
Examiners’ Report: Final Honour School of Mathematics

Part C Trinity Term 2020

March 9, 2021

Part I

A. STATISTICS

• Numbers and percentages in each class.

See Table 1, page 1.

• Numbers of vivas and effects of vivas on classes of result.
As in previous years there were no vivas conducted for the FHS of Mathematics Part C.

• Marking of scripts.
The dissertations and mini-projects were double marked. The remaining scripts were
all single marked according to a pre-agreed marking scheme which was very closely
adhered to. For details of the extensive checking process, see Part II, Section A.

• Numbers taking each paper.
See Table 5 on page 8.

Table 1: Numbers in each class

Number Percentages %
2020 (2019) (2018) (2017) (2016) 2020 (2019) (2018) (2017) (2016)

I 63 (58) (53) (48) (44) 67.74 (57.43) (56.99) (57.14) (50.57)
II.1 30 (40) (26) (23) (31) 32.26 (39.6) (27.96) (27.38) (35.63)
II.2 0 (2) (13) (12) (9) 0 (1.98) (13.98) (14.29) (10.34)
III 0 (1) (1) (1) (3) 0 (0.99) (1.08) (1.19) (3.45)
F 0 (0) (0) (0) (0) 0 (0) (0) (0) (0)

Total 93 (101) (93) (84) (87) 100 (100) (100) (100) (100)
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B. New examining methods and procedure in the 2020 examinations

In light of Covid 19, the department took steps to mitigate the impact of the pandemic
on academic performance. This included changing the examinations to open-book version
of the standard exam papers, reducing the units required from 8 to 6, the introduction
of the safety net and Declared to have Deserved Masters. In addition, the method of
assessing mitigating circumstances at the exam board was changed. An additional hour
was also added on to the Mathematics exam duration to allow candidates the technical
time to download and submit their examination papers via Weblearn. Given the unusual
circumstances and impact of Covid-19, ranking was only used for the purposes of awarding
prizes. The introduction of the safety net (which was applied to cohorts) meant that the
overall average and hence rank was not well defined.

C. Changes in examining methods and procedures currently under discus-
sion or contemplated for the future

Due to the uncertainty with the pandemic, the department decided that exams will be taken
online for Trinity Term 2021.

D. Notice of examination conventions for candidates

The first notice to candidates was issued on 19th February 2020 and the second notice on
6th May 2020. These contain details of the examinations and assessments.

All notices and the examination conventions for 2020 examinations are on-line at
http://www.maths.ox.ac.uk/members/students/undergraduate-courses/examinations-assessments.

Part II

A. General Comments on the Examination

The examiners would like to convey their grateful thanks for their help and cooperation to all
those who assisted with this year’s examination, either as assessors or in an administrative
capacity. The chairman would particularly like to thank Nicole Collins for administering
the whole process with efficiency, and also to thank Elle Styler, Charlotte Turner-Smith
and Waldemar Schlackow. In addition the internal examiners would like to express their
gratitude to Professor Richard Jozsa and Dr Jonathan Woolf for carrying out their duties
as external examiners in a constructive and supportive way during the year, and for their
valuable input at the final examiners’ meetings.

Timetable

The examinations began on Monday 1st June and finished on Thursday 18th June.
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Mitigating Circumstances Notice to Examiners and other special circumstances

In light of Covid 19, there was no separate panel meeting to discuss the individual notices
to examiners. Even though the Mitigating Circumstances were initially reviewed at the
preliminary meeting, all decisions on the outcome of these notices were decided at the
final meeting alongside any cohort-wide decisions and the safety net being applied. The
full board of examiners considered 10 notices in the final meeting. All candidates with
certain conditions (such as dyslexia, dyspraxia, etc.) were given special consideration in
the conditions and/or time allowed for their papers, as agreed by the Proctors. Each such
paper was clearly labelled to assist the assessors and examiners in awarding fair marks.

Setting and checking of papers and marks processing

Following established practice, the questions for each paper were initially set by the course
lecturer, with the lecturer of a related course involved as checker before the first draft of
the questions was presented to the examiners. The course lecturers also acted as assessors,
marking the questions on their course(s).

The internal examiners met in early January to consider the questions on Michaelmas
Term courses, and changes and corrections were agreed with the lecturers where necessary.
The revised questions were then sent to the external examiners. Feedback from external
examiners was given to examiners, and to the relevant assessor for each paper for a response.
The internal examiners met a second time late in Hilary Term to consider the external
examiners’ comments and assessor responses (and also Michaelmas Term course papers
submitted late). The cycle was repeated for the Hilary Term courses, with two examiners’
meetings in the Easter Vacation; the schedule here was much tighter.

Due to the Pandemic, Exam Papers were revised and set to be open book. Camera ready
copy of each paper was signed off by the assessor, and then submitted to the Examination
Schools.

Candidates accessed and downloaded their exam papers via the Weblearn system at the
designated exam time. Exam responses were uploaded to Weblearn and made available to
the Exam Board Administrator 48 hours after the exam paper had finished.

The process for Marking, marks processing and checking was adjusted accordingly to fit in
with the online exam responses. Assessors had a short time period to return the marks on
the mark sheets provided. A check-sum was also carried out to ensure that marks entered
into the database were correctly read and transposed from the mark sheets.

All scripts and completed mark sheets were returned, if not by the agreed due dates, then
at least in time for the script-checking process.

A team of graduate checkers, under the supervision of Nicole Collins and Elle Styler, re-
viewed the mark sheets for each paper of this examination, carefully cross checking against
the mark scheme to spot any unmarked questions or parts of questions, addition errors
or wrongly recorded marks. Also sub-totals for each part were checked against the mark
scheme, noting correct addition. In this way a number of errors were corrected, each change
was approved by one of the examiners who were present throughout the process. A check-
sum is also carried out to ensure that marks entered into the database are correctly read
and transposed from the marks sheets.
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Determination of University Standardised Marks

The Mathematics Teaching Committee issued each examination board with broad guidelines
on the proportion of candidates that might be expected in each class. This was based on
the average in each class over the last four years, together with recent historic data for Part
C, the MPLS Divisional averages, and the distribution of classifications achieved by the
same group of students at Part B.

The examiners followed established practice in determining the University standardised
marks (USMs) reported to candidates. This leads to classifications awarded at Part C
broadly reflecting the overall distribution of classifications which had been achieved the
previous year by the same students.

We outline the principles of the calibration method.

The Department’s algorithm to assign USMs in Part C was used in the same way as last
year for each unit assessed by means of a traditional written examination. Papers for which
USMs are directly assigned by the markers or provided by another board of examiners are
excluded from consideration. Calibration uses data on the Part B classification of candi-
dates in Mathematics and Mathematics & Statistics (Mathematics & Computer Science and
Mathematics & Philosophy students are excluded at this stage). Working with the data for
this population, numbers N1, N2 and N3 are first computed for each paper: N1, N2 and N3

are, respectively, the number of candidates taking the paper who achieved in Part B overall
average USMs in the ranges [70, 100], [60, 69] and [0, 59], respectively.

The algorithm converts raw marks to USMs for each paper separately (in each case, the
raw marks are initially out of 50, but are scaled to marks out of 100). For each paper,
the algorithm sets up a map R → U (R = raw, U = USM) which is piecewise linear. The
graph of the map consists of four line segments: by default these join the points (100, 100),
P1 = (C1, 72), P2 = (C2, 57), P3 = (C3, 37), and (0, 0). The values of C1 and C2 are set by
the requirement that the proportion of I and II.1 candidates in Part B, as given by N1 and
N2, is the same as the I and II.1 proportion of USMs achieved on the paper. The value of
C3 is set by the requirement that P2P3 continued would intersect the U axis at U0 = 10.
Here the default choice of corners is given by U -values of 72, 57 and 37 to avoid distorting
nonlinearity at the class borderlines.

The results of the algorithm with the default settings of the parameters provide the starting
point for the determination of USMs. The examiners have scope to make changes, usually
by adjusting the position of the corner points P1, P2, P3 by hand, so as to alter the map
raw→ USM, to remedy any perceived unfairness introduced by the algorithm, in particular
in cases where the number of candidates is small. They also have the option to introduce
additional corners.

Table 2 on page 6 gives the final positions of the corners of the piecewise linear maps used
to determine USMs from raw marks. For each paper, P1, P2, P3 are the (possibly adjusted)
positions of the corners above, which together with the end points (100, 100) and (0, 0)
determine the piecewise linear map raw → USM. The entries N1, N2, N3 give the number
of incoming firsts, II.1s, and II.2s and below respectively from Part B for that paper, which
are used by the algorithm to determine the positions of P1, P2, P3.

Following customary practice, a preliminary, non-plenary, meeting of examiners was held
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two days ahead of the plenary examiners’ meeting to assess the results produced by the
algorithm alongside the reports from assessors. The examiners reviewed each papers and
report, considered whether open book examination process affected candidates and reviewed
last year’s stats. The examiners discussed the preliminary scaling maps and the preliminary
class percentage figures. Adjustments were made to the default settings as appropriate,
paying particular attention to borderlines and to raw marks which were either very high or
very low. These revised USM maps provided the starting point for a review of the scalings,
paper by paper, by the full board of examiners.
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Table 2: Position of corners of piecewise linear function

Paper P1 P2 P3 Additional corners N1 N2 N3

C1.1 15.28;37 26.6;57 38.6;72 50;100 6 3 0
C1.2 19.93; 37 35;60 50;100 4 4 0
C1.3 20.85; 37 36.3;57 50;100 8 10 0
C1.4 12.24;37 21.3;57 34.8;72 50;100 5 4 0
C2.1 16.43;37 28.6;57 40.6;72 50;100 4 4 0
C2.2 10.91;37 29;57 42;70 50;100 5 4 0
C2.4 13.79;37 30;57 36;70 40;80 3 4 0
C2.5 50;100 - - - 2 2 0
C2.6 50;100 - - - 3 0 0
C2.7 15.28;37 26.6;57 38.6;72 50;100 6 5 0
C3.1 17;37 33.9;62 44.4;77 50;100 6 1 0
C3.2 16.2;37 28.2;57 37.2;72 50;100 2 1 0
C3.3 9.59;37 33.2;72 50;100 3 2 0
C3.4 17.06;37 29.7;57 40;70 50;100 6 2 0
C3.5 50;100 4 1 0
C3.7 14.47;37 25.2;57 40;70 50;100 5 8 0
C3.8 5.74;37 20;50 40;72 50;100 7 10 0
C3.10 9;30 15;40 50;100 4 7 0
C4.1 10.63;37 24;60 30;72 50;100 7 1 0
C4.3 12.35;37 26;57 36;72 43;90 2 3 0
C4.6 22;55 32.2;72 50;100 4 0 1
C4.8 11.26;37 19.6;57 32;70 50;100 0 5 0
C5.1 16.03;37 27.9;57 38;70 50;100 0 4 0
C5.2 9.13;37 15;45 36;70 50;100 6 8 1
C5.5 15.57;37 27.1;57 40;67 50;100 4 14 1
C5.6 20;50 26.8;57 44;72 50;100 4 9 0
C5.7 14.30;37 24.9;57 35.4;72 50;100 5 3 1
C5.9 16.37;37 28.5;57 40;70 50;100 2 2 0
C5.11 13.33;37 23.2;57 44;70 50;100 4 12 1
C5.12 18.38;37 32;57 40;70 50;100 2 3 0
C6.1 18.33;37 30;57 42.4;72 50;100 3 7 1
C6.2 16.43;37 28.6;57 37;70 50;100 3 7 3
C6.3 50;100 - - - 2 2 0
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Paper P1 P2 P3 Additional corners N1 N2 N3

