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1 Foreword

The confirmed synopses for Part C 2022-23 will be available on the course management
portal https://courses.maths.ox.ac.uk/ before the start of Michaelmas Term 2022.

Honour School of Mathematics - Units

See the current edition of the Examination Regulations (https://examregs.admin.ox.ac.
uk/) for the full regulations governing these examinations. Examination Conventions can be
found at: https://www.maths.ox.ac.uk/members/students/undergraduate-courses/

examinations-assessments/examination-conventions.

In the unlikely event that any course receives a very low registration we may offer this
course as a reading course (this would include some lectures but fewer classes).

Students staying on to take Part C will take a minimum of eight units and a maximum of
ten units. These 8-10 units must include a CCD Dissertation on a Mathematical
Topic (which will count as a double Maths Department Unit) or a COD Disser-
tation on the History of Mathematics (which will count as a double unit from
the ”Other Units” list). One unit is the equivalent of a 16 hour lecture course.
The equivalent of four units must be taken from the schedule of ”Mathematics Department
units” (which include the CCD dissertation and, if applicable, a dissertation offered by the
Statistics department). Up to four units may be taken from the schedule of ”Other Units”
with not more than two from each category (Statistics options, Computer Science options,
Other options).

Most Mathematics Department lecture courses are independently available as units, the
exception being:

� C7.1 Theoretical Physics - this is available as a double-unit only.

All the units described are ”M-Level”.

Mathematics Department Units

� C1.1 Model Theory (MT)

� C1.2 Godel’s Incompleteness Theorem (HT)

� C1.3 Analytic Topology (MT)

� C1.4 Axiomatic Set Theory (HT)

� C2.1 Lie Algebras (MT)

� C2.2 Homological Algebra (MT)

� C2.3 Representation Theory of Semisimple Lie Algebras (HT)

� C2.4 Infinite Groups (MT)

� C2.5 Non-Commutative Rings (HT)

� C2.6 Introduction to Schemes (HT)
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� C2.7 Category Theory (MT)

� C3.1 Algebraic Topology (MT)

� C3.2 Geometric Group Theory (HT)

� C3.3 Differentiable Manifolds (MT)

� C3.4 Algebraic Geometry (MT)

� C3.5 Lie Groups (HT)

� C3.6 Modular Forms (MT)

� C3.7 Elliptic Curves (HT)

� C3.8 Analytic Number Theory (HT)

� C3.9 Computational Algebraic Topology (HT)

� C3.10 Additive Combinatorics (MT)

� C3.11 Riemannian Geometry (HT)

� C3.12 Low-dimensional Topology and Knot Theory (HT)

� C4.1 Further Functional Analysis (MT)

� C4.3 Functional Analytic Methods for PDEs (MT)

� C4.4 Hyperbolic Equations (HT)

� C4.6 Fixed Point Methods for Nonlinear PDEs (HT)

� C4.8 Complex Analysis: Conformal Maps and Geometry (MT)

� C4.9 Optimal Transport & Partial Differential Equations (MT)

� C5.2 Elasticity and Plasticity (MT)

� C5.4 Networks (MT)

� C5.5 Perturbation Methods (MT)

� C5.6 Applied Complex Variables (HT)

� C5.7 Topics in Fluid Mechanics (MT)

� C5.9 Mathematical Mechanical Biology (HT)

� C5.11 Mathematical Geoscience (MT)

� C5.12 Mathematical Physiology (MT)

� C6.1 Numerical Linear Algebra (MT)

� C6.2 Continuous Optimisation (HT)
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� C6.3 Approximation of Functions (MT)

� C6.4 Finite Element Method for PDEs (HT)

� C6.5 Theories of Deep Learning (MT)

� C7.1 Theoretical Physics (MT/HT)

� C7.4 Introduction to Quantum Information (HT)

� C7.5 General Relativity I (MT)

� C7.6 General Relativity II (HT)

� C7.7 Random Matrix Theory (HT)

� C8.1 Stochastic Differential Equations (MT)

� C8.2 Stochastic Analysis and PDEs (HT)

� C8.3 Combinatorics (MT)

� C8.4 Probabilistic Combinatorics (HT)

� CCD Dissertations on a Mathematical Topic [double unit] (MT/HT)

The Guide to Mathematics Options at Part C can be found at https://www.maths.ox.

ac.uk/system/files/attachments/Guide%20to%20Options%20at%20Part%20C_1.pdf.

Other Units

1. Statistics Options

Students in Part C may take the units below, which are drawn from Part C of the
Honour School of Mathematics and Statistics.

The Statistics units available are as follows:

� SC1 Stochastic Models in Mathematical Genetics (MT)

� SC2 Probability and Statistics for Network Analysis (MT)

� SC4 Advanced Topics in Statistical Machine Learning (HT)

� SC5 Advanced Simulation Methods (HT)

� SC7 Bayes Methods (HT)

� SC8 Topics in Computational Biology (HT)

� SC9 Probability on Graphs and Lattices (MT)

� SC10 Algorithmic Foundations of Learning (MT)

For full details of these units see the syllabus and synopses for Part C of the Honour
School Mathematics and Statistics, which are available on the web at http://www.

stats.ox.ac.uk/current_students/bammath/course_handbooks/.
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2. Computer Science Options

Students in Part C may take the units below, which are drawn from Part C of the
Honour School of Mathematics and Computing.

Please note that these courses will be examined by mini-project (as for MSc students).
Mini-projects will be handed out to candidates on the last Monday or Friday of the
term in which the subject is being taught, and you will have to hand it in to the Exam
Schools by noon on Monday of Week 0 of the following term. The mini-project will
be designed to be completed in about four to five days. It will include some questions
that are more open-ended than those on a standard sit-down exam. The work you
submit should be your own work, and include suitable references.

Please note that the Computer Science courses in Part C are 50% bigger than those
in earlier years, i.e. for each Computer Science course in the 3rd year undergraduates
are expected to undertake about 10 hours of study per week, but 4th year courses
will each require about 15 hours a week of study. Lecturers are providing this extra
work in a variety of ways, e.g. some will give 16 lectures with extra reading, classes
and/or practicals, whereas others will be giving 24 lectures, and others still will be
doing something in between. Students will need to look at each synopsis for details
on this.

Please note that the full list of Computer Science units available are still to be con-
firmed. At the moment, the only confirmed unit is:

� CCS2 Quantum Processes and Computation (MT)

The other units available will be confirmed prior to Michaelmas term 2022.

For full details of these units see the Department of Computer Science’s website http:
//www.cs.ox.ac.uk/teaching/courses/.

3. Other Options

� COD Dissertations on the History of Mathematics [double unit] (MT/HT)

Registration for Part C courses 2022-23

Students will be asked to register for the options they intend to take by the end of week 11,
Trinity Term 2022. It is helpful if their registration is as accurate as possible as the data
is used to make arrangements for teaching resources. Towards the start of the academic
year students will be given the opportunity to make edits to their course registration.
Students will then be asked to sign up for classes via the Teaching Management System
(https://tms.ox.ac.uk/) at the start of Michaelmas Term 2022. Further information
about this will be sent via email before the start of term.

Every effort will be made when timetabling lectures to ensure that mathematics lectures do
not clash. However, because of the large number of options in Part C this may sometimes
be unavoidable. The timing of lectures for a course taught by another faculty will usually be
set by that faculty and the Mathematical Institute has little control over the arrangements.
In the event of clashes being necessary, then students will be notified of the clashes by email
and in any case options will only be allowed to clash when the take-up of both options is
unlikely or inadvisable.
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2 C1.1 Model Theory

2.1 General Prerequisites

This course presupposes basic knowledge of First Order Predicate Calculus up to and includ-
ing the Soundness and Completeness Theorems. A familiarity with (at least the statement
of) the Compactness Theorem would also be desirable.

2.2 Overview

The course deepens a student’s understanding of the notion of a mathematical structure
and of the logical formalism that underlies every mathematical theory, taking B1 Logic as
a starting point. Various examples emphasise the connection between logical notions and
practical mathematics.

The concepts of completeness and categoricity will be studied and some more advanced
technical notions, up to elements of modern stability theory, will be introduced.

2.3 Learning Outcomes

Students will have developed an in depth knowledge of the notion of an algebraic mathe-
matical structure and of its logical theory, taking B1 Logic as a starting point. They will
have an understanding of the concepts of completeness and categoricity and more advanced
technical notions.

2.4 Synopsis

Structures. The first-order language for structures. The Compactness Theorem for first-
order logic. Elementary embeddings. Loewenheim-Skolem theorems. Preservation theorems
for substructures. Model Completeness. Quantifier elimination.

Categoricity for first-order theories. Types and saturation. Omitting types. The Ryll
Nardzewski theorem characterizing aleph-zero categorical theories. Theories with few types.
Ultraproducts.

2.5 Reading List

1. C.C. Chang and H. Jerome Keisler, Model Theory (Third Edition (Dover Books on
Mathematics)Paperback)

2. Tent and Ziegler, A Course in Model Theory, Cambridge University Press, April 2012
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3 C1.2 Gödel’s Incompleteness Theorems

3.1 General Prerequisites

This course presupposes knowledge of first-order predicate logic up to and including sound-
ness and completeness theorems for a formal system of first-order predicate logic (B1.1
Logic).

3.2 Overview

The starting point is Gödel’s mathematical sharpening of Hilbert’s insight that manipulating
symbols and expressions of a formal language has the same formal character as arithmetical
operations on natural numbers. This allows the construction for any consistent formal
system containing basic arithmetic of a ‘diagonal’ sentence in the language of that system
which is true but not provable in the system. By further study we are able to establish
the intrinsic meaning of such a sentence. These techniques lead to a mathematical theory
of formal provability which generalizes the earlier results. We end with results that further
sharpen understanding of formal provability.

3.3 Learning Outcomes

Understanding of arithmetization of formal syntax and its use to establish incompleteness
of formal systems; the meaning of undecidable diagonal sentences; a mathematical theory
of formal provability; precise limits to formal provability and ways of knowing that an
unprovable sentence is true.

3.4 Synopsis

Gödel numbering of a formal language; the diagonal lemma. Expressibility in a formal lan-
guage. The arithmetical undefinability of truth in arithmetic. Formal systems of arithmetic;
arithmetical proof predicates. Σ0-completeness and Σ1-completeness. The arithmetical hi-
erarchy. ω-consistency and 1-consistency; the first Gödel incompleteness theorem. Separa-
bility; the Rosser incompleteness theorem. Adequacy conditions for a provability predicate.
The second Gödel incompleteness theorem; Löb’s theorem. Provable Σ1-completeness. The
ω-rule. The system GL for provability logic. The fixed point theorem for GL. The Bernays
arithmetized completeness theorem; undecidable ∆2-sentences of arithmetic.

3.5 Reading List

Lecture notes for the course.

3.6 Further Reading

1. Raymond M. Smullyan, Gödel’s Incompleteness Theorems (Oxford University Press,
1992).
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2. George S. Boolos and Richard C. Jeffrey, Computability and Logic (3rd edition, Cam-
bridge University Press, 1989), Chs 15, 16, 27 (pp 170-190, 268-284).

3. George Boolos, The Logic of Provability (Cambridge University Press, 1993).

4 C1.3 Analytic Topology

4.1 General Prerequisites

Part A Topology, including the notions of a topological space, a continuous function and
a basis for a topology. A basic knowledge of Set Theory, including cardinal arithmetic,
ordinals and the Axiom of Choice, will also be useful.

4.2 Overview

The aim of the course is to present a range of major theory and theorems, both impor-
tant and elegant in themselves and with important applications within topology and to
mathematics as a whole. Central to the course is the general theory of compactness, com-
pactifications and Tychonoff’s theorem, one of the most important in all mathematics (with
applications across mathematics and in mathematical logic) and computer science.

4.3 Synopsis

Separation axioms. Subbases. Lindelöf and countably compact spaces. Seperable spaces.
Filters and ultrafilters. Convergence in terms of filters. Tychonoff’s theorem. Compactifica-
tions, in particular the Alexandroff One-Point Compactification and the Stone-&Ccaron;ech
Compactification. Proper maps. Completeness, connectedness and local connectedness.
Components and quasi-components. Urysohn’s metrization theorem. Paracompactness.
Stone’s Theorem; that metric spaces are paracompact. Totally disconnected compact spaces
and Stone duality.

4.4 Reading List

1. 1. S. Willard, General Topology (Addison-Wesley, 1970), Chs. 1-8.

2. R. Engelking, General Topology (Sigma Series in Pure Mathematics, Vol 6, 1989)

5 C1.4 Axiomatic Set Theory

5.1 General Prerequisites

This course presupposes basic knowledge of First Order Predicate Calculus up to and includ-
ing the Soundness and Completeness Theorems, together with a course on basic set theory,
including cardinals and ordinals, the Axiom of Choice and the Well Ordering Principle.
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5.2 Overview

Inner models and consistency proofs lie at the heart of modern Set Theory, historically as
well as in terms of importance. In this course we shall introduce the first and most important
of inner models, Gödel’s constructible universe, and use it to derive some fundamental
consistency results.

5.3 Synopsis

A review of the axioms of ZF set theory. Absoluteness, the recursion theorem. The Cumula-
tive Hierarchy of sets and the consistency of the Axiom of Foundation as an example of the
method of inner models. Levy’s Reflection Principle. Gödel’s inner model of constructible
sets and the consistency of the Axiom of Constructibility (V = L). V = L is absolute. The
fact that V = L implies the Axiom of Choice. Some advanced cardinal arithmetic. The
fact that V = L implies the Generalized Continuum Hypothesis.

5.4 Reading List

For the review of ZF set theory and the prerequisites from Logic:

1. D. Goldrei, Classic Set Theory (Chapman and Hall, 1996).

2. K. Kunen, The Foundations of Mathematics (College Publications, 2009).

For course topics (and much more):

1. K. Kunen, Set Theory (College Publications, 2011) Chapters (I and II).

5.5 Further Reading

1. K. Hrbacek and T. Jech, Introduction to Set Theory (3rd edition, M Dekker, 1999).

6 C2.1 Lie Algebras

6.1 General Prerequisites

B2.1 Introduction to Representation Theory is recommended. A thorough knowledge of
linear algebra and familiarity with group actions, quotient rings and vector spaces, iso-
morphism theorems and inner product spaces will be assumed. Some familiarity with the
Jordan-Hölder theorem and the general ideas of representation theory will be an advantage.

6.2 Overview

Lie Algebras are mathematical objects which, besides being of interest in their own right,
elucidate problems in several areas in mathematics. The classification of the finite-dimensional
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complex Lie algebras is a beautiful piece of applied linear algebra. The aims of this course
are to introduce Lie algebras, develop some of the techniques for studying them, and describe
parts of the classification mentioned above, especially the parts concerning root systems and
Dynkin diagrams.

6.3 Learning Outcomes

By the end of the course, students will be able to

1. Identify the basic classes of Lie algebras - nilpotent, solvable and simisimple, and be
able to give examples of them.

2. Use basic notions such as ideals and representations to analyse the structure of Lie
algebras, and employ the Cartan criteria in problems.

3. Use the theory developed in the course to calculate the Dynkin Diagram of (semi)simple
Lie algebra in examples.

6.4 Synopsis

Definition of Lie algebras, small-dimensional examples, some classical groups and their Lie
algebras (treated informally). Ideals, subalgebras, homomorphisms, modules.

Nilpotent algebras, Engel’s theorem; soluble algebras, Lie’s theorem. Semisimple algebras
and Killing form, Cartan’s criteria for solubility and semisimplicity, Weyl’s theorem on
complete reducibility of representations of semisimple Lie algebras.

The root space decomposition of a Lie algebra; root systems, Cartan matrices and Dynkin
diagrams. Discussion of classification of irreducible root systems and semisimple Lie alge-
bras.

6.5 Reading List

1. J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate
Texts in Mathematics 9 (Springer-Verlag, 1972, reprinted 1997). Chapters 1-3 are
relevant and part of the course will follow Chapter 3 closely.

2. B. Hall, Lie Groups, Lie Algebras, and Representations. An Elementary Introduction,
Graduate Texts in Mathematics 222 (Springer-Verlag, 2003).

3. K. Erdmann, M. J. Wildon, Introduction to Lie Algebras (Springer-Verlag, 2006),
ISBN: 1846280400.

6.6 Further Reading

1. J.-P. Serre, Complex Semisimple Lie Algebras (Springer, 1987). Rather condensed,
assumes the basic results. Very elegant proofs.
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2. N. Bourbaki, Lie Algebras and Lie Groups (Masson, 1982). Chapters 1 and 4-6 are
relevant; this text fills in some of the gaps in Serre’s text.

