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1 Foreword

Notice of misprints or errors of any kind, and suggestions for improvements in this booklet
should be addressed to the Academic Assistant in the Mathematical Institute.

1.1 Honour School of Mathematics

[See the current edition of the Examination Regulations for the full regulations governing
these examinations.]

In Part A each candidate shall be required to offer the 4 written papers from the schedule
of papers for Part A (below).

Part A shall be taken on one occasion only (there will be no resits). At the end of the Part A
examinations, a candidate will be awarded four ‘University Standardised Marks’ (USMs) for
their performance in Part A. These will be carried forward into the classification awarded
at the end of the third year. In this classification, the marks in Part A will be given a
‘weighting’ of 2, and the marks in Part B will be given a ‘weighting’ of 3. All students who
complete the first three years of the course will be classified, and those wishing to graduate
at this point may supplicate for a BA.

Students wishing to take the four-year course should register to do so at the beginning
of their third year. They will take Part C in their fourth year, be awarded a separate
classification and, if successful, be allowed to supplicate for an MMath.

The Schedule of papers

Altogether, these papers will include 1 short question and 1 longer question for each 8 hour
lecture course; 2 short questions and 2 longer questions for each 16 hour lecture course; 3
short questions and 3 longer questions for each 24 hour lecture course.

Paper AC1 Algebra, Analysis and Differential Equations

This paper will contain questions set on the CORE material, and will contain 9 short
questions (3 for each course), attracting 10 marks each, all of which should be answered.

Paper AC2 Algebra, Analysis and Differential Equations

This paper will contain questions set on the CORE material, and will contain 9 longer
questions (3 for each course), attracting 25 marks each. At most 5 answers may be submitted
and the best 4 will be counted for the total mark for this examination.
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Paper AO1 Options

This paper will contain questions set on the OPTIONAL material, and will contain 19 short
questions, attracting 10 marks each, of which at most 10 should be answered, with the best
9 answers being counted.

Paper AO2 Options

This paper will contain questions set on the OPTIONAL material, and will contain 19
longer questions, attracting 25 marks each. At most 5 answers may be submitted and the
best 4 will be counted.

Marking of Papers

Mark schemes for questions out of 10 will aim to ensure that the following qualitative criteria
hold:

• 9-10 marks: a completely or almost completely correct answer, showing good under-
standing of the concepts and skill in carrying through arguments and calculations;
minor slips or omissions only.

• 5-8 marks: a good though not complete answer, showing understanding of the concepts
and competence in handling the arguments and calculations.

Mark schemes for questions out of 25 will aim to ensure that the following qualitative criteria
hold:

• 20-25 marks: a completely or almost completely correct answer, showing excellent
understanding of the concepts and skill in carrying through the arguments and/or
calculations; minor slips or omissions only.

• 13-19 marks: a good though not complete answer, showing understanding of the
concepts and competence in handling the arguments and/or calculations. In this
range, an answer might consist of an excellent answer to a substantial part of the
question, or a good answer to the whole question which nevertheless shows some flaws
in calculation or in understanding or in both.

This should be regarded only as a guide conveying the intentions of the examiners.

Parts B and C

Where not otherwise stated, an overview of the course and form of the papers for each unit
and half unit is given in the lecture synopsis.

The Examination Papers
For Mathematics Examinations in Parts B and C from 2009 onwards the following apply.
Examinations for whole unit papers are of three hours duration and half unit papers are of
one and a half hour duration. The rubrics are given below - note these are revised for 2009.
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Each half unit Examination will contain 3 questions and each full paper 6 questions, 3 on
each section.

The rubrics
For Parts B and C, a whole unit paper rubric states “candidates may submit as many
questions as they wish; the best two from each section will count for the total mark.” For
the half unit the rubric states “candidates may submit as many questions as they wish; the
best two will count for the total mark.”

Analysis of marks

Part A

At the end of the Part A examination, a candidate will be awarded a University standardised
mark (USM) for each of the four papers. The Examiners will recalibrate the raw marks to
arrive at the USMs reported to candidates. In arriving at this recalibration, the examiners
will principally take into account the total sum over all four papers of the marks for each
question, subject to the rules above on numbers of questions answered.

The Examiners aim to ensure that all papers and all subjects within a paper are fairly
and equally rewarded, but if in any case a paper, or a subject within a paper, appears to
have been problematical, then the Examiners may take account of this in calculating USMs.

The USMs awarded to a candidate for papers in Part A will be carried forward into a clas-
sification as described below.

Part B
The Board of Examiners in Part B will assign USMs for full unit and half unit papers taken
in Part B and may recalibrate the raw marks to arrive at university standardised marks
reported to candidates. The full unit papers are designed so that the raw marks sum to 100,
however, Examiners will take into account the relative difficulty of papers when assigning
USMs. In order to achieve this, Examiners may use information on candidates’ perfor-
mances on the Part A examination when recalibrating the raw marks. They may also use
other statistics to check that the USMs assigned fairly reflect the students’ performances
on a paper.

The USMs awarded to a candidate for papers in Part B will be aggregated with the USMs
from Part A to arrive at a classification.

Part C
The Board of Examiners in Part C will assign USMs for full unit and half unit papers
taken in Part C and may recalibrate the raw marks to arrive at university standardised
marks reported to candidates. The full unit papers are designed so that the raw marks
sum to 100, however, Examiners will take into account the relative difficulty of papers when
assigning USMs. In order to achieve this, Examiners may use information on candidates’
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performances on the earlier Parts of the degree when recalibrating the raw marks. They
may also use other statistics to check that the USMs assigned fairly reflect the students’
performances on a paper.

The USMs awarded to a candidate for papers in Part C will be averaged to arrive at a
classification for Year 4.

Aggregation of marks for award of Part B in 2009 onwards

All successful candidates will be awarded a classification at the end of three years, after the
Part B examination. This classification will be based on the following rules (agreed by the
Mathematics Teaching Committee).

A Strong Paper rule is adopted for classification in 2009 and onwards.

By the nth class strong paper rule we mean that for a candidate to be classified
at the nth class standard, at least 3 papers from Parts A and B must lie in the
nth class and at least one of these is at Part B. For example, for a First class
award, a candidate would need at least 3 of their whole unit paper USMs to be
first class marks (with at least 1 first class whole unit at Part B) together with
a weighted average score of parts A and B over 70.

In effect we are looking at a marks profile.

The Part A USMs are given a weighting of 2, and the Part B USMs a weighting of 3 for a
full unit and 1.5 for a half unit.

Let AvUSM−PartA&B = Average weighted USM in Parts A and B together (rounded
up to whole number);

• First Class: AvUSM −PartA&B ≥ 70 and the first class strong paper rule satisfied.

• Upper Second Class: AvUSM − PartA&B ≥ 70 and not satisfying the first class
strong paper rule OR 70 > AvUSM − PartA&B ≥ 60 and the upper second strong
paper rule satisfied.

• Lower Second Class: 70 > AvUSM − PartA&B ≥ 60 and not satisfying the upper
second strong paper rule OR 60 > AvUSM − PartA&B ≥ 50 and the lower second
strong paper rule satisfied.

• Third Class: 50 > AvUSM − PartA&B ≥ 40 OR 60 > AvUSM − PartA&B ≥ 50
and not satisfying the lower second strong paper rule

• Pass: 40 > AvUSM − PartA&B ≥ 30

• Fail: AvUSM − PartA&B < 30
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[Note: Half unit papers count as half a paper when determining the average USM, or de-
termining the number of strong papers.]

BA in Mathematics
All candidates who wish to leave at the end of their third year and who satisfy the Exam-
iners may supplicate for a classified BA in Mathematics at the end of Part B based on the
above classification.

MMath in Mathematics in 2009 onwards
In order to proceed to Part C, a candidate must minimally achieve lower second standard
in Part A and Part B together.