C6.4 14.13;37 24.6;57 36.6;72 50;100 4 4 1
C7.4 14.48;37 25.2;57 42;70 50;100 2 2 0
C7.5 13.16;37 28;56 41;70 50;100 0 2 0
C7.6 13.04;37 19;50 23;60 50;100 0 1 0
C8.1 11.66;37 29;60 40;70 48;90 4 6 1
C8.2 16.95;37 29.5;57 37;72 50;100 4 4 1
C8.3 11.83;37 24;57 32.6;72 50;100 12 12 0
C8.4 13.73;37 26;55 35;70 50;100 11 9 1
C8.6 23.84;37 43;75 50;100 1 1 0
SC1 16.31;37 36;59 42;68 48;90 9 25 3
SC2 13.61;37 32;60 39;70 50;100 8 25 1
SC5 21.03;37 35;57 43;70 46;78 6 8 1
SC7 14.65;37 27;55 40;70 50;100 3 9 1
SC9 12.29;37 27;57 37;72 50;100 4 3 0
SC10 50;100 1 1 0

B. Equality and Diversity issues and breakdown of the results by gender

Table 4: Breakdown of results by gender

Class Number

2020 2019 2018
Female Male Total Female Male Total Female Male Total

I 16 47 63 8 50 58 6 47 53
II.1 4 26 30 9 31 40 7 19 26
II.2 0 0 0 0 2 2 3 10 13
III 0 0 0 0 1 1 1 0 1
F 0 0 0 0 0 0 0 0 0

Total 20 73 93 17 84 101 17 76 93

Class Percentage

2020 2019 2018
Female Male Total Female Male Total Female Male Total

I 80 64.38 72.19 47.06 59.52 57.43 35.29 61.84 56.99
II.1 20 35.62 27.81 52.94 36.9 39.6 41.18 25 27.96
II.2 0 0 0 0 2.38 1.98 17.65 13.16 13.98
III 0 0 0 0 1.19 0.99 5.88 0 1.08
F 0 0 0 0 0 0 0 0 0

Total 100 100 100 100 100 100 100 100 100
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C. Detailed numbers on candidates’ performance in each part of the exam

Data for papers with fewer than six candidates are not included.

Table 5: Numbers taking each paper

Paper Number of Avg StDev Avg StDev
Candidates RAW RAW USM USM

C1.1 9 37.11 4.73 71.33 7.33
C1.2 8 46.88 4.22 91.62 11.29
C1.3 18 45.94 3.61 87.22 11.46
C1.4 9 32.78 5.49 70.67 7.57
C2.1 8 38 5.37 70.75 9.6
C2.2 9 40.56 7.62 75 13.65
C2.4 7 33.86 4.67 66.14 10.04
C2.5 4 - - - -
C2.6 3 - - - -
C2.7 11 36.64 3.96 70.45 5.72
C3.1 7 44.57 4.5 82.14 11.45
C3.2 3 - - - -
C3.3 5 - - - -
C3.4 8 42.62 5.6 80.5 12.21
C3.5 5 - - - -
C3.7 13 40.46 7.49 78.23 14.6
C3.8 17 33.65 10.59 68.24 16.79
C3.10 11 36.18 12.79 76.36 21.98
C4.1 8 30.62 8.86 70.75 14.16
C4.3 5 - - - -
C4.6 5 - - - -
C4.8 5 - - - -
C5.1 4 - - - -
C5.2 15 33.6 10.78 70.64 18.27
C5.5 18 38.28 5.73 69.5 11.41
C5.6 13 41.23 5.31 72.92 9.4
C5.7 9 35.56 7.78 73.78 13.25
C5.9 4 - - - -
C5.11 17 38.76 6.65 68.88 8.52
C5.12 5 - - - -
C6.1 6 37.33 4.84 65.67 6.02
C6.2 9 34.22 3.27 66.11 5.75
C6.3 4 - - - -
C6.4 9 33.22 7.19 69 11.58

8



Paper Number of Avg StDev Avg StDev
Candidates RAW RAW USM USM

C7.4 4 - - - -
C7.5 2 - - - -
C7.6 1 - - - -
C8.1 10 37.4 9.34 71.7 14.67
C8.2 8 35.12 6.6 68.88 12.79
C8.3 18 34.83 8.81 75.22 14.67
C8.4 16 36.19 7.3 73.19 13.67
C8.5 2 - - - -
C8.6 2 - - - -
SC1 11 39.09 7.63 67.64 15.86
SC2 7 34.29 3.86 63.57 5.97
SC4 4 - - - -
SC5 2 - - - -
SC7 1 - - - -
SC9 3 - - - -
CCS1 1 - - - -
CCD 72 - - 73.32 7.74
COD 1 - - - -

The tables that follow give the question statistics for each paper for Mathematics candi-
dates. Data for papers with fewer than six candidates are not included.

Paper C1.1: Model Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 19.33 19.33 1.63 6 0
Q2 16.67 19.2 6.59 5 1
Q3 15.75 17.43 7.15 7 1

Paper C1.2: Gödel’s Incompleteness Theorems

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 23.75 23.75 1.83 8 0
Q2 22.5 22.5 2.88 6 0
Q3 25 25 0 2 0
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Paper C1.3: Analytic Topology

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 22.62 22.62 2.43 13 0
Q2 23.11 23.63 1.96 8 1
Q3 22.93 22.93 2.79 15 0

Paper C1.4: Axiomatic Set Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 14.14 16 5.81 6 1
Q2 17.88 17.88 3.04 8 0
Q3 14 14 4.90 4 0

Paper C2.1: Lie Algebras

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.67 17.67 4.76 6 0
Q2 19.88 19.88 2.30 8 0
Q3 19.5 19.5 0.71 2 0

Paper C2.2: Homological Algebra

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 22.33 22.33 1.75 6 0
Q2 21 21 4.20 7 0
Q3 16.8 16.8 4.44 5 0

Paper C2.4: Infinite Groups

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.71 15.71 2.06 7 0
Q2 17.5 17.5 4.14 6 0
Q3 22 22 1 0

Paper C2.5: Non-Commutative Rings

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 19.67 19.67 2.31 3 0
Q2 14.5 16 2.12 1 1
Q3 19.5 19.5 3.79 4 0
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Paper C2.6: Introduction to Schemes

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 23.33 23.33 0.58 3 0
Q2 22 22 1 0
Q3 20.5 20.5 0.71 2 0

Paper C2.7: Category Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.2 15.2 2.53 10 0
Q2 21.3 21.3 2.16 10 0
Q3 19 19 2.83 2 0

Paper C3.1: Algebraic Topology

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 23.2 23.2 1.92 5 0
Q2 20.25 20.25 5.25 4 0
Q3 23 23 0.71 5 0

Paper C3.2: Geometric Group Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 20.67 20.67 2.08 3 0
Q2 13.5 13.5 4.95 2 0
Q3 24 24 1 0

Paper C3.3: Differentiable Manifolds

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 14 14 9.90 2 0
Q2 17 17 3.81 5 0
Q3 14.67 14.67 3.21 3 0

Paper C3.4: Algebraic Geometry

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 21.75 21.75 2.92 8 0
Q2 22.25 22.25 3.59 4 0
Q3 19.5 19.5 3.42 4 0
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Paper C3.5: Lie Groups

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 20.6 20.6 2.51 5 0
Q2 20.5 20.5 6.36 2 0
Q3 22 22 3.61 3 0

Paper C3.7: Elliptic Curves

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 21.86 21.86 4.30 7 0
Q2 18.29 18.29 6.85 7 0
Q3 20.42 20.42 2.94 12 0

Paper C3.8: Analytic Number Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.93 19.00 6.79 14 1
Q2 17.53 17.53 5.29 15 0
Q3 8.6 8.6 3.51 5 0

Paper C3.10: Additive and Combinatorial Number Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 19.91 19.91 6.59 11 0
Q2 16.27 16.27 9.33 11 0

Paper C4.1: Further Functional Analysis

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.67 15.67 4.89 6 0
Q2 15.33 15.33 5.35 6 0
Q3 14.75 14.75 4.99 4 0

Paper C4.3: Functional Analytical Methods for PDEs

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.75 16.75 1.26 4 0
Q2 20.5 20.5 0.71 2 0
Q3 17.25 17.25 5.85 4 0
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Paper C4.6: Fixed Point Methods for Nonlinear PDEs

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.33 17.33 2.52 3 0
Q2 18.4 18.4 3.21 5 0
Q3 17.5 17.5 9.19 2 0

Paper C4.8: Complex Analysis: Conformal Maps and Geometry

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 11.25 11.25 2.22 4 0
Q2 17.75 17.75 2.06 4 0
Q3 20.5 20.5 2.12 2 0

Paper C5.1: Solid Mechanics

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 22.5 22.5 2.38 4 0
Q3 17.25 17.25 4.99 4 0

Paper C5.2: Elasticity and Plasticity

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.42 17.42 4.48 12 0
Q2 15.14 15.14 8.07 7 0
Q3 17.18 17.18 6.81 11 0

Paper C5.5: Perturbation Methods

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17 17 3.46 6 0
Q2 19 19.2 4.37 15 1
Q3 19.93 19.93 3.51 15 0

Paper C5.6: Applied Complex Variables

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 19.8 19.8 3.94 10 0
Q2 19.83 19.83 0.98 6 0
Q3 21.9 21.9 2.51 10 0
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Paper C5.7: Topics in Fluid Mechanics

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.8 16.8 1.92 5 0
Q2 17.125 17.13 5.17 8 0
Q3 19.8 19.8 3.90 5 0

Paper C5.9: Mathematical Mechanical Biology

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.25 17.25 2.63 4 0
Q2 16.33 16.33 3.21 3 0
Q3 23 23 1 0

Paper C5.11: Mathematical Geoscience

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 20.2 20.2 3.26 10 0
Q2 18.71 18.71 3.31 17 0
Q3 19.86 19.86 5.30 7 0