3. William Fulton, Joe Harris, Representation theory: a first course, GTM, Springer.

7 C2.2 Homological Algebra

7.1 General Prerequisites

A3 Rings and Modules is essential: good understanding of modules over fields (aka vector
spaces), polynomial rings, the ring of integers, and the ring of integers modulo n; good
familiarity with module homomorphisms, submodules, and quotient modules.

7.2 Overview

Homological algebra is one of the most important tools in mathematics with application
ranging from number theory and geometry to quantum physics. This course will introduce
the basic concepts and tools of homological algebra with examples in module theory and
group theory.

7.3 Learning Outcomes

Students will learn about abelian categories and derived functors and will be able to ap-
ply these notions in different contexts. They will learn to compute Tor, Ext, and group
cohomology and homology.

7.4 Synopsis

Overview of category theory: adjoint functors, limits and colimits, Abelian categories (2
hours)

Chain complexes: complexes of R-modules and in an abelian category, operations on chain
complexes, long exact sequences, chain homotopies, mapping cones and cylinders (3 hours)

Derived functors: delta functors, projective and injective resolutions, left and right derived
functors, adjoint functors and exactness, balancing Tor and Ext (5 hours)

Tor and Ext: Tor and flatness, Ext and extensions, universal coefficients theorems, Kunneth
formula, Koszul resolutions (3 hours)

Group homology and cohomology: definition, basic properties, cyclic groups, interpretation
of H1 and H2, the Bar resolution (3 hours).

7.5 Reading List

1. Weibel, Charles An introduction to Homological algebra (see Google Books)
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8 C2.3 Representation Theory of Semisimple Lie Algebras

8.1 General Prerequisites

C2.1 Lie algebras is recommended, but not required. Results from that course will be used
but stated. B2.1 Introduction to Representation Theory is recommended also, by way of a
first introduction to ideas of representation theory.

8.2 Overview

The representation theory of semisimple Lie algebras plays a central role in modern mathe-
matics with motivation coming from many areas of mathematics and physics, for example,
the Langlands program. The methods involved in the theory are diverse and include re-
markable interactions with algebraic geometry, as in the proofs of the Kazhdan-Lusztig and
Jantzen conjectures.

The course will cover the basics of finite dimensional representations of semisimple Lie
algebras (e.g., the Cartan-Weyl highest weight classification) in the framework of the larger
Bernstein-Gelfand-Gelfand category O.

8.3 Learning Outcomes

The students will have developed a comprehensive understanding of the basic concepts
and modern methods in the representation theory of semisimple Lie algebras, including
the classification of finite dimensional modules, the classification of objects in category
&bigcirc;, character formulas, Lie algebra cohomology and resolutions of finite dimensional
modules.

8.4 Synopsis

Universal enveloping algebra of a Lie algebra, Poincaré-Birkhoff-Witt theorem, basic defi-
nitions and properties of representations of Lie algebras, tensor products.

The example of sl(2): finite dimensional modules, highest weights.

Category O: Verma modules, highest weight modules, infinitesimal characters and Harish-
Chandra’s isomorphism, formal characters, contravariant (Shapovalov) forms.

Finite dimensional modules of a semisimple Lie algebra: the Cartan-Weyl classification,
Weyl character formula, dimension formula, Kostant’s multiplicity formula, examples.

Homological algebra: Lie algebra cohomology, Bernstein-Gelfand-Gelfand resolution of fi-
nite dimensional modules, Ext groups in category O.

Topics: applications, Bott’s dimension formula for Lie algebra cohomology groups, charac-
ters of the symmetric group (via Zelevinsky’s application of the BGG resolution to Schur-
Weyl duality).
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8.5 Reading List

1. Course Lecture Notes.

2. J. Bernstein ”Lectures on Lie algebras”, in Representation Theory, Complex Analysis,
and Integral Geometry (Springer 2012).

8.6 Further Reading

1. J. Humphreys, Representations of semisimple Lie algebras in the BGG category O
(AMS, 2008).

2. J. Humphreys, Introduction to Lie algebras and representation theory (Springer, 1997).

3. W. Fulton, J. Harris, Representation Theory (Springer 1991).

9 C2.4 Infinite Groups

9.1 General Prerequisites

Knowledge of the first and second-year algebra courses is helpful but not mandatory; in
particular Prelims M1: Groups and Group Actions, A0: Linear Algebra, and ASO: Group
Theory. Likewise, the course B3.5 Topology and Groups would bring more familiarity and
a different viewpoint of the notions treated in this course.

9.2 Overview

The course introduces some natural families of groups, with an emphasis on those that
generalize abelian groups, various questions that one can ask about them, and various
methods used to answer these questions; these involve among other things questions of
finite presentability, linearity, torsion and growth.

9.3 Synopsis

Free groups; ping-pong lemma. Finitely generated and finitely presented groups. Residual
finiteness and linearity.

Nilpotency, lower and upper central series. Polycyclic groups, length, Hirsch length, Noethe-
rian induction. Solvable groups, derived series, law. Structure of linear solvable and nilpo-
tent groups.

Solvable versus polycyclic: examples, characterization of polycyclic groups as solvable Z-
linear groups. Solvable versus nilpotent: the Milnor -Wolf theorem characterizing nilpotent
groups as solvable groups with sub-exponential (and in fact polynomial) growth.
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9.4 Reading List

1. C. Drutu, M. Kapovich, Geometric Group Theory, (AMS, 2018), Chapters 13 and 14.

2. D. Segal, Polycyclic groups, (CUP, 2005) Chapters 1 and 2.

3. D. J. S. Robinson, A course in the theory of groups, 2nd ed., Graduate texts in
Mathematics, (Springer-Verlag, 1995). Chapters 2, 5, 6, 15.

10 C2.5 Non-Commutative Rings

10.1 General Prerequisites

General Prerequisites: All the material of A3 Rings and Modules is essential: Basic prop-
erties of rings and modules. Ideals, prime ideals. Principal ideal rings, unique factorization
rings, Euclidean rings. Finite fields. Modules over Euclidean rings.

Recommended material: From B2.1 Introduction to Representation Theory: semisimple
modules and algebras, the Artin - Wedderburn theorem. From B2.2 Commutative Algebra:
Noetherian rings and modules. Hilbert’s basis theorem. Krull dimension.

10.2 Overview

This course builds on Algebra 2 from the second year. We will look at several classes of non-
commutative rings and try to explain the idea that they should be thought of as functions
on ”non-commutative spaces”. Along the way, we will prove several beautiful structure
theorems for Noetherian rings and their modules.

10.3 Learning Outcomes

Students will be able to appreciate powerful structure theorems, and be familiar with ex-
amples of non-commutative rings arising from various parts of mathematics.

10.4 Synopsis

Examples of non-commutative Noetherian rings: enveloping algebras, rings of differential
operators, group rings of polycyclic groups. Filtered and graded rings. (3 hours)

Jacobson radical in general rings. Jacobson’s density theorem. Artin-Wedderburn. (3
hours)

Ore localisation. Goldie’s Theorem on Noetherian domains. (3 hours)

Minimal prime ideals and dimension functions. Rees rings and good filtrations. (3 hours)

Bernstein’s Inequality and Gabber’s Theorem on the integrability of the characteristic va-
riety. (4 hours)
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10.5 Reading List

1. K.R. Goodearl and R.B. Warfield, An Introduction to Noncommutative Noetherian
Rings (CUP, 2004).

10.6 Further Reading

1. M. Atiyah and I. MacDonald, Introduction to Commutative Algebra (Westview Press,
1994).

2. S.C. Coutinho, A Primer of Algebraic D-modules (CUP, 1995).

3. J. Björk, Analytic D-Modules and Applications (Springer, 1993).

11 C2.6 Introduction to Schemes

11.1 General Prerequisites

B2.2 Commutative Algebra is essential. C2.2 Homological Algebra is highly recommended
and C2.7 Category Theory is recommended but the necessary material from both courses
can be learnt during the course. C3.4 Algebraic Geometry is strongly recommended but
not technically necessary. C3.1 Algebraic Topology contains many homological techniques
also used in this course.

11.2 Overview

Scheme theory is the foundation of modern algebraic geometry, whose origins date back to
the work from the 1950s and 1960s by Jean-Pierre Serre and Alexander Grothendieck. It
unifies algebraic geometry with algebraic number theory. This unification has led to proofs
of important conjectures in number theory such as the Weil conjecture by Deligne and the
Mordell conjecture by Faltings.

This course will cover the basics of the theory of schemes.

11.3 Learning Outcomes

Students will have developed a thorough understanding of the basic concepts and methods
of scheme theory. They will be able to work with affine and projective schemes, as well as
with (quasi-)coherent sheaves and their cohomology groups.

11.4 Synopsis

The Spec of a ring, Zariski topology, comparison with classical algebraic geometry.

Pre-sheaves and stalks, sheaves, sheafification. The abelian category of sheaves of abelian
groups on a topological space. Direct and inverse images of sheaves. Sheaves defined on a
topological basis.
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Ringed spaces and morphisms of ringed spaces. Affine schemes, construction of the structure
sheaf, the equivalence of categories defined by Spec.

Schemes, closed subschemes. Global sections. The functor of points.

Properties of schemes: (locally) Noetherian, reduced, irreducible, and integral schemes.
Properties of morphisms of schemes: finite type, open/closed immersions, flatness. Simple
examples of flat families of schemes arising from deformations.

Gluing sheaves. Gluing schemes. Affine and projective n-space viewed as schemes.

Products, coproducts and fiber products in category theory. Existence of products of
schemes. Fibers and pre-images of morphisms of schemes. Base change.

Further properties of morphisms of schemes: separated, universally closed, and proper
morphisms. Projective n-space and projective morphisms. Abstract varieties. Complete
varieties. Scheme structure on a closed subset of a scheme.

Sheaves of modules. Vector bundles and coherent sheaves. The abelian category of sheaves
of modules over a scheme. Pull-backs.

Quasi-coherent sheaves. Gluing sheaves of modules. Classification of (quasi-)coherent
sheaves on Spec of a ring.

Čech cohomology. Vanishing of higher cohomology groups of quasi-coherent sheaves on
affine schemes. Independence of Čech cohomology on the choice of open cover. Line bundles,
examples on projective n-space.

Sheaf cohomology. Acyclic resolutions. Comparison of sheaf cohomology and Čech coho-
mology.

Brief discussion of (quasi-)coherent sheaves on projective n-space, graded modules, and Proj
of a graded ring.

11.5 Reading List

1. Robin Hartshorne, Algebraic Geometry.

2. Ravi Vakil, Foundations of Algebraic Geometry, online notes on the website of Stanford
University (open access)

11.6 Further Reading

1. David Mumford, The Red Book of Varieties and Schemes.

2. David Eisenbud and Joe Harris, The Geometry of Schemes.

3. George R. Kempf, Algebraic Varieties.
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12 C2.7 Category Theory

12.1 General Prerequisites

There are no essential prerequisites but familiarity with the basic theory of groups, rings,
vector spaces, modules and topological spaces would be very useful, and other topics such as
Algebraic Geometry, Algebraic Topology, Homological Algebra and Representation Theory
are relevant. Category Theory also has links with Logic and Set Theory, but this course
will not stress those links.

12.2 Overview

Category theory brings together many areas of pure mathematics (and also has close links
to logic and to computer science). It is based on the observation that many mathematical
topics can be unified and simplified by using descriptions in terms of diagrams of arrows;
the arrows represent functions of suitable types. Moreover many constructions in pure
mathematics can be described in terms of ’universal properties’ of such diagrams.

The aim of this course is to provide an introduction to category theory using a host of
familiar examples, to explain how these examples fit into a categorical framework and to
use categorical ideas to make new constructions.

12.3 Learning Outcomes

Students will have developed a thorough understanding of the basic concepts and methods
of category theory. They will be able to work with commutative diagrams, naturality and
universality properties and adjoint functors, and to apply categorical ideas and methods in
a wide range of areas of mathematics.

12.4 Synopsis

Introduction: universal properties in linear and multilinear algebra.

Categories, functors, natural transformations. Examples including categories of sets, groups,
rings, vector spaces and modules, topological spaces. Groups, monoids and partially ordered
sets as categories. Opposite categories and the principle of duality. Covariant, contravari-
ant, faithful and full functors. Equivalences of categories.

Adjoints: definition and examples including free and forgetful functors and abelianisations
of groups. Adjunctions via units and counits, adjunctions via initial objects.

Representables: definitions and examples including tensor products. The Yoneda lemma
and applications.

Limits and colimits, including products, equalizers, pullbacks and pushouts. Monics and
epics. Interaction between functors and limits.

Monads and comonads, algebras over a monad, Barr-Beck monadicity theorem (proof not
examinable). The category of affine schemes as the opposite of the category of commutative
rings.
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12.5 Reading List

1. T. Leinster, Basic category theory, (CUP, 2014) Chapters 1-5, available online arXiv:
1612.09375

2. E. Riehl, Category theory in context (Dover, 2016) Chapters 1-5, available online
www.math.jhu.edu/ eriehl/context.pdf

12.6 Further Reading

1. S. Awodey, Category theory, Oxford Logic Guides (OUP, 2010)

2. D. Eisenbud, J. Harris, The geometry of schemes.

3. S. Lang, Linear algebra 2nd edition, (Addison Wesley, 1971) Chapter XIII, out of
print but may be available in college libraries.

4. S. Mac Lane, Categories for the Working Mathematician, 2nd ed., (Springer, 1998)

5. D.G. Northcott, Multilinear algebra (CUP, reissued 2009)

6. E. Riehl, Categorical Homotopy theory (CUP, 2014), available online at www.math.jhu.edu/ eriehl/cathtpy.pdf

13 C3.1 Algebraic Topology

13.1 General Prerequisites

A3 Rings and Modules is essential, in particular a solid understanding of groups, rings, fields,
modules, homomorphisms of modules, kernels and cokernels, and classification of finitely
generated abelian groups. A5 Topology is essential, in particular a solid understanding of
topological spaces, connectedness, compactness, and classification of compact surfaces. B3.5
Topology and Groups is helpful but not necessary, in particular the notion of homotopic
maps, homotopy equivalences, and fundamental groups will be recalled during the course.
There will be little mention of homotopy theory in this course as the focus will be instead
on homology and cohomology. It is recommended, but not required, that students take
C2.2 Homological Algebra concurrently.

13.2 Overview

Homology theory is a subject that pervades much of modern mathematics. Its basic ideas
are used in nearly every branch, pure and applied. In this course, the homology groups of
topological spaces are studied. These powerful invariants have many attractive applications.
For example we will prove that the dimension of a vector space is a topological invariant
and the fact that ’a hairy ball cannot be combed’.

28



13.3 Learning Outcomes

At the end of the course, students are expected to understand the basic algebraic and
geometric ideas that underpin homology and cohomology theory. These include the cup
product and Poincaré Duality for manifolds. They should be able to choose between the
different homology theories and to use calculational tools such as the Mayer-Vietoris se-
quence to compute the homology and cohomology of simple examples, including projective
spaces, surfaces, certain simplicial spaces and cell complexes. At the end of the course,
students should also have developed a sense of how the ideas of homology and cohomology
may be applied to problems from other branches of mathematics.

13.4 Synopsis

Brief introduction to categories and functors. Applications of homology theory: Invariance
of dimension, Brower fixed point theorem.

Chain complexes of free Abelian groups and their homology. Short exact sequences. of
chain complexes, the induced long exact sequence in homology, and naturality. The snake
lemma, the five lemma, splitting properties for short exact sequences.

Simplicial homology via Delta complexes.

Singular homology of topological spaces, and functoriality. Relative homology. Chain ho-
motopies, homotopy equivalences. Homotopy invariance and excision (details of proofs not
examinable). Retractions, deformation retractions, quotients.

Mayer-Vietoris Sequence. Wedge sums, cones, suspensions, connected sums.

Degree of a self-map of a sphere. Application: the hairy ball theorem.

Cell complexes and cellular homology. Equivalence of simplicial, cellular and singular ho-
mology.

Cochains and cohomology of spaces. Cup products.

Künneth Theorem (without proof). Euler characteristic. Ext and Tor groups via free
resolutions. (Co)homology with different coefficients. The Universal Coefficient Theorem
(proof not examinable).

Topological manifolds and orientability. The fundamental class of an orientable, closed
manifold and the degree of a map between manifolds of the same dimension. Poincaré
duality (proof not examinable). Manifolds with boundary and Poincaré-Lefschetz duality
(proof not examinable). Brief discussion of locally finite homology, and cohomology with
compact supports. Cap product.

Alexander duality. Applications: knot complements, Jordan curve theorem.

