the formula σ/ε0 = (E+−E−) ·n for the
discontinuity of the electric field at a charged surface. Several solutions of part (c.i) had
the correct idea, but did not prove that the boundary conditions are fulfilled, or had errors.
The last parts, (c.ii) and (d), were attempted by only 1 and 5 students, respectively.

Question 2 This was attempted by 10 out of 19 and scored fewer marks on average (10)
than questions 1 and 3. Parts (a.i) and (a.ii) were handled very well, but no solution scored
more than 1 (out of 2) points for (a.iii). For example, many argued that B(r) is independent
of ϕ, whereas it is only the coefficients of the (ϕ-dependent!) vectors eϕ and eρ that are



independent of ϕ. In (b.i), many students could not define the magnetic dipole moment
correctly, and struggled to identify the current density using delta distributions. Noone
made substantial progress on part (b.iii), despite the clear hint. Part (c.i) was done very
well, but only 4 students attempted the remaining parts. Two struggled with the integration
in (c.ii) and only one solution got the idea (and full marks) for (c.iii).

Question 3 This was attempted by 12 out of 19 and scored on average 12 marks. Part
(a) was answered almost perfectly. In (b.i) not everyone argued convincingly through the
orthogonality of the Fourier basis. Part (b.ii) was generally well done, apart from some
algebra errors; but noone mentioned (and checked) the boundary conditions for the mag-
netic flux density B. Only 3 students attempted (c). Part (c.i) was done well, but noone
explained the choice of the square-root (the other choice leads to an unphysically exponen-
tially increasing field in z < 0). Part (c.ii) was easy and perfectly done. In part (c.iii)
however, all answers failed to recognize that E′ ×B′ = Re(E′C) × Re(B′C) is not the same
as Re(E′C ×B′C).

Summary. The range of marks achieved cover a wide spread, and all questions were
attempted by more than half of the candidates. The average marks for question 2 were
slightly lower than for questions 1 and 3. Very few students attempted all parts of a
question, suggesting that the exam was slightly too long overall.

B7.3: Further Quantum Theory

Question 1 This was a popular question. Almost all candidates did a fine job with the
bookwork at the start describing irreducible representations of angular momentum opera-
tors. Part (b) was meant to be straightforward and similar to work in lectures and homework
exercises, but many candidates failed to produce the full expressions for the basis elements
in the combined-spin basis. Part (c) resisted most attempts, with only a few candidates
correctly identifying which irreps consisted of symmetric versus anti-symmetric states. (A
repeating confusion involved a faulty invocation of the spin-statistics theorem, which was
irrelevant here as there was no mention of intrinsic spin as opposed to some total angu-
lar momentum representation of unspecified origin.) Part (d) proved too difficult, with
no candidates realising they had to simultaneously work in a basis that diagonalised total
intrinsic spin, total orbital angular momentum, and total overall angular momentum while
also tracking the subset of anti-symmetric states.

Question 2 This was another very popular question. Almost all candidates were able to
re-derive the stationarity property of the Rayleigh quotient at eigenvectors. In part (b)
essentially all candidates recalled the statement of the (homogeneous) virial theorem, but
many were unable to summarise the derivation. Part (c) could be solved by direct integra-
tion without too much trouble, but many candidates ran into computational difficulties. A
clever alternative trick to determine the expectation value of the kinetic energy operator was
to relate the trial wave function to the ground state wave function of the simple harmonic
oscillator. A number of candidates noticed this, but a number incorrectly generalised the
method to the potential energy operator as well (or implicitly assumed that the trial wave
function was an exact ground state wave function for the anharmonic Hamiltonian). The
most important aspect of part (d) went un-noticed by all candidates: that the proportion-
ality of expectation values of kinetic and potential energies derived in the virial theorem
holds irrespective of whether the approximate stationary wave function is a true energy



eigenstate. Without this caveat, an argument based on the virial theorem in this question
was incorrect. Part (e) could be attempted independently of the previous parts and was
meant to be a straightforward application of the Bohr–Sommerfeld quantisation condition.
Candidates who attempted it mostly did well.

Question 3 This was attempted by only a minority of candidates. Part (a) was a recount-
ing of a bookwork derivation, but many candidates failed to treat degeneracy appropriately
(which requires a specified choice of basis as well as the introduction of ambiguities in the
first-order corrections to the eigenstates). Part (b) required the computation of several
matrix elements of X1X

3
2 between harmonic oscillator energy eigenstates. In practice, in-

spection could reduce this to a computation of one non-zero matrix element, simplifying
the calculation appreciably. No candidates identified this simplification correctly, but some
accomplished the calculation reasonably well. Part (c) was generally not done well as it
required a careful treatment of degeneracy and the aforementioned ambiguities at first or-
der. A few candidates had the right idea, however. Part (d) did not see much in the way
of attempts, though it could be attempted without solving part (c) just by using the given
equation.