Paper C5.12: Mathematical Physiology

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 21.5 21.5 2.38 4 0
Q2 15.33 15.33 1.15 3 0
Q3 23.33 23.33 1.53 3 0

Paper C6.1: Numerical Linear Algebra

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18.6 18.6 2.51 5 0
Q2 19.5 19.5 1.73 4 0
Q3 17.67 17.67 3.51 3 0

Paper C6.2: Continuous Optimization

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.67 18.40 2.58 5 1
Q2 17.8 17.8 2.49 5 0
Q3 15.88 15.88 3.44 8 0
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Paper C6.3: Approximation of Functions

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 24 24 0.82 4 0
Q2 17 17 - 1 0
Q3 16.67 16.67 8.50 3 0

Paper C6.4: Finite Element Methods for Partial Differential Equations

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.2 16.2 4.38 5 0
Q2 16.89 16.89 3.66 9 0
Q3 16.5 16.5 5.80 4 0

Paper C7.4: Introduction to Quantum Information

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 20 20 4.36 3 0
Q2 20.67 20.67 5.77 3 0
Q3 20 20 5.66 2 0

Paper C7.5: General Relativity I

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18.5 18.5 9.19 2 0
Q2 16 16 - 1 0
Q3 19 19 - 1 0

Paper C7.6: Relativity II

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15 15 - 1 0
Q2 8 8 - 1 0

Paper C8.1: Stochastic Differential Equations

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 19.2 19.2 3.52 10 0
Q2 13.67 13.67 3.51 3 0
Q3 20.14 20.14 6.04 7 0
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Paper C8.2: Stochastic Analysis and PDEs

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16 16 3.52 6 0
Q2 17 17 1.41 2 0
Q3 18.88 18.88 5.03 8 0

Paper C8.3: Combinatorics

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.19 16.19 5.71 16 0
Q2 11.5 13 3.11 3 1
Q3 19.35 19.35 4.86 17 0

Paper C8.4: Probabilistic Combinatorics

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 19.4 19.4 2.75 15 0
Q2 17.29 17.29 4.82 7 0
Q3 16.7 16.7 5.08 10 0

Paper C8.5: Introduction to Schramm-Loewner Evolution

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15 15 1 0
Q2 14 14 1 0
Q3 19.5 19.5 4.95 2 0

Paper C8.6: Limit Theorems and Large Deviations in Probability

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 25 25 0 2 0
Q2 20.5 20.5 3.54 2 0

Paper SC1: Stochastic Models in Mathematical Genetics

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.63 17.43 6.21 7 1
Q2 21.73 21.73 2.80 11 0
Q3 17.25 17.25 4.35 4 0
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Paper SC2: Probability and Statistics for Network Analysis

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18 18 3.21 7 0
Q2 15.4 15.4 2.30 5 0
Q3 18.5 18.5 2.12 2 0

Paper SC4: Statistical Data Mining and Machine Learning

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 20.5 20.5 5.80 4 0
Q2 16.67 16.67 6.11 3 0
Q3 19 19 - 1 0

Paper SC5: Advanced Simulation Methods

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 25 25 0 2 0
Q2 23.5 23.5 0.71 2 0

Paper SC7: Bayes Methods

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q2 24 24 - 1 0
Q3 23 23 - 1 0

Paper SC9: Interacting Particle Systems

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 20.33 20.33 4.04 3 0
Q2 21.67 21.67 1.15 3 0
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D. Recommendations for Next Year’s Examiners and Teaching Committee

Examiners feel that the department should reconsider the rule on re-scaling of the 50 raw
mark , and how this information should be communicated to assessors- i.e. 50 raw mark is
for outstanding candidates and that the work for these candidates should significantly show
this.

E. Comments on papers and on individual questions

The comments which follow were submitted by the assessors, and have been reproduced
with only minimal editing. Some data to be found in Section C above have been omitted.

C1.1: Model Theory

Q1. Parts a-c were generally well done. Part d required reproving the Los-Vaught criterion
in this setting, rather than applying it. Very few saw this. A very common mistake was to
assert that T’ must be categorical, with no explanation; there is no reason it should be.

Q2. (a) was done well almost universally, including the explanation of where completeness is
used. (a) was done well almost universally, including the explanation of where completeness
is used. (b,c) were also generally handled well; occasionally the wrong answer was given
regarding aleph-one categoricity (it need not hold.) In 2d, there are at least two routes
to a correct solution, one invoking homogeneity of the countable models of an aleph-zero
categorical theory, the other using Ryll-Nardjewski. The latter was chosen by most, and
on the whole people did well. Some attempted a direct approach, quoting neither theorem,
and a few succeeded; among the others, a surprisingly common mistake was to claim that
permuting two elements while keeping the rest fixed is an isomorphism of an arbitrary
structure.

Q3 This was the most popular problem. On the whole people dealt very well with the new
notions of irreducibility and JEP, and proved them equivalent (3bc). 3d was seen as more
difficult; only about half of those choosing Q3 attempted it; in general they did well. JEP
or irreducibility show that two existential sentences, each of which hold in some model, can
hold simultaneously in some model; this easily extends to finitely many existential sentences;
then either a limit or a compactness argument is required.

18



C1.2: Gödel’s Incompleteness Theorems

This year the section C exams, like everything else, were affected by the Covid-19 pandemic.
The colleges and university buildings were closed, and students sat their exams remotely,
online. They had extra time, because of downloading papers and then uploading their
completed scripts, they were allowed to use books and notes, and they took fewer papers
each. Thus “bookwork” parts of questions became tests of understanding rather than
memory. But the answers that candidates gave leave the impression of a student body that
was committed, attentive, able, and hard-working, and the answers were on the whole very
good.

Question 1. was very well done on the whole, though, judging by the overall appearance of
scripts, some candidates may have spent too much time on it and run out of time on their
other question.

Parts (a)(i) and (a)(ii) of question 1. were done very well. In part (a)(iii), one is using
the Gödel sentence, that asserts its own unprovability. Part (a)(iv) is asking, in effect, for
a proof that any Π1 sentence that is neither provable nor disprovable from the first-order
Peano axioms must be true in the natural numbers. Some candidates misunderstood this.

The sentences in part (b) are all variations on the Gödel sentence, and the sub-parts of part
(b) may be tackled in a number of ways: either by making the relationship between the
various sentences Hi and the Gödel sentence explicit, or by treating them individually.

The permitted assumptions given at the beginning of the paper in fact imply that the first-
order Peano axioms are 1-consistent (a fact which is needed from time to time). Candidates
varied according to how carefully they verified this.

Question 2., which concerns provability logic, turned out to permit many differences of
approach.

Part (a) was done well on the whole, but there was some vagueness about the rules of
inference in GL-logic. There is an important difference between the rules Modus Ponens
and Generalisation: Modus Ponens says that if φ and (φ→ ψ) occur earlier in a proof then
it is legitimate to put ψ later on (and none of these three formulae need be theorems of
GL-logic, if the proof involves some extra assumptions), whereas Generalisation says that
if φ is a theorem (i.e. is provable without extra assumptions), then �φ is a theorem also.
This difference in how the rules may be applied, wasn’t always appreciated.

Passing over part (b)(i) (which was done well), there were many attempts at (b)(ii) which
varied in how successful they were, but quite a few different functions v were made to work
perfectly. The idea is that v should be some kind of (explicitly-defined) valuation, where
the notion of “valuation” used is sufficient that all theorems of GL-logic end up given the
value of “true”. Part (b)(iii) is a straightforward application of part (b)(i).

There were many different successful strategies for finding fixed points in part (c). Some
people followed the algorithm in the lecture notes, thus implicitly using the fact, which
follows from theorems in the notes, that this algorithm is correct. Others found answers
by some method or other (intelligent guesswork, or other methods done in rough and then
consigned to the bin?) but proved they were correct by arguing, for each fixed point F ,
that A(F ) and F were provably equivalent.

Question 3. was also done well, though the quantity of deleted text in the submitted solutions
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suggests that some candidates found it quite hard.

Part (a) was relatively easy going. In part (iii), quite a few candidates were unwilling to
simply assume that any Π1 sentence was Σ2, and some worked harder than was necessary
to prove this. A trivial proof goes like this: if φ is explicitly Π1, and x is a variable which
does not occur free in φ, then φ and ∃xφ are equivalent; and ∃xφ is explicitly Σ2.

Parts (b) and (c) are about the weird behaviour of ω-consistency.

Part (b) caused some difficulty. The point of part (i) is that any set of sentences true in
the natural numbers must be ω-consistent (think about the rules concerning the semantics
of existential quantifiers), so X can’t possibly be true in the natural numbers; but then
X, when added to the first-order Peano axioms, gives an ω-consistent system (which can
only be true in non-standard models of the Peano axioms, containing many non-standard
elements which could witness the truth of existential statements). Part (ii) was done well.

Part (c) caused difficulty. Looking at part (i), the Second Incompleteness Theorem is in
the notes; and the non-provability of the consistency of the Peano axioms follows because
consistency is the unprovability of contradictions; and it follows from the Second Incom-
pleteness Theorem that nothing can be proved to be unprovable. As for part (ii), consistency
follows from part (i), Σ1-unsoundness follows because ¬ConPA is Σ1 and untrue, and then
ω-inconsistency follows from that.

C1.3: Analytic Topology

This year, everything at the University was affected by the Covid-19 pandemic. The uni-
versity buildings and colleges were shut for Trinity term, and exams were sat remotely,
online, and were open-book, meaning that candidates could use books and notes during the
exam. They were also given more time, to allow for downloading the exam and uploading
the finished scripts.

This, in my view, made unavoidable the perennial question of what exams are for and what
they should be designed to measure. The open-book format, I think, changed the emphasis
from knowing material (having committed proofs to memory), to understanding it: failures
in understanding can reveal themselves in significant errors in reproducing arguments.

There were some very high raw marks this year. Various explanations for this come to
mind; but one is that very many of the students were able, attentive, and diligent, and that
this was reflected in their scripts.

In question 1.(a), which was bookwork, there were many very good answers. Where people
fell down was in forgetting to do part of the argument, for example, neglecting to prove that
some particular kind of open set had open preimage under the function fC,D. In bookwork
generally, this is an easy mistake to make. But it’s also quite serious, and easy to guard
against: write a list of the things you need to do, and tick them off one by one as you do
them.

In 1.(b), to which many good answers were given, a common problem was, in part (ii),
defining an operator HX(x, U) for the subspace X which was actually monotonic in U .
People who paid careful attention to the hint did not make this mistake, but people who
reasoned as follows did: “Let U be an open subset of X, and let x be an element of U .
Then there exists and open subset U ′ of Y such that U = X ∩ U ′. Define HX(x, U) to be
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X ∩ HY (x, U ′).” The reason this doesn’t work, of course, is that if U ⊆ V , we have no
guarantee that U ′ ⊆ V ′. In part (iii), some people neglected to prove that H(C,D) ⊆ X \D,
which is of course rather important.