13.5 Reading List

1. A. Hatcher, Algebraic Topology (Cambridge University Press, 2001). Chapters 2 and
3.

2. G. Bredon, Topology and Geometry (Springer, 1997). Chapters 4 and 5.
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3. J. Vick, Homology Theory, Graduate Texts in Mathematics 145 (Springer, 1973).

13.6 Further Reading

1. W.S. Massey, A Basic Course in Algebraic Topology, (Springer, GTM 127, 1991).

2. P. May, A Concise Course in Algebraic Topology (University of Chicago Press, 1999).

3. J. Davis and P. Kirk, Lecture Notes in Algebraic Topology (AMS, 2001).

14 C3.2 Geometric Group Theory

14.1 General Prerequisites

Some familiarity with Cayley graphs, fundamental group and covering spaces (as for example
in the course B3.5 Topology & Groups) would be a helpful though not essential prerequisite.

14.2 Overview

The aim of this course is to introduce the fundamental methods and problems of geometric
group theory and discuss their relationship to topology and geometry.

The first part of the course begins with an introduction to presentations and the list of
problems of M. Dehn. It continues with the theory of group actions on trees and the
structural study of fundamental groups of graphs of groups.

The second part of the course focuses on modern geometric techniques and it provides an
introduction to the theory of Gromov hyperbolic groups.

14.3 Synopsis

Free groups. Group presentations. Dehn’s problems. Residually finite groups.

Group actions on trees. Amalgams, HNN-extensions, graphs of groups, subgroup theorems
for groups acting on trees.

Quasi-isometries. Hyperbolic groups. Solution of the word and conjugacy problem for
hyperbolic groups.

If time allows: Small Cancellation Groups, Stallings Theorem, Boundaries.

14.4 Reading List

1. J.P. Serre, Trees (Springer Verlag 1978).

2. M. Bridson, A. Haefliger, Metric Spaces of Non-positive Curvature, Part III (Springer,
1999), Chapters I.8, III.H.1, III. Γ5.
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3. H. Short et al., ’Notes on word hyperbolic groups’, Group Theory from a Geometrical
Viewpoint, Proc. ICTP Trieste (eds E. Ghys, A. Haefliger, A. Verjovsky, World
Scientific 1990), available online at: http://www.cmi.univ-mrs.fr/~hamish/

4. C.F. Miller, Combinatorial Group Theory, notes: http://www.ms.unimelb.edu.au/

~cfm/notes/cgt-notes.pdf

14.5 Further Reading

1. G. Baumslag, Topics in Combinatorial Group Theory (Birkhauser, 1993).

2. O. Bogopolski, Introduction to Group Theory (EMS Textbooks in Mathematics, 2008).

3. R. Lyndon, P. Schupp, Combinatorial Group Theory (Springer, 2001).

4. W. Magnus, A. Karass, D. Solitar,Combinatorial Group Theory: Presentations of
Groups in Terms of Generators and Relations (Dover Publications, 2004).

5. P. de la Harpe, Topics in Geometric Group Theory, (University of Chicago Press,
2000).

15 C3.3 Differentiable Manifolds

15.1 General Prerequisites

A5: Topology and ASO: Introduction to Manifolds are strongly recommended. (Notions of
Hausdorff, open covers, smooth functions on Rn will be used without further explanation.)
Useful but not essential: B3.2 Geometry of Surfaces.

15.2 Overview

A manifold is a space such that small pieces of it look like small pieces of Euclidean space.
Thus a smooth surface, the topic of the Geometry of Surfaces course, is an example of a
(2-dimensional) manifold.

Manifolds are the natural setting for parts of classical applied mathematics such as mechan-
ics, as well as general relativity. They are also central to areas of pure mathematics such as
topology and certain aspects of analysis.

In this course we introduce the tools needed to do analysis on manifolds. We prove a very
general form of Stokes’ Theorem which includes as special cases the classical theorems of
Gauss, Green and Stokes. We also introduce the theory of de Rham cohomology, which is
central to many arguments in topology.

15.3 Learning Outcomes

The candidate will be able to manipulate with ease the basic operations on tangent vectors,
differential forms and tensors both in a local coordinate description and a global coordinate-

31

http://www.cmi.univ-mrs.fr/~hamish/
http://www.ms.unimelb.edu.au/~cfm/notes/cgt-notes.pdf
http://www.ms.unimelb.edu.au/~cfm/notes/cgt-notes.pdf


free one; have a knowledge of the basic theorems of de Rham cohomology and some simple
examples of their use; know what a Riemannian manifold is and what geodesics are.

15.4 Synopsis

Smooth manifolds and smooth maps. Tangent vectors, the tangent bundle, induced maps.
Vector fields and flows, the Lie bracket and Lie derivative.

Exterior algebra, differential forms, exterior derivative, Cartan formula in terms of Lie
derivative. Orientability. Partitions of unity, integration on oriented manifolds.

Stokes’ theorem. De Rham cohomology. Applications of de Rham theory including degree.

Riemannian metrics. Isometries. Geodesics.

15.5 Reading List

1. M. Spivak, Calculus on Manifolds, (W. A. Benjamin, 1965).

2. M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol. 1, (1970).

3. W. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry,
2nd edition, (Academic Press, 1986).

4. M. Berger and B. Gostiaux, Differential Geometry: Manifolds, Curves and Surfaces.
Translated from the French by S. Levy, (Springer Graduate Texts in Mathematics,
115, Springer–Verlag (1988)) Chapters 0-3, 5-7.

5. F. Warner, Foundations of Differentiable Manifolds and Lie Groups, (Springer Grad-
uate Texts in Mathematics, 1994).

6. D. Barden and C. Thomas, An Introduction to Differential Manifolds. (Imperial
College Press, London, 2003.)

16 C3.4 Algebraic Geometry

16.1 General Prerequisites

A3 Rings and Modules and B2.2 Commutative Algebra are essential. Noetherian rings, the
Noether normalisation lemma, integrality, the Hilbert Nullstellensatz and dimension theory
will play an important role in the course. B3.3 Algebraic Curves is useful but not essential.
Projective spaces and homogeneous coordinates will be defined in C3.4, but a working
knowledge of them would be useful. There is some overlap of topics, as B3.3 studies the
algebraic geometry of one-dimensional varieties. Courses closely related to C3.4 include
C2.2 Homological Algebra, C2.7 Category Theory, C3.7 Elliptic Curves, C2.6 Introduction
to Schemes; and partly related to: C3.1 Algebraic Topology, C3.3 Differentiable Manifolds,
C3.5 Lie Groups.
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16.2 Overview

Algebraic geometry is the study of algebraic varieties: an algebraic variety is roughly speak-
ing, a locus defined by polynomial equations. One of the advantages of algebraic geometry
is that it is purely algebraically defined and applied to any field, including fields of finite
characteristic. It is geometry based on algebra rather than calculus, but over the real or
complex numbers it provides a rich source of examples and inspiration to other areas of
geometry.

16.3 Synopsis

Affine algebraic varieties, the Zariski topology, morphisms of affine varieties. Irreducible
varieties.

Projective space. Projective varieties, affine cones over projective varieties. The Zariski
topology on projective varieties. The projective closure of affine variety. Morphisms of
projective varieties. Projective equivalence.

Veronese morphism: definition, examples. Veronese morphisms are isomorphisms onto their
image; statement, and proof in simple cases. Subvarieties of Veronese varieties. Segre maps
and products of varieties.

Coordinate rings. The geometric form of Hilbert’s Nullstellensatz. Correspondence between
affine varieties (and morphisms between them) and finitely generated reduced K-algebras
(and morphisms between them). Graded rings and homogeneous ideals. Homogeneous
coordinate rings.

Discrete invariants of projective varieties: degree, dimension, Hilbert function. Statement
of theorem defining Hilbert polynomial.

Quasi-projective varieties, and morphisms between them. The Zariski topology has a basis
of affine open subsets. Rings of regular functions on open subsets and points of quasi-
projective varieties. The ring of regular functions on an affine variety is the coordinate ring.
Localisation and relationship with rings of regular functions.

Tangent space and smooth points. The singular locus is a closed subvariety. Algebraic
re-formulation of the tangent space. Differentiable maps between tangent spaces.

Function fields of irreducible quasi-projective varieties. Rational maps between irreducible
varieties, and composition of rational maps. Birational equivalence. Correspondence be-
tween dominant rational maps and homomorphisms of function fields. Blow-ups: of affine
space at a point, of subvarieties of affine space, and of general quasi-projective varieties
along general subvarieties. Statement of Hironaka’s Desingularisation Theorem. Every irre-
ducible variety is birational to a hypersurface. Re-formulation of dimension. Smooth points
are a dense open subset.

16.4 Reading List

1. Karen E. Smith, An invitation to algebraic geometry
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16.5 Further Reading

1. M Reid, Undergraduate Algebraic Geometry

2. K Hulek, Elementary Algebraic Geometry

3. A Gathmann, Algebraic Geometry lecture notes, online: www.mathematik.uni-kl.

de/en/agag/members/professors/gathmann/notes/alggeom

4. Shafarevich, Basic Algebraic Geometry 1

5. D Mumford, The Red Book of Varieties and Schemes

17 C3.5 Lie Groups

17.1 General Prerequisites

ASO: Group Theory, A5: Topology and ASO: Introduction to Manifolds are all useful but
not essential. It would be desirable to have seen notions of derivative of maps from Rn to
Rm, inverse and implicit function theorems, and submanifolds of Rn. Acquaintance with
the notion of an abstract manifold would be helpful but not really necessary.

17.2 Overview

The theory of Lie Groups is one of the most beautiful developments of pure mathematics
in the twentieth century, with many applications to geometry, theoretical physics and me-
chanics. The subject is an interplay between geometry, analysis and algebra. Lie groups are
groups which are simultaneously manifolds, that is geometric objects where the notion of
differentiability makes sense, and the group multiplication and inversion are differentiable
maps. The majority of examples of Lie groups are the familiar groups of matrices. The
course does not require knowledge of differential geometry: the basic tools needed will be
covered within the course.

17.3 Learning Outcomes

Students will have learnt the fundamental relationship between a Lie group and its Lie
algebra, and the basics of representation theory for compact Lie groups. This will include a
firm understanding of maximal tori and the Weyl group, and their role for representations.

17.4 Synopsis

Brief introduction to manifolds. Classical Lie groups. Left-invariant vector fields, Lie
algebra of a Lie group. One-parameter subgroups, exponential map. Homomorphisms of
Lie groups and Lie algebras. Ad and ad. Compact connected abelian Lie groups are tori.
The Campbell-Baker-Hausdorff series (statement only).

Lie subgroups. Definition of embedded submanifolds. A subgroup is an embedded Lie
subgroup if and only if it is closed. Continuous homomorphisms of Lie groups are smooth.
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Correspondence between Lie subalgebras and Lie subgroups (proved assuming the Frobenius
theorem). Correspondence between Lie group homomorphisms and Lie algebra homomor-
phisms. Ado’s theorem (statement only), Lie’s third theorem.

Basics of representation theory: sums and tensor products of representations, irreducibil-
ity, Schur’s lemma. Compact Lie groups: left-invariant integration, complete reducibility.
Representations of the circle and of tori. Characters, orthogonality relations. Peter-Weyl
theorem (statement only).

Maximal tori. Roots. Conjugates of a maximal torus cover a compact connected Lie group.
Weyl group. Reflections. Weyl group of U(n). Representations of a compact connected Lie
group are the Weyl-invariant representations of a maximal torus (proof of inclusion only).
Representation ring of T&subn; and U(n).

Killing form. Remarks about the classification of compact Lie groups.

17.5 Reading List

1. J. F. Adams, Lectures on Lie Groups (University of Chicago Press, 1982).

2. T. Bröcker and T. tom Dieck, Representations of Compact Lie Groups (Graduate
Texts in Mathematics, Springer, 1985).

17.6 Further Reading

1. R. Carter, G. Segal and I. MacDonald, Lectures on Lie Groups and Lie Algebras
(LMS Student Texts, Cambridge, 1995).

2. W. Fulton, J. Harris, Representation Theory: A First Course (Graduate Texts in
Mathematics, Springer, 1991).

3. F. W. Warner, Foundations of Differentiable Manifolds and Lie Groups (Graduate
Texts in Mathematics, 1983).

18 C3.6 Modular Forms

18.1 General Prerequisites

Part A Number Theory, Topology and Part B Geometry of Surfaces, Algebraic Curves (or
courses covering similar material) are useful but not essential.

18.2 Overview

The course aims to introduce students to the beautiful theory of modular forms, one of
the cornerstones of modern number theory. This theory is a rich and challenging blend
of methods from complex analysis and linear algebra, and an explicit application of group
actions.
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18.3 Learning Outcomes

The student will learn about modular curves and spaces of modular forms, and understand
in special cases how to compute their genus and dimension, respectively. They will see that
modular forms can be described explicitly via their q-expansions, and they will be familiar
with explicit examples of modular forms. They will learn about the rich algebraic structure
on spaces of modular forms, given by Hecke operators and the Petersson inner product.

18.4 Synopsis

Overview and examples of modular forms. Definition and basic properties of modular
forms. Topology of modular curves: a fundamental domain for the full modular group;
fundamental domains for subgroups Γ of finite index in the modular group; the compact
surfaces XΓ; explicit triangulations of XΓ and the computation of the genus using the
Euler characteristic formula; the congruence subgroups Γ(N),Γ0(N) and Γ1(N); examples
of genus computations. Dimensions of spaces of modular forms: general dimension formula
(proof non-examinable); the valence formula (proof non-examinable). Examples of modular
forms: Eisenstein series in level 1; Ramanujan’s ∆-function; some arithmetic applications.
The Petersson inner product. Modular forms as functions on lattices: modular forms of
level 1 as functions on lattices; Eisenstein series revisited. Hecke operators in level 1: Hecke
operators on lattices; Hecke operators on modular forms and their q-expansions; Hecke
operators are Hermitian; multiplicity one.

18.5 Reading List

1. F. Diamond and J. Shurman, A First Course in Modular Forms, Graduate Texts in
Mathematics 228, Springer-Verlag, 2005

2. R.C. Gunning, Lectures on Modular Forms, Annals of mathematical studies 48, Prince-
ton University Press, 1962.

3. J.S. Milne, Modular Functions and Modular Forms, www.jmilne.org/math/CourseNotes/mf.html

4. J.-P. Serre, A Course in Arithmetic, Chapter VII, Graduate Texts in Mathematics 7,
Springer-Verlag, 1973.

19 C3.7 Elliptic Curves

19.1 General Prerequisites

It is helpful, but not essential, if students have already taken a standard introduction to
algebraic curves and algebraic number theory. For those students who may have gaps in
their background, I have placed the file ”Preliminary Reading” permanently on the Elliptic
Curves webpage, which gives in detail (about 30 pages) the main prerequisite knowledge
for the course.
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19.2 Overview

Elliptic curves give the simplest examples of many of the most interesting phenomena
which can occur in algebraic curves; they have an incredibly rich structure and have been
the testing ground for many developments in algebraic geometry whilst the theory is still
full of deep unsolved conjectures, some of which are amongst the oldest unsolved problems
in mathematics. The course will concentrate on arithmetic aspects of elliptic curves defined
over the rationals, with the study of the group of rational points, and explicit determination
of the rank, being the primary focus. Using elliptic curves over the rationals as an example,
we will be able to introduce many of the basic tools for studying arithmetic properties of
algebraic varieties.

19.3 Learning Outcomes

On completing the course, students should be able to understand and use properties of
elliptic curves, such as the group law, the torsion group of rational points, and 2-isogenies
between elliptic curves. They should be able to understand and apply the theory of fields
with valuations, emphasising the p-adic numbers, and be able to prove and apply Hensel’s
Lemma in problem solving. They should be able to understand the proof of the Mordell-Weil
Theorem for the case when an elliptic curve has a rational point of order 2, and compute
ranks in such cases, for examples where all homogeneous spaces for descent-via-2-isogeny
satisfy the Hasse principle. They should also be able to apply the elliptic curve method for
the factorisation of integers.

19.4 Synopsis

Non-singular cubics and the group law; Weierstrass equations.

Elliptic curves over finite fields; Hasse estimate (stated without proof).

p-adic fields (basic definitions and properties).

1-dimensional formal groups (basic definitions and properties).

Curves over p-adic fields and reduction mod p.

Computation of torsion groups over Q; the Nagell-Lutz theorem.

2-isogenies on elliptic curves defined over Q, with a Q-rational point of order 2.

Weak Mordell-Weil Theorem for elliptic curves defined over Q, with a Q-rational point of
order 2.

Height functions on Abelian groups and basic properties.

Heights of points on elliptic curves defined over Q; statement (without proof) that this gives
a height function on the Mordell-Weil group.