Candidates successfully studying for a fourth year will receive a separate classification based
on their university standardised marks in Part C papers, according to the following rules
(agreed by the Mathematics Teaching Committee).
AvUSM − PartC = Average USM in Part C (rounded up to whole number)

• First Class: AvUSM − PartC ≥ 70

• Upper Second Class: 70 > AvUSM − PartC ≥ 60

• Lower Second Class: 60 > AvUSM − PartC ≥ 50

• Third Class: 50 > AvUSM − PartC ≥ 40

A ’Pass’ will not be awarded for Year 4. Candidates achieving:

AvUSM − PartC < 40,

may supplicate for a BA.

[Note: Half unit papers count as half a paper when determining the average USM.]

Candidates leaving after four years who satisfy the Examiners may supplicate for an MMath.
in Mathematics, with two associated classifications; for example:
MMath. in Mathematics: Years 2 and 3 together - First class; Year 4 - First class.

Note that successful candidates may supplicate for one degree only - either a BA or an
MMath. The MMath. has two classifications associated with it but a candidate will not be
awarded a BA degree and an MMath. degree.

Syllabus and Synopses

The syllabus details in this booklet are those referred to in the Examination Regulations
and have been approved by the Mathematics Teaching Committee in Trinity Term 2008 for
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examination in 2009.

The synopses in this booklet give some additional detail, and show how the material is split
between the different lecture courses. They also include details of recommended reading.

1.2 Honour School of Mathematics & Philosophy

See the current edition of the Examination Regulations for the full regulations governing
these examinations. For the Schedule of Mathematics Papers for Part A see the Supplement
to the Undergraduate Handbook for the Honour School of Mathematics & Philosophy:

http://www.maths.ox.ac.uk/current-students/undergraduates/handbooks-synopses/mathsphil.

1.3 Honour School of Mathematics & Statistics

See the current edition of the Examination Regulations for the full regulations governing
these examinations, and the details published by the Statistics Department:

http://www.stats.ox.ac.uk/current students/bammath/course handbooks.

Papers AC1 and AC2 under the schedule of papers here are taken by candidates in Mathe-
matics & Statistics.

1.4 Honour Schools of Computer Science and Mathematics & Computer
Science

See the current edition of the Examination Regulations for the full regulations governing
these examinations, and the details published in a handbook by the Computing Laboratory:

http://web.comlab.ox.ac.uk/teaching/handbooks.html.
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2 CORE MATERIAL

2.1 Syllabus

2.1.1 Algebra

Vector spaces over an arbitrary field, subspaces, direct sums; quotient spaces; projection
maps and their characterisation as idempotent operators.

Dual spaces of finite-dimensional spaces; annihilators; the natural isomorphism between
a space and its second dual; dual transformations and their matrix representation with
respect to dual bases.

Some theory of a single linear transformation on a finite-dimensional space: characteristic
polynomial, minimal polynomial, Primary Decomposition Theorem, the Cayley–Hamilton
Theorem; diagonalisability; triangular form.

Real and complex inner product spaces. Orthogonal complements, orthonormal sets; the
Gram–Schmidt process. Bessel’s inequality; the Cauchy–Schwarz inequality.

The adjoint of a linear transformation on a finite-dimensional inner product space to itself.
Eigenvalues and diagonalisability of self-adjoint linear transformations.

Commutative rings with unity, integral domains, fields; units, irreducible elements, primes.

Ideals and quotient rings; isomorphism theorems. The Chinese Remainder Theorem [clas-
sical case of Z only].

Maximal ideals and their quotient rings.

Euclidean rings and their properties: polynomial rings as examples, theorem that their ideals
are principal; theorem that their irreducible elements are prime; uniqueness of factorisation
(proof non-examinable).

Gauss’ Lemma; Eisenstein’s criterion.

2.1.2 Analysis

The topology of Euclidean space and its subsets, particularly R, R2, R3: open sets, closed
sets, subspace topology; continuous functions and their characterisation in terms of pre-
images of open or closed sets; connected sets, path-connected sets; compact sets, Heine-
Borel Theorem.

The algebra and geometry of the complex plane. Complex differentiation. Holomorphic
functions. Cauchy-Riemann equations (including z, z̄ version). Real and imaginary parts
of a holomorphic function are harmonic.

Path integration. Fundamental Theorem of Calculus in the path integral/holomorphic
function setting. Power series and differentiation of power series. Exponential function,
logarithm function, fractional powers - examples of multifunctions.

Cauchy’s Theorem (proof excluded). Cauchy’s Integral formulae. Taylor expansion. Liou-
ville’s Theorem. Identity Theorem. Morera’s Theorem. Laurent’s expansion. Classification
of singularities. Calculation of principal parts and residues. Residue Theorem. Evaluation
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of integrals by the method of residues (straight forward examples only but to include use
of Jordan’s Lemma and simple poles on contour of integration).

Conformal mapping: Möbius functions, exponential functions, fractional powers; mapping
regions (not Christoffel transformations or Jowkowski’s transformation).

2.1.3 Differential Equations

Picard’s Theorem for first-order scalar ODEs with proof. Statement, without proof, of
extension to systems. Examples with blow-up and non-uniqueness.

Second-order ODEs: variation of parameters, Wronskian and Green’s function.

Phase planes, critical points, Poincaré-Bendixson criterion. Examples including conserva-
tive nonlinear oscillators, Van der Pol’s equation and Lotka-Volterra equations. Stability of
periodic solutions.

Characteristic methods for first-order quasilinear PDEs. Examples from conservation laws.
Multi-Valued solutions and shocks.

Classification of second-order linear PDEs. Ideas of uniqueness and well-posedness for
Laplace, Wave and Heat equations. Illustration of suitable boundary conditions by example.
Multi-dimensional Laplacian operator giving rise to Bessel’s and Legendre’s equations.

Theory of Fourier and Laplace transforms, inversion, convolution. Inversion of some stan-
dard Fourier and Laplace transforms via contour integration. Use of Fourier transform in
solving Laplace’s equation and the Heat equation. Use of Laplace transform in solving the
Heat equation.

2.2 Synopses of Lectures

2.2.1 Algebra — Dr Stewart — 24 lectures MT

Overview

This half-course introduces the student to some classic ring theory which is basic for other
parts of abstract algebra, for linear algebra and for those parts of number theory that
lead ultimately to applications in cryptography. The first-year algebra course contains a
treatment of the Euclidean Algorithm in its classical forms for integers and for polynomial
rings over a field. Here the idea is developed in abstracto. The Gaussian integers, which
have applications to many questions of elementary number theory, give an important and
interesting (and entertaining) illustration of the theory.

Learning Outcomes

By the end of this course students will have further developed an awareness of topics in
abstract and linear algebra. They will know key elements of classical ring theory, including
Euclidean rings and their properties. They will have a deeper appreciation of the theory
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of vector spaces and linear transformations defined from a vector space to itself, including
diagonalisation, minimal polynomials and triangular form.

Synopsis

1. Rings

MT (7 Lectures)

Review of commutative rings with unity, integral domains, ideals, fields, polynomial
rings and subrings of R and C. The Chinese Remainder Theorem; the quotient ring
by a maximal ideal is a field.

[2 lectures]

Euclidean rings and their properties : units, associates, irreducible elements, primes.
The Euclidean Algorithm for a Euclidean ring; Z and F [x] as prototypes; their ideals
are principal; their irreducible elements are prime; factorisation is unique (proof not
examinable).

[3 Lectures]

Examples for applications: Gauss’s Lemma and factorisation in Z[x]; Eisenstein’s
criterion.

[2 lectures]

2. Further Linear Algebra

MT (17 lectures)
Vector spaces over an arbitrary field, subspaces, direct sums; quotient vector spaces;
induced linear transformation; projection maps and their characterisation as idempo-
tent operators.

[2 Lectures]

Dual spaces of finite-dimensional spaces; annihilators; the natural isomorphism be-
tween a finite-dimensional space and its second dual; dual transformations and their
matrix representation with respect to dual bases.