There were quite a few good answers to 1.(c).

In 2.(a), which is bookwork, there was again a problem with people forgetting to describe
vital steps in the argument.

The commonest difficulting in 2.(b) was in proving that Z had a countable basis of clopen
sets and that, moreover, Z had just countably many clopen sets. Some people tried to do
this and failed; some people didn’t do it at all, failing to note that even though Z has a
countable basis, and also has a basis of clopen sets, it still requires to be proved that there
are just countably many clopen sets in Z.

Part 2.(c) was done well on the whole.

There were a lot of good answers to 2.(d), but some people either couldn’t do it or doubted
that the result was true.

I think people generally spotted that in parts (b) and (d) of question 2., they needed to
adapt the proof in part (a).

Part 3.(a) was generally done well, but just as in part (a) of the other two questions, it was
possible to forget to do a part of the proof. For example, one or two people forgot to prove
that h(X) was dense in αX.

Many people did 3.(b) well. Some wasted a minute or two in proving that αf was proper,
which the question did not ask them to do.

Parts (i) and (ii) of 3.(c) were generally done well. People gave different answers to (ii), all
of which I deemed to be correct. For example, some people gave a definition that worked
with ultrafilters and onto maps, and others gave more general definitions in terms of general
filters and maps that might not be onto.

There were quite a few good attempts to do part (iii) of 3.(c). Some people had difficulty
with it; I can’t detect a general explanation as to why that’s more sophisticated than saying
that the argument was a bit tricky and a bit fiddly, and it was possible to get lost in the
set algebra.

C1.4: Axiomatic Set Theory

Question 1 As expected, candidates were able to do the bookwork and the common applica-
tions. Often counterexamples were missing and a significant number of candidates claimed
that functions from a to b are elements of a×b instead of subsets. This led to wrong answers
for parts (b)(iii) and (iv). Almost no candidate noticed that (b)(iii) for transitive models
of ZFC is extremely similar to the absoluteness of the set of finite functions with given
co-domain.

Question 2 Marks in this question were high because the proof of the Reflection Principle
was done very well. In (b)(ii) candidates usually demanded only one of the absoluteness of
φ and ∃y φ instead of both (or rather their conjunction) and thus gave partially incorrect
answers. In (c)(ii) almost no candidate spotted that Vα is definable in V with parameter α
despite having written exactly such a definition in (a).
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Question 3 The somewhat technical reasoning in (a)(ii) and (iii) proved more challeng-
ing than expected. No candidate explained why Def(x) is a set (in ZF-Powerset) and
describing the extension of a well-order of x to Def(x) often contained mistakes or was
missing.

In (b) a large number of candidates showed transitivity of M by going through cases instead
of observing that y ∈ x ∈ Mn gives y =

⋃
{y} ∈ Mn+2. Explaining why M was a model of

ZF-Replacement-Powerset was done well, though some candidates missed the occasional
axiom.

Very few candidates followed the hint and showed that TC(x)∩ ω× ω is finite. The others
made little progress.
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C2.1: Lie Algebras

Question 1: This was a popular question but part (d) was challenging and only two candi-
dates submitted full solution. Part (i) was the main stumbling block: Use that g = [g, g]
together with the fact that f(ad([x, y])) = [f(ad(x)), ad(y)] + [ad(x), f(ad(y))] is an inner
derivation by (b).

Question 2: This was the most popular question with many good almost complete solu-
tions. In (c) some candidates gave an alternative proof using that ad(y)2(x) = 0 for every
eigenvector y of ad(x).

Question 3: Few attempts with two nearly complete solutions. In part (d) some candidates
did lots of calculations justifying why the root system is no larger than the 48 roots they
have already found and missed the intended argument: Since each orbit of W on Φ intersects
B it follows that the length of each root is either 1 and 2. Together with Φ ⊂ ZB ⊂ 1

2Z
4

this easily gives that Φ cannot have more than 48 roots.

C2.2: Homological Algebra

Question 1 was done better than Question 2 and 3, but I really don’t think that it was
much easier. The fact that it was done better might be a result of the students attempting
it first, and thus feeling less the pressure of time. I was particularly pleased by how well the
students answered the last part (part (d)) of Question 1. Few students, however, managed
to do d(iii).

C2.3: Representation Theory of Semisimple Lie Algebras

Question 3 was done well, and was perhaps straightforward, given basic understanding
about the Weyl Dimension Formula by the candidates. Question 2 was more tricky. Pitfalls
included the claim that the tensor product (with the diagonal action) of two simple modules
is simple; this is false as the tensor square of any module of dimension ¿ 1 admits a non-
trivial decomposition into the even part and the odd part. Question 1 was less popular.

C2.4: Infinite Groups

Question 1: All candidates attempted this question, and have displayed solid knowledge of
the basics on nilpotent groups. In the third part of the question, a surprising proportion of
the candidates failed to find the exact nilpotency class of the group, even after showing that
the lower central series of the subgroup H ended one step earlier than that of the group. As
surprisingly, there was no complete answer to the fourth part of the question, even though
the hint almost gave away the answer.

Question 2: Almost all candidates chose this second question as well and have been
altogether more successful than in Question 1. The arguments in the second part of the
question were at time lacking rigour, or were missing steps. This may show a tendency to
pay more attention to the abstract theory and less to the worked examples.

Question 3: Hardly anyone attempted this question. This question covered the last part
of the course, which may explain its lack of popularity.
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C2.5: Non-Commutative Rings

Question 1: This was a popular question whith several nearly complete answers. The
common mistakes were in (c)(i) when analysing a general element from k[G](H − 1)

Question 2: Not very popular with just 2 attempts. Parts (a) and (b) were done well, but
there was no successful attempt on (c).

Question 3: This question was attempted by all candidates with good results. Common
errors were failing to to explain why the graded ring of the Weyl algebra is commutative in
(c) or failing to define a good filtration on the module M in (d). There were good solutions
to (e) with only minor gaps.

C2.6 Introduction to Schemes

All candidates picked Q1, and then almost evenly split in choosing Q2 or Q3. The scripts
were all of an exceptionally high standard, with no raw marks below 20 in any question.
In Q1(c) candidates correctly stated what the functor does on objects, but often forgot to
state what the functor does on morphisms. In Q2(c) candidates did not use the Hint that
implies that X is the union of those basic open sets. In Q3(b), when checking the sheaf
property, several candidates did not exploit the Hint: for integral schemes the restriction
maps on functions are injective, and overlaps are non-empty by irreducibility. In Q3(c)
candidates correctly stated which module works locally, but forgot to justify why it works.

C2.7 Category Theory

There were plenty of answers demonstrating very good understanding of the material,
though none was perfect.

Question 2 was the most straightforward question and there were attempts from almost all
the candidates, some of which were very good though none obtained full marks. There was
a minor misprint in 2 (b) (iv), where a superscript ‘op’ was missing in HomCat(Cop,Set),
but it seemed clear that it did not affect any candidates adversely; indeed only one gave
any indication of noticing it.

Question 1 contained a more substantial amount of unseen material. There were many
very serious attempts, and each part of the question was answered correctly by several
candidates, but no candidate gave a completely successful solution to the whole question.
In 1(a) it was disappointing to see that, just as last year, few candidates could give an
accurate construction for coequalisers in Set.

Question 3 did not attract many attempts. The bookwork part of the question was answered
well, but the rest of the question, especially (b)(iv), caused difficulties.

C3.1: Algebraic Topology

Almost all candidates picked Q1, and then about two thirds of students picked Q3 instead
of Q2. The standard of almost all scripts was very high. In Q1(b) some candidates did not
carefully show functoriality. In Q1(c) there is a difference in the homology and cohomology
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calculations, but some leniency was allowed if candidates checked the homology version
of the Kunneth theorem instead of the cohomology version. Q2(c ) candidates sometimes
failed to carefully explain why the cup product lands in the correct chain complex. Q2(d)
requires a commutative diagram, relating the map from (c) with the usual cup product on
X, and only one candidate did this correctly. In Q3(d) some candidates did not carefully
justify why the preimage of a point is a finite set. Almost no candidate explained in a
satisfactory way why the local degrees are all +1. They did not notice that the previous
step in (c ) had built the pull-back orientation precisely so that the orientation generator
of X maps to that of Y, locally.

C3.2 Geometric Group Theory

Question 1: This was attempted by all candidates, with fairly complete answers provided,
in particular for the examples in the second part. Only half of the candidates attempted the
question where the isomorphisms between two groups was to be proven by finding a finite
sequence of Tietze transformation, and that seems to show that while the formal knowledge
of this method was acquired, the intuition behind it is still lacking.

Question 2: This question was for the main part purely theoretical. Nevertheless, while
most students displayed confident knowledge of everything related to the fundamental group
of a graph of groups, very few attempted the second part of the question, requesting to
provide a definition of such a group for finite simplicial trees via a universal property.

The third part on residual finiteness was answered reasonably well.

Question 3: This question was attempted in equal measure as Question 2, and answered
very well on the whole, including the parts requiring an algorithmical approach. Surprisingly
the least well answered part was part (b), in which a simple geometric argument, relying
entirely on the geometry of hyperbolic spaces, was all that was needed.

C3.3: Differentiable Manifolds

Question 1. Most students lost a mark on part (a) because they missed out some detail in
the definitions, typically in the definition of the free and properly discontinuous action of a
group by diffeomorphisms. Part (b) was mainly done well, with a few students losing marks
through small slips in showing that the volume form defines an orientation. Almost all
students had the right idea for (c)(i), but most commonly lost marks for not showing that
the orbits of the open sets they chose were disjoint, and for not observing that fr(z) ∈ S3 for
z ∈ S3. Part (c)(ii) was similar in that most students had the right idea and approach, but
lost marks through lack of details; a common error was not showing that fr is orientation-
preserving correctly, and not showing that the 3-form defined on the quotient is nowhere
vanishing. About half of the students who attempted this question had the right idea for
(d), all using M ∼= RP2 × S1 as the example, but did not fully justify their answer. This
was the least popular question and produced a wide spread of marks, from high to low.

Question 2. Part (a) was done well. A number of students dropped marks in (b), typically
by not observing that the putative vector fields and/or diffeomorphism they constructed
are smooth. Part (c) was mainly done very well, but students lost marks in not explaining
that for a diffeomorphism the induced map on de Rham cohomology is an isomorphism.
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Part (d)(i) was done very well by almost all students, with marks only lost for not referring
back to the criterion for parallelizability in (b) and for not checking the homotopy they
construct is well-defined. Whilst most correctly students correctly understood that S2 ×R
is parallelizable in (d)(ii), most did not justify it adequately. This was the most popular
question, with all but one student attempting it. There was a spread of marks, but no low
marks (below 10).