Mordell-Weil Theorem for elliptic curves defined over Q, with a Q-rational point of order 2.

Explicit computation of rank using descent via 2-isogeny.

Public keys in cryptography; Pollard’s (p − 1) method and the elliptic curve method of
factorisation.
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19.5 Reading List

1. J.W.S. Cassels, Lectures on Elliptic Curves, LMS Student Texts 24 (Cambridge Uni-
versity Press, 1991).

2. N. Koblitz, A Course in Number Theory and Cryptography, Graduate Texts in Math-
ematics 114 (Springer, 1987).

3. J.H. Silverman and J. Tate, Rational Points on Elliptic Curves, Undergraduate Texts
in Mathematics (Springer, 1992).

4. J.H. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics
106 (Springer, 1986).

19.6 Further Reading

1. A. Knapp, Elliptic Curves, Mathematical Notes 40 (Princeton University Press, 1992).

2. G, Cornell, J.H. Silverman and G. Stevans (editors), Modular Forms and Fermat’s
Last Theorem (Springer, 1997).

3. J.H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Graduate Texts
in Mathematics 151 (Springer, 1994).

20 C3.8 Analytic Number Theory

20.1 General Prerequisites

Basic ideas of complex analysis. Elementary number theory. Some familiarity with Fourier
series will be helpful but not essential.

20.2 Overview

The aim of this course is to study the prime numbers using the famous Riemann ζ-function.
In particular, we will study the connection between the primes and the zeros of the ζ-
function. We will state the Riemann hypothesis, perhaps the most famous unsolved problem
in mathematics, and examine its implication for the distribution of primes. We will prove the
prime number theorem, which states that the number of primes less than X is asymptotic
to X/ logX.

20.3 Learning Outcomes

In addition to the highlights mentioned above, students will gain experience with different
types of Fourier transform and with the use of complex analysis.
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20.4 Synopsis

Introductory material on primes. Arithmetic functions: Möbius function, Euler’s φ-function,
the divisor function, the σ-function. Multiplicativity. Dirichlet series and Euler products.
The von Mangoldt function.

The Riemann ζ-function for <(s) > 1. Euler’s proof of the infinitude of primes. ζ and the
von Mongoldt function.

Schwarz functions on R, Z, R/Z and their Fourier transforms. *Inversion formulas and
uniqueness*. The Poisson summation formula. The meromorphic continuation and func-
tional equation of the ζ-function. Poles and zeros of ζ and statement of the Riemann
hypothesis. Basic estimates for ζ.

The classical zero-free region. Proof of the prime number theorem. Implications of the
Riemann hypothesis for the distribution of primes.

20.5 Reading List

Full printed notes will be provided for the course, including the non-examinable topics
(marked with asterisks above). The following books are relevant to the course.

1. G. H. Hardy and E. M. Wright, An introduction to the Theory of Numbers (Sixth
edition, OUP 2008). Chapters 16, 17, 18.

2. H. Davenport, Multiplicative number theory (Third Edition, Springer Graduate texts
74), selected parts of the first half.

3. M. du Sautoy, Music of the primes (this is a popular book which could be useful
background reading for the course).

21 C3.9 Computational Algebraic Topology

21.1 General Prerequisites

Some familiarity with the main concepts from algebraic topology, homological algebra and
category theory will be helpful.

21.2 Overview

Ideas and tools from algebraic topology have become more and more important in compu-
tational and applied areas of mathematics. This course will provide at the masters level an
introduction to the main concepts of (co)homology theory, and explore areas of applications
in data analysis and in foundations of quantum mechanics and quantum information.
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21.3 Learning Outcomes

Students should gain a working knowledge of homology and cohomology of simplicial sets
and sheaves, and improve their geometric intuition. Furthermore, they should gain an
awareness of a variety of application in rather different, research active fields of applications
with an emphasis on data analysis and contextuality.

21.4 Synopsis

The course has two parts. The first part will introduce students to the basic concepts and
results of (co)homology, including sheaf cohomology. In the second part applied topics are
introduced and explored.

Core: Homology and cohomology of chain complexes. Algorithmic computation of bound-
ary maps (with a view of the classification theorm for finitely generated modules over a
PID). Chain homotopy. Snake Lemma. Simplicial complexes. Other complexes (Delaunay,
Cech). Mayer-Vietoris sequence. Poincare duality. Alexander duality. Acyclic carriers.
Discrete Morse theory. (6 lectures)

Topic A: Persistent homology: barcodes and stability, applications todata analysis, gener-
alisations. (4 lectures)

Topic B: Sheaf cohomology and applications to quantum non-locality and contextuality.Sheaf-
theoretic representation of quantum non-locality and contextuality asobstructions to global
sections. Cohomological characterizations and proofs of contextuality.(6 lectures)

21.5 Reading List

H. Edelsbrunner and J.L. Harer, Computational Topology - An Introduction,AMS (2010).

See also, U. Tillmann, Lecture notes for CAT 2012, in http://people.maths.ox.ac.uk/

tillmann/CAT.html

Topic A:

1. G. Carlsson, Topology and data, Bulletin A.M.S.46 (2009), 255-308.

2. H. Edelsbrunner, J.L. Harer, Persistent homology: A survey, Contemporary Mathe-
matics 452 A.M.S. (2008), 257-282.

3. S. Weinberger, What is ... Persistent Homology?, Notices A.M.S. 58 (2011), 36-39.

4. P. Bubenik, J. Scott, Categorification of Persistent Homology, Discrete Comput.
Geom. (2014), 600-627.

Topic B:

1. S. Abramsky and Adam Brandenburger, The Sheaf-Theoretic Structure Of Non-
Locality and Contextuality. In New Journal of Physics, 13(2011), 113036, 2011.

2. S. Abramsky and L. Hardy, Logical Bell Inequalities, Phys. Rev. A 85, 062114 (2012).
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3. S. Abramsky, S. Mansfield and R. Soares Barbosa, The Cohomology of Non-Locality
and Contextuality, in Proceedings of Quantum Physics and Logic 2011, Electronic
Proceedings in Theoretical Computer Science, vol. 95, pages 1-15, 2012.

22 C3.10 Additive Combinatorics

22.1 General Prerequisites

Students should be familiar with elementary number theory such as modular arithmetic
and prime factorisations. The first half of ASO Number Theory (not including the material
on quadratic residues) will be quite sufficient. At one point we will state and use Euler’s
formula for planar graphs. This is covered in B8.5 Graph Theory, but the statement may
be understood independently of that course. Early in the course we will use some simple
facts about the distribution of prime numbers. This topic is explored in far greater detail
in C3.8 Analytic Number Theory, but we will not assume attendance at that course.

22.2 Overview

The aim of this course is to present classic results in additive and combinatorial number
theory, showing how tools from a variety of mathematical areas may be used to solve
number-theoretical problems.

We will begin by looking at classical theorems about writing natural numbers as the sums
of squares and primes. For instance, we will prove Lagrange’s theorem that every number is
the sum of four squares, and we will show that every large integer is the sum of a bounded
number of primes.

Next we will look at more general sets of integers, proving a famous theorem of Roth:
every set of integers with positive density contains three distinct elements in arithmetic
progression.

We will also look at the structure of finite sets A of integers which are almost closed under
addition in the sense that their sumset A + A := fa1+a2 : a1; a2 2 Ag is relatively
small. The highlight here is Freiman’s theorem, which states that any such set has a precise
combinatorial structure known as a generalised progression.

Finally, we will look at instances of the sum-product phenomenon, which says that it is
impossible for a finite set of integers to be simultaneously additively- and multiplicatively
structured. This section draws from a particularly rich set of other mathematical areas,
including graph theory, geometry and analysis. Nonetheless, prerequisites will be minimal
and we will develop what we need from scratch.

22.3 Synopsis

The classical bases. Every prime congruent to 1 modulo 4 is a sum of two squares. Ev-
ery natural number is the sum of four squares. *Discussion of sums of three squares*.
Schnirelman density. Application of Selberg’s sieve to show that every large number is the
sum of at most C primes for some fixed C.
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Progressions of length 3. Basic properties of Fourier transforms. Roth’s theorem that every
subset of {1, . . . , N} of size at least δN contains three elements in arithmetic progression,
provided N is sufficiently large in terms of δ.

Sumsets and Freiman’s theorem. Basic sumset estimates. Additive energy and its relation to
sumsets: statement (but not proof) of the Balog-Szemerédi-Gowers theorem. Bohr sets and
Bogolyubov’s theorem. Minkowski’s second theorem (statement only). Freiman’s theorem
on sets with small doubling constant.

Sum-product theorems. The crossing number inequality for graphs. The Szemerédi-Trotter
theorem on point-line incidences, and application to prove that either |A+A| or |A ·A| has
size at least c|A|5/4. The Prékopa-Leindler inequality, quasicubes and sumsets. Proof of
Bourgain and Chang’s result that either the m-fold sumset A+ A+ · · ·+ A or the m-fold
product set A ·A · · · ·A has size at least |A|f(m), where f(m)→∞.

If time allows the course will conclude with a brief non-examinable discussion of Gowers’s
work on Szemerédi’s theorem for progressions of length 4 and longer, which ties together
several earlier strands in the course.

22.4 Reading List

Full printed notes will be produced for the course and these will be the primary resource.
M. Nathanson’s two books Additive Number Theory cover much of the material in the
course. T. Tao and V. Vu Additive Combinatorics is also useful.

23 C3.11 Riemannian Geometry

23.1 General Prerequisites

Differentiable Manifolds is required. An understanding of covering spaces will be strongly
recommended.

23.2 Overview

Riemannian Geometry is the study of curved spaces and provides an important tool with
diverse applications from group theory to general relativity. The surprising power of Rie-
mannian Geometry is that we can use local information to derive global results.

This course will study the key notions in Riemannian Geometry: geodesics and curvature.
Building on the theory of surfaces in R3 in the Geometry of Surfaces course, we will de-
scribe the notion of Riemannian submanifolds, and study Jacobi fields, which exhibit the
interaction between geodesics and curvature.

We will prove the Hopf–Rinow theorem, which shows that various notions of completeness
are equivalent on Riemannian manifolds, and classify the spaces with constant curvature.

The highlight of the course will be to see how curvature influences topology. We will see this
by proving the Cartan–Hadamard theorem, Bonnet–Myers theorem and Synge’s theorem.
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23.3 Learning Outcomes

The candidate will have great familiarity working with Riemannian metrics, the Levi-
Civita connection, geodesics and curvature, both in a local coordinate description and using
coordinate-free expressions. The candidate will gain understanding of Riemannian subman-
ifolds, Jacobi fields, completeness, and be able to prove and apply fundamental results in
the subject, including the theorems of Hopf–Rinow, Cartan–Hadamard, Bonnet–Myers and
Synge.

23.4 Synopsis

Riemannian manifolds: basic examples of Riemannian metrics, Levi-Civita connection.

Geodesics: definition, first variation formula, exponential map, minimizing properties of
geodesics.

Curvature: Riemann curvature tensor, sectional curvature, Ricci curvature, scalar curva-
ture.

Riemannian submanifolds: examples, second fundamental form, Gauss–Codazzi equations.

Jacobi fields: Jacobi equation, conjugate points.

Completeness: Hopf–Rinow and Cartan–Hadamard theorems

Constant curvature: classification of complete manifolds with constant curvature.

Second variation and applications: second variation formula, Bonnet–Myers and Synge’s
theorems.

23.5 Reading List

1. M.P. do Carmo, Riemannian Geometry, (Birkhauser, 1992).

2. J.M. Lee, Riemannian Manifolds: An Introduction to Curvature, (Springer, 1997).

3. S. Gallot, D. Hulin and J. Lafontaine, Riemannian Geometry, (Springer, 1987).

4. W. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry,
2nd edition, (Academic Press, 1986).

24 C3.12 Low-Dimensional Topology and Knot Theory

24.1 General Prerequisites

B3.5 Topology and Groups (MT) and C3.1 Algebraic Topology (MT) are essential. We will
assume working knowledge of the fundamental group, covering spaces, homotopy, homology,
and cohomology. B3.2 Geometry of Surfaces (MT) and C3.3 Differentiable Manifolds (MT)
are useful but not essential, though some prior knowledge of smooth manifolds and bundles
should make the material more accessible.
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24.2 Overview

Low-dimensional topology is the study of 3- and 4-manifolds and knots. The classification
of manifolds in higher dimensions can be reduced to algebraic topology. These methods
fail in dimensions 3 and 4. Dimension 3 is geometric in nature, and techniques from group
theory have also been very successful. In dimension 4, gauge-theoretic techniques dominate.
This course provides an overview of the rich world of low-dimensional topology that draws
on many areas of mathematics. We will explain why higher dimensions are in some sense
easier to understand, and review some basic results in 3- and 4-manifold topology and knot
theory.

24.3 Learning Outcomes

The students will become acquanted with topological and smooth manifolds. They will
master important techniques from Morse theory and learn how to manipulate handle de-
compositions of manifolds. They will get an idea about the role of the h-cobordism theorem
and the Whitney trick in higher-dimensional topology. They will learn a variety of tech-
niques in knot theory, including how to manipulate diagrams using Reidemeister moves,
how to derive knot invariants from Seifert surfaces, and how some of these are related to
4-dimensional quantities. They will be able to represent 3-manifolds using Heegaard decom-
positions, how to write them as sums of prime pieces using normal surface theory, and how
to construct 3-manifolds via Dehn surgery and branched double covers along links. Finally,
they will be able to represent 4-manifolds using Kirby diagrams and how to determine their
homeomorphism type using the intersection form.

24.4 Synopsis

The definition of topological and smooth manifolds. Morse theory, handle decompositions,
surgery. Every group can be the fundamental group of a manifold in dimension greater
than three. The h-cobordism theorem, outline of proof and the Whitney trick. Application:
The generalized Poincare conjecture. Knots and links: Reidemeister moves, Seifert surface
and genus, Alexander polynomial, fibred knots, Jones polynomial, prime decomposition,
4-ball genus 3-manifolds: Heegaard decompositions, unique prime decomposition, loop the-
orem, lens spaces, Dehn surgery, branched double cover 4-manifolds: Kirby calculus, the
intersection form, Freedman’s and Donaldson’s theorems (without proof)

24.5 Reading List

1. W. B. Raymond Lickorish, An introduction to knot theory

2. Dale Rolfsen; American Mathematical Society Knots and links

3. Alexandru Scorpan, The wild world of 4-manifolds

4. John W. Milnor; Michael Spivak; R. O. Wells, Morse theory

5. John W. Milnor; Laurence C. Siebenmann; J. Sondow, Lectures on the h-cobordism
theorem
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25 C4.1 Further Functional Analysis

25.1 General Prerequisites

Students wishing to take this course are expected to have a thorough understanding of the
basic theory of normed vector spaces (including properties and standard examples of Banach
and Hilbert spaces, dual spaces, and the Hahn-Banach theorem) and of bounded linear
operators (ideally including the Open Mapping Theorem, the Inverse Mapping Theorem
and the Closed Graph Theorem). Some fluency with topological notions such as (sequential)
compactness and bases of topological spaces will also be assumed, as will be basic familiarity
with the Lebesgue integral. A number of these prerequisites will be reviewed (briefly) during
the course, and there will be a document available on the course webpage summarising most
of the relevant background material.

25.2 Overview

This course builds on what is covered in introductory courses on Functional Analysis, by
extending the theory of Banach spaces and operators. As well as developing general methods
that are useful in operator theory, we shall look in more detail at the structure and special
properties of ”classical” sequence spaces and function spaces.

25.3 Learning Outcomes

By the end of this course, students will be able to:

1. Establish and use both extension and separation versions of the Hahn Banach Theo-
rem, and geometric properties of the norm, to obtain dualities between embeddings
and quotients and establish reflexivity both abstractly and in important examples,
such as Lebesgue spaces.

2. work with the weak and weak*-topologies on Banach spaces, establish and use the
Banach-Alaoglu theorem, relating this to characterisations of reflexivity, and describe
closures in both norm and weaker topologies using annihilators, and preannhilators.

3. Manipulate properties of compact and Fredholm operators on Banach and Hilbert
spaces, to establish and use the Fredholm alternative, and obtain spectral theorems
for compact operators both in abstract and concrete settings.

25.4 Synopsis

Normed vector spaces and Banach spaces. Dual spaces. Direct sums and complemented
subspaces. Quotient spaces and quotient operators.

The Baire Category Theorem and its consequences (review).

Hahn-Banach extension and separation theorems. The bidual space. Reflexivity. Comple-
tion of a normed vector space.

