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1 Foreword

Notice of misprints or errors of any kind, and suggestions for improvements in this booklet
should be addressed to the Academic Assistant in the Mathematical Institute.

1.1 Honour School of Mathematics

[See the current edition of the Examination Regulations for the full regulations governing
these examinations.]

For Part A, each candidate shall be required to offer the 4 written papers from the schedule
of papers for Part A (see below).

Part A shall be taken on one occasion only (there will be no resits). At the end of the Part
A examinations, a candidate will be awarded four ‘University Standardised Marks’ (USMs).
These will be carried forward for the classification awarded at the end of the third year. In
this classification, the marks in Part A will be given a ‘weighting’ of 2, and the marks in
Part B will be given a ‘weighting’ of 3. All students who complete Parts A and B will be
classified, and those wishing to graduate at this point may supplicate for a BA.

Students wishing to take the four-year course should register to do so at the beginning
of their third year. They will take Part C in their fourth year, be awarded a separate
classification and, if successful, may supplicate for an MMath.

Examination Conventions can be found at:http://www.maths.ox.ac.uk/notices/undergrad

Syllabus and Synopses

The syllabus details in this booklet are those referred to in the Examination Regulations
and have been approved by the Mathematics Teaching Committee in Trinity Term 2011 for
examination in 2012.

The synopses in this booklet give some additional detail, and show how the material is split
between the different lecture courses. They also include details of recommended reading.
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1.2 Honour School of Mathematics & Philosophy

See the current edition of the Examination Regulations for the full regulations governing
these examinations. For the Schedule of Mathematics Papers for Part A see the Supplement
to the Undergraduate Handbook for the Honour School of Mathematics & Philosophy:

http://www.maths.ox.ac.uk/current-students/undergraduates/handbooks-synopses/mathsphil.

1.3 Honour School of Mathematics & Statistics

See the current edition of the Examination Regulations for the full regulations governing
these examinations, and the details published by the Statistics Department:

http://www.stats.ox.ac.uk/current students/bammath/course handbooks.

Papers AC1 and AC2 under the schedule of papers here are taken by candidates in Mathe-
matics & Statistics.

1.4 Honour Schools of Computer Science and Mathematics & Computer
Science

See the current edition of the Examination Regulations for the full regulations governing
these examinations, and the details published in a handbook by the Computing Laboratory:

http://web.comlab.ox.ac.uk/teaching/handbooks.html.
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2 CORE MATERIAL

2.1 Syllabus

This section contains the examination syllabi for the two core papers AC1 and AC2.

2.1.1 Algebra

Vector spaces over an arbitrary field, subspaces, direct sums; quotient spaces and induced
linear maps; projection maps and their characterisation as idempotent operators.

Dual spaces of finite-dimensional spaces; annihilators; the natural isomorphism between
a space and its second dual; dual transformations and their matrix representation with
respect to dual bases.

Some theory of a linear map on a finite-dimensional space to itself: characteristic polyno-
mial, minimal polynomial, Primary Decomposition Theorem, the Cayley–Hamilton Theo-
rem; diagonalisability; triangular form. Statement of the Jordan normal form.

Real and complex inner product spaces. Orthogonal complements, orthonormal sets; the
Gram–Schmidt process. Bessel’s inequality; the Cauchy–Schwarz inequality.

The adjoint of a linear map on a finite-dimensional inner product space to itself. Eigenvalues
and diagonalisability of self-adjoint linear maps.

Commutative rings with unity, integral domains, fields; units, irreducible elements, primes.

Ideals and quotient rings; isomorphism theorems. The Chinese Remainder Theorem.

Maximal ideals and their quotient rings.

Euclidean rings and their properties: polynomial rings as examples, ideals are principal;
irreducible elements are prime; uniqueness of factorisation (proof non-examinable).

Gauss’ Lemma and factorisation in Z[x],; Eisenstein’s criterion.
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2.1.2 Analysis

The topology of Euclidean space and its subsets, particularly R, R2, R3: open sets, closed
sets, subspace topology; continuous functions and their characterisation in terms of pre-
images of open or closed sets; connected sets, path-connected sets; compact sets, Heine-
Borel Theorem.

Complex differentiation. Holomorphic functions. Cauchy-Riemann equations (including z,
z̄ version). Real and imaginary parts of a holomorphic function are harmonic.