B8.1: Probability, Measure and Martingales

Question 1 Part (a) seemed to be handled quite well. Most students obtained full marks for
(i), with a small minority struggling with basic set theory. Most students successfully used
the hint for (ii) (although some lost a mark for not making a predictable choice of V ), while
a minority tried to show the submartingale property directly, with variable success. (iii) and
(iv) similarly caused few problems; most students used the hint of applying the conditional
Jensen inequality, while others argued more directly, expanding the square. A large minority
of students lost a mark in (v) for not accurately distinguishing between boundedness in and
membership to L1, or by applying the submartingale convergence theorem to S2

n and trying
to argue that this implies convergence of Sn. Answers in part (b) were more variable,
possibly in part due to time constraints. In (i), most students understood how to use (II)
and (III), but many did not think of using the first Borel-Cantelli lemma to make use of (I).
The application of the second Borel-Cantelli lemma in (ii) caused fewer problems. Many
students seemed to be caught off guard by (iii), and were not prepared to have to re-use
previous arguments to conclude. Overall in (b), some students lost marks for attempting
ε − δ proofs that did not use probability theory, or for attempting to use Doob’s maximal
inequality (from (a)) in ways that were unhelpful.

Question 2 showed a wide range of quality of answers. Some students struggled with
recalling the definition of the conditional expectation and were confusing Part A probability
conditional probability with conditional expectation used here. However most students got
the bookwork correct, even if many did not justify the simple properties in (a)(iii). (a)(iv)
witnessed many false attempts with either incomplete answers or with MCT being used
where its conditional version was required. (a)(v) typically either got full marks or no
marks at all. Part (b)(i)-(iii) of this question was typically done well by those who made
a serious attempt at it, but some scripts dis-played completely false arguments. (b)(iv)
was mostly done well but, again, some students were confused about some basic bookwork
notions.

Question 3 In Question 3 (a)(i) a mark or two were often lost either by a simple mistake



with set operations or by forgetting to argue one (simpler) inclusion (or just saying it is
obvious or clear). A surprising number of students struggled with (a)(ii) and were not able
to compute conditional expectation using joint density, despite this being on a problem
sheet. In part (b) most students advanced well but often with mistakes or lack of details on
the way. Some were confused about how to define the objects introduced in the question.
Common reasons for marks lost where the essence of the argument was presented well was
forgetting to verify integrability or adaptness condition for a martingale (which were very
easy here), or quoting a version of the stopping theorem which was not applicable.

B8.2: Continuous Martingales and Stochastic Calculus

Question 1 This was the most popular question attempted by all but one candidate. There
was a wide range in the quality of answers with a few candidates scoring full marks and
some that were not able to reproduce the bookwork. For part (a) marks were lost for not
being precise enough in the definition of a local martingale and for omitting the checking of
integrability in the second subpart. For part (b) almost all could state the optimal stopping
theorem and many could do the second part. The careful showing that the expectation of
the martingale at the stopping time was zero proved more difficult for many. In part (c)
Ito’s formula was correctly used by most and many could deduce the normality. One person
successfully used Dubins-Dambanis-Schwarz for this part. The final part proved challenging
for most with only a couple of complete and correctly argued solutions.

Question 2 This was the second most popular question, again with a wide spread of
marks. It was the most difficult to score very highly with only one person able to get the
final probability density. In part (a) marks were lost again for not showing integrability
when giving a direct proof that M was a martingale. A few candidates tried to use Ito’s
formula but did not show that the local martingale was a martingale. In the second part
of (a) many candidates did not use the optimal stopping theorem correctly often assuming
that M was uniformly integrable. Part (b) was well done. For part (c) many candidates
could start this, showing some ideas about how to proceed but getting right the way to the
end was challenging.

Question 3 There were not so many attempts at this question and candidates either got it
almost all out or could not get started. Many of the strongest candidates scored very well
on this question as it was reasonably straightforward manipulation of stochastic integrals
against Brownian motion. The only tricky part was the final result in (d). Here only a
couple of people realised that the first Borel-Cantelli lemma was the best way to attack it.

B8.3: Mathematical Models of Financial Derivatives

Generally, the students did extremely well in the three questions.

Question 1 Most students were able to do this question to a high standard. Many students’
answers were not clear althoug the thrust of the answer was OK (only in extrem cases of
lack of clarity did the student lose some marks).