Question 3. Part (a) was usually done well, though some students dropped marks by
not stating the criterion for a map to be a local diffeomorphism clearly. Most students
dropped a mark on part (b), usually by not defining the interior product. Part (c)(i) was
done well, except some students thought the flow was a vector field, even though they
defined it correctly in (a). Part (c)(ii) created a great variation in responses, with most
difficulties arising in the correct computation of the Lie derivative from the definition, but
also in computing the exterior derivative and the interior product correctly. In part (d),
most students had the right idea, but some made errors in their computations. There was
a spread of marks, but also no low marks (below 10).

C3.4: Algebraic Geometry

The paper was done very well by 12 candidates.

Question 1 had 11 answers at an average of 21 marks. Candidates lost some marks on
imprecise explanations of easy checks. In part (d) some candidates explained what are the
closed subvarieties of A1 but missed identifying the irreducible ones. In part (e) some can-
didates thought (0, 0) was a separate component; others failed to prove that their proposed
components are indeed irreducible. One of the equations in (e) had an obvious misprint
that was corrected by all candidates (or not even noticed).

Question 2 had 8 answers, also at an average of 21 marks. Most of those who lost marks did
so on the computation in (e). There is in fact a condition missing in (e), in that it should
be assumed that the quadrics define a reduced ideal; most candidates tacitly assumed this.

Question 3 had several answers lacking a full explanation in (b) of the fact that the map π
was a morphism of quasiprojective varieties. Some candidates failed to check that in (c)(i)
their proposed inverse does indeed provide an inverse.

C3.5: Lie Groups

Question 1

This question was about the noncompact symplectic group Sp(2n,R). It was the most
elementary question in terms of the material covered, and all 8 candidates attempted it, with
the majority getting marks in the 18-25 range. Most candidates got through the proof that
the symplectic group was in fact a Lie group, though some were careless about quoting the
appropriate theorems to justify this. The parts of the question aimed at understanding the
algebraic structure of the group were generally done well, though only a couple of candidates
really gave a good explanation of the geometric interpretation of the isomorphism in the
n = 1 case.
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Question 2

This question, on representation theory, proved less popular. The standard parts of the
questions were done well, but putting everything together to show nonexistence of nontrivial
finite-dimensional unitary representations of SL(2, R) proved more challenging.

Question 3

This question was on Weyl groups and maximal tori with candidates attaining marks in the
18-25 range. Candidates generally had a good grasp of the maximal torus for SO(2n + 1)
and how to find Weyl group elements. The more subtle case of SO(2n) was of course harder,
but some people understood this well.

C3.7: Elliptic Curves

Question 1: This was attempted by 9/17 candidates and done very well, with only a few
students losing marks on parts (b), (c) and (d).

Question 2: This was taken by 10/17 students. Few had problems with (a) and (b). Part
(c) was rather hit and miss, with half the students spotting the equation did not actually
define an elliptic curve (such curves cannot have infinitely many integral solutions) and
scoring highly, and the remainder making no progress. I was impressed that the majority
of students were able to work out part (d).

Question 3: A predictably popular question, taken by 15/17 candidates. High marks overall,
the main problem being occasional computational mistakes at crucial moments led some
students astray.

C3.8 Analytic Number Theory

Question 1: This question was very popular, being attempted by almost all candidates and
answers were generally good, typically scoring higher than the other questions. All answers
unsurprisingly gave correct answers to (a) which was bookwork. For part (b) most answers
had little difficulty in applying Poisson summation to prove the functional equation for the
theta function, and either candidates spotted how to answer the later parts or missed them.
There were some slips in relating the theta function to the zeta function, even though the
final part of the question could have been answered by just following the notes. The high
average quality of the answers and the popularity indicate that (at least for the open book
format) this question was close to being too straightforward, but fortunately it produced a
reasonable spread of marks to distinguish between candidates.

Question 2: This question was also popular, and generally answered reasonably well.
Beyond some minor slips, the straightforward parts (a), (b) and c(i) were answered well.
Several candidates forgot to verify that the polynomial in c(ii) had a non-zero leading
coefficient. It was pleasing to see that virtually all candidates were comfortable with the
strategy of part (c), even if there were some difficulties of execution. A common issue was
trying bound the I2 integrals by taking the largest value of xs and ζ(s) separately, which
gave too large a contribution. Candidates struggled much more with (d), which typically
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differentiated between the stronger scripts and the weaker ones. The level of this question
felt correct, and worked well even in the different format.

Question 3: This question was not well answered and not popular with the candidates,
being attempted by less than one third of all scripts. The candidates which did attempt
this tended to do reasonably at the earlier parts, but failed to realise that the later parts
were applications of partial summation or the Prime Number Theorem, meaning that they
struggled to make much headway. The original version of this question had a much larger
bookwork component, but this was replaced by computations involving partial summation
with the change to open book format. In retrospect at least, this made the question too
hard. Perhaps the ideas should also be addressed more in problem sheets in the course, since
I was surprised quite how much candidates struggled. The question distinguished between
candidates which answered it, but was clearly a bit too difficult in comparison with the
earlier questions.

Summary: Overall this exam adequately distinguished between candidates, despite the
challenges of the open book format. Questions 1 and 2 worked well, but question 3 was
rather less successful. Overall the exam wasn’t as well balanced as last years exam, although
it is difficult to tell how much of this is due to the change in exam format. Candidates
generally showed good understanding of the key ideas of the course, with the exception being
a weakness in applications of partial summation which should be noted going forwards.

C3.10: Additive and Combinatorial Number Theory

Fourteen candidates took the exam, and all of them elected to answer questions 1 and 2.
This meant that no candidate attempted a question on the additive combinatorics part of
the course.

Questions 1 and 2 were done quite well, with around a third of the students submitting
almost perfect solutions and several other candidates solving significant parts of questions.

In Q1, the most common mistake was to forget the need to assume a coprimality condition
in the bound for Gauss sums, and therefore forget, in 1 (b), to divide up into powers of p
(as in the notes).

In Q2, the most common mistake was to forget to handle the case h = 0 separately in part
(b) (or to do something equivalent).

There were a few different solutions to Q2 (c), all different to the official solution, which
was nice to see.

C4.1: Further Functional Analysis

As this was an open book exam, bookwork material was reduced to a minimum. Core
material in the form of standard arguments in new settings was well answered by the
vast majority of candidates. Each question included genuinely stretching material which
most candidates struggled with, but there were some exceptional scripts showing complete
command of the material in the course, tackling this challenging material with aplomb.

Question 1

This was marginally the most popular question. Part (a)(i) and (ii) was very well answered,
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but while a number of candidates identified suitable spaces in which an example for (a)(iii)
might be found, only one candidate was able to turn this intuition into a precise argument.
The Zorn’s lemma argument of (b)(i) was well handled, but while candidates started the
separation argument required for (b)(ii) well, they often didn’t identify a suitable element
to adjoin to M to contradict maximality.

Question 2

Part (a) was broadly well answered, though rarely in a completely optimal fashion leading
to lost marks for imprecisions. Candidates tackled (b) well, with many candidates giving
good arguments for (b)(i) and all candidates correctly using Schauder’s theorem in part
(b)(ii). Part (c) was found to be challenging with only one candidate finding a complete
argument. Candidates often failed to find an appropriate set to apply the Arzela-Ascoli
theorem to (namely the compact set {fn : n ∈ N} ∪ {0}) and often got sidetracked.

Question 3

Part (a) was generally very well answered, with most candidates finding the inverse mapping
theorem argument needed in (a)(ii). In (b), part (i) and (ii) where well done, but (iii) proved
harder with candidates finding it difficult to set this up precisely, often attempting to define
a projection directly on X rather than on Y + Z as indicated in the question. Part (c)
is related to the bookwork result that T + S is Fredholm when T is Fredholm and S is
compact; the key part of this argument is to show that T + S has closed range. In the set
up of 3(c), while the operator T need not be Fredholm, only a few candidates realised that
the argument that T + S has closed range goes through in the same fashion.

C4.3: Functional Analytic Methods for PDEs

Question 1: This problem was popular and was handled with variable degree of success.
In (b), some candidates made an error when making the change of variables y = x−xm

rm
. In

(c)(ii), some candidates showed only the weaker statement that for a given compact subset
ω of D̄ \ {0}, there is a subsequence hmk

which converges strongly in Lq(ω).

Question 2: Only about two fifth of the candidates attempted this question. The question
was well answered except for (c)(ii). The candidates forgot that the vector field (−x2, x1),
though is smooth, does not belong to Lp(R2;R2).

Question 3: This problem was most popular. Most candidates had some difficulty in
solving (a)(ii), though understood that it was related to the Fredholm alternative. About
half of the candidates had some difficulty in solving (b)(ii), where Rellich-Kondrachov’s
theorem was expected to be used.

C4.4 Hyperbolic Equations

Question 1: Part a) of the question was answered correctly by nearly everyone, however the
bookwork parts b) and c) posed considerable difficulties for the candidates. The construction
of the unique entropy solution in part d) was attempted by all the candidates, but everyone
made a mistake at different stages and none succeeded in finding the correct equation for
the first shock curve. Some candidates got very caught up in wrong computations and lost
a lot of time here which was clearly lacking for the later questions.
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Question 2: All candidates struggled with the proof of the one dimensional Sobolev em-
bedding in part a)(i) of the question and the energy estimate in part a)(ii). Part b) was
received well; the candidates had in general a correct approach to the solution however some
did not make use of the a priori boundedness of the solution to conclude the argument.

Question 3: Part a)(i) of the question did not pose any difficulties, the other parts were
not attempted probably because of lack of time.

C4.6 Fixed Point Methods for Nonlinear PDEs

Question 1: Question 1 was solved by slightly less than half the candidates. Parts a) and
b) were solved very well and high marks were achieved on those parts. As expected Part
c) was more difficult. 1c)i) was in general well done, though solutions were quite long as
none of the candidates realised that the amount of discussion needed could be significantly
reduced if one states the first version of Schauder rather than any of the other versions.
For the second part of c) most candidates realised that a proposition from the lecture was
useful as one can use the condition to show that the sign of the inner product is constant
outside a suitable ball, but no one could provide a counterexample for the very last bit (e.g.
f defined by f(x) = x in the unit ball and f(x) = x

|x| outside the unit ball works). 1c)iii)
was designed to be the most difficult part of the question and while no complete solution
was provided one of the students came close by suggesting the use of a shift to prevent the
existence of a fixed point (though some extra modification is then needed to make sure that
S maps into H1.)

Question 2: Question 2 was solved by all candidates. High marks were obtained on 1a),
though quite a few students did not realise that since the existence of a unique weak solution
in (ii) could be assumed, all that needed to be done was to use the solution itself as a test
function to derive an estimate, rather than replicating the full proof of existence, uniqueness
and continuous dependency of solutions.