Convexity and smoothness of norms. Lebesgue spaces and their duals.
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Weak and weak* topologies. The Banach-Alaoglu theorem. Goldstine’s theorem. Equiva-
lence of reflexivity and weak compactness of the closed unit ball. The Schur property of `1

Weakly compact operators.

Compactness in normed vector spaces. Compact operators. Schauder’s theorem on com-
pactness of dual operators. Completely continuous operators.

The Closed Range Theorem. Fredholm theory: Fredholm operators; the Fredholm index;
perturbation results; the Fredholm Alternative. Spectral theory of compact operators. The
Spectral Theorem for compact self-adjoint operators.

25.5 Reading List

1. M. Fabian et al., Functional Analysis and Infinite-Dimensional Geometry (Canadian
Math. Soc, Springer 2001)

2. N.L. Carothers, A Short Course on Banach Space Theory (LMS Student Text, CUP
2004).

25.6 Further Reading

1. J. Conway, A course in Functional Analysis (Springer 2007)

2. B. Bollobas, Linear Analysis: An Introductory Course (CUP 1999)

26 C4.3 Functional Analytic Methods for PDEs

26.1 General Prerequisites

A4 Integration. There will be a ‘Users’ Guide to Integration’ on the subject website and
anyone who has not learned Lebesgue Integration can read it up over the summer vaca-
tion. In addition some knowledge of functional analysis, in particular Banach spaces and
compactness, is useful.

26.2 Overview

The course will introduce some of the modern techniques in partial differential equations
that are central to the theoretical and numerical treatments of linear and nonlinear partial
differential equations arising in science, geometry and other fields.

It provides valuable background for the Part C courses on Calculus of Variations, Fixed
Point Methods for Nonlinear PDEs, and Finite Element Methods.

26.3 Learning Outcomes

Students will learn techniques and results about Lebesgue and Sobolev Spaces, distribu-
tions and weak derivatives, embedding theorems, traces, weak solution to elliptic PDE’s,
existence, uniqueness, and smoothness of weak solutions.
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26.4 Synopsis

Why functional analysis methods are important for PDE’s?

Revision of relevant definitions and statements from functional analysis: completeness,
seperability, compactness, and duality.

Revision of relevant definitions and statements from Lebesgue integration theory: sequences
of measurable functions, Lebesgue and Riesz theorems.

Lebesgue spaces: completeness, dense sets, linear functionals and weak convergence.

Distributions and distributional derivatives.

Sobolev spaces: mollifications and weak derivatives, completeness, Friedrichs inequality,
star-shaped domains and dense sets, extension of functions with weak derivatives.

Embedding of Sobolev spaces into Lebesgue spaces: Poincare inequality, Reillich-Kondrachov-
Sobolev theorems on compactness.

Traces of functions with weak derivatives.

Dirichlet boundary value problems for elliptic PDE’s, Fredholm Alternative (uniqueness im-
plies existence), variational method, spectrum of elliptic differential operators under Dirich-
let boundary conditions.

Smoothness of weak solutions: embedding from Sobolev spaces into spaces of Hölder con-
tinuous functions, regularity of distributional solutions to elliptic equations with continuous
coefficients. Strong solutions to the Dirichlet problem for elliptic differential operators.

26.5 Reading List

1. Lawrence C. Evans, Partial differential equations, (Graduate Studies in Mathematics
2004), American Mathematical Society

2. Elliott H. Lieb and Michael Loss, Analysis, 2nd Edition, (Graduate Studies in Math-
ematics 2001), American Mathematical Society

26.6 Further Reading

1. E. Kreyszig, Introductory Functional Analysis with Applications, Wiley (revised edi-
tion, 1989)

2. P.D. Lax Functional analysis (Wiley-Interscience, New York, 2002).

3. J. Rauch, Partial differential equations, (Springer-Verlag, New York, 1992).

27 C4.4 Hyperbolic Equations

27.1 General Prerequisites

A good background in Multivariate Calculus and Lebesgue Integration is expected (for
instance as covered in the Oxford Prelims and Part A Integration). It would be useful to
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know some basic Functional Analysis and Distribution Theory; however, this is not strictly
necessary as the presentation will be self-contained.

27.2 Overview

We introduce analytical and geometric approaches to hyperbolic equations, by discussing
model problems from transport equations, wave equations, and conservation laws. These
approaches have been applied and extended extensively in recent research and lie at the
heart of the theory of hyperbolic PDEs.

27.3 Synopsis

1. Transport equations and nonlinear first order equations: Method of characteristics,
formation of singularities

2. Introduction to nonlinear hyperbolic conservation laws: Discontinuous solutions, Rankine-
Hugoniot relation, Lax entropy condition, shock waves, rarefaction waves, Riemann
problem, entropy solutions, Lax-Oleinik formula, uniqueness.

3. Linear wave equations: The solution of Cauchy problem, energy estimates, finite
speed of propagation, domain of determination, light cone and null frames, hyperbolic
rotation and Lorentz vector fields, Sobolev inequalities, Klainerman inequality.

4. Nonlinear wave equations: local well-posedness, weak solutions

If time permits, we might also discuss parabolic approximation (viscosity method), com-
pactness methods, Littlewood-Paley theory, and harmonic analysis techniques for hyperbolic
equations/systems (off syllabus - not required for exam)

27.4 Reading List

1. Alinhac, S, Hyperbolic Partial Differential Equations, Springer-Verlag: New York,
2009.

2. Evans, L, Partial Differential Equations, Second edition. Graduate Studies in Math-
ematics, 19. American Mathematical Society, 2010

3. John, F, Partial Differential Equations, Fourth edition. Applied Mathematical Sci-
ences, 1. Springer-Verlag: New York, 1982

28 C4.6 Fixed Point Methods for Nonlinear PDEs

28.1 General Prerequisites

Basic results on weak derivatives and Sobolev spaces either from B4.3 Distribution Theory or
from C4.3 Functional Analytic Methods for PDEs. Some knowledge of functional analysis,
mainly notions of Banach spaces, and weak convergence, is useful.
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28.2 Overview

This course gives an introduction to the techniques of nonlinear functional analysis with
emphasis on the major fixed point theorems and their applications to nonlinear differential
equations and variational inequalities, which abound in applications such as fluid and solid
mechanics, population dynamics and geometry.

28.3 Learning Outcomes

Besides becoming acquainted with the fixed point theorems of Banach, Brouwer and Schauder,
students will see the abstract principles in a concrete context. Hereby they also rein-
force techniques from elementary topology, functional analysis, Banach spaces, compactness
methods, calculus of variations and Sobolev spaces.

28.4 Synopsis

Examples of nonlinear differential equations and variational inequalities. Contraction Map-
ping Theorem and applications. Brouwer’s fixed point theorem, proof via Calculus of Varia-
tions and Null-Lagrangians. Compact operators and Schauder’s fixed point theorem. Recap
of basic results on Sobolev spaces. Applications of Schauder’s fixed point theorem to non-
linear elliptic equations. Variational inequalities and monotone operators. Applications of
monotone operator theory to nonlinear elliptic equations (p-Laplacian, stationary Navier-
Stokes)

28.5 Reading List

1. Lawrence C. Evans, Partial Differential Equations, Graduate Studies in Mathematics
(American Mathematical Society, 2004).

2. E. Zeidler, Nonlinear Functional Analysis I & II (Springer-Verlag, 1986/89).

3. M. S. Berger, Nonlinearity and Functional Analysis (Academic Press, 1977).

4. K. Deimling, Nonlinear Functional Analysis (Springer-Verlag, 1985).

5. L. Nirenberg, Topics in Nonlinear Functional Analysis, Courant Institute Lecture
Notes (American Mathematical Society, 2001).

6. R.E. Showalter, Monotone Operators in Banach Spaces and Nonlinear Partial Differ-
ential Equations, Mathematical Surveys and Monographs, vol.49 (American Mathe-
matical Society, 1997).

29 C4.8 Complex Analysis: Conformal Maps and Geometry

29.1 General Prerequisites

The only necessary prerequisite is a basic complex analysis course: analytic functions, Tay-
lor series, contour integration, Cauchy theorems, residues, maximum modulus, Liouville’s
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theorem. Some basic results that might not be covered by a basic course (such as argument
principle and the Rouche theorem) will be given in the introductory chapter of the lecture
notes.

29.2 Overview

The theory of conformal maps has a very long and rich history. Its foundations were laid
out by Riemann in mid XIX century and it was one of the central areas of the Complex
Analysis since then.

The aim of the course is to teach the principal techniques and methods of analytic and
geometric function theory. We start by proving the Riemann mapping theorem which claims
that all non-trivial simply connected domains are conformal images of the unit disc. This
provides a connection between planar domains and 1-to-1, or univalent, analytic functions
in the unit disc.

In this course we will study the Riemann mapping theorem and general theory of univalent
functions, study how geometric properties of domains are related to analytic properties of
functions. We will also study conformal invariants: quantities that do not change under con-
formal transformations. We will see that many of these invariants have a simple geometric
interpretation and could be used to obtain numerous beautiful results.

29.3 Learning Outcomes

Students will have been introduced to ideas and techniques of geometric function theory that
play important role and have a lot of applications in other areas of analysis. In particular,
they will learn the proof of the Riemann mapping theorem and the concept of conformal
invariants.

29.4 Synopsis

We will cover the following topics:

� The Riemann mapping theorem. The main goal will be to prove Riemann’s theo-
rem which tells us that any non-trivial simply-connected domain can be conformally
mapped onto the unit disc. This will be the key result for the entire course since it
will allow us to connect the geometry of a domain with the analytical properties of a
conformal map which sends this domain to the unit disc. Within this section we will
discuss

1. Möbius transformations and the Schwarz lemma

2. Normal families, the Montel and Hurwitz theorems

3. Proof of Riemann mapping theorem

4. Constructive uniformization: Christoffel-Schwarz mappings and iterative meth-
ods

5. Boundary correspondence, accessible points and prime ends
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6. Uniformization of multiply-connected domains (without proof)

7. Applications: the Dirichlet boundary problem

� Basic theory of univalent functions. In this part we will study the universal estimates
that are valid for all conformal maps on the unit disc.

1. Area theorem and coefficient estimates

2. The Koebe 1/4 theorem, distortion theorems

3. Conformal invariants: extremal length and its applications

� Conformal invariants

1. Conformal invariance of Green’s function and harmonic measure

2. Extremal length, its conformal invariance and applications

29.5 Reading List

There is a number of books that cover many of these topic. I would suggest

1. L. Ahlfors, Complex analysis. This is a very good advanced textbook on Complex
analysis. If you are a bit rusty on the basic complex analysis, then you might find
everything you need (and a bit more) in Chapters 1-4. We will cover some of the
material from chapters 5-6.

2. L. Ahlfors, Conformal Invariants. We will cover some topics from Chapters 1-6.

3. Ch. Pommerenke, Univalent functions. This book is mostly for further reading. We
will discuss some of the results that are covered in Chapters 1,5,6, and 10.

4. Ch. Pommerenke, Boundary behaviour of conformal maps. This is an updated version
of the previous book. We will be interested in Chapters 1,4, and 8.

5. P. Duren, Univalent functions. This is an excellent book about general theory of the
univalent functions. We are mostly interested in the first three chapters.

6. G. Goluzin, Geometric Theory of Functions of a Complex Variable. This book contains
vast amount of information about the geometric function theory. We will cover some
of the results from the first four chapters.

30 C4.9 Optimal Transport & Partial Differential Equations

30.1 General Prerequisites

Good command of Part A Integration, Probability and Differential Equations 1 are essential;
the main concepts which will be used are the convergence theorems and the theorems of
Fubini and Tonelli, and the notions of measurable functions, integrable functions, null sets
and Lp spaces. The Cauchy-Lipschitz theory and Picard’s theorem proofs will be used.
Basic knowledge of random variables, laws, expectations, and independence are needed. A
good working knowledge of Part A Core Analysis (metric spaces) is expected. Knowledge
of B8.1 Probability, Measure and Martingales will certainly help but it is not essential.
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30.2 Overview

This course will serve as an introduction to optimal transportation theory, its application
in the analysis of PDE, and its connections to the macroscopic description of interacting
particle systems.

30.3 Learning Outcomes

Getting familar with the Monge-Kantorovich problem and transport distances. Derivation
of macroscopic models via the mean-field limit and their analysis based on contractivity of
transport distances. Dynamic Interpretation and Geodesic convexity. A brief introduction
to gradient flows and examples.

30.4 Synopsis

1. Interacting Particle Systems & PDE

� Granular Flow Models and McKean-Vlasov Equations.

� Nonlinear Diffusion and Aggregation-Diffusion Equations.

2. Optimal Transportation: The metric side

� Functional Analysis tools: weak convergence of measures. Prokhorov’s Theorem.
Direct Method of Calculus of Variations.

� Monge Problem. Kantorovich Duality.

� Transport distances between measures: properties. The real line. Probabilistic
Interpretation: couplings.

3. Mean Field Limit & Couplings

� Continuity Equation: measures sliding down a convex valley.

� Dobrushin approach: derivation of the Aggregation Equation.

� Boltzmann Equation for Maxwellian molecules: Tanaka Theorem.

4. An Introduction to Gradient Flows

� Dynamic Interpretation of optimal tranport.

� McCann’s Displacement Convexity: Internal, Interaction and Confinement En-
ergies.

� Gradient Flows: Differential and metric viewpoints.

30.5 Reading List

1. F. Golse, On the Dynamics of Large Particle Systems in the Mean Field Limit,
Lecture Notes in Applied Mathematics and Mechanics 3. Springer, 2016.

2. L. C. Evans, Weak convergence methods for nonlinear partial differential equations.
CBMS Regional Conference Series in Mathematics 74, AMS, 1990.

52



3. F. Santambrogio, Optimal Transport for Applied Mathematicians: Calculus of Varia-
tions, PDEs, and Modeling, Progress in Nonlinear Differential Equations and Their
Applications, Birkhauser 2015.

4. C. Villani, Topics in Optimal Transportation, AMS Graduate Studies in Mathematics,
2003

30.6 Further Reading

1. L. Ambrosio, G. Savare, Handbook of Differential Equations: Evolutionary Equations,
Volume 3-1, 2007.

2. C. Villani, Optimal Transport: Old and New, Springer 2009

31 C5.2 Elasticity and Plasticity

31.1 General Prerequisites

Familiarity will be assumed with the Part A course options: A2: Metric Spaces and Com-
plex Analysis, A1: Differential Equations 1, A6 Differential Equations 2 and ASO: Calculus
of Variations. A basic understanding of stress tensors from either B5.3 Viscous Flow or
C5.1 Solid Mechanics will also be required. The following courses are also helpful: B5.1
Techniques of Applied Mathematics, B5.2 Applied Partial Differential Equations, C5.5 Per-
turbation Methods, and C5.6 Applied Complex Variables.

31.2 Overview

The course starts with a rapid overview of mathematical models for basic solid mechanics.
Benchmark solutions are derived for static problems and wave propagation in linear elastic
materials. It is then shown how these results can be used as a basis for practically useful
problems involving thin beams and plates. Simple geometrically nonlinear models are then
introduced to explain buckling, fracture and contact. Models for yield and plasticity are
then discussed, both microscopically and macroscopically.

31.3 Learning Outcomes

By the end of this course, students will be able:

1. to formulate and solve problems in linear elasticity, including models for elastic waves,
mode conversion and mode III cracks;

2. to derive models for thin elastic beams and to describe buckling behaviour using
weakly nonlinear asymptotic analysis;

3. to derive, analyse and solve linear complementarity problems describing smooth con-
tact of elastic strings and membranes;
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4. to formulate, analyse and solve free boundary problems for linear perfectly plastic
yield of granular materials and metals in simple geometries.

31.4 Synopsis

Review of tensors, conservation laws, Navier equations. Antiplane strain, torsion, plane
strain. Elastic wave propagation, Rayleigh waves. Ad hoc approximations for thin materi-
als; simple bifurcation theory and buckling. Simple mixed boundary value problems, brittle
fracture and smooth contact. Perfect plasticity theories for granular materials and metals.

31.5 Reading List

1. P. D. Howell, G. Kozyreff and J. R. Ockendon, Applied Solid Mechanics (Cambridge
University Press, 2008)

2. S. P. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw-Hill, 1970)

3. L.D. Landau and E.M. Lifshitz, Theory of Elasticity (Pergamon Press, 1986)

32 C5.4 Networks

32.1 General Prerequisites

Basic notions of linear algebra, probability and some computational experience. Numerical
codes will be illustrated in Python in tutorials, but the student has the possibility to use
the language of their choice. Relevant notions of graph theory will be reviewed.