Path integration. Fundamental Theorem of Calculus in the path integral/holomorphic
function setting. Power series and differentiation of power series. Exponential function,
holomorphic branches of logarithm functions, fractional powers.

Cauchy’s Theorem (proof excluded). Cauchy’s Integral formulae. Taylor expansion. Liou-
ville’s Theorem. Identity Theorem. Morera’s Theorem. Laurent’s expansion. Classification
of isolated singularities. Calculation of principal parts and residues. Residue Theorem.
Evaluation of integrals by the method of residues (straight forward examples including the
use of simple estimates, and examples with simple poles on contour of integration and
Jordan’s Lemma).

Conformal mapping, Riemann mapping theorem (no proof): Möbius functions, exponential
functions, fractional powers; mapping regions (not Christoffel transformations or Jowkowski’s
transformation).
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2.1.3 Differential Equations

Picard’s Theorem for first-order scalar ODEs with proof. Statement, without proof, of
extension to systems. Examples with blow-up and non-uniqueness.

Second-order ODEs: variation of parameters, Wronskian and Green’s function.

Phase planes, critical points, Poincaré-Bendixson criterion. Examples including conserva-
tive nonlinear oscillators, Van der Pol’s equation and Lotka-Volterra equations. Stability of
periodic solutions.

Characteristic methods for first-order quasilinear PDEs. Examples from conservation laws.
Multi-Valued solutions and shocks.

Classification of second-order linear PDEs. Ideas of uniqueness and well-posedness for
Laplace, Wave and Heat equations. Illustration of suitable boundary conditions by example.
Multi-dimensional Laplacian operator giving rise to Bessel’s and Legendre’s equations.

Theory of Fourier and Laplace transforms, inversion, convolution. Inversion of some stan-
dard Fourier and Laplace transforms via contour integration. Use of Fourier transform in
solving Laplace’s equation and the Heat equation. Use of Laplace transform in solving the
Heat equation.
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2.2 Synopses of Lectures

This section contains the lecture synopses associated with the two core papers AC1 and
AC2.

2.2.1 Algebra — Dr Knight — 24 lectures MT

Overview

Linear Algebra
The core of linear algebra comprises the theory of linear equations in many variables, the
theory of matrices and determinants, and the theory of vector spaces and linear maps. All
these topics were introduced in the Moderations course. Here they are developed further to
provide the tools for applications in geometry, modern mechanics and theoretical physics,
probability and statistics, functional analysis and, of course, algebra and number theory.
Our aim is to provide a thorough treatment of some classical theory that describes the
behaviour of linear maps on a finite-dimensional vector space to itself, both in the purely
algebraic setting and in the situation where the vector space carries a metric derived from
an inner product.

Rings
The rings part of the course introduces the student to some classic ring theory which is
basic for other parts of abstract algebra, for linear algebra and for those parts of number
theory that lead ultimately to applications in cryptography. The first-year algebra course
contains a treatment of the Euclidean Algorithm in its classical forms for integers and for
polynomial rings over a field; here the idea is developed in abstracto.

Learning Outcomes

Linear Algebra
Students will deepen their understanding of Linear Algebra. They will be able to define and
obtain the minimal and characteristic polynomials of a linear map on a finite-dimensional
vector space, and will understand and be able to prove the relationship between them; they
will be able to prove and apply the Primary Decomposition Theorem, and the criterion for
diagonalisability. They will have a good knowledge of inner product spaces, and be able
to apply the Bessel and Cauchy–Schwarz inequalities; will be able to define and use the
adjoint of a linear map on a finite-dimensional inner product space, and be able to prove
and exploit the diagonalisability of a self-adjoint map.

Rings
By the end of the course students will have extended their knowledge of abstract algebra
to include the key elements of classical ring theory. They will understand and be able to
prove and use the Isomorphism Theorem. They will have a good knowledge of Euclidean
rings, and be able to apply it.
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Synopsis

1. Linear Algebra

MT (17 lectures)
Vector spaces over an arbitrary field, subspaces, direct sums; quotient vector spaces;
induced linear map; projection maps and their characterisation as idempotent opera-
tors.

[2 Lectures]

Dual spaces of finite-dimensional spaces; annihilators; the natural isomorphism be-
tween a finite-dimensional space and its second dual; dual transformations and their
matrix representation with respect to dual bases.

[2-3 Lectures]

Some theory of a linear map on a finite-dimensional space to itself: characteristic poly-
nomial, minimal polynomial, Primary Decomposition Theorem, the Cayley-Hamilton
Theorem (economically); diagonalisability; triangular form. Statement of the Jordan
normal form.