The main part (i) of Question 2b) was similar to many exercises solved and caused a surpris-
ing amount of problems. Some students did not make any use of the sub and supersolution
to define the set M , which then makes it impossible to use the weak maximum principle.
The simplest way to approach the problem is to work on the subset of functions in L2(Ω)
with u ≤ u ≤ ū and while some students took this route, quite a few worked in H1

0 instead
where one needs to further restrict the set of function to obtain boundedness of M . Nearly
all students realised that the second part is an immediate consequence of the result of (i)
and Schauder’s Fixed Point theorem and got the corresponding 1 mark. The third part was
then designed to test whether the students could reduce a new problem to a just proven
result and as expected the result was mixed with most students either getting all three
points or no marks. Part c) was then very well solved by most students.

Question 3:

Question 3 was solved by slightly more than half of the students and the results were quite
mixed but consistent with the performance on question 2. The main comment to make on
question 3 is that students did not make good use of the results that they were told they
could use without proof and spent a lot of time proving results that were unnecessary.

Part a) was generally well solved, though most students did not comment that in order
for their definition of hemi-continuity to make sense one need to assume that the subset
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is convex. The first part of b) was testing the understanding of one of the basic concepts
of the lecture and was generally well solved. Many students wasted a lot of time trying
to prove part (ii) from scratch rather than arguing that since the domain is bounded X
embeds continuously into Y = W 1,p

0 and then using the given result that Ap : Y → Y ∗

is a monotone operator. Similarly, several students did not realise that the previous parts
already give that the operator one is lead to consider in (iii) is a monotone operator and
reproved this. All students attempting 3)c) successfully used Sobolev/Gagliardo-Nirenberg
embedding theorem to prove that the operator is well defined. While the very last part of
3c) was designed to be challenging, several students got at least partial marks. The full
solution to this question uses non-negative functions to disprove the monotone behaviour
of −B and the different scaling behaviour of the two terms to disprove the monontone
behaviour of B.

C4.8 Complex Analysis: Conformal Maps and Geometry

Question 1: Only one candidate has not attempted this question. Part (a) is a standard
book work that was well done by all students. Part (b) is similar to examples from lectures
and problem sheets and was well done by most of the candidates. Part (c) turned out to be
challenging, some candidates had the right idea about rescaling but could not complete it.
Many candidates started working in a wrong direction, they used t to rotate the function
instead of rescaling it.

Question 2: Only one candidate has not attempted this question. Part (a) is mostly a
standard book work that was well done by all students. In part (b)(i) some candidates
wrongly assumed that the power series for g is valid inside of the unit disc and obtained
the result by applying the residue theorem. Only half of the candidates could see how the
length estimate from (b)(ii) could be used to prove the isoperimetric inequality.

Question 3: This is by far the least popular question. Part (a) is a standard book work
that was not challenging. The only challenging part was in (b)(i). In particular, candidates
failed to appreciate that the normal vector also changes under the change of variables.

C5.1: Solid Mechanics

Q1: All students tried this question and did it quite well. The first 15 marks were mostly
straightforward and students showed a good understanding on the basics of nonlinear elas-
ticity. Only 1/5 students manage to fully complete the last part that required a better
understanding of the material. Q2: The candidates who tried this question did poorly and
essentially missed the main point of the question. Q3: Similarly to the first question, al-
most all students (4/5) tried this question with a decent average but very few students fully
understood the problem and managed to solve the last PDE for the unknown function.
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C5.2: Elasticity and Plasticity

Question 1 This was a popular question, on which well prepared candidates were able to
achieve good marks. The bookwork in part (a) was mostly handled well. The subtle scaling
argument in part (b) was found to be tricky, as intended. In part (c), many candidates
ignored the effect of the inhomogeneous boundary condition on the solvability condition.
Arithmetical accurary was also a frequent problem, often exacerbated by a reluctance to use
the hint given. In part (d), there were some very nice sketches and qualitative descriptions,
but also some who didn’t attempt to analyse the given amplitude equation and simply
reproduced the standard pitchfork bifurcation diagram from the lectures.

Question 2 This was the least popular question and had the lowest average mark. Part (a)
was all bookwork, but nevertheless caused difficulties for weaker students. In part (b), the
standard inversion of the Joukowski transformation was handled well, but finding the image
system to enforce the zero-stress boundary condition caused many problems. For those who
got that far, part (c) was relatively straightforward.

Question 3 This was a popular question, for which there was a mix of very strong and very
weak solutions. The bookwork in parts (a) and (b) was generally done well. In part (c),
some candidates made their lives harder than necessary by trying to solve everything in
terms of displacements rather than using the compatibility condition from part (b). Most
of the candidates who made any headway at all with part (d) managed to calculate the
slightly awkward integral. However, failure of some candidates to systematically solve for
the stress in the elastic region caused confusion over the correct boundary conditions to
impose on τrr.

C5.5: Perturbation Methods

Q1

While this question was not popular, it was well done in general by those making a serious
attempt. Weaker scripts did not show that the second integral for J(x) was ord(1/[xε]). In
addition, many candidates were unable to demonstrate that the higher order terms from
the power series expansion of the exponential were consistent with the stated error bound.

Q2

This was a very popular question. In the first part, weaker scripts often did not give correct
reasoning for the error estimate though essentially all candidates noted the importance of
this result in later parts of the question. Accurately considering the expansions with respect
to the intermediate variable in the later parts was frequently the most troublesome aspect
of the question for candidates.

Q3

Again, a popular question. The first part on multiple scales was very well done in general.
The second part, involving WKBJ expansions, was tackled well in the earlier stages though
mistakes generally emerged as the calculation proceeded.
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C5.6: Applied Complex Variables

Q1: Part (a) was generally well done, although many candidates failed to explain why the
majority of the real axis maps to straight-line segments (only explaining what happens at
the pre-images of the vertices). In (b), there were quite a few difficulties with evaluating
the constants P , Q and λ. Part (c) was well done. For part (d), a number of candidates
did not adequately explain their sequence of conformal mappings, which in some cases was
wrong, but many got the correct mapping of the hodograph plane to the upper half plane.
The last part was naturally done by those who had successfully found λ in part (b).

Q2: Parts of this question were done well, though some struggled with part (b), and the
very last part of (d) was not solved by anyone. Part (a) was fine. In part (b), quite a
number of candidates assumed that w̃− = −w̃+ when calculating the integral (as for most
examples seen during the course), despite having quoted the correct expressions for those
two quantities. Part (c) was done easily by most candidates. In part (d), most realised they
could use the result from part (b), and obtain the required result by taking H = 0. A few
candidates had the right idea for the last part, but chose expressions for H(z) that did not
tend to zero at infinity as required.

Q3: This was marginally the most popular question and was done well, although the final
answer was found by only a couple of candidates. There were few difficulties with parts (a),
(b) and (c), although some failed to adequately explain why the given expression holds on
the strip in part (c). For part (d), the Wiener-Hopf argument was explained well by many
candidates, but evaluating the integral resulted in many errors keeping track of the square
roots and ‘i’s. A few ended up with the correct expression but multiplied by a complex
number (whereas the solution should clearly be real).

C5.7: Topics in Fluid Mechanics

Attempts at the three questions were evenly spread among the ten candidates. Question 1
on groundwater flow was competently done. Only a small number of candidates had any
idea about the novel last part. Question 2 on plumes was largely bookwork, but nevertheless
tricky, and was a good separator. Question 3 on two phase flow was straightforward but
also acted as a good discriminator.

ACF

March 9, 2021

C5.9: Mechanical Mathematical Biology

Q1. This question was attempted by all candidates. Part (a) was done very well. Obtaining
the force and moment balance in (b)(i) caused issues for some, in particular observing that
λx and λy are forces and that the force balance is expressed by λ′x(s) = λ′y(s) = 0, though the
rest of the question could be completed regardless. Part (b)(ii) was largely done well. The
arguments in part (c) followed the same pattern, but required properly adapting the force
and moment balance for an extensible beam, which caused an issue for many candidates.

Q2. This question was attempted by most candidates. Part (a) was largely well done.
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In part (b)(ii), a few candidates failed to notice the statement that the membrane only
resists stretching, and made unnecessary and complicated complication involving bending
energy. Part (b)(iii) required careful calculation with asymptotic expansion and energy
minimisation; this was done well by a few candidates, though no one was able to successfully
compute the correction to the pressure, which required expanding the volume constraint.

Q3. This question was attempted by the smallest number of candidates, but was very
well done. The question generally required strong conceptual grasp of the map between
different arclength configurations. Part (b) required manipulating the expression for the
total length in terms of the growth stretch. Full marks required some small comment on
the stem being constantly in compression and thus always losing material due to the growth
law. The calculation in part (c) required first solving for the angle θ1 and then expanding
the geometric relation dy

dS0
= γ sin θ.

C5.11: Mathematical Geoscience

Q1: Part (a) was quite standard and was done well by most candidates, although some
explanations of stability lacked a good argument. Part (b) was also mostly fine, although
a number of people wrote dimensionally inconsistent statements about what they were
assuming small in the approximations. Part (c) was easiest done by using the expression
for relative humidity derived in part (b), which a few candidates did - it was common to
find expressions in terms for φ of c without any argument for why c should be constant,
and equal to v.

Q2: This was the most popular question, although probably also the most difficult. Part (a)
and (b) were quite standard and were successfully completed by the majority of candidates,
although a very common issue in part (b) was not understanding (or at least not explaining)
that instability would occur if there were any k for which the real part of the growth rate
were positive. In part (c), besides many algebraic mistakes a common mistake was to
include a term Hy in the linearised mass conservation equation. The final part attracted
many completely wrong guesses, with very few candidates obtaining the correct answer
(some others were close).

Q3: This question was done quite well by some candidates and confused some others who
followed a related question in the lectures much too closely without understanding the
different boundary conditions considered here. Part (a) was mostly fine. In Part (b), not
many people gave a satisfactory answer to what was wrong with the model if q were positive
other than that their solution becomes complex at some time. The unseen material in part
(c) was tackled well by quite a few candidates, with others being completely confused.

C5.12: Mathematical Physiology

The five candidates split their choice of the three questions evenly. Question 1 was done
well which was encouraging, as the last part was quite novel. Question 2 was less well done;
the physiologically heavy early part was treated well, but the analytic last part required an
understanding of approximation methods for ordinary differential equations which escaped
the three attempts. Question 3 was comfortably done.
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C6.1: Numerical Linear Algebra

This was generally a successful exam with a range of marks including many high ones.
There were a surprisingly large number of candidates who made significant attempts at all
three questions rather than concentrating on two as required. Possibly because of the open
book format, irrelevant bookwork material that was not asked was described by some.