32.2 Overview

Network Science provides generic tools to model and analyse systems in a broad range of
disciplines, including biology, computer science and sociology. This course aims at providing
an introduction to this interdisciplinary field of research, by integrating tools from graph
theory, statistics and dynamical systems. Most of the topics to be considered are active
modern research areas.

32.3 Learning Outcomes

Students will have developed a sound knowledge and appreciation of some of the tools,
concepts, models, and computations used in the study of networks. The study of networks
is predominantly a modern subject, so the students will also be expected to develop the
ability to read and understand current (2010-2020) research papers in the field.
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32.4 Synopsis

1. Introduction and short overview of useful mathematical concepts (2 lectures): Networks
as abstractions; Renewal processes; Random walks and diffusion; Power-law distributions;
Matrix algebra; Markov chains; Branching processes.

2. Basic structural properties of networks (2 lectures): Definition; Degree distribution; Mea-
sures derived from walks and paths; Clustering coefficient; Centrality Measures; Spectral
properties.

3. Models of networks (2 lectures): Erdos-Rényi random graph; Configuration model;
Network motifs; Growing network with preferential attachment.

4. Community detection (2 lectures): Newman-Girvan Modularity; Spectral optimization
of modularity; Greedy optimization of modularity.

5. Dynamics, time-scales and Communities (2 lectures): Consensus dynamics; Timescale
separation in dynamical systems and networks; Dynamically invariant subspaces and exter-
nally equitable partitions

6. Dynamics I: Random walks (2 lectures): Discrete-time random walks on networks;
PageRank; Mean first-passage and recurrence times; Respondent-driven sampling; Continous-
Time Random Walks

7. Random walks to reveal network structure (2 lectures): Markov stability; Infomap;
Walktrap; Core–periphery structure; Similarity measures and kernels

8. Dynamics II: Epidemic processes (2 lectures): Models of epidemic processes; Mean-Field
Theories and Pair Approximations

32.5 Reading List

Self-contained lecture notes will be made available at the end of Michaelmas.

33 C5.5 Perturbation Methods

33.1 General Prerequisites

Knowledge of core complex analysis and of core differential equations will be assumed,
respectively at the level of the complex analysis in the Part A (Second Year) course Metric
Spaces and Complex Analysis and the phase plane section in Part A Differential Equations
I. The final section on approximation techniques in Part A Differential Equations II is highly
recommended reading if it has not already been covered

33.2 Overview

Perturbation methods underlie numerous applications of physical applied mathematics: in-
cluding boundary layers in viscous flow, celestial mechanics, optics, shock waves, reaction-
diffusion equations, and nonlinear oscillations. The aims of the course are to give a clear
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and systematic account of modern perturbation theory and to show how it can be applied
to differential equations.

33.3 Synopsis

Introduction to regular and singular perturbation theory: approximate roots of algebraic
and transcendental equations. Asymptotic expansions and their properties. Asymptotic
approximation of integrals, including Laplace’s method, the method of stationary phase
and the method of steepest descent. Matched asymptotic expansions and boundary layer
theory. Multiple-scale perturbation theory. WKB theory and semiclassics.

33.4 Reading List

1. E.J. Hinch, Perturbation Methods (Cambridge University Press, 1991), Chs. 1-3, 5-7.

2. C.M. Bender and S.A. Orszag, Advanced Mathematical Methods for Scientists and
Engineers (Springer, 1999), Chs. 6, 7, 9-11.

3. J. Kevorkian and J.D. Cole, Perturbation Methods in Applied Mathematics (Springer-
Verlag, 1981), Chs. 1, 2.1-2.5, 3.1, 3.2, 3.6, 4.1, 5.2.

34 C5.6 Applied Complex Variables

34.1 General Prerequisites

The course requires second year core analysis (A2 complex analysis). It continues the
study of complex variables in the directions suggested by contour integration and conformal
mapping. A knowledge of the basic properties of Fourier Transforms is assumed. Part A
Waves and Fluids and Part C Perturbation Methods are helpful but not essential.

34.2 Overview

The course begins where core second-year complex analysis leaves off, and is devoted to
extensions and applications of that material. The solution of Laplace’s equation using con-
formal mapping techniques is extended to general polygonal domains and to free boundary
problems. The properties of Cauchy integrals are analysed and applied to mixed boundary
value problems and singular integral equations. The Fourier transform is generalised to
complex values of the transform variable, and used to solve mixed boundary value problems
and integral equations via the Wiener-Hopf method.

34.3 Learning Outcomes

Students will be able to:

1. Solve Laplace’s equation on various two-dimensional domains using conformal map-
ping techniques
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2. Use conformal mapping to solve certain free-boundary fluid flow problems

3. Use the Plemeli formulae for Cauchy integrals to solve mixed boundary value problems
and singular integral equations

4. Use contour integrals and the Wiener-Hopf technique to solve a range of PDE problems
and integral equations

34.4 Synopsis

Review of core complex analysis, analytic continuation, multifunctions, contour integration,
conformal mapping and Fourier transforms.

Riemann mapping theorem (in statement only). Schwarz-Christoffel formula. Solution of
Laplace’s equation by conformal mapping onto a canonical domain; applications including
inviscid hydrodynamics; Free streamline flows in the hodograph plane. Unsteady flow with
free boundaries in porous media.

Application of Cauchy integrals and Plemelj formulae. Solution of mixed boundary value
problems motivated by thin aerofoil theory and the theory of cracks in elastic solids.
Reimann-Hilbert problems. Cauchy singular integral equations. Complex Fourier trans-
form. Contour integral solutions of ODE’s. Wiener-Hopf method.

34.5 Reading List

1. G. F. Carrier, M. Krook and C.E. Pearson, Functions of a Complex Variable (Society
for Industrial and Applied Mathematics, 2005.) ISBN 0898715954.

2. M. J. Ablowitz and A. S. Fokas, Complex Variables: Introduction and Applications
(2nd edition, Cambridge University Press, 2003). ISBN 0521534291.

3. J. R. Ockendon, S. D. Howison, A. A. Lacey and A. B. Movchan, Applied Par-
tial Differential Equations: Revised Edition (Oxford University Press, 2003). ISBN
0198527713. Pages 195-212.

35 C5.7 Topics in Fluid Mechanics

35.1 General Prerequisites

B5.3 Viscous Flow and B5.4 Waves and Compressible Flow are both highly recommended,
Viscous Flow being the more essential of the two. It will be necessary that you will have
previously studied some Fluid Dynamics and have an understanding of the derivation of
the Navier-Stokes equations and their associated boundary

35.2 Overview

The course will expand and illuminate the ‘classical’ fluid mechanics taught in the third
year B5.3 and B5.4 courses, and illustrate its modern application in a number of different
areas in industry and geoscience.
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35.3 Synopsis

Thin film flows. Droplet dynamics. Foam drainage. Porous media.

Convection, boundary layer theory. Double-diffusive convection, plumes, turbidity currents.

Rotating flows, geostrophy and quasi-geostrophy, baroclinic instability.

Two-phase flows. Two-fluid models. Density wave oscillations.

35.4 Reading List

1. L.G Leal, Advanced Transport Phenomena,(Cambridge University Press, Cambridge,
2007).

2. J.S. Turner, Buoyancy Effects in Fluids, (Cambridge University Press, Cambridge,
1973).

3. A.C. Fowler, Mathematical Models in the Applied Sciences, (Cambridge University
Press, Cambridge, 1997).

4. J. Pedlosky, Geophysical Fluid Dynamics, 2nd ed. (Springer-Verlag, New York, 1987).

35.5 Further Reading

1. G.K. Batchelor, H.K. Moffatt and M.G. Worster (eds.), Perspectives in Fluid Dynam-
ics (Cambridge University Press, Cambridge, 2000).

36 C5.9 Mathematical Mechanical Biology

36.1 General Prerequisites

The Part C courses Solid Mechanics and Elasticity/Plasticity are recommended. Familiarity
with common techniques of applied mathematics will be assumed, in particular asymptotic
methods and calculus of variations. Mathematical biology or physiology is desirable but
not necessary as the material for a particular biological system will be part of the course.

36.2 Overview

The course will be motivated by outstanding problems in physiology and biology but the
emphasis is on the mathematical tools needed to answer some biologically relevant problems.
The course is divided into modules and three modules will be given during a term but these
modules can change from one year to the next.

36.3 Learning Outcomes

The goal of this course is to learn the physical background and mathematical methods
behind many problems arising in mechanical biology from the cellular level and upwards.
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Students will familiarise themselves with key notions used in modern research in bio-physics
and mechano-biology.

36.4 Synopsis

1. 1D Biological Mechanics. Bio-Filaments (2 1/2 weeks) (a) Introduction: bio-molecules
(actin, microtubules, DNA,...) (b) Randomly fluctuating chains (statistical mechanics) (c)
Continuous filaments (neurons, stems, roots, plants) (d) Differential geometry of curves:
Kirchhoff rod theory and beam theory

2. 2D Biological Mechanics. Bio-Membranes (2 1/2 weeks) (a) Introduction: lipid bilayer,
cell membranes (b) Differential geometry of surfaces: curvatures, Gauss–Bonnet theorem
(c) Fluid membranes: shape equation, fluctuating membranes (d) Solid membranes, shells
and their application to biological membranes.

3. Bio-solids and growth (3 weeks) (a) Introduction: nonlinear elasticity for soft tissues
(b) one-dimensional growth theory (c) Application to mechanical pattern formation (d)
volumetric growth: multiplicative decomposition

36.5 Reading List

1. Physical Cell Biology, second ed. Rob Phillips et al. Garland Science.

2. Cardiovascular solid mechanics. Cells, tissues, and organs, Humpherey, 2002, Springer.

3. Nonlinear Solid Mechanics: A Continuum Approach for Enineering: A Continuum
Approach for Engineering, G. Holzapfel, 200, Wiley.

4. The Mathematics and Mechanics of Biological Growth, A. Goriely, 2017, Springer.

37 C5.11 Mathematical Geoscience

37.1 General Prerequisites

B5.2 Applied Partial Differential Equations and B5.3 Viscous Flow recommended.

37.2 Overview

The aim of the course is to illustrate the techniques of mathematical modelling in their
particular application to environmental problems. The mathematical techniques used are
drawn from the theory of ordinary differential equations and partial differential equations.
The course requires a willingness to become familiar with a range of different scientific
disciplines. In particular, some familiarity with the concepts of fluid mechanics will be
useful. The course will provide exposure to some current research topics.
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37.3 Learning Outcomes

Students will be able to:

1. Derive and explain mathematical models for a range of geoscientific problems

2. Analyse such models to determine the relative importance of different physical and
chemical effects, and to formulate appropriate reduced models

3. Use a range of mathematical techniques to solve the models, and be able to interpret
the results in terms of applications to real-world phenomena

37.4 Synopsis

Applications of mathematics to environmental or geophysical problems involving the use of
models with ordinary and partial differential equations. Examples to be considered are:

- Climate dynamics (radiative balance, greenhouse effect, ice-albedo feedback, carbon cycle)

- River flows (conservation laws, flood hydrographs, St Venant equations, sediment trans-
port, bed instabilities)

- Ice dynamics (glaciers, ice sheets, sea ice)

37.5 Reading List

1. A. C. Fowler, Mathematical Geoscience (Springer, 2011).

2. J. T. Houghton, The Physics of Atmospheres (3rd ed., Cambridge University Press.,
Cambridge, 2002).

3. K. Richards, Rivers (Methuen, 1982).

4. K. M. Cuffey and W. S. B. Paterson, The Physics of Glaciers (4th edition, Butterworth-
Heinemann, 2011).

38 C5.12 Mathematical Physiology

38.1 General Prerequisites

B5.5 Further Mathematical Biology is highly recommended.

38.2 Overview

The course aims to provide an introduction which can bring students within reach of cur-
rent research topics in physiology, by synthesising a coherent description of the physiological
background with realistic mathematical models and their analysis. The concepts and treat-
ment of oscillations, waves and stability are central to the course, which develops ideas
introduced in the more elementary B5.5 course. In addition, the lecture sequence aims to
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build understanding of the workings of the human body by treating in sequence problems
at the intracellular, intercellular, whole organ and systemic levels.

38.3 Learning Outcomes

Students will have developed an understanding of mathematical modelling of physiological
systems and will have demonstrable knowledge of the mathematical theory necessary to
analyse such models.

38.4 Synopsis

Trans-membrane ion transport: Hodgkin-Huxley and Fitzhugh-Nagumo models.

Excitable media; wave propagation in neurons.

Calcium dynamics; calcium-induced calcium release. Intracellular oscillations and wave
propagation.

The electrochemical action of the heart. Spiral waves, tachycardia and fibrillation.

Discrete delays in physiological systems. The Glass-Mackey model of respiration. Regula-
tion of stem cell and blood cell production.

38.5 Reading List

The principal text is:

1. J. Keener and J. Sneyd, Mathematical Physiology (Springer-Verlag, 1998). First edi-
tion or Second edition Vol I: Chs. 2, 7. Vol II: Chs. 11, 13, 14. (Springer-Verlag,
2009)]

Subsidiary mathematical texts are:

1. J. D. Murray, Mathematical Biology (Springer-Verlag, 2nd ed., 1993). [Third edition,
Vols I and II, (Springer-Verlag, 2003).]

2. L. Glass and M. C. Mackey, From Clocks to Chaos (Princeton University Press, 1988).

3. P. Grindrod, Patterns and Waves (OUP, 1991).

General physiology texts are:

1. R. M. Berne and M. N. Levy, Principles of Physiology (2nd ed., Mosby, St. Louis,
1996).

2. J. R. Levick, An Introduction to Cardiovascular Physiology (3rd ed. Butterworth-
Heinemann, Oxford, 2000).

3. A. C. Guyton and J. E. Hall, Textbook of Medical Physiology (10th ed., W. B. Saunders
Co., Philadelphia, 2000).
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39 C6.1 Numerical Linear Algebra

39.1 General Prerequisites

Only elementary linear algebra is assumed in this course. The Part A Numerical Analysis
course would be helpful, indeed some swift review and extensions of some of the material
of that course is included here.

39.2 Overview

Linear Algebra is a central and widely applicable part of mathematics. It is estimated that
many (if not most) computers in the world are computing with matrix algorithms at any
moment in time whether these be embedded in visualization software in a computer game or
calculating prices for some financial option. This course builds on elementary linear algebra
and in it we derive, describe and analyse a number of widely used constructive methods
(algorithms) for various problems involving matrices.

Numerical Methods for solving linear systems of equations, computing eigenvalues and
singular values and various related problems involving matrices are the main focus of this
course.

39.3 Learning Outcomes

Students should understand the Singular Value Decomposition and its wide uses, state-of-
the art algorithms for eigenvalue computation and core algorithms for solving linear systems,
including in particular iterative solution methods of Krylov subspace type and randomised
algorithms.

39.4 Synopsis

Common problems in linear algebra. Matrix structure, singular value decomposition. QR
factorization, the QR algorithm for eigenvalues. Direct solution methods for linear systems,
Gaussian elimination and its variants. Iterative solution methods for linear systems.

Chebyshev polynomials and Chebyshev semi-iterative methods, conjugate gradients, con-
vergence analysis, preconditioning.

39.5 Reading List

1. L. N. Trefethen and D. Bau III, Numerical Linear Algebra (SIAM, 1997).

2. J. W. Demmel, Applied Numerical Linear Algebra (SIAM, 1997).

3. A. Greenbaum, Iterative Methods for Solving Linear Systems (SIAM, 1997).

4. G. H. Golub and C. F. van Loan, Matrix Computations (John Hopkins University
Press, 3rd edition, 1996).
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5. H. C. Elman, D. J. Silvester and A. J. Wathen, Finite Elements and Fast Iterative
Solvers (Oxford University Press, 1995), only chapter 2.

40 C6.2 Continuous Optimisation

40.1 General Prerequisites

Basic linear algebra (such as eigenvalues and eigenvectors of real matrices), multivariate
real analysis (such as norms, inner products, multivariate linear and quadratic functions,
basis) and multivariable calculus (such as Taylor expansions, multivariate differentiation,
gradients).

40.2 Overview

The solution of optimal decision-making and engineering design problems in which the
objective and constraints are nonlinear functions of potentially (very) many variables is
required on an everyday basis in the commercial and academic worlds. A closely-related
subject is the solution of nonlinear systems of equations, also referred to as least-squares or
data fitting problems that occur in almost every instance where observations or measure-
ments are available for modelling a continuous process or phenomenon, such as in weather
forecasting. The mathematical analysis of such optimization problems and of classical and
modern methods for their solution are fundamental for understanding existing software and
for developing new techniques for practical optimization problems at hand.

40.3 Synopsis

Part 1: Unconstrained Optimization

Optimality conditions, steepest descent method, Newton and quasi-Newton methods, Gen-
eral line search methods, Trust region methods, Least squares problems and methods.