[4-5 Lectures]

Real and complex inner product spaces: examples, including function spaces [but
excluding completeness and L2]. Orthogonal complements, orthonormal sets; the
Gram–Schmidt process. Bessel’s inequality; the Cauchy–Schwarz inequality.

[4 Lectures]

Some theory of a linear map on a finite-dimensional inner product space to itself: the
adjoint; eigenvalues and diagonalisability of a self-adjoint linear map.

[4 Lectures]

2. Rings

MT (7 Lectures)

Review of commutative rings with unity, integral domains, ideals, fields, polynomial
rings and subrings of R and C, Isomorphism Theorems. The Chinese Remainder
Theorem; the quotient ring by a maximal ideal is a field.

[2 lectures]

Euclidean rings and their properties : units, associates, irreducible elements, primes.
The Euclidean Algorithm for a Euclidean ring; Z and F [x] as prototypes; their ideals
are principal; their irreducible elements are prime; factorisation is unique (proof not
examinable).

[3 Lectures]

Examples for applications: Gauss’s Lemma and factorisation in Z[x]; Eisenstein’s
criterion.

[2 lectures]
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Reading

Richard Kaye and Robert Wilson, Linear Algebra (OUP, 1998) ISBN 0-19-850237-0. Chap-
ters 2–13. [Chapters 6, 7 are not entirely relevant to our syllabus, but are interesting.]

Peter J. Cameron, Introduction to Algebra (OUP, 1998) ISBN 0-19-850194-3. Chapter 2.

Alternative and further reading:

Joseph J. Rotman, A First Course in Abstract Algebra (Second edition, Prentice Hall, 2000),
ISBN 0-13-011584-3. Chapters 1, 3.

I. N. Herstein, Topics in Algebra (Second edition, Wiley, 1975), ISBN 0-471-02371-X. Chap-
ter 3. [Harder than some, but an excellent classic. Widely available in Oxford libraries; still
in print.]

P. M. Cohn, Classic Algebra (Wiley, 2000), ISBN 0-471-87732-8. Various sections. [This is
the third edition of his book previously called Algebra I.]

David Sharpe, Rings and Factorization (CUP, 1987), ISBN 0-521-33718-6. [An excellent
little book, now sadly out of print; available in some libraries, though.]

Paul R. Halmos, Finite-dimensional Vector Spaces, (Springer Verlag, Reprint 1993 of the
1956 second edition), ISBN 3-540-90093-4. §§1–15, 18, 32–51, 54–56, 59–67, 73, 74, 79.
[Now over 50 years old, this idiosyncratic book is somewhat dated but it is a great classic,
and well worth reading.]

Seymour Lipschutz and Marc Lipson, Schaum’s Outline of Linear Algebra (3rd edition,
McGraw Hill, 2000), ISBN 0-07-136200-2. [Many worked examples.]

C. W. Curtis, Linear Algebra—an Introductory Approach (4th edition, Springer, reprinted
1994).

D. T. Finkbeiner, Elements of Linear Algebra (Freeman, 1972). [Out of print, but available
in many libraries.]

J. A. Gallian, Contemporary Abstract Algebra (Houghton Mifflin Company, 2006).

There are very many other such books on abstract and linear algebra in Oxford libraries.
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2.2.2 Analysis — Dr Qian — 24 lectures MT

Overview

The theory of functions of a complex variable is a rewarding branch of mathematics to study
at the undergraduate level with a good balance between general theory and examples. It
occupies a central position in mathematics with links to analysis, algebra, number theory,
potential theory, geometry, topology, and generates a number of powerful techniques (for
example, evaluation of integrals) with applications in many aspects of both pure and applied
mathematics, and other disciplines, particularly the physical sciences.

In these lectures we begin by introducing students to the language of topology before using
it in the exposition of the theory of (holomorphic) functions of a complex variable. The
central aim of the lectures is to present Cauchy’s Theorem and its consequences, particularly
series expansions of holomorphic functions, the calculus of residues and its applications.

The course concludes with an account of the conformal properties of holomorphic functions
and applications to mapping regions.

Learning Outcomes

Students will have been introduced to point-set topology and will know the central impor-
tance of complex variables in analysis. They will have grasped a deeper understanding of
differentiation and integration in this setting and will know the tools and results of com-
plex analysis including Cauchy’s Theorem, Cauchy’s integral formula, Liouville’s Theorem,
Laurent’s expansion and the theory of residues.