[2-3 Lectures]

Some theory of a single linear transformation on a finite-dimensional space: character-
istic polynomial, minimal polynomial, Primary Decomposition Theorem, the Cayley-
Hamilton Theorem (economically); diagonalisability; triangular form.

[4-5 Lectures]

Real and complex inner product spaces: examples, including function spaces [but
excluding completeness and L2]. Orthogonal complements, orthonormal sets; the
Gram–Schmidt process. Bessel’s inequality; the Cauchy–Schwarz inequality.

[4 Lectures]

Some theory of a single linear transformation on a finite-dimensional inner product
space: the adjoint; eigenvalues and diagonalisability of a self-adjoint linear transfor-
mation.

[4 Lectures]
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Reading

Peter J. Cameron, Introduction to Algebra (OUP, 1998) ISBN 0-19-850194-3. Chapter 2.

Richard Kaye and Robert Wilson, Linear Algebra (OUP, 1998) ISBN 0-19-850237-0. Chap-
ters 2–13. [Chapters 6, 7 are not entirely relevant to our syllabus, but are interesting.]

Alternative and further reading:

Joseph J. Rotman, A First Course in Abstract Algebra (Second edition, Prentice Hall, 2000),
ISBN 0-13-011584-3. Chapters 1, 3.

I. N. Herstein, Topics in Algebra (Second edition, Wiley, 1975), ISBN 0-471-02371-X. Chap-
ter 3. [Harder than some, but an excellent classic. Widely available in Oxford libraries; still
in print.]

P. M. Cohn, Classic Algebra (Wiley, 2000), ISBN 0-471-87732-8. Various sections. [This is
the third edition of his book previously called Algebra I.]

David Sharpe, Rings and Factorization (CUP, 1987), ISBN 0-521-33718-6. [An excellent
little book, now sadly out of print; available in some libraries, though.]

Paul R. Halmos, Finite-dimensional Vector Spaces, (Springer Verlag, Reprint 1993 of the
1956 second edition), ISBN 3-540-90093-4. §§1–15, 18, 32–51, 54–56, 59–67, 73, 74, 79.
[Now over 50 years old, this idiosyncratic book is somewhat dated but it is a great classic,
and well worth reading.]

Seymour Lipschutz and Marc Lipson, Schaum’s Outline of Linear Algebra (3rd edition,
McGraw Hill, 2000), ISBN 0-07-136200-2. [Many worked examples.]

C. W. Curtis, Linear Algebra—an Introductory Approach (4th edition, Springer, reprinted
1994).

D. T. Finkbeiner, Elements of Linear Algebra (Freeman, 1972). [Out of print, but available
in many libraries.]

J. A. Gallian, Contemporary Abstract Algebra (Houghton Mifflin Company, 2006).

There are very many other such books on abstract and linear algebra in Oxford libraries.

2.2.2 Analysis — Dr Melcher — 24 lectures MT

Overview

The theory of functions of a complex variable is a rewarding branch of mathematics to study
at the undergraduate level with a good balance between general theory and examples. It
occupies a central position in mathematics with links to analysis, algebra, number theory,
potential theory, geometry, topology, and generates a number of powerful techniques (for
example, evaluation of integrals) with applications in many aspects of both pure and applied
mathematics, and other disciplines, particularly the physical sciences.

In these lectures we begin by introducing students to the language of topology before using
it in the exposition of the theory of (holomorphic) functions of a complex variable. The
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central aim of the lectures is to present Cauchy’s Theorem and its consequences, particularly
series expansions of holomorphic functions, the calculus of residues and its applications.

The course concludes with an account of the conformal properties of holomorphic functions
and applications to mapping regions.

Learning Outcomes

Students will have been introduced to point-set topology and will know the central impor-
tance of complex variables in analysis. They will have grasped a deeper understanding of
differentiation and integration in this setting and will know the tools and results of com-
plex analysis including Cauchy’s Theorem, Cauchy’s integral formula, Lioville’s Theorem,
Laurent’s expansion and the theory of residues.

Synopsis

(1-4) Topology of Euclidean space and its subsets, particularly R, R2, R3. Open sets,
closed sets, subspace topology; continuous functions and their characterisation in terms
of preimages of open or closed sets; connected sets, path-connected sets; compact sets,
Heine-Borel Theorem (covered in Chapter 3 of Apostol).

(5-7) Review of algebra and geometry of the complex plane. Complex differentiation. Holo-
morphic functions. Cauchy-Riemann equations. Real and imaginary parts of a holomorphic
function are harmonic.

(8-11) Path integration. Power series and differentiation of power series. Exponential
function and logarithm function. Fractional powers - examples of multifunctions.

(12-13) Cauchy’s Theorem. (Sketch of proof only - students referred to various texts for
proof.) Fundamental Theorem of Calculus in the path integral/holomorphic situation.

(14-16) Cauchy’s Integral formulae. Taylor expansion. Liouville’s Theorem. Identity The-
orem. Morera’s Theorem

(17-18) Laurent’s expansion. Classification of singularities. Calculation of principal parts,
particularly residues.

(19-21) Residue theorem. Evaluation of integrals by the method of residues (straight forward
examples only but to include the use of Jordan’s Lemma and simple poles on contour of
integration).

(22-23) Conformal mapping: Möbius functions, exponential functions, fractional powers;
mapping regions (not Christoffel transformations or Jowkowski’s transformation).

(24) Summary and Outlook.

Reading

Main texts

H. A. Priestley, Introduction to Complex Analysis (second edition, Oxford Science Publica-
tions, 2003).
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T. M. Apostol, Mathematical Analysis (Addison–Wesley, 1974)(Chapter 3 for the topology).

Jerold E. Marsden, Michael J. Hoffman, Basic Complex Analysis (W.H. Freeman, 1996).

Further Reading

L. Ahlfors, Complex Analysis (McGraw-Hill, 1979).

Theodore Gamelin, Complex Analysis (Springer, 2000).

Reinhold Remmert, Theory of Complex Functions (Springer, 1989) (Graduate Texts in
Mathematics 122).

Mark J. Ablowitz, Athanassios S. Focas, Complex Variables, Introduction and Applica-
tions(2nd edition, Cambridge Texts in Applied Mathematics, 2003).

2.2.3 Differential Equations — Prof. Tod — 24 lectures MT

Overview

The aim of this course is to introduce all students reading mathematics to the basic theory
of ordinary and partial differential equations.

The course will be example-led and will concentrate on equations that arise in practice
rather than those constructed to illustrate a mathematical theory. The emphasis will be on
solving equations and understanding the possible behaviours of solutions, and the analysis
will be developed as a means to this end.

The course will furnish undergraduates with the necessary skills to pursue any of the applied
options in the third year and will also form the foundation for a deeper and more rigorous
course in partial differential equations.

Learning Outcomes

On completion of the course, students will have acquired a sound knowledge of a range
of techniques for solving linear ordinary and partial differential equations. They will have
gained an appreciation of the importance of existence and uniqueness of solution and will
be aware that explicit analytic solutions are the exception rather than the rule.

Synopsis

(1–4) Picard’s Theorem for dy/dx = f(x, y) with proof. Extension to systems stated but
not proved. Examples with blow-up and non-uniqueness.
(Collins section 2.1. Boyce & DiPrima section 2.12. Kreyszig section 1.9.)

(5–7) Second-order ODEs: variation of parameters, Wronskian and Green’s function.
(Collins chapters 3, 4. Boyce & DiPrima sections 3.1–3.5, 3.6, 3.6.2. Hildebrand chapter 3.
Kreyszig sections 2.1, 2.7–2.10.)

(8–11) Phase planes, critical points, Poincaré-Bendixson criterion. Examples including
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conservative nonlinear oscillators, Van der Pol’s equation and Lotka-Volterra equations.
Stability of periodic solutions.
(Collins chapters 3, 4. Boyce & DiPrima sections 9.1–9.4. Kreyszig sections 3.3–3.5.)