Part 2: Constrained Optimization

Optimality/KKT conditions, penalty and augmented Lagrangian for equality-constrained
optimization, interior-point/ barrier methods for inequality constrained optimization. SQP
methods.

40.4 Reading List

Lecture notes will be made available for downloading from the course webpage.

A useful textbook is J.Nocedal and S.J.Wright, Numerical Optimisation, (Springer, 1999 or
2006).
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41 C6.3 Approximation of Functions

41.1 General Prerequisites

Some experience with (a) numerical analysis and (b) complex variables would be helpful,
but neither is required.

41.2 Overview

How can a function f

(x) be approximated over a prescribed domain by a simpler function like a polynomial or a
rational function? Such questions were at the heart of analysis in the early 1900s and later
grew into a mature subject of approximation theory. Recently they have been invigorated as
problems of approximation have become central to computational algorithms for differential
equations, linear algebra, optimization and other fields. This course, based on Trefethen’s
text in which results are illustrated by Chebfun computations, will focus in a modern but
still rigorous way on the fundamental results of interpolation and approximation and their
algorithmic application.

41.3 Synopsis

Chebyshev interpolants, polynomials, and series. Barycentric interpolation formula. Weier-
strass approximation theorem. Convergence rates of polynomial approximations. Hermite
integral formula and Runge phenomenon. Lebesgue constants, polynomial rootfinding. Or-
thogonal polynomials. Clenshaw-Curtis and Gauss quadrature. Rational approximation.

41.4 Reading List

1. L. N. Trefethen, Approximation Theory and Approximation Practice, 2020

This course will be based on the textbook by Nick Trefethen, Approximation Theory
and Approximation Practice, published by SIAM in 2019. The lectures and examina-
tion will be closely tied to the book, and the problems assigned will be taken from
the book. Trefethen’s text provides references to many other books and articles that
can be read to expand understanding of the course material so a longer reading list is
not included here.

42 C6.4 Finite Element Method for PDEs

42.1 General Prerequisites

No formal prerequisites are assumed. The course builds on elementary calculus, analysis and
linear algebra and, of course, requires some acquaintance with partial differential equations
such as the material covered in the Prelims Multivariable Calculus course, in particular
the Divergence Theorem. Part A Numerical Analysis would be helpful but is certainly not
essential. Function Space material will be introduced in the course as needed.
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42.2 Overview

Computational algorithms are now widely used to predict and describe physical and other
systems. Underlying such applications as weather forecasting, civil engineering (design of
structures) and medical scanning are numerical methods which approximately solve partial
differential equation problems. This course gives a mathematical introduction to one of the
more widely used methods: the finite element method.

42.3 Synopsis

Finite element methods represent a powerful and general class of techniques for the approx-
imate solution of partial differential equations. The aim of this course is to introduce these
methods for boundary value problems for the Poisson and related elliptic partial differential
equations.

Attention will be paid to the formulation, the mathematical analysis and the implementation
of these methods.

42.4 Reading List

1. H. Elman, D. Silvester & A. Wathen, Finite Elements and Fast Iterative Solvers.
Second edition. OUP, 2014. [Mainly Chapters 1 and 3]. or

2. H. Elman, D. Silvester & A. Wathen, Finite Elements and Fast Iterative Solvers.
OUP, 2005. [Mainly Chapters 1 and 5].

42.5 Further Reading

1. S.C. Brenner & L.R. Scott, The Mathematical Theory of Finite Element Methods.
Springer, 2nd edition, 2002. [Chapters 0,1,2,3; Chapter 4: Secs. 4.1-4.4, Chapter 5:
Secs. 5.1-5.7].

2. C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Ele-
ment Method. CUP, 1990. [Chapters 1-4; Chapter 8:Secs. 8.1-8.4.2; Chapter 9: Secs.
9.1-9.5].

3. Typed lecture notes covering a previous version of the entire course (and more) are
available from the course material webpage: Endre Süli Finite Element Methods for
Partial Differential Equations. Mathematical Institute, University of Oxford, 2011

4. Some of the introductory material is covered in: Endre Süli & David Mayers, An
Introduction to Numerical Analysis,CUP 2003; Second Printing 2006. [Chapter 11
and in particular Chapter 14].
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43 C6.5 Theories of Deep Learning

43.1 General Prerequisites

Only elementary linear algebra and probability are assumed in this course; with knowledge
from the following prelims courses also helpful: linear algebra, probability, analysis, con-
structive mathematics, and statistics and data analysis. It is recommended that students
have familiarity with some of: more advanced statistics, optimisation (B6.3, C6.2), networks
(C5.4), and numerical linear algebra (C6.1), though none of these courses are required as
the material is self contained.

43.2 Overview

A course on theories of deep learning.

43.3 Learning Outcomes

Students will become familiar with the variety of architectures for deep nets, including
the scattering transform and ingredients such as types of nonlinear transforms, pooling,
convolutional structure, and how nets are trained. Students will focus their attention on
learning a variety of theoretical perspectives on why deep networks perform as observed,
with examples such as: dictionary learning and transferability of early layers, energy decay
with depth, Lipschitz continuity of the net, how depth overcomes the curse of dimensionality,
constructing adversarial examples, geometry of nets viewed through random matrix theory,
and learning of invariance.

43.4 Synopsis

Deep learning is the dominant method for machines to perform classification tasks at relia-
bility rates exceeding that of humans, as well as outperforming world champions in games
such as go. Alongside the proliferating application of these techniques, the practitioners
have developed a good understanding of the properties that make these deep nets effective,
such as initial layers learning weights similar to those in dictionary learning, while deeper
layers instantiate invariance to transforms such as dilation, rotation, and modest diffeomor-
phisms. There are now a number of theories being developed to give a mathematical theory
to accompany these observations; this course will explore these varying perspectives.

43.5 Reading List

1. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, Adaptive computation
and machine learning series.

Additional reading from recent publications will be provided as needed.
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44 C7.1 Theoretical Physics (C6)

44.1 General Prerequisites

A11: Quantum Theory, B7.1 Classical Mechanics, B7.2 Electromagnetism.

44.2 Overview

This course is intended to give an introduction to some aspects of many-particle systems,
field theory and related ideas. These form the basis of our current theoretical understanding
of particle physics, condensed matter and statistical physics. An aim is to present some core
ideas and important applications in a unified way. These applications include the classical
mechanics of continuum systems, the quantum mechanics and statistical mechanics of many-
particle systems, and some basic aspects of relativistic quantum field theory.

44.3 Synopsis

1. Path Integrals in Quantum Mechanics

2. Quantum Many-Particle Systems

3. Phase Transitions

4. Stochastic Processes

5. Classical Field Theory

6. Canonical Quantisation of Fields

7. Interacting Quantum Fields

44.4 Reading List

The lecturers are aware of no book that presents all parts of this course in a unified way
and at an appropriate level. For this reason, detailed lecture notes will be made available.

45 C7.4 Introduction to Quantum Information

45.1 General Prerequisites

Quantum Theory.

The course material should be of interest to physicists, mathematicians, computer scientists,
and engineers. The following will be assumed as prerequisites for this course: - elementary
probability, complex numbers, vectors and matrices; - Dirac bra-ket notation; - a basic
knowledge of quantum mechanics especially in the simple context of finite dimensional
state spaces (state vectors, composite systems, unitary matrices, Born rule for quantum
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measurements); - basic ideas of classical theoretical computer science (complexity theory)
would be helpful but are not essential.

Prerequisite notes will be provided giving an account of the necessary material. It would
be desirable for you to look through these notes slightly before the start of the course.

45.2 Overview

The classical theory of computation usually does not refer to physics. Pioneers such as
Turing, Church, Post and Goedel managed to capture the correct classical theory by intu-
ition alone and, as a result, it is often falsely assumed that its foundations are self-evident
and purely abstract. They are not! Computers are physical objects and computation is a
physical process. Hence when we improve our knowledge about physical reality, we may
also gain new means of improving our knowledge of computation. From this perspective
it should not be very surprising that the discovery of quantum mechanics has changed our
understanding of the nature of computation. In this series of lectures you will learn how
inherently quantum phenomena, such as quantum interference and quantum entanglement,
can make information processing more efficient and more secure, even in the presence of
noise.

45.3 Learning Outcomes

By the end of the course, students will be able to:

� Use single qubit and two qubits quantum logic gates to construct quantum circuits of
increasing complexity.

� Provide comparative analysis of quantum and classical algorithms.

� Solve problems involving quantum entanglement and its applications.

� Perform calculations using density matrices and completely positive maps.

� Use mathematical techniques that protect quantum evolutions, such as quantum error
correction and fault tolerant computation.

45.4 Synopsis

Bits, gates, networks, Boolean functions, reversible and probabilistic computation

”Impossible” logic gates, amplitudes, quantum interference

One, two and many qubits

Entanglement and entangling gates

From interference to quantum algorithms

Algorithms, computational complexity and Quantum Fourier Transform

Phase estimation and quantum factoring

Non-local correlations and cryptography
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Bell’s inequalities

Density matrices and CP maps

Decoherence and quantum error correction

45.5 Reading List

1. Beyond the Quantum Horizon by D. Deutsch and A. Ekert, Scientific American, Sep
2012.

2. Less reality more security by A. Ekert, Physics World, Sep 2009.

3. The Limits of Quantum Computers, by S. Aaronson, Scientific American, Mar 2008.

4. A Do-It-Yourself Quantum Eraser by R. Hillmer and P. Kwiat, Scientific American,
May 2007.

5. Quantum Seeing in the Dark by P. Kwiat et al, Scientific American, Nov 1996

6. Physical Limits of Computation by C.H. Bennett and R. Landauer, Scientific Ameri-
can, Jul 1985.

46 C7.5 General Relativity I

46.1 General Prerequisites

ASO: Special Relativity, B7.1 Classical Mechanics, and B7.2 Electromagnetism.

46.2 Overview

The course is intended as an elementary introduction to general relativity, the basic physical
concepts of its observational implications, and the new insights that it provides into the
nature of space time, and the structure of the universe. Familiarity with special relativity
and electromagnetism as covered in the Part A and Part B courses will be assumed. The
lectures will review Newtonian gravitation, tensor calculus and continuum physics in special
relativity, physics in curved space time and the Einstein field equations. This will suffice
for an account of simple applications to planetary motion, the bending of light and the
existence of black holes.

46.3 Learning Outcomes

This course starts by asking how the theory of gravitation can be made consistent with
the special-relativistic framework. Physical considerations (the principle of equivalence,
general covariance) are used to motivate and illustrate the mathematical machinery of
tensor calculus. The technical development is kept as elementary as possible, emphasising
the use of local inertial frames. A similar elementary motivation is given for Einstein’s
equations and the Schwarzschild solution. Cosmological solutions are discussed.
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The learning outcomes are an understanding and appreciation of the ideas and concepts
described above

46.4 Synopsis

Review of Newtonian gravitation theory and problems of constructing a relativistic gen-
eralisation. Review of Special Relativity. The equivalence principle. Tensor formulation
of special relativity (including general particle motion, tensor form of Maxwell’s equations
and the energy momentum-tensor of dust). Curved space time. Local inertial coordinates.
General coordinate transformations, elements of Riemannian geometry (including connec-
tions, curvature and geodesic deviation). Mathematical formulation of General Relativity,
Einstein’s equations (properties of the energy-momentum tensor will be needed in the case
of dust only). Planetary motion, the bending of light, introduction to black hole solutions
and the Schwarzschild solution. The introduction to cosmology including cosmological prin-
ciples, homogeneity and isotropy, and the Friedman-Robertson-Walker solutions.

46.5 Reading List

1. S. Carroll, Space Time and Geometry: An Introduction to General Relativity (Addison
Welsey, 2003)

2. L.P. Hughston and K.P. Tod, An Introduction to General Relativity, LMS Student
Text 5 (London Mathematical Society, Cambridge University Press, 1990), Chs 1-18.

3. N.M.J. Woodhouse, Notes on Special Relativity, Mathematical Institute Notes. Re-
vised edition; published in a revised form as Special Relativity, Lecture notes in Physics
m6 (Springer-Verlag, 1992), Chs 1-7

46.6 Further Reading

1. B. Schutz, A First Course in General Relativity (Cambridge University Press, 1990).

2. R.M. Wald, General Relativity (Chicago, 1984).

3. W. Rindler, Essential Relativity (Springer-Verlag, 2nd edition, 1990).

47 C7.6 General Relativity II

47.1 General Prerequisites

C7.5 General Relativity I

47.2 Overview

In this, the second course in General Relativity, we have two principal aims. We first aim
to increase our mathematical understanding of the theory of relativity and our technical
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ability to solve problems in it. We apply the theory to a wider class of physical situations,
including gravitational waves and black hole solutions. Orbits in the Schwarzschild solution
are given a unified treatment which allows a simple account of the three classical tests of
Einstein’s theory. This leads to a greater understanding of the Schwarzschild solution and
an introduction to its rotating counterpart, the Kerr solution. We analyse the extensions
of the Schwarzschild solution show how the theory of black holes emerges and exposes the
radical consequences of Einstein’s theory for space-time structure.

47.3 Learning Outcomes

By the end of the course, students will be able to

1. Carry out tensor computations on Lorentzian manifolds

2. Use the linearised Einstein equations to solve problems in the weak gravitational
regime

3. Construct the Penrose diagrams of Minkowski space-time, Schwarzschild, and the
other simple spherically symmetric space-times

4. Explain the concept of the black hole and identify its mass and angular momentum

47.4 Synopsis

Mathematical background, the Lie derivative and isometries. The Einstein field equations
with matter; the energy-momentum tensor for a perfect fluid; equations of motion from the
conservation law. Linearised general relativity and the metric of an isolated body. Motion
on a weak gravitational field and gravitational waves. The Schwarzschild solution and its
extensions; Eddington-Finkelstein coordinates and the Kruskal extension. Penrose diagrams
and the area theorem. Stationary, axisymmetric metrics and orthogonal transitivity; the
Kerr solution and its properties; interpretation as rotating black hole.

47.5 Reading List

1. S. Carroll, Space Time and Geometry: An Introduction to General Relativity (Addison
Welsey, 2003)

2. L. P. Hughston and K. P. Tod, An Introduction to General Relativity, LMS Student
Text 5, CUP (1990), Chs.19, 20, 22-26.

3. R. M. Wald, General Relativity, Univ of Chicago Press (1984).

47.6 Further Reading

1. B. Schutz, A First Course in General Relativity (Cambridge University Press, 1990).

2. R.M. Wald, General Relativity (Chicago, 1984).

3. W. Rindler, Essential Relativity (Springer-Verlag, 2nd edition, 1990).
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4. S. Hawking and G. Ellis, The Large Scale of the Universe, (Cambridge Monographs
on Mathematical Physics, 1973).

48 C7.7 Random Matrix Theory

48.1 General Prerequisites

There are no formal prerequisites, but familiarity with basic concepts and results from
linear algebra and probability will be assumed, at the level of A0 (Linear Algebra) and A8
(Probability).

48.2 Overview

Random Matrix Theory provides generic tools to analyse random linear systems. It plays
a central role in a broad range of disciplines and application areas, including complex net-
works, data science, finance, machine learning, number theory, population dynamics, and
quantum physics. Within Mathematics, it connects with asymptotic analysis, combina-
torics, integrable systems, numerical analysis, probability, and stochastic analysis. This
course aims to provide an introduction to this highly active, interdisciplinary field of re-
search, covering the foundational concepts, methods, questions, and results.

48.3 Learning Outcomes

Students will learn how some of the various different ensembles of random matrices are
defined. They will encounter some examples of the applications these have in Data Science,
modelling Complex Quantum Systems, Mathematical Finance, Network Models, Numeri-
cal Linear Algebra, and Population Dynamics. They will learn how to analyse eigenvalue
statistics, and see connections with other areas of mathematics and physics, including com-
binatorics, number theory, and statistical mechanics.