Synopsis

(1-4) Topology of Euclidean space and its subsets, particularly R, R2, R3. Open sets,
closed sets, subspace topology; continuous functions and their characterisation in terms
of pre-images of open or closed sets; connected sets, path-connected sets; compact sets,
Heine-Borel Theorem (covered in Chapter 3 of Apostol).

(5-7) Complex differentiation. Holomorphic functions. Cauchy-Riemann equations (includ-
ing z, z̄ version). Real and imaginary parts of a holomorphic function are harmonic.

(8-11) Path integration. Power series and differentiation of power series. Exponential
function and logarithm function. Fractional powers - examples of multifunctions.

(12-13) Cauchy’s Theorem. (Sketch of proof only - students referred to various texts for
proof.) Fundamental Theorem of Calculus in the path integral/holomorphic situation.

(14-16) Cauchy’s Integral formulae. Taylor expansion. Liouville’s Theorem. Identity The-
orem. Morera’s Theorem

(17-18) Laurent’s expansion. Classification of isolated singularities. Calculation of principal
parts, particularly residues.

(19-21) Residue Theorem. Evaluation of integrals by the method of residues (straight
forward examples only but to include the use of Jordan’s Lemma and simple poles on
contour of integration).
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(22-23) Conformal mapping, Riemann mapping theorem (no proof): Möbius functions,
exponential functions, fractional powers; mapping regions (not Christoffel transformations
or Jowkowski’s transformation).

(24) Summary and outlook.

Reading

Main texts

H. A. Priestley, Introduction to Complex Analysis (second edition, Oxford Science Publica-
tions, 2003).

T. M. Apostol, Mathematical Analysis (Addison–Wesley, 1974)(Chapter 3 for the topology).

Reinhold Remmert, Theory of Complex Functions (Springer, 1989) (Graduate Texts in
Mathematics 122).

Mark J. Ablowitz, Athanassios S. Focas, Complex Variables, Introduction and Applica-
tions(2nd edition, Cambridge Texts in Applied Mathematics, 2003).

Further Reading

L. Ahlfors, Complex Analysis (McGraw-Hill, 1979).

Theodore Gamelin, Complex Analysis (Springer, 2000).

E. C. Titchmarsh, The Theory of Functions (2nd edition, Oxford University Press).

I. Stewart and D. Tall, Complex Analysis, (CUP, 1983).

J.P Gilman, I Krn and R.E Rogriguez: Complex Analysis, (Springer 2007) (Graduate Texts
in Mathematics 122.) This book is included for its extra material showing where the subject
can lead.
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2.2.3 Differential Equations — Prof. Mason — 24 lectures MT

Overview

The aim of this course is to introduce all students reading mathematics to the basic theory
of ordinary and partial differential equations.

The course will be example-led and will concentrate on equations that arise in practice
rather than those constructed to illustrate a mathematical theory. The emphasis will be on
solving equations and understanding the possible behaviours of solutions, and the analysis
will be developed as a means to this end.

The course will furnish undergraduates with the necessary skills to pursue any of the applied
options in the third year and will also form the foundation for a deeper and more rigorous
course in partial differential equations.

Learning Outcomes

On completion of the course, students will have acquired a sound knowledge of a range
of techniques for solving linear ordinary and partial differential equations. They will have
gained an appreciation of the importance of existence and uniqueness of solution and will
be aware that explicit analytic solutions are the exception rather than the rule.

Synopsis

(1–4) Picard’s Theorem for dy/dx = f(x, y) with proof. Extension to systems stated but
not proved. Examples with blow-up and non-uniqueness.
(Collins section 2.1. Boyce & DiPrima section 2.12. Kreyszig section 1.9.)

(5–7) Second-order ODEs: variation of parameters, Wronskian and Green’s function.
(Collins chapters 3, 4. Boyce & DiPrima sections 3.1–3.5, 3.6, 3.6.2. Hildebrand chapter 3.
Kreyszig sections 2.1, 2.7–2.10.)

(8–11) Phase planes, critical points, Poincaré-Bendixson criterion. Examples including
conservative nonlinear oscillators, Van der Pol’s equation and Lotka-Volterra equations.
Stability of periodic solutions.
(Collins chapters 3, 4. Boyce & DiPrima sections 9.1–9.4. Kreyszig sections 3.3–3.5.)