The first question on the Singular Value Decomposition was attempted by almost all can-
didates and was generally done reasonably well. Some candidates were a little sloppy with
their arguments, in particular in part (c) even if they identified a correct Polar Decomposi-
tion which some did not. A surprisingly large number believed that the sum of the singular
values was equal to the matrix trace.

The second question on Chebyshev polynomial iterative methods was also popular and
reasonably well done. The final part was again found challenging by many who either did
not attempt it or, more usually, did not make any headway with it.

The third question on GMRES was attempted by just under half of the candidates and
also attracted a range of marks: most attempts seem to have been purposeful and not just
rushed in the last few minutes of the exam. The first four parts were generally well done,
but the final two unseen parts either attracted full or zero marks in general. There were
very few clean answers to the final part.

C6.2: Continuous Optimisation

All questions were attempted by various students. The performance was particularly good
especially on Problem 2. Problem 1 was also very accessible, with a trickier bit in part
b) and incomplete answers in part c). Problem 3 was not difficult and the students did
well on part a), apart from some incomplete answers arguing uniqueness or existence. The
theoretical part in Problem 3 was generally incomplete, probably due to time constraints.
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C6.3 Approximation of Functions

Problem 1. As often happens all students who took the exam did the first problem, on
Chebyshev expansions. Most got marks in the range 23-25, showing good ability with the
material and also good ability to in some cases to exploit related material in the textbook
in this open book context.

Problem 2. Not surprisingly the final 7-mark part of the problem, on confluent interpolation,
proved the most difficult.

Problem 3. The last part, worth 10 marks, was the most challenging, and not many students
managed a full solution.

Overall I think this was a successful examination under unfamiliar conditions.

C6.4: Finite Element Methods for Partial Differential Equations

Q1: This question was attempted by 38% of candidates. It revealed a good spread of abilities
across those who attempted it. Q1 (b) was for the most part well answered, although some
candidates neglected to consider the normal component of the gradient so as to apply the
second factorisation lemma. Q1 (c) was very well answered by all who attempted it, although
some candidates neglected to provide a counterexample (i.e. computed the determinant of
the matrix to be zero, without exhibiting an element of the kernel). Q1 (d) was quite
challenging, with no student successfully completing Q1 (d) (ii).

Q2: This question was very popular, with every candidate attempting it. Unsurprisingly,
most candidates did very well in the bookwork in Q2 (a). Q2 (b) considered the vector-
valued equations of linear elasticity; this was handled much better than vector-valued equa-
tions in previous examinations, and almost every student successfully integrated the grad-
div term by parts, unlike in previous years. In Q2 (b) (ii), several students applied the fact
about the Frobenius inner product twice, to replace the inner product of the symmetric
gradients with the inner product of the gradients to acquire the familiar bilinear form aris-
ing in the vector Laplacian. The second application of this was erroneous. In Q2 (b) (iii),
surprisingly few students used the hint to derive Young’s inequality, and many failed to
prove the required bound on the divergence. Q2 (c) was unseen but was generally answered
well, indicating a good understanding of Céa’s Lemma. Q2 (d) was also unseen, but related
to the Stokes equations studied in lectures. It was quite poorly answered. A remarkable
number of candidates wrote down only one equation for two unknowns; others neglected
the requirement that the bilinear form be symmetric; and no candidate correctly identified
the space for the Lagrange multiplier as L2(Ω) instead of L2

0(Ω) (which is only appropriate
in the incompressible limit).

Q3: This question was attempted by 62% of candidates. The early parts of Q3 (a) were
answered well, but many students struggled to correctly state the Newton–Kantorovich
iteration for systems of partial differential equations in Q3 (a) (iv). Q3 (b) (i) and (ii) were
bookwork and were well-answered, but Q3 (b) (iii) challenged those with a weaker grasp
of the inf-sup condition. Q3 (c) was a challenging question about refining the bookwork
error estimate for noncoercive problems and gave an opportunity for the best candidates to
distinguish themselves.
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C7.4: Introduction to Quantum Information

Question 1
Students did very well on it and received a high average mark. Some struggled with part
(e) and confused it with Simon’s problem. Single marks were also lost in parts (a) e.g. some
students viewed the Hadamard transformation as a preparation of an equal superposition
of all states in the Hilbert space or of entangled states and part (b) when no justification
to the minimum number of calls was provided.

Question 2

This was the most popular question. Students knew their bookwork pretty well. Most of
them found part (f) difficult for it required thinking and explaining rather than manipulating
equations.

Question 3

This was the least popular question. The bookwork parts (a-c) presented no difficulties and
students did very well on them. The most challenging were parts (d), (e) and to some extend
(f). In part (d) some students struggled with the probabilistic nature of the algorithm and
the estimates of the success probability. In part (e) only few managed to use the spectral
decomposition to derive the required formula in few basic steps. Some students, managed
part (f) without completing part (e).

C7.5: General Relativity I

Question 1

This question was the most popular of the three questions, and was generally done well by
a lot of students. The bookwork parts ((a) and (b)) were almost exclusively done correctly.
The new parts ((c) and (d)) caused some more problems; particularly part (d). Here, the
most common issue was that students were able to correctly write down expressions for the
motion of the second light signal in the form of integrals, but did not notice that, since
they were only asked to produce an answer correct to O(∆τ), they could differentiate these
expressions in ∆τ to obtain the result. Another common mistake was, when considering
the motion of the satellite, to consider its radial position as a function of its proper time
(that is, r(τS)) but to neglect the dependence of the time coordinate t on the proper time
τS . This is a conceptual issue that is most likely caused by students familiarity with flat
space, where one doesn’t need to consider such things.

Question 2

This question was by far the least popular, most likely as it appears the most technical and
mathematical of the three options. However, it was generally completed very successfully
by the small number of students who attempted it. This question did include a typo: in
part (c), the order of the arguments of λ should have been reversed, writing λ[aµ+µ′,X]

instead of λ[X,aµ+µ′]. Fortunately this did not appear to cause any confusion (although it
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was commented upon by some students!), as the rest of the notation was consistent. Where
mistakes were made in this question, the typical error was to believe that the commutator
is C∞ linear (so [X, aY ] = a[X,Y ] for vectors X, Y and a scalar field a, which is not true)
and then to compensate for this error by also failing to properly apply the Leibniz rule for
vector fields.

Question 3

Part (a) was done very successfully, with students demonstrating knowledge of the Einstein
equations and the various terms appearing in this equation. Part (b) was also bookwork,
and was done correctly by many, although a fair number of students were confused regarding
the difference between proper time and a general affine parameter. Part (c) was done very
successfully, and part (d) caused by far the most problems for students. Here a common
mistake was to assume that a geodesic which is initially radial will remain so – this true for
the spacetime in question (which is spherically symmetric), but required some justification
(it is not true, for example, in the Kerr spacetime). Some students attempted to solve the
geodesic equations directly instead of making use of conserved quantities, and this inevitably
led to difficulties. A few students also struggled with the integral that needed to be done
in part (d) (i), obtaining logarithmic expressions instead of trigonometric ones.

Summary

Overall the quality of the answers was very high. The external examiners’ considered
this year’s exam to be difficult, and yet the students scored very well – I am impressed,
especially given the difficult circumstances this year. The spread of questions attempted
was as expected, and (also as expected) the more mathematically minded students who
attempted question 2 typically did very well. In general, FHS students did slightly better
than MSc students.

C7.6: General Relativity II

• Question 1: This question was attempted by all students. Part a) was solved correctly
by the majority of students, as was part b) i), although a few students did not notice
here that the result from a) iii) could be used. Part b) ii) was clearly the most difficult
question, very few students scored full marks here. Part b) iii) was again easier and
nearly everyone scored at least some points here, but at the same time nearly everyone
struggled with finding a spacelike geodesic.

• Question 2: This question was the least popular, it was attempted only by a handful
of students. Part a) was generally carried out very well, but several students struggled
with the concept of gauge in general relativity in part b). Part c) was again correctly
solved by almost all students who attempted it. The last part of question 2 was the
most difficult one and here only a small number of students presented a good solution.

• Question 3: This question was attempted by nearly everyone. Drawing the Penrose
diagrams did not pose any difficulties for the majority of students, however a few
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students struggled with defining the concept of a black hole. Part b) was also executed
well, but a few students did not show that the integral curves of the normal vector
field to a null hypersurface are null geodesics. Nearly every student had the right idea
for solving c) i), although there were a few computational errors. The determination
of the causal character of the hypersurfaces {r = const} was again done correctly by
nearly everyone, but many students struggled with the computation of the surface
gravity. Most students gained some points for c) iii) & iv), but hardly anyone gave
full solutions here.

C8.1: Stochastic Differential Equations

Question 1: This was the most popular question. The majority of the students com-
pleted parts (a)-(c) without any significant problems. A few students failed to provide
a counter-example to Levy’s theorem for semi-martingales in part (d). In part (e), most
students correctly computed the quadratic variation process and applied the Burkholder-
Davis-Gundy inequality in part (i). However, in part (ii), most solutions proved only that
|Xt|/tα converges to zero in expectation as t→∞, and therefore failed to prove almost sure
convergence. Part (f) is a generalization of the Liouville theorem for bounded harmonic
functions on the whole space. Many students had trouble decomposing the SDE into its
bounded variation and martingale parts in order to prove the convergence by appealing to
part (i). In part (ii) most students correctly applied Itô’s formula to deduce that f(Xx

t ) is
a continuous local martingale, but only a small number correctly used the boundedness of
f , the martingale convergence theorem, and part (i) to deduce that f must be constant.

Question 2: This was by far the least popular question. Parts (a) and (b) did not present
any significant problems. Many complete solutions were submitted for part (c) but most re-
peated ideas of the proof from class to derive the equation for X1

t ∧X2
t , and then appealed to

uniqueness in law, as opposed to applying the Tanaka-Meyer formula to |X1
t −X2

t | directly.
Part (e) was the most difficult part of the problem, with only a few students achieving
totally correct solutions. Most students correctly deduced that if a < 0 then the local
time is zero owing to the fact that the support of the measure defined by the local time is
contained in the set {|Xt| = a}. The correct solutions then essentially separated the event
{|Xt| = a} = {Xt = a}∪ {Xt = (−a)} and used the definition of the local time to complete
the proof. In part (f) most students correctly applied the Dambis-Dubins-Schwarz theorem
and then justified the equality of local times using the definition.