48.4 Synopsis

Introduction to matrix ensembles, including Wigner and Wishart random matrices, and the
Gaussian and Circular Ensembles. Overview of connections with Data Science, Complex
Quantum Systems, Mathematical Finance, Network Models, Numerical Linear Algebra, and
Population Dynamics (1 Lecture)

Statement and proof of Wigner’s Semicircle Law; statement of Girko’s Circular Law; appli-
cations to Population Dynamics (May’s model). (3 lectures)

Statement and proof of the Marchenko-Pastur Law using the Stieltjes and R-transforms;
applications to Data Science and Mathematical Finance. (3 lectures)

Derivation of the Joint Eigenvalue Probability Density for the Gaussian and Circular En-
sembles; method of orthogonal polynomials; applications to eigenvalue statistics in the
large-matric limit; behaviour in the bulk and at the edge of the spectrum; universality;
applications to Numerical Linear Algebra and Complex Quantum Systems (5 lectures)
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Dyson Brownian Motion (2 lectures)

Connections to other problems in mathematics, including the longest increasing subsequence
problem; distribution of zeros of the Riemann zeta-function; topological genus expansions.
(2 lectures)

48.5 Reading List

1. ML Mehta, Random Matrices (Elsevier, Pure and Applied Mathematics Series)

2. GW Anderson, A Guionnet, O Zeitouni, An Introduction to Random Matrices (Cam-
bridge Studies in Advanced Mathematics)

3. ES Meckes, The Random Matrix Theory of the Classical Compact Groups (Cambridge
University Press)

4. G. Akemann, J. Baik & P. Di Francesco, The Oxford Handbook of Random Matrix
Theory (Oxford University Press)

5. G. Livan, M. Novaes & P. Vivo, Introduction to Random Matrices (Springer Briefs in
Mathematical Physics)

48.6 Further Reading

1. T. Tao, Topics in Random Matrix Theory (AMS Graduate Studies in Mathematics)

49 C8.1 Stochastic Differential Equations

49.1 General Prerequisites

Integration theory: Riemann-Stieljes and Lebesgue integral and their basic properties Prob-
ability and measure theory: σ-algebras, Fatou lemma, Borel-Cantelli, Radon-Nikodym,
Lp-spaces, basic properties of random variables and conditional expectation, Martingales
in discrete and continuous time: construction and basic properties of Brownian motion,
uniform integrability of stochastic processes, stopping times, filtrations, Doob’s theorems
(maximal and Lp-inequalities, optimal stopping, upcrossing, martingale decomposition),
martingale (backward) convergence theorem, L2-bounded martingales, quadratic variation;
Stochastic Integration: Ito’s construction of stochastic integral, Ito’s formula.

49.2 Overview

Stochastic differential equations (SDEs) model evolution of systems affected by randomness.
They offer a beautiful and powerful mathematical language in analogy to what ordinary
differential equations (ODEs) do for deterministic systems. From the modelling point of
view, the randomness could be an intrinsic feature of the system or just a way to capture
small complex perturbations which are not modelled explicitly. As such, SDEs have found
many applications in diverse disciplines such as biology, physics, chemistry and the man-
agement of risk. Classic well-posedness theory for ODEs does not apply to SDEs. However,
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when we replace the classical Newton-Leibnitz calculus with the (Ito) stochastic calculus,
we are able to build a new and complete theory of existence and uniqueness of solutions to
SDEs. Ito formula proves to be a powerful tool to solve SDEs. This leads to many new and
often surprising insights about quantities that evolve under randomness. This course is an
introduction to SDEs. It covers the basic theory but also offers glimpses into many of the
advanced and nuanced topics.

49.3 Learning Outcomes

By the end of this course, students will be able to analyse if a given SDEs admits a solution,
characterise the nature of solution and explain if it is unique or not. The students will also
be able to solve basic SDEs and state basic properties of the diffusive systems described by
these equations.

49.4 Synopsis

Recap on martingale theory in continuous time, quadratic variation, stochastic integration
and Ito’s calculus.

Levy’s characterisation of Brownian motion, stochastic exponential, Girsanov theorem and
change of measure, Burkholder-Davis-Gundy, Martingale represenation, Dambis-Dubins-
Schwarz.

Strong and weak solutions of stochastic differential equations, existence and uniqueness.

Examples of stochastic differential equations. Bessel processes.

Local times, Tanaka formula, Tanaka-Ito-Meyer formula.

49.5 Reading List

1. J. Obloj, Continuous martingales and stochastic calculus online notes. Students are
encouraged to study all the material up to and including the Ito formula prior to the
course.

2. D. Revuz and M. Yor, Continuous martingales and Brownian motion (3rd edition,
Springer).

49.6 Further Reading

1. I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Graduate
Texts in Mathematics 113 (Springer-Verlag, 1988).

2. L. C. G. Rogers & D. Williams, Diffusions, Markov Processes and Martingales Vol 1
(Foundations) and Vol 2 (Ito Calculus) (Cambridge University Press, 1987 and 1994).

3. R. Durrett, Stochastic Calculus (CRC Press).

4. B. Oksendal, Stochastic Differential Equations: An introduction with applications
(Universitext, Springer, 6th edition).
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5. N. Ikeda & S. Watanabe, Stochastic Differential Equations and Diffusion Processes
(North–Holland Publishing Company, 1989).

6. H. P. McKean, Stochastic Integrals (Academic Press, New York and London, 1969).

50 C8.2 Stochastic Analysis and PDEs

50.1 General Prerequisites

Integration and measure theory, martingales in discrete and continuous time, stochastic
calculus. Functional analysis is useful but not essential.

50.2 Overview

Stochastic analysis and partial differential equations are intricately connected. This is
exemplified by the celebrated deep connections between Brownian motion and the classical
heat equation, but this is only a very special case of a general phenomenon. We explore
some of these connections, illustrating the benefits to both analysis and probability.

50.3 Learning Outcomes

The student will have developed an understanding of the deep connections between concepts
from probability theory, especially diffusion processes and their transition semigroups, and
partial differential equations.

50.4 Synopsis

Feller processes and semigroups. Resolvents and generators. Hille-Yosida Theorem (without
proof). Diffusions and elliptic operators, convergence and approximation. Stochastic dif-
ferential equations and martingale problems. Duality. Speed and scale for one dimensional
diffusions. Green’s functions as occupation densities. The Dirichlet and Poisson problems.
Feynman-Kac formula.

50.5 Reading List

A full set of typed notes will be supplied.

Important references:

1. O. Kallenberg. Foundations of Modern Probability. Second Edition, Springer 2002.
This comprehensive text covers essentially the entire course, and much more, but
should be supplemented with other references in order to develop experience of more
examples.

2. L.C.G Rogers & D. Williams. Diffusions, Markov Processes and Martingales; Volume
1, Foundations and Volume 2, Itô calculus. Cambridge University Press, 1987 and
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1994. These two volumes have a very different style to Kallenberg and complement it
nicely. Again they cover much more material than this course.

50.6 Further Reading

1. S.N. Ethier & T.G. Kurtz. Markov Processes: characterization and convergence.
Wiley 1986. It is not recommended to try to sit down and read this book cover to
cover, but it is a treasure trove of powerful theory and elegant examples.

2. S. Karlin & H.M. Taylor. A second course in stochastic processes. Academic Press
1981. This classic text does not cover the material on semigroups and martingale
problems that we shall develop, but it is a very accessible source of examples of
diffusions and things one might calculate for them.

A fuller list of references will be included in the typed notes.

51 C8.3 Combinatorics

51.1 General Prerequisites

B8.5 Graph Theory is helpful, but not required.

51.2 Overview

An important branch of discrete mathematics concerns properties of collections of subsets of
a finite set. There are many beautiful and fundamental results, and there are still many basic
open questions. The aim of the course is to introduce this very active area of mathematics,
with many connections to other fields.

51.3 Learning Outcomes

The student will have developed an appreciation of the combinatorics of finite sets.

51.4 Synopsis

Chains and antichains. Sperner’s Lemma. LYM inequality. Dilworth’s Theorem.

Shadows. Kruskal-Katona Theorem.

Intersecting families. Erdos-Ko-Rado Theorem. Cross-intersecting families.

VC-dimension. Sauer-Shelah Theorem.

t-intersecting families. Fisher’s Inequality. Frankl-Wilson Theorem. Application to Bor-
suk’s Conjecture.

Combinatorial Nullstellensatz.
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51.5 Reading List

1. Bela Bollobás, Combinatorics, CUP, 1986.

2. Stasys Jukna, Extremal Combinatorics, Springer, 2007

52 C8.4 Probabilistic Combinatorics

52.1 General Prerequisites

B8.5 Graph Theory and A8: Probability. C8.3 Combinatorics is not as essential prerequisite
for this course, though it is a natural companion for it.

52.2 Overview

Probabilistic combinatorics is a very active field of mathematics, with connections to other
areas such as computer science and statistical physics. Probabilistic methods are essential
for the study of random discrete structures and for the analysis of algorithms, but they can
also provide a powerful and beautiful approach for answering deterministic questions. The
aim of this course is to introduce some fundamental probabilistic tools and present a few
applications.

52.3 Learning Outcomes

The student will have developed an appreciation of probabilistic methods in discrete math-
ematics.

52.4 Synopsis

First-moment method, with applications to Ramsey numbers, and to graphs of high girth
and high chromatic number.

Second-moment method, threshold functions for random graphs.

Lovász Local Lemma, with applications to two-colourings of hypergraphs, and to Ramsey
numbers.

Chernoff bounds, concentration of measure, Janson’s inequality.

Branching processes and the phase transition in random graphs.

Clique and chromatic numbers of random graphs.

52.5 Reading List

1. N. Alon and J.H. Spencer, The Probabilistic Method (third edition, Wiley, 2008).
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52.6 Further Reading

1. B. Bollobás, Random Graphs (second edition, Cambridge University Press, 2001).

2. M. Habib, C. McDiarmid, J. Ramirez-Alfonsin, B. Reed, ed., Probabilistic Methods
for Algorithmic Discrete Mathematics (Springer, 1998).

3. S. Janson, T. Luczak and A. Rucinski, Random Graphs (John Wiley and Sons, 2000).

4. M. Mitzenmacher and E. Upfal, Probability and Computing: Randomized Algorithms
and Probabilistic Analysis (Cambridge University Press, New York (NY), 2005).

5. M. Molloy and B. Reed, Graph Colouring and the Probabilistic Method (Springer,
2002).

6. R. Motwani and P. Raghavan, Randomized Algorithms (Cambridge University Press,
1995).

53 CCD Dissertations on a Mathematical Topic

53.1 Overview

STUDENTS MUST OFFER A DOUBLE-UNIT CCD DISSERTATION ON A
MATHEMATICAL TOPIC OR A COD DISSERTATION IN THE HISTORY
OF MATHEMATICS.

Students may offer a double-unit dissertation on a Mathematical topic for examination
at Part C. A double-unit is equivalent to a 32-hour lecture course. Students will have a
supervisor for their dissertation and will meet with them 4-5 times during Michaelmas and
Hilary terms, together with the other students offering that dissertation topic. The group
size will be between 2 and 5 students. The first meeting will take place in week 7 or 8
of Michaelmas term to provide them with the information needed to start work on their
dissertation over the Christmas vacation and to agree the pattern of project supervision in
Hilary term.

Students considering offering a dissertation should read the Guidance Notes on Extended
Essays and Dissertations in Mathematics available at:

https://www.maths.ox.ac.uk/members/students/undergraduate-courses/teaching-and-

learning/projects.

Application The list of potential dissertation topics will be published on Friday of week
0 of Michaelmas term, following the Dissertation Information Session. For each potential
topic there will be a short abstract outlining the topic, details of prerequisite knowledge,
suggested references and possible avenues of investigation. There will be a limit on the
number of students each supervisor is able to supervise and this information will also be
provided.

You will be asked to submit a ranked list of dissertation choices via an online form by
12 noon on Friday of week 3. You will need to submit 6 choices, and will be given the
opportunity to explain if there is a particular reason why you would like to do a specific
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topic. For example, you may like to undertake a dissertation in an area in which you are
hoping to go on to further study.

You are not expected to make contact with the dissertation supervisor(s) before submitting
your choices but if you have a question about a dissertation topic you should feel free to
email the supervisor for further information.

Projects Committee will meet in week 4 to decide upon the allocation of dissertation topics
and will seek to ensure that students receive one of their top choices as far as possible. You
will be notified of which project you have been allocated at the start of week 5.

Assessment Dissertations are independently double-marked, normally by the dissertation
supervisor and one other assessor. The two marks are then reconciled to give the over-
all mark awarded. The reconciliation of marks is overseen by the examiners and follows
the department’s reconciliation procedure (see https://www.maths.ox.ac.uk/members/

students/undergraduate-courses/teaching-and-learning/projects).

Submission An electronic copy of your dissertation should be submitted via the Mathe-
matical Institute website to arrive no later than 12 noon on Monday of week 1, Trinity
term 2023. Further details may be found in the Guidance Notes on Extended Essays and
Dissertations in Mathematics.

54 COD Dissertations on the History of Mathematics

54.1 Overview

STUDENTS MUST OFFER A DOUBLE-UNIT CCD DISSERTATION ON A
MATHEMATICAL TOPIC OR A COD DISSERTATION IN THE HISTORY
OF MATHEMATICS.

Students may offer a double-unit dissertation on a topic related to the History of Mathe-
matics for examination at Part C. A double-unit is equivalent to a 32-hour lecture course.
Students will have a supervisor for their dissertation and will meet with them 4-5 times
during Michaelmas and Hilary terms, together with the other students offering that disser-
tation topic. The group size will be between 2 and 5 students. The first meeting will take
place in week 7 or 8 of Michaelmas term to provide them with the information needed to
start work on their dissertation over the Christmas vacation and to agree the pattern of
project supervision in Hilary term. In addition there are lectures on writing mathematics
and using LaTeX in Michaelmas and Hilary terms. See the lecture list for details.

Candidates considering offering a dissertation should read the Guidance Notes on Extended
Essays and Dissertations in Mathematics available at:

https://www.maths.ox.ac.uk/members/students/undergraduate-courses/teaching-and-

learning/projects.

Application Students wishing to do a dissertation based on the History of Mathematics
should contact Dr Christopher Hollings at christopher.hollings@maths.ox.ac.uk by Wednes-
day of week 1 with a short draft proposal. Dr Hollings will contact you to arrange a short
informal interview to discuss the proposal further. All decisions made by Dr Hollings will
be communicated to students by the end of week 2.
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All proposals supported by Dr Hollings will then be referred to Projects Committee who
meet in week 4 for final approval. With the support of Dr Hollings students must sub-
mit a COD Dissertation Proposal Form to Projects Committee by the end of week 3. The
form can be found in the Dissertation Guidance - https://www.maths.ox.ac.uk/members/
students/undergraduate-courses/teaching-and-learning/part-c-students/teaching-

and-learning/dissertations.

Students whose proposal is not supported by Dr Hollings will be given the option to to
submit a ranked list of dissertation choices via an online form by 12 noon on Friday of week
3. You will need to submit 6 choices, and will be given the opportunity to explain if there
is a particular reason why you would like to do a specific topic. This is optional for Part C
students and compulsory for OMMS students.

Projects Committee will meet in week 4 to decide upon the allocation of dissertation topics
and will seek to ensure that students receive one of their top choices as far as possible. You
will be notified of which project you have been allocated at the start of week 5.

Assessment Dissertations are independently double-marked, normally by the dissertation
supervisor and one other assessor. The two marks are then reconciled to give the over-
all mark awarded. The reconciliation of marks is overseen by the examiners and follows
the department’s reconciliation procedure (see https://www.maths.ox.ac.uk/members/

students/undergraduate-courses/teaching-and-learning/projects).

Submission An electronic copy of your dissertation should be submitted via the Mathe-
matical Institute website to arrive no later than 12 noon on Monday of week 1, Trinity
term 2023. Further details may be found in the Guidance Notes on Extended Essays and
Dissertations in Mathematics.

55 An Introduction to LaTeX

55.1 General Prerequisites

There are no prerequisites. The course is mainly intended for students writing a Part B
Extended Essay or a Part C Dissertation but any students are welcome to attend the two
lectures given in Michaelmas Term. Note that there is no assessment associated with this
course, nor credit for attending the course.

55.2 Overview

This short lecture series provides an introduction to LaTeX.

LATEX is a markup language, released by Donald Knuth in 1984 and freely sourced, for
the professional typesetting of mathematics. (It is based on the earlier TEX released in
1978.) A markup language provides the means for rendering text in various ways - such
as bold, italicized or Greek symbols - with the main focus of LATEX being the rendering
of mathematics so that even complicated expressions involving equations, integrals and
matrices and images can be professionally typeset.
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55.3 Learning Outcomes

Following these introductory lectures, a student should feel comfortable writing their own
LATEX documents, and producing professionally typset mathematics. The learning curve to
producing a valid LATEX document is shallow, and students will further become familiar will
some of the principal features of LATEX such as chapters, item lists, typesetting mathemat-
ics, including equations, tables, bibliographies and images. Then, with the aid of a good
reference manual, a student should feel comfortable researching out for themselves further
features and expanding their LATEX vocabulary

55.4 Reading List

The Department has a page of LATEX resources at https://www.maths.ox.ac.uk/members/
it/faqs/latex which has various free introductory guides to LATEX.
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