Question 2 Many students scored 25/25

Question 3 Generally, students did very well. Some of the material (deriving the pricing
PDE, for example) was not seen and most students were able to to this successfully. As



expected, the last two parts of the question were the ones where students missed marks.
Part (d) involved a bit of carpetntry to take an expected value and some students were not
able to get all the details correct. The last part could be derived from basic principles or
from the equation provided in the paper and some students struggled, but overall very good
performance

B8.4: Information Theory

Question 1 was attempted by almost all students. Some identified a slight error (in bii,
p can be optimal even if p(m) > p(m − 1)), but this did not appear to lead to significant
variation in performance. Students struggled slightly with the proof of optimality in biii,
and with giving a clear argument in cii.

Question 2 was attempted by a few students. Students generally did well at showing that
the Elias code cannot be optimal, but struggled more with the calculations in part c.

Question 3 was widely attempted. The data processing inequality in aiii proved difficult
for some, and the calculation of the capacity in bi (which is not a simple example) also
caused some confusion.

Overall the exam was well done, with a range of performance and understanding demon-
strated.

B8.5: Graph Theory

Question 1 Most students answered (a)–(c) well, but very few managed to do part (d).
A common error in (a) was omitting the condition |G| ≥ k + 1 for k-connectivity (or some
equivalent statement implying κ(Kn) = n− 1). In part (b) most students realised that we
can remove one endvertex of each edge of a disconnecting set of edges to prove κ(G) ≤ λ(G).
However care must be taken to ensure that we don’t remove all the vertices on one side of
the edge-cut (e.g., a tree can be disconnected by the removal of any edge, but we need to
remove a non-leaf end-vertex of that edge to deduce that κ(G) ≤ 1.) Students had serious
difficulties with (d). Common errors included trying to show κ(G) = δ(G) (despite the
graph in (c)(ii) being a counterexample). Others assumed that all paths between pairs of
vertices are of length ≤ 2 and tried to deduce the structure of the graph from this.

Question 2 Performance on this question was rather variable, with some students doing
very well, others very badly. In part (b), a number of students noted that one can add a
new vertex in the exterior face and join it to all the original vertices. The result then follows
from the 3n − 6 bound on the number of edges in a planar graph, which was allowed to
be quoted. For students following the model solution, a common error was failing to deal
with the case of disconnected or acyclic graphs. A similar issue occurred in part (e) where
a number of students failed to consider the case when G is not 2-connected. Quite a few
students did poorly on this question, often using vague and non-rigourous topological ideas,
or unjustified statements about what an outerplanar graph ‘should’ look like to deduce the
results.

Question 3 Relatively few students attempted this question, although those that did gen-
erally did it well. The main issues were with part (c), where some students were not able
to formalise why the graph on pairs ij with |zi − zj | > 1 is K6-free. In (d), once having



identified what components could exist, quite a few students lost some marks by just stating
that it was obvious that one needed all but one component a K4, rather than writing out
a suitable induction argument.

Summary: The average marks were similar across the three questions, with question 3
typically having a slightly higher average despite few students attempting it. The spread of
marks was good, with strong correlation between marks in both (or all) questions attempted.

BO1.1: History of Mathematics

Both the extended coursework essays and the exam scripts were blind double-marked. The
marks for essays and exam were reconciled separately. The two carry equal weight when
determining a candidate’s final mark. The first half of the exam paper (Section A) consists
of six extracts from historical mathematical texts, from which candidates must choose two
on which to comment; the second half (Section B) gives candidates a choice of three essay
topics, from which they must choose one. The Section B essay accounts for 50% of the
overall exam mark; the answers to each of the Section A questions count for 25%.

Throughout the course, candidates were invited to analyse historical mathematical materials
from the points of view of their ‘context’, ‘content’, and ‘significance’, and these were the
three aspects that candidates were asked to consider when looking at the extracts provided
in Section A of the exam paper. A number of candidates chose to use these as subheadings
within their answers. The word ‘significance’ was used consistently throughout the course
to capture a broad sense of where a given source sits within the historical development of
mathematics. This usage was repeatedly stressed. Some candidates were penalised however
for considering this only in the narrow sense of ‘importance’.

The Section A questions 1–6 were attempted by 9, 3, 7, 2, 3, and 4 candidates, respectively.
The answers to the most popular question, question 1, were quite varied. In several cases,
marks were lost for failing to expand adequately upon the analysis/synthesis distinction
that lies at the heart of this question. Some candidates chose to respond to the question
by giving an account of the changing use of the word ‘analysis’, but this is not what was
required. It was important here not simply to describe mathematical developments, but
also to discuss the contemporaneous attitudes towards them — the better answers to the
question did just that.