Question 3: This was the second most popular question, falling only slightly behind
Question 1. Recalling properties of the stochastic exponential in part (a) did not present any
significant problems. Most students correctly used the stochastic exponential to solve the
SDE in part (b), the integration by parts formula to prove uniqueness, and the dominated
convergence theorem to prove the convergence as ε → 0. Part (c) was an application of a
random time-change and the Girsanov formula. Proofs of these facts essentially appear in
the course notes, and the majority of students provided essentially complete solutions. Only
a few students achieved complete solutions to part (d). In part (i), the students were asked
to bound separately the the bounded variation and martingale parts of the solution, using
basic integration theory to bound the first and the Burkholder-Davis-Gundy inequality to
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bound the second. Very few students had correct solutions to part (ii), which recalled
aspects of the uniqueness proof for solutions to SDEs with Lipschitz continuous coefficients,
and required the use of Grönwall’s inequality.

C8.2: Stochastic Analysis and PDEs

Question 1

The bookwork part of the question (parts (a), (b)(i), and (b)(iii)) caused no problems.
Showing that A is a Markov pregenerator in (b)(ii) was also done generally well, though
a common error was that candidates failed to consider the case when the minimum of a
function f ∈ C2(R) on [−1, 1] occurs at a boundary point x ∈ {−1, 1}, in which case one
does not necessarily have f ′(x) = 0 and f ′′(x) ≥ 0. Part (b)(iv) caused some trouble,
with no candidate earning full marks for this subpart. Many candidates argued correctly,
using the Hille–Yosida theorem and related results, that it suffices to show that the range
of I−λA is dense for all λ ≥ 0, and then attempted to show that the polynomials are in the
range of I−λA. This reduces the problem to a linear system of equations, but none argued
correctly why this system is solvable. Part (c) proved to be difficult, with few candidates
making even partial progress. However several did realise that the core of the problem was
to show that (λ−A)(λn −A)−1 → I in an appropriate sense.

Question 2

All candidates attempting this question answered parts (a)(i) and (a)(ii) correctly, but some
made errors in (a)(iii) by failing to state that the convergence of coefficients in the Stroock–
Varadhan theorem has to happen locally uniformly rather than only pointwise. Part (b)
was done well, with calculations in parts (i)-(ii) of the scale function, density of the speed
measure, and Green’s function causing no problems. Only (b)(iii) caused minor problems
where some candidates could not finish the calculation or did not justify the divergence of
the integral. Part (c) proved to be the most troublesome, with some candidates using an
incorrect scaling in (c)(i)-(ii), though most did realise that part (a)(ii) should be used in
(c)(i) to show that the limiting process is deterministic. Part (c)(iii) was not done correctly
by any candidate, the most common error being that candidates stated (correctly) that the
conditions of the convergence theorem in (a)(iii) are not satisfied for any other choice of α,
but did not actually argue that convergence does not occur.

Question 3

This was the most popular question with every candidate attempting it. Parts (a) and (c)(i),
which were standard bookwork, caused almost no problems, with only (a)(iii) confusing
some candidates about how they should add together the solutions to the two PDEs. Part
(b) was a variation of material covered in lectures and of a previous exam question. Many
candidates answered (b) correctly and most made partial progress. Many did not realise,
however, that the assumption that u is C2 on R×Rd, rather than only on [0, T ]×U , allows
one to avoid the general time-change argument seen in lectures and thus simplify the proof.
In part (c)(ii), all candidates showed that Brownian motion in R2 eventually hits any fixed
ε-ball B(x, ε), however few were able to completely argue why this implied that Brownian
motion is neighbourhood recurrent. Most candidates realised that they should use the
strong Markov property, and many argued that there exists a sequence of stopping times
τ1 ≤ τ2 ≤ . . . such that Bτk ∈ B(x, ε), but failed to argue that limk→∞ τk = ∞ which is
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necessary for neighbourhood recurrence (in fact, several constructions yielded τ1 = τ2 = . . .
almost surely, for which this property does not hold). Several candidates argued well how
to pass from almost surely hitting a given ε-ball infinitely often to almost surely hitting
every open set infinitely often, for which they used balls B(x, ε) with rational x and ε as
seen in the lectures. Most candidates made partial progress on the final part (c)(iii) and
several gave complete answers. The most common error was to assume that the condition
supx∈R2 u(x) <∞ implies that the local martingale u(Bt) is bounded.

C8.3: Combinatorics

1. Question 1 was attempted by the vast majority of candidates. Many attempts lacked
precision in part (a)(i), with most candidates forgetting to provide an extremal ex-
ample of an intersecting family. Part (a)(ii) required a generalisation of the usual
argument for intersecting families, and this was very well attempted given that it was
unseen. Part (a)(iii) was a minor modification of a question from example sheet 4,
and most candidates did well with this.

The purpose of the bookwork in part (b) was to get candidates thinking along the
right lines for part (c) – all students got these marks. There were then surprisingly
few successful attempts at (c)(i), given that the dot products vi · vi and vi · vj are
obtained from the intersection sizes in a standard way, and the hint provides the extra
idea needed. Part (c)(ii) was much more difficult and, as expected, completed only
by the top candidates.

2. Question 2 was extremely unpopular, perhaps because the Sauer-Shelah lemma does
not feel like a central part of the course. The bookwork in part (a) should have
reminded candidates of the statement of the Sauer-Shelah lemma and prepared them
for (b)(iii). All attempts at the question obtained these bookwork marks. A number
of candidates then demonstrated sufficient grasp of the (complicated) definition of Tr
to be able to answer (b)(i) and (b)(ii). Virtually no marks were obtained in (b)(iii)
which was disappointing – the proof differs very little from the proof of the Sauer-
Shelah lemma. Indeed much of part (a) can be re-used here, if we replace the words
‘shatters a k-set’ with the words ‘contains a Tk’. Very few candidates had a serious
go at the last part, but in fact they had the right key idea.

3. Question 3 was the most popular question on the paper, perhaps because the part of
the course covering antichains and LYM is felt to be quite accessible. The question
also had the highest average mark, so in general people found the strong antichain
more easy to get to grips with than the definitions in the other questions.

The bookwork in parts (a) and (b) was intended to remind students of LYM and the
ideas of compression which can be helpful in part (c). These marks were almost all
awarded, with the exception of a few candidates who failed to provide the equality
cases. Part (c)(i) was tackled very well by the majority of candidates, with several
finding slight variants of the expected approach. There was an impressive level of
engagement with this part, and the success rate was high. Part (c)(ii) was also fairly
well-tackled, but people found (c)(iii) much harder (considering B1 ∩ B2 rather than
B1 \ B2 was generally the key mistake). There were lots of attempts at (c)(iv), but
this was a trickier test of the student’s understanding of good/bad sets and only about
half of the answers had the right main ideas.
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Summary The exam created a reasonable spread of marks, with a few candidates managing
full marks. The average marks for Q1 were a bit lower than for Q3. Q2 was too unpopular
to generate meaningful data – the sample size was too small. This was probably due to a
combination of factors: the definition of Tr was perhaps more impenetrable than the other
definitions, and it may have appeared that there was less bookwork in Q2 than in the other
questions (this is technically true, although Q2(b)(iii) is a very minor modification of the
bookwork). Given the open book format, it is unsurprising that almost every bookwork
mark was awarded, but these parts still played an important role in setting the scene for
each question.

C8.4: Probabilistic Combinatorics

Question 1 was most popular; with hindsight it was a bit too straightforward for an open
book exam, though it did still distinguish candidates to some extent. Almost (but not quite)
everyone managed (a). The counting is slightly tricky to get right in (b)(i) for k = 6; some
scripts were incorrect or unclear. For k = 5 it’s enough just to say that the host graph is
bipartite and contains no odd cycles. For the main part, (b)(ii), the lengths of the answers
varied very considerably. Some explanation is needed of the various cases involved in the
variance estimate, but this can be complete, clear and concise. (Of course, complete, clear
long answers also obtained full marks.) For (b)(iii) the example requested has to be in the
random graph model in the question, not in G(n, p) – no credit was given for a G(n, p)
example, which is in the lecture notes. Not so many candidates managed this part, which
is disappointing.

Question 2 distinguished quite well. Many candidates could not describe the condition
for equality in Harris’s Lemma, although it was on a problem sheet. In part (b) some
translation from the set context to the graph context was expected, along with defining
the notion of an increasing property of graphs (on a given vertex set). Parts (c) and (d)
were mostly fairly well done, though in (d) at least some brief explanation of why Harris’s
Lemma applies was expected and not always present.

Question 3 turned out to be harder than intended, and was marked correspondingly gen-
erously. In (b)(i) it is quite hard to obtain the bound with the given constant (involving
a non-standard way of generating the dependency digraph). A few candidates did manage
this, and more thought they had with an incorrect argument. Very significant credit was
given for a bound with a worse constant. (ii) is very similar to (i) (just indicating what
changes is enough). (iii) was again quite hard, though the basic idea - apply the general
form of the Local Lemma with two kinds of events - has been illustrated in lectures, and
the hint should help with the needed calculations. Not many candidates attempted (iv),
though it has a very simple solution (e.g., many disjoint copies of P4).

C8.5: Introduction to Schramm-Loewner Evolution

Question 1 Parts (a) and (b) are standard bookwork which was well done. Part (c)(i) is
also bookwork. It could be done in many ways, in particular by the conformal invariance of
the harmonic measure. In part (c)(ii) the crucial observation is that any BM hitting K ∪R
must hit {|z| = 1,=z ≥ 0} ∪ R first. The only non-trivial contribution to the expectation
of =Bτ comes from trajectories that hit the upper half-circle. Part (c)(iii) follows from the
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formula in part (ii) and an estimate of the probability that a Brownian motion will hit the
‘top side’ of K.

Question 2 Parts (a) and (b) are standard bookwork. Part (c) boils down to the question
whether Bt+s−Bs has the law of the Brownian motion. There are many examples showing
that this might not be the case is s is not a stopping time. Part (d) is a bit trickier than
it seems. There are two main issues: (1) in order to claim that gs(γ)− us is SLE one need
to know that s is a stopping time (2) although gt is a.s. continuous up to the boundary for
fixed t, it is not obvious that this is true for all values of t. This part was no done well.
Part (e) was not attempted by any candidate.

Question 3 This is by far the easiest question for an open book exam. Most of it is essentially
the same as a computation from the lectures. It is a classical application of the ‘martingale
trick’ and the optional stopping theorem in the SLE context. This question was rather well
done by all candidates.

C8.6: Limit Theorems and Large Deviations in Probability

All candidates attempted question 1 and question 2. Question 1. All candidates provided
excellent solutions. Book work are done with precise and complete answers. Part (b(ii))
and Part (c) are new but similar questions are seen in classes. While candidates’ solutions
are excellent and contain all the details more than required. Question 2. All candidates did
quite well on Part (a) of the question, which is mainly book work or similar seen in their
classes. Part (b) proved challenging and new, while candidates understood well the approach
they should use, but failed to identify the continuity mapping explicitly.

Statistics Units

Reports on the following courses may be found in the Mathematics and Statistics examiners’
report.
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rithmic Foundations of Learning

Computer Science
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