(12–14) Characteristic methods for first-order quasilinear PDEs (using parameterisation).
Examples from conservation laws. Multivalued solutions and shocks. Charpit’s method and
artificial examples excluded.
(Collins Chapter 5. Carrier & Pearson Chapters 6, 13. Ockendon et al. Chapter 1.)

(15–18) Classification of second-order linear PDEs. Ideas of uniqueness and well-posedness
for Laplace, Wave and Heat equations. Revision of separation of variables from Mods and
illustration of suitable boundary conditions by example. Multi-dimensional Laplacian op-
erator giving rise to Bessel’s and Legendre’s equations.
(Collins chapters 6, 7. Carrier & Pearson Chapters 1, 3, 4, 5, 7. Strauss Chapter 1. Kreyszig
sections 11.7–11.11.)

(19–24) Theory of Fourier and Laplace transforms, inversion, convolution. Inversion of some
standard Fourier and Laplace transforms via contour integration. Use of Fourier transform
in solving Laplace’s equation and the Heat equation. Use of Laplace transform in solving
the Heat equation.
(Collins chapter 14. Carrier & Pearson chapters 2, 15. Kreyszig chapter 5, sections 10.8–
10.11, 11.6. Priestley chapter 9.)

Reading

The best single text is:

P. J. Collins, Differential and Integral Equations (O.U.P., 2006), Chapters 1-7, 14,15.

Alternatives

W. E. Boyce & R. C. DiPrima, Elementary Differential Equations and Boundary Value
Problems (7th edition, Wiley, 2000).

Erwin Kreyszig, Advanced Engineering Mathematics (8th Edition, Wiley, 1999).

F. B. Hildebrand, Methods of Applied Mathematics (Dover, 1992).

W. A. Strauss, Partial Differential Equations: an Introduction (Wiley, 1992).

G. F. Carrier & C E Pearson, Partial Differential Equations — Theory and Technique
(Academic, 1988).

H. A. Priestley, Introduction to Complex Analysis (Second edition, Oxford, 2003).

J. Ockendon, S. Howison, A. Lacey & A. Movchan, Applied Partial Differential Equations
(Oxford, 1999). [More advanced.]
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3 OPTIONS

3.1 Syllabus

3.1.1 Introduction to Fields

Revised Syllabus

Fields, subfields, finite extensions; examples. Degree of an extension, the Tower Theo-
rem. Simple algebraic extensions; splitting fields, uniqueness (proof not to be examined);
examples. Characteristic of a field. Finite fields: existence; uniqueness (proof not to be ex-
amined). Subfields. The multiplicative group of a finite field. The Frobenius automorphism.

3.1.2 Group Theory

Groups: subgroups, normal subgroups and quotient groups; elementary results concerning
symmetric and alternating groups; important examples of groups, including the general Lin-
ear groups. Isomorphism theorems for groups. Simplicity. Finite soluble groups. Actions
of groups on sets; examples, including coset spaces, groups acting on themselves by transla-
tion and conjugation, the Möbius groups, Linear groups acting on sets of subspaces. Orbits,
transitivity, stabilisers, equivalence of a transitive space with a coset space, kernels of such
actions, examples. Symmetry groups of geometric objects including regular polyhedra.

3.1.3 Number Theory

The ring of integers; congruences; rings of integers modulo n; the Chinese Remainder Theo-
rem. Wilson’s Theorem; Fermat’s Little Theorem for prime modulus. Euler’s phi-function;
Euler’s generalisation of Fermat’s Little Theorem to arbitrary modulus. Quadratic residues
modulo primes. Quadratic reciprocity. Factorisation of large integers; basic version of the
RSA encryption method.

3.1.4 Integration

Measure spaces. Outer measure, null set, measurable set. The Cantor set. Lebesgue
measure on the real line. Counting measure. Probability measures. Construction of a
non-measurable set (non-examinable). Measurable function, simple function, integrable
function. Reconciliation with the integral introduced in Moderations.

A simple comparison theorem. Integrability of polynomial and exponential functions over
suitable intervals. Changes of variable. Fatou’s Lemma (proof not examinable). Monotone
Convergence Theorem (proof not examinable). Dominated Convergence Theorem. Corol-
laries and applications of the Convergence Theorems (including term-by-term integration
of series).

Theorems of Fubini and Tonelli (proofs not examinable). Differentiation under the integral
sign. Change of variables.

Brief introduction to Lp spaces. Hölder and Minkowski inequalities (proof not examinable).
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3.1.5 Topology

Metric spaces. Examples to include metrics derived from a norm on a real vector space,
particularly l1, l2, l∞ norms on Rn, the sup norm on the bounded real-valued functions on
a set, and on the bounded continuous real-valued functions on a metric space. Continuous
functions (ε, δ definition). Uniformly continuous functions. Open balls, open sets, accumu-
lation points of a set. Completeness (but not completion). Contraction Mapping Theorem.
Completeness of the space of bounded real-valued functions on a set, equipped with the sup
norm, and the completeness of the space of bounded continuous real-valued functions on a
metric space, equipped with the sup metric.

Axiomatic definition of an abstract topological space in terms of open sets. Continuous
functions, homeomorphisms. Closed sets. Accumulation points of sets. Closure of a set
(Ā = A together with its accumulation points). Continuity if f(Ā) ⊆ f(A). Examples
to include metric spaces (definition of topological equivalence of metric spaces), discrete
and indiscrete topologies, subspace topology, cofinite topology, quotient topology. Base of
a topology. Product topology on a product of two spaces and continuity of projections.
Hausdorff topology.

Connected spaces: closure of a connected space is connected, union of connected sets is
connected if there is a non-empty intersection, continuous image of a connected space is
connected. Path-connectedness implies connectedness. Connected open subset of a normed
vector space is path-connected.

Compact sets, closed subset of a compact set is compact, compact subset of a Hausdorff
space is closed. Heine-Borel Theorem in Rn. Product of two compact spaces is compact.
A continuous bijection from a compact space to a Hausdorff space is a homeomorphism.
Equivalence of sequential compactness and abstract compactness in metric spaces.

Further discussion of quotient spaces: simple classical geometric spaces such as the torus
and Klein bottle.

3.1.6 Multivariable Calculus

Definition of a derivative of a function from Rm to Rn; examples; elementary properties;
partial derivatives; the chain rule; the gradient of a function from Rm to R; Jacobian.
Continuous partial derivatives imply differentiability. Higher order derivatives; symmetry
of multiple partial derivatives.

The Inverse Function Theorem (proof non-examinable). The Implicit Function Theorem
(statement only).

The definition of a submanifold of Rm, its tangent space at a point. Examples, defined
parametrically and implicitly, including curves and surfaces in R3.

Lagrange multipliers.

3.1.7 Calculus of Variations

The basic variational problem and Euler’s equation. Examples, including axisymmetric
soap films. Extension to several dependent variables. Hamilton’s principle for free par-
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ticles and particles subject to holonomic constraints. Equivalence with Newton’s second
law. Geodesics on surfaces. Extension to several independent variables. Examples includ-
ing Laplace’s equation. Lagrange multipliers and variations subject to constraint. The
Rayleigh-Ritz method and eigenvalue problems for Sturm-Liouville equations.

3.1.8 Classical Mechanics

Angular momentum of a system of particles about a fixed point and about the centre of
mass. The description of the motion of a rigid body with one fixed point in terms of a
time-dependent rotation matrix. Definition of angular velocity. Moments of inertia, kinetic
energy, and angular momentum of a rigid body with axial symmetry. Lagrangian equations
of motion; holonomic constraints [derivation non-examinable]. Gyroscopes and the classical
integrable cases of rigid body motion. Oscillations near equilibrium; normal frequencies,
normal modes.

3.1.9 Electromagnetism

Charged particles and their currents; conservation of charge and the continuity equation;
Coulomb’s Law and definition of E; the electrostatic potential; Gauss’ Law; boundary
conditions at infinity and on surfaces.