For the extract in question 2, it was fairly easy to discuss the ‘content’ aspect, which meant
that it was all the more important for candidates to address the other parts as thoroughly
as possible. Question 3 was in many respects a tricky question in that it invited candidates
to discuss a specific idea (indivisibles) within the much broader context of the development
of calculus and analysis, a topic that was covered in considerable depth in the course. It
was therefore quite easy for candidates to wander off the immediate topic of the extract.
Pitfalls here included a failure to address the subtle distinction between the often conflated
notions of infinitesimals and indivisibles — a distinction though that Wallis himself did not
always make clear. Some candidates were rather vague on the contributions of Cavalieri
and Torricelli, while few made any comment on the reference to the method of exhaustion
that is implicit in the extract. Democritus, the originator of the notion of an indivisible,
was universally absent from responses to this question.

Answers to questions 4 and 5 each called for additional points that were easily missed: in



the former that the extract makes reference to the method of finite differences, which was
the basis for Euler’s (and indeed Leibniz’s) development of the calculus, and in the latter
that it wasn’t just pure group theory that grew from Galois’s work, but also of course Galois
theory.

Question 6 was a good example of how the references given for the extracts may con-
tain pointers towards things that ought to be included in answers, something that some
candidates overlooked: we see that Riemann was very specifically developing a theory of
functions of a complex variable, something that Cauchy before him had not quite made
explicit. Otherwise, this question was generally well done.

The essay questions 7 and 9 were attempted by 5 and 9 candidates, respectively; no can-
didate attempted question 8. A common problem that arose with responses to question 7
was that some candidates did not carry their use of specific examples through to the ‘chal-
lenges’ part of their essay. In answers to question 9, some candidates lost sight of the fact
that they were supposed to be writing about attitudes towards geometry, and instead wrote
short narrative histories of geometry.

The extended coursework essays were of a decent standard overall, though marks were lost
in places for too great a reliance on secondary sources — the use of primary sources was a
central part of the reading course upon which this work was based, and so this should have
been reflected in the submitted essays. Similarly, a lack of decent referencing and proper
bibliographies was penalised in a number of cases. The better essays were those that took
a particular question or point of view as their central thread, rather than simply providing
a narrative account of the writings of Bolzano, Cantor, Dedekind, and others.

Statistics Options

Reports of the following courses may be found in the Mathematics & Statistics Examiners’
Report.

SB1.1/1.2: Applied and Computational Statistics

SB2.1: Foundations of Statistical Inference

SB2.2: Statistical Machine Learning

SB3.1: Applied Probability

Computer Science Options

Reports on the following courses may be found in the Mathematics & Computer Science
Examiners’ Reports.

CS3a: Lambda Calculus & Types

CS4b: Computational Complexity

Philosophy Options

The report on the following courses may be found in the Philosophy Examiners’ Report.



102: Knowledge and Reality

127: Philosophical Logic



D. Comments and Recommendations from the Examination Board

Chair comments brought to teaching committee to improve on exam process.

E. Comments on performance of identifiable individuals

1.Aggregation of marks for the award of the classification on the successful
completion of Parts A and B

Classification for a candidate was determined through the following method:

� 10 units at Part A (counting A2 as a double-unit and, for candidates offering 6 long
options, two of the long option papers as half-units)

� 6 units (or equivalent) at Part B.

The two average USMs will be:

1. The relative weightings of the Parts is as follows:

(a) The weighting of Part A is 40%.

(b) The weighting of Part B is 60%.

2. The relative weightings of the Parts is as follows:

(a) The weighting of Part A is 100%.

(b) The weighting of Part B is 0%.

The first class Strong Paper Rule says that to get a first class degree the candidate must
have:

(a) average USM ≥ 69.5;

(b) at least 6 units in Parts A and B with USMs ≥ 70;

(c) at least 2 units in Part B with USMs ≥ 70.

The analogous rules apply for II.1 and II.2 degrees. The examiners considered all candi-
dates near each borderline who had been caught by the Strong Paper Rule, that is, who
satisfied (a) but failed (b) or (c), and so were due to receive the lower degree class. For two
such candidates at the I/II.1 borderline the examiners decided to suspend the examination
conventions, and placed the candidates in the first class.

2. Prizes

Prizes were awarded as follows.

Gibbs Prize £500: Franciszek Knyszewski, St Catherine’s College
Gibbs Prize £200: Henry Saunders, Mansfield College



Part B Junior Mathematical Prize £200: Xingyu Nie, St John’s College
Part B Junior Mathematical Prize £200: Yutong Chen, Oriel College

IMA Prize: Henry Saunders, Mansfield College
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