Electric currents, Biot-Savart Law and the definition of B, Ampère’s Law; absence of mag-
netic charges; the Lorentz force; the magnetic potential.

Time-dependent electromagnetic fields and Maxwell’s equations; continuity equation (as
consistency of Maxwell’s equations); Poynting Vector and Poynting Theorem; potentials
and gauge invariance; electromagnetic plane-wave solutions; polarisation and reflection.

3.1.10 Fluid Dynamics and Waves

Incompressible flow. Convective derivative, streamlines and particle paths. Euler’s equa-
tions of motion for an inviscid fluid. Bernoulli’s Theorem. Vorticity, circulation and Kelvin’s
Theorem.

Irrotational incompressible flow; velocity potential. Two-dimensional flow, stream function
and complex potential. Line sources and vortices. Method of images, circle theorem and
Blasius’s Theorem.

Uniform flow past a circular cylinder. Circulation, lift. Use of conformal mapping to
determine flow past a flat wing. Water waves, including effects of finite depth and surface
tension. Dispersion, simple introduction to group velocity. The vorticity equation and
vortex motion.

3.1.11 Probability

Random variables and their distribution; joint distribution, conditional distribution; func-
tions of one or more random variables. Generating functions and applications. Character-
istic functions, definition only. Statements of the continuity and uniqueness theorems for
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moment generating functions. Chebychev and Markov inequalities. The weak law of large
numbers and central limit theorem for independent identically distributed variables with a
second moment. Discrete-time Markov chains: definition, transition matrix, n-step transi-
tion probabilities, communicating classes, absorption, irreducibility, calculation of hitting
probabilities and mean hitting times, recurrence and transience. Invariant distributions,
mean return time, positive recurrence, convergence to equilibrium (proof not examinable).
Examples of applications in areas such as: genetics, branching processes, Markov chain
Monte Carlo. Poisson processes in one dimension: exponential spacings, Poisson counts,
thinning and superposition.

3.1.12 Statistics

Estimation: observed and expected information, statement of large sample properties of
maximum likelihood estimators in the regular case, methods for calculating maximum like-
lihood estimates, large sample distribution of sample estimators using the delta method.

Hypothesis testing: simple and composite hypotheses, size, power and p-values, Neyman-
Pearson Lemma, distribution theory for testing means and variances in the normal model,
generalized likelihood ratio, statement of its large sample distribution under the null hy-
pothesis, analysis of count data.

Confidence intervals: exact intervals, approximate intervals using large sample theory, re-
lationship to hypothesis testing.

Regression: correlation, least squares and maximum likelihood estimation, use of matrices,
distribution theory for the normal model, hypothesis tests and confidence intervals for linear
regression problems, examining assumptions by plotting residuals.

3.1.13 Numerical Analysis

Lagrange interpolation, Newton-Cotes quadrature, Gaussian elimination and LU factoriza-
tion, QR factorization. Eigenvalues: Gershgorin’s theorem, symmetric QR algorithm. Best
approximation in inner product spaces, least squares, orthogonal polynomials. Piecewise
polynomials, splines, Richardson Extrapolation. Newton’s method.
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3.2 Synopses of Lectures

3.2.1 Introduction to Fields — Prof. Collins — 8 lectures HT

Weeks 1 to 4 in Hilary Term.

Overview

Informally, finite fields are generalisations of systems of real numbers such as the rational
or the real numbers— systems in which the usual rules of arithmetic (including those for
division) apply. Formally, fields are commutative rings with unity in which division by
non-zero elements is always possible. It is a remarkable fact that the finite fields may
be completely classified. Furthermore, they have classical applications in number theory,
algebra, geometry, combinatorics, and coding theory, and they have newer applications in
other areas. The aim of this course is to show how their structure may be elucidated, and
to present the main theorems about them that lead to their various applications.

Learning Outcomes

Students will have a sound knowledge of field theory including the classification of finite
fields. They will have an appreciation of the applications of this theory.

Revised Synopsis

Fields, subfields and their intersections. Statement of the Fundamental Theorem of Alge-
bra; the splitting field for a rational polynomial as the minimal subfield of C that contains
all its roots, its Galois group over Q (basic concept only). The link between the structure
of the Galois group and the solubility of equations (not examinable). [11

2 lectures]

The characteristic of a field, prime subfields. [12 lecture]

Extensions of fields; examples. Degree of a finite extension, the Tower Theorem. [1 lecture]

Simple algebraic extensions; splitting fields, uniqueness (proof sketched but not exam-
inable); examples. [2 lectures]

Finite fields: existence and uniqueness (proof sketched but not examinable), subfields. The
multiplicative group of a finite field, the Frobenius automorphism. [3 lectures]

Reading

Joseph J. Rotman, A First Course in Abstract Algebra (Second edition, Prentice Hall, 2000),
ISBN 0-13-011584-3. Chapters 1,3.

20



Dominic Welsh, Codes and Cryptography, (Oxford University Press, 1988), ISBN 0-19853-
287-3. Chapter 10.

Further Reading

Peter J. Cameron, Introduction to Algebra (Oxford University Press, 1998), ISBN 0-19-
850194-3 Parts of 2.4, 7.3.

I. N. Herstein, Topics in Algebra (Wiley, 1975). ISBN 0-471-02371-X 5.1, 5.3, 7.1. [Harder
than some, but an excellent classic. Widely available in Oxford libraries; still in print.]

P. M. Cohn, Classic Algebra (Wiley, 2000), ISBN 0-471-87732-8, parts of Chapter 6. [This
is the third edition of his book on abstract algebra, in Oxford libraries.]

There are many other such books on abstract algebra in Oxford libraries.

3.2.2 Group Theory — Prof. Collins — 8 lectures HT

Weeks 5 to 8 in Hilary Term.

Overview

This group theory course develops the theory of finite groups begun in Mods. In this
course we will present an introduction to general “structural” theory via the Jordan-Hölder
Theorem for finite groups and a basic study of finite soluble groups. This will be followed
by a discussion of the concept of a “group acting on a set” which lies at the heart of the
application to solving quadratic, cubic and quartic equations over the rationals but which
appears wherever groups are studied throughout mathematics.

Learning Outcomes

Students will begin to have a deeper knowledge of group structure and theory, particularly
finite groups. They will have an appreciation of some of the important properties of groups
including simplicity, solubility and actions of a group on a set. Examples include Sn, An,
the Möbius group, symmetry group of Platonic solids and the Galois group (as a group of
permutations of the root of polynomials with rational coefficients).

Synopsis

Brief revision of group theory: homomorphisms, normal subgroups and quotient groups,
First Isomorphism Theorem. The groups S4 and S5 and their normal subgroups. Simplicity
of A5. [1 lecture]

Second and Third Isomorphism Theorems. Automorphisms. Semidirect products. [1 lec-
ture]

Simplicity, composition series and Jordan-Hölder Theorem (finite groups only); examples.
[See Peter J. Cameron, Introduction to Algebra (Oxford University Press, 1998), section
7.1.3 and 7.1.4, pages 185-187.] [1 lecture]
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Finite soluble groups; subgroups, quotients and extensions. Insolubility of Sn for n > 4. [1
lecture]

Actions of groups on sets, equivalence of actions, examples including coset spaces and
conjugation actions.[1 lecture]

Orbits, transitivity, stabilisers, kernels of actions, equivalence of a transitive action with a
coset space. Examples, including Möbius groups and symmetry groups of Platonic solids.
[2 lectures]

The Galois group as a group of permutations of the roots of a polynomial over Q, transitivity
in the case of an irreducible polynomial; some small examples. [1 lecture]

Reading

Peter M. Neumann, G. A. Stoy, E. C. Thompson, Groups and Geometry (OUP, 1994,
reprinted 2002), ISBN 0-19-853451-5. Chapters 1-9, 15.

Further Reading

Geoff Smith, Olga Tabachnikova, Topics in Groups Theory (Springer Undergraduate Math-
ematics Series, 2002) ISBN 1-85233-2. Chapter 3.

M. A. Armstrong, Groups and Symmetry (Springer, 1988), ISBN 0-387-96675-7. Chapters
1-19.

Joseph J. Rotman, A First Course in Algebra (Second Edition, Prentice Hall, 2000).
Chapter 2

Peter J. Cameron, Introduction to Algebra (Oxford University Press, 1998). [See section
7.1.3 and 7.1.4 for Jordan-Hölder Theorem, pages 185-187.]

3.2.3 Number Theory — Dr Johnston — 8 lectures TT

Overview

Number theory is one of the oldest parts of mathematics. For well over two thousand years it
has attracted professional and amateur mathematicians alike. Although notoriously ‘pure’
it has turned out to have more and more applications as new subjects and new technologies
have developed. Our aim in this course is to introduce students to some classical and
important basic ideas of the subject.

Synopsis

The ring of integers; congruences; ring of integers modulo n; the Chinese Remainder The-
orem. [2 lectures]

Wilson’s Theorem; Fermat’s Little Theorem for prime modulus; Euler’s generalisation of
Fermat’s Little Theorem to arbitrary modulus; primitive roots.[2 lectures]

Quadratic residues modulo primes. Quadratic reciprocity. [2 lectures]
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Factorisation of large integers; basic version of the RSA encryption method. [2 lectures]

Reading

Alan Baker, A Concise Introduction to the Theory of Numbers (Cambridge University Press,
1984) ISBN: 0521286549 Chapters 1,3,4.

David Burton, Elementary Number Theory (McGraw-Hill, 2001).

Dominic Welsh, Codes and Cryptography, (Oxford University Press, 1988), ISBN 0-19853-
287-3. Chapter 11.

3.2.4 Integration — Prof. Batty — 16 lectures HT

Overview

The course will exhibit Lebesgue’s theory of integration in which integrals can be assigned to
a huge range of functions on the real line, thereby greatly extending the notion of integration
presented in Mods. The theory will be developed in such a way that it can be easily extended
to a wider framework including summation of series and probability theory (although no
knowledge of probability will be required), but measures other than Lebesgue’s will only be
lightly touched.

Operations such as passing limits, infinite sums, or derivatives, through integral signs, or
reversing the order of double integrals, are often taken for granted in courses in applied
mathematics. Actually, they can occasionally fail. Fortunately, there are powerful conver-
gence and other theorems allowing such operations to be justified under conditions which
are widely applicable. The course will display these theorems and a wide range of their
applications.

This is a course in rigorous applications. Its principal aim is to develop understanding of
the statements of the theorems and how to apply them carefully. Knowledge of technical
proofs concerning the construction of Lebesgue measure and the integral, and proofs of the
primary convergence theorems, will not be an essential part of the course, and such proofs
will usually be omitted from the lectures.

Synopsis

Motivation: Why do we need a more general theory of integration?
The notion of measure.
Key examples: Lebesgue measure, probability measure, counting measure.
Measurable functions, integrable functions (via simple functions). Reconciliation with Mods
Analysis III. Changes of variable.
Comparison Theorem.
Fatou’s Lemma.
Monotone Convergence Theorem.
Dominated Convergence Theorem.
Corollaries and applications of the Convergence Theorems (term-by-term integration of
series etc). Differentiation under the integral sign.
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Double integrals, theorems of Fubini and Tonelli, changes of variable.
A very brief introduction to Lp spaces. Hölder and Minkowski inequalities.

Reading

A. Etheridge, Integration, Mathematical Institute Lecture Notes

M. Capinski & E. Kopp, Measure, Integral and Probability (Second Edition, Springer, 2004).

E. M. Stein & R. Shakarchi, Real Analysis: Measure Theory, Integration and Hilbert Spaces
(Princeton Lectures in Analysis III, Princeton University Press,2005).

F. Jones, Lebesgue Integration on Euclidean Space (Second Edition, Jones & Bartlett, 2000).

Further reading

R. G. Bartle, The Elements of Integration (Wiley, 1966).

D. S. Kurtz & C. W. Swartz, Theories of Integration (Series in Real Analysis Vol.9, World
Scientific, 2004).

H. L. Royden, Real Analysis (Third Edition, Macmillan, 1988).

3.2.5 Topology — Dr Drutu — 16 lectures HT

Overview

The ideas, concepts and constructions in general topology arose from extending the notions
of continuity and convergence on the real line to more general spaces. The first class of
general spaces to be studied in this way were metric spaces, a class of spaces which includes
many of the spaces used in analysis and geometry. Metric spaces have a distance function
which allows the use of geometric intuition and gives them a concrete feel. They allow
us to introduce much of the vocabulary used later and to understand the formulation of
continuity which motivates the axioms in the definition of an abstract topological space.

The axiomatic formulation of a topology leads to topological proofs of simplicity and clarity
often improving on those given for metric spaces using the metric and sequences. There
are many examples of topological spaces which do not admit metrics and it is an indication
of the naturality of the axioms that the theory has found so many applications in other
branches of mathematics and spheres in which mathematical language is used.
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Learning Outcomes

The outcome of the course is that a student should understand and appreciate the cen-
tral results of general topology and metric spaces, sufficient for the main applications in
geometry, number theory, analysis and mathematical physics, for example.

Synopsis

Metric spaces. Examples to include metrics derived from a norm on a real vector space,
particularly l1, l2, l∞ norms on Rn, the sup norm on the bounded real-valued functions on
a set, and on the bounded continuous real-valued functions on a metric space. Continuous
functions (ε, δ definition). Uniformly continuous functions. Open balls, open sets, accumu-
lation points of a set. Completeness (but not completion). Contraction Mapping Theorem.
Completeness of the space of bounded real-valued functions on a set, equipped with the sup
norm, and the completeness of the space of bounded continuous real-valued functions on a
metric space, equipped with the sup metric. [3 lectures].

Axiomatic definition of an abstract topological space in terms of open sets. Continuous
functions, homeomorphisms. Closed sets. Accumulation points of sets. Closure of a set
(Ā = A together with its accumulation points). Continuity if f(Ā) ⊆ f(A). Examples
to include metric spaces (definition of topological equivalence of metric spaces), discrete
and indiscrete topologies, subspace topology, cofinite topology, quotient topology. Base of
a topology. Product topology on a product of two spaces and continuity of projections.
Hausdorff topology. [5 lectures]

Connected spaces: closure of a connected space is connected, union of connected sets is
connected if there is a non-empty intersection, continuous image of a connected space is
connected. Path-connectedness implies connectedness. Connected open subset of a normed
vector space is path-connected. [2 lectures]

Compact sets, closed subset of a compact set is compact, compact subset of a Hausdorff
space is closed. Heine-Borel Theorem in Rn. Product of two compact spaces is compact.
A continuous bijection from a compact space to a Hausdorff space is a homeomorphism.
Equivalence of sequential compactness and abstract compactness in metric spaces. [4 lec-
tures]

Further discussion of quotient spaces explaining some simple classical geometric spaces such
as the torus and Klein bottle. [2 lectures]

Reading

W. A. Sutherland, Introduction to Metric and Topological Spaces (Oxford University Press,
1975). Chapters 2-6, 8, 9.1-9.4.
(New edition to appear shortly.)

Further Reading

B. Mendelson, Introduction to Topology (Allyn and Bacon, 1975). (cheap paper back edition
available).
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G. Buskes, A. Van Rooij, Topological Spaces (Springer, 1997).

J. R. Munkres, Topology, A First Course (Prentice Hall, 1974).

N. Bourbaki, General Topology (Springer, 1998).

R. Engelking, General Topology (Heldermann Verlag, Berlin, 1989) (for the last word, goes
far beyond the syllabus).

3.2.6 Multivariable Calculus — Prof. Niethammer — 8 lectures TT

Overview

In this course, the notion of the total derivative for a function f : Rm → Rn is introduced.
Roughly speaking, this is an approximation of the function near each point in Rn by a linear
transformation. This is a key concept which pervades much of mathematics, both pure and
applied. It allows us to transfer results from linear theory locally to nonlinear functions.
For example, the Inverse Function Theorem tells us that if the derivative is an invertible
linear mapping at a point then the function is invertible in a neighbourhood of this point.
Another example is the tangent space at a point of a surface in R3, which is the plane that
locally approximates the surface best.

Synopsis

Definition of a derivative of a function from Rm to Rn; examples; elementary properties;
partial derivatives; the chain rule; the gradient of a function from Rm to R; Jacobian.
Continuous partial derivatives imply differentiability. Higher order derivatives; symmetry
of multiple partial derivatives. [3 lectures]

The Inverse Function Theorem and the Implicit Function Theorem (proofs non-examinable).
[2 lectures]

The definition of a submanifold of Rm. Its tangent and normal space at a point, examples,
including two-dimensional surfaces in R3. [2 lectures]

Lagrange multipliers. [1 lecture]

Reading

Theodore Shifrin, Multivariable Mathematics (Wiley, 2005). Chapters 3-6.

T. M. Apostol, Mathematical Analysis: Modern Approach to Advanced Calculus (World
Students) (Addison Wesley, 1975). Chapters 12 and 13.

S. Dineen, Multivariate Calculus and Geometry (Springer, 2001). Chapters 1-4.

J. J. Duistermaat and J A C Kolk, Multidimensional Real Analysis I, Differentiation (Cam-
bridge University Press, 2004).

Further reading
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William R. Wade, An Introduction to Analysis (Second Edition, Prentice Hall, 2000). Chap-
ter 11.

M. P. Do Carmo, Differential Geometry of Curves and Surfaces (Prentice Hall, 1976).

Stephen G. Krantz and Harold R. Parks, The Implicit Function Theorem: History, Theory
and Applications (Birkhaeuser, 2002).

3.2.7 Calculus of Variations — Prof. Tod — 8 lectures HT

Overview

The calculus of variations concerns problems in which one wishes to find the minima or
extrema of some quantity over a system that has functional degrees of freedom. Many im-
portant problems arise in this way across pure and applied mathematics and physics. They
range from the problem in geometry of finding the shape of a soap bubble, a surface that
minimizes its surface area, to finding the configuration of a piece of elastic that minimises
its energy. Perhaps most importantly, the principle of least action is now the standard way
to formulate the laws of mechanics and basic physics.

In this course it is shown that such variational problems give rise to a system of differential
equations, the Euler-Lagrange equations. Furthermore, the minimizing principle that un-
derlies these equations leads to direct methods for analysing the solutions to these equations.
These methods have far reaching applications and will help develop students technique.

Learning Outcomes

Students will be able to formulate variational problems and analyse them to deduce key
properties of system behaviour.

Synopsis

The basic variational problem and Euler’s equation. Examples, including axi-symmetric
soap films. Extension to several dependent variables. Hamilton’s principle for free par-
ticles and particles subject to holonomic constraints. Equivalence with Newton’s second
law. Geodesics on surfaces. Extension to several independent variables. Examples includ-
ing Laplace’s equation. Lagrange multipliers and variations subject to constraint. The
Rayleigh-Ritz method and eigenvalue problems for Sturm-Liouville equations.

Reading

Arfken Weber, Mathematical Methods for Physicists (5th edition, Academic Press, 2005).
Chapter 17.

Further Reading

N. M. J. Woodhouse, Introduction to Analytical Dynamics (1987). Chapter 2 (in particular
2.6). (This is out of print, but still available in most College libraries.)
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M. Lunn, A First Course in Mechanics (OUP, 1991). Chapters 8.1, 8.2.

P. J. Collins, Differential and Integral Equations (O.U.P., 2006). Chapters 11, 12.

3.2.8 Classical Mechanics — Prof. Chrusciel — 8 lectures HT

Overview

This course extends the study of the dynamics of point particles in the first year to the
study of extended rigid bodies moving in three dimensions.

The course provides powerful applications of the Lagrangian theory to a range of systems,
in particular to the study of small oscillations near equilibrium, and it introduces some key
classical ideas that also play an important role in modern physical theory, notably angular
momentum and its connection with rotations.

Synopsis

Lagrangian equations of motion with and without holonomic constraints. Oscillations near
equilibrium; normal frequencies, normal modes.

Angular momentum of a system of particles about a fixed point and about the centre of
mass. The description of the motion of a rigid body with one fixed point in terms of a
time-dependent rotation matrix. Definition of angular velocity. Moments of inertia, kinetic
energy, and angular momentum of a rigid body with axial symmetry. Gyroscopes and the
classical integrable cases of rigid body motion.

Reading

N. M. J. Woodhouse, Introduction to Analytical Mechanics (1987). Chapters 3 and 6. (This
is out of print, but still available in most College libraries.)

Further reading

M. Lunn, A First Course in Mechanics (OUP, 1991). Chapters 6, 7.2, 7.3, 8.3 and 8.4.

3.2.9 Electromagnetism — Dr Sparks — 8 lectures HT

Note: 1 hour per week

Overview

The phenomena of electricity and magnetism are familiar from school physics. In this
course we first put these phenomena into a theoretical mathematical framework expressed
in terms of vector calculus, as an application of grad, div and curl from moderations. Then
we follow the nineteenth century physicist Maxwell in unifying the two subjects into the
single theory of electromagnetism, one of the cornerstones of modern physics. With this
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theory we are able to describe light as an electromagnetic phenomenon and to derive some
of their elementary properties, notably polarisation and reflection.

Synopsis

Charged particles and their currents; conservation of charge and the continuity equation;
Coulomb’s Law and definition of E; the electrostatic potential; Gauss’ Law; boundary
conditions at infinity and on surfaces.

Electric currents, Biot-Savart Law and the definition of B, Ampère’s Law; absence of mag-
netic charges; the Lorentz force; the magnetic potential.

Time-dependent electromagnetic fields and Maxwell’s equations; continuity equation (as
consistency of Maxwell’s equations); Poynting Vector and Poynting Theorem; potentials
and gauge invariance; electromagnetic plane-wave solutions; polarisation and reflection.

Reading

W. J. Duffin, Electricity and Magnetism (Fourth Edition, McGraw-Hill, 2001). Chapters
1-4, 7, 8, 13.

Alternative Reading:

N. M. J. Woodhouse, Special Relativity, Lecture Notes in Physics (Springer-Verlag, 2002).
Chapters 2,3.

R. Feynman, Lectures in Physics, Vol. 2. Electromagnetism (Addison Wesley).

P. Lorrain, D. R. Corson, Electromagnetism, (Second Edition, Freeman). Chapters 2, 3,
4.3-5, 8-11, 19, 20.

B. I. Bleaney and B. Bleaney, Electricity and Magnetism (Third Edition, OUP). Chapters
1.1-4, 2 (except 2.3),3.1-2, 4.1-2, 4.4, 5.1, 8.1-4.

Further reading

An advanced text on electromagnetism is

J.D. Jackson, Classical Electrodynamics, (John Wiley, 1999).

3.2.10 Fluid Dynamics and Waves — Dr Sobey — 16 lectures HT

Overview

This course introduces students to the mathematical theory of inviscid fluids. The theory
provides insight into physical phenomena such as flight, vortex motion, and water waves.
The course also explains important concepts such as conservation laws and dispersive waves
and, thus, serves as an introduction to the mathematical modelling of continuous media.
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Synopsis

Incompressible flow. Convective derivative, streamlines and particle paths. Euler’s equa-
tions of motion for an inviscid fluid. Bernoulli’s theorem. Vorticity, circulation and Kelvin’s
Theorem.

Irrotational incompressible flow; velocity potential. Two-dimensional flow, stream function
and complex potential. Line sources and vortices. Method of images, circle theorem and
Blasius’s Theorem.

Uniform flow past a circular cylinder. Circulation, lift. Use of conformal mapping to
determine flow past a flat wing. Water waves, including effects of finite depth and surface
tension. Dispersion, simple introduction to group velocity. The vorticity equation and
vortex motion.

Reading

D. J. Acheson, Elementary Fluid Dynamics (OUP, 1997). Chapters 1, 3.1-3.5, 4.1-4.8,
4.10-4.12, 5.1, 5.2, 5.6, 5.7.

3.2.11 Probability — Dr Laws — 16 lectures HT

Overview

The first half of the course takes further the probability theory that was developed in the
first year. The aim is to build up a range of techniques that will be useful in dealing with
mathematical models involving uncertainty. The second half of the course is concerned
with Markov chains in discrete time and Poisson processes in one dimension, both with
developing the relevant theory and giving examples of applications.

Synopsis

Continuous random variables. Jointly continuous random variables, independence, con-
ditioning, bivariate distributions, functions of one or more random variables. Moment
generating functions and applications. Characteristic functions, definition only. Examples
to include some of those which may have later applications in Statistics.

Basic ideas of what it means for a sequence of random variables to converge in probability,
in distribution and in mean square. Chebychev and Markov inequalities. The weak law of
large numbers and central limit theorem for independent identically distributed variables
with a second moment. Statements of the continuity and uniqueness theorems for moment
generating functions.

Discrete-time Markov chains: definition, transition matrix, n-step transition probabilities,
communicating classes, absorption, irreducibility, calculation of hitting probabilities and
mean hitting times, recurrence and transience. Invariant distributions, mean return time,
positive recurrence, convergence to equilibrium (proof not examinable). Examples of appli-
cations in areas such as: genetics, branching processes, Markov chain Monte Carlo. Poisson
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processes in one dimension: exponential spacings, Poisson counts, thinning and superposi-
tion.

Reading

G. R. Grimmett and D. R. Stirzaker, Probability and Random Processes (3rd edition, OUP,
2001). Chapters 4, 6.1-6.5, 6.8.

R. Grimmett and D. R. Stirzaker, One Thousand Exercises in Probability (OUP, 2001)

G. R. Grimmett and D J A Welsh, Probability: An Introduction (OUP, 1986). Chapters 6,
7.4, 8, 11.1-11.3.

J. R. Norris, Markov Chains (CUP, 1997). Chapter 1.

D. R. Stirzaker, Elementary Probability (Second edition, CUP, 2003). Chapters 7-9 exclud-
ing 9.9.

3.2.12 Statistics — Dr Myers — 16 lectures HT

Overview

Building on the first year course, this course develops statistics for mathematicians, em-
phasising both its underlying mathematical structure and its application to the logical
interpretation of scientific data. Advances in theoretical statistics are generally driven by
the need to analyse new and interesting data which come from all walks of life.

Synopsis

Estimation: observed and expected information, statement of large sample properties of
maximum likelihood estimators in the regular case, methods for calculating maximum like-
lihood estimates, large sample distribution of sample estimators using the delta method.

Hypothesis testing: simple and composite hypotheses, size, power and p-values, Neyman-
Pearson Lemma, distribution theory for testing means and variances in the normal model,
generalized likelihood ratio, statement of its large sample distribution under the null hy-
pothesis, analysis of count data.

Confidence intervals: exact intervals, approximate intervals using large sample theory, re-
lationship to hypothesis testing.

Regression: correlation, least squares and maximum likelihood estimation, use of matrices,
distribution theory for the normal model, hypothesis tests and confidence intervals for linear
regression problems, examining assumptions by plotting residuals.

Examples: statistical techniques will be illustrated with relevant data sets in the lectures.

Reading

F. Daly, D. J. Hand, M. C. Jones, A. D. Lunn and K. J. McConway, Elements of Statistics
(Addison Wesley, 1995). Chapters 7-10 (and Chapters 1-6 for background).
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J. A. Rice, Mathematical Statistics and Data Analysis (2nd edition, Wadsworth, 1995.)
Sections 8.5, 8.6, 9.1-9.7, 9.9, 10.3-10.6, 11.2, 11.3, 12.2.1, 13.3, 13.4.

Further Reading

G. Casella and R. L. Berger, Statistical Inference(2nd edition, Wadsworth, 2001)

3.2.13 Numerical Analysis — Prof Süli — 16 lectures HT

Overview

Scientific computing pervades our lives: modern buildings and structures are designed using
it, medical images are reconstructed for doctors using it, the cars and planes we travel on
are designed with it, the pricing of “Instruments” in the financial market is done using it,
tomorrows weather is predicted with it. The derivation and study of the core, underpinning
algorithm for this vast range of applications defines the subject of Numerical Analysis. This
course gives an introduction to that subject.

Through studying the material of this course students should gain an understanding of
numerical methods, their derivation, analysis and applicability. They should be able to
solve certain mathematically posed problems using numerical algorithms. This course is
designed to introduce numerical methods - i.e. techniques which lead to the (approximate)
solution of mathematical problems which are usually implemented on computers. The
course covers derivation of useful methods and analysis of their accuracy and applicability.

The course begins with a study of methods and errors associated with computation of func-
tions which are described by data values (interpolation or data fitting). Following this we
turn to numerical methods of linear algebra, which form the basis of a large part of compu-
tational mathematics, science, and engineering. Key ideas here include algorithms for linear
equations, least squares, and eigenvalues built on LU and QR matrix factorizations. The
course will also include the simple and computationally convenient approximation of curves:
this includes the use of splines to provide a smooth representation of complicated curves,
such as arise in computer aided design. Use of such representations leads to approximate
methods of integration. Techniques for improving accuracy through extrapolation will also
be described. The course requires elementary knowledge of functions and calculus and of
linear algebra.

Although there are no assessed practicals for this course, the classwork will involve a mix
of written work and Matlab programming. No previous knowledge of Matlab is required.
Specifically, like Numerical Solution of Differential Equations, Numerical Analysis has 16
lectures, no practicals, and 7 classes per term. There will be some simple use of Matlab
which will be demonstrated both in lectures and in problem classes.

Learning Outcomes

At the end of the course the student will know how to:

• Find the solution of linear systems of equations.

32



• Compute eigenvalues and eigenvectors of matrices.

• Approximate functions of one variable by polynomials and piecewise polynomials
(splines).

• Compute good approximations to one-dimensional integrals.

• Increase the accuracy of numerical approximations by extrapolation.

• Use Matlab to achieve these goals.

Synopsis

Lagrange interpolation [1 lecture],

Newton-Cotes quadrature [2 lectures],

Gaussian elimination and LU factorization [2 lectures],

QR factorization [1 lecture],

Eigenvalues: Gershgorin’s Theorem, symmetric QR algorithm [3 lectures],

Best approximation in inner product spaces, least squares, orthogonal polynomials [4 lec-
tures],

Piecewise polynomials, splines [2 lectures],

Richardson Extrapolation, Newton’s method. [1 lecture].

Reading

You can find the material for this course in many introductory books on Numerical Analysis
such as

1. A. Quarteroni, R Sacco and F Saleri, Numerical Mathematics (Springer, 2000).

2. K. E. Atkinson, An Introduction to Numerical Analysis (2nd Edition, Wiley, 1989).

3. S. D. Conte and C. de Boor, Elementary Numerical Analysis (3rd Edition, Graw-Hill,
1980).

4. G. M. Phillips and P. J. Taylor, Theory and Applications of Numerical Analysis (2nd
Edition, Academic Press, 1996).

5. W. Gautschi, Numerical Analysis: An Introduction (Birkhauser, 1977).

6. H. R. Schwarz, Numerical Analysis: A Comprehensive Introduction (Wiley, 1989).

But the main recommended book for this course is:

1. E. Suli and D. F. Mayers, An Introduction to Numerical Analysis, CUP, 2003 of which
the relevant chapters are: 6, 7, 2, 5, 9, 11.
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