(12–14) Characteristic methods for first-order quasilinear PDEs (using parameterisation).
Examples from conservation laws. Multivalued solutions and shocks. (Charpit’s method
and artificial examples excluded.)
(Collins Chapter 5. Carrier & Pearson Chapters 6, 13. Ockendon et al. Chapter 1.)

(15–18) Classification of second-order linear PDEs. Ideas of uniqueness and well-posedness
for Laplace, Wave and Heat equations. Revision of separation of variables from Mods
and illustration of suitable boundary conditions by example. Multi-dimensional Laplacian
operator giving rise to Bessel’s and Legendre’s equations.
(Collins chapters 6, 7. Carrier & Pearson Chapters 1, 3, 4, 5, 7. Strauss Chapter 1. Kreyszig
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sections 11.7–11.11.)

(19–24) Theory of Fourier and Laplace transforms, inversion, convolution. Inversion of some
standard Fourier and Laplace transforms via contour integration. Use of Fourier transform
in solving Laplace’s equation and the Heat equation. Use of Laplace transform in solving
the Heat equation.
(Collins chapter 14. Carrier & Pearson chapters 2, 15. Kreyszig chapter 5, sections 10.8–
10.11, 11.6. Priestley chapter 9.)

Reading

The best single text is:

P. J. Collins, Differential and Integral Equations (O.U.P., 2006), Chapters 1-7, 14,15.

Alternatives

W. E. Boyce & R. C. DiPrima, Elementary Differential Equations and Boundary Value
Problems (7th edition, Wiley, 2000).

Erwin Kreyszig, Advanced Engineering Mathematics (8th Edition, Wiley, 1999).

F. B. Hildebrand, Methods of Applied Mathematics (Dover, 1992).

W. A. Strauss, Partial Differential Equations: an Introduction (Wiley, 1992).

G. F. Carrier & C E Pearson, Partial Differential Equations — Theory and Technique
(Academic, 1988).

H. A. Priestley, Introduction to Complex Analysis (Second edition, Oxford, 2003).

J. Ockendon, S. Howison, A. Lacey & A. Movchan, Applied Partial Differential Equations
(Oxford, 1999). [More advanced.]
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3 OPTIONS

3.1 Syllabus

This section contains the examination syllabi for the two papers AO1 and AO2.

3.1.1 Introduction to Fields

Fields. Characteristic of a field. Field extensions; the degree of a field extension and
the tower theorem. Algebraic elements. Constructions with ruler and compass. Symbolic
adjunction of roots of polynomials, multiple roots. Finite fields: existence, uniqueness,
primitive elements, number of irreducible polynomials over the field of size p, subfields of
finite fields.

3.1.2 Group Theory

Groups of motions of the euclidean plane. Group actions, coset spaces.

Permutation representations and Cayley’s theorem. The orbit-counting formula.

Finite subgroups SO(3). The conjugation action of a group on itself and the class equation.

3.1.3 Number Theory

The ring of integers; congruences; rings of integers modulo n; the Chinese Remainder Theo-
rem. Wilson’s Theorem; Fermat’s Little Theorem for prime modulus. Euler’s phi-function;
Euler’s generalisation of Fermat’s Little Theorem to arbitrary modulus. Primitive Roots.
Quadratic residues modulo primes. Quadratic reciprocity. Factorisation of large integers;
basic version of the RSA encryption method.

3.1.4 Integration

Measure spaces. Outer measure, null set, measurable set. The Cantor set. Lebesgue
measure on the real line. Counting measure. Probability measures. Construction of a
non-measurable set (non-examinable). Measurable function, simple function, integrable
function. Reconciliation with the integral introduced in Moderations.

A simple comparison theorem. Integrability of polynomial and exponential functions over
suitable intervals. Changes of variable. Fatou’s Lemma (proof not examinable). Monotone
Convergence Theorem (proof not examinable). Dominated Convergence Theorem. Corol-
laries and applications of the Convergence Theorems (including term-by-term integration
of series).

Theorems of Fubini and Tonelli (proofs not examinable). Differentiation under the integral
sign. Change of variables.

Brief introduction to Lp spaces. Hölder and Minkowski inequalities (proof not examinable).
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3.1.5 Topology

Metric spaces. Examples to include metrics derived from a norm on a real vector space,
particularly l1, l2, l∞ norms on Rn, the sup norm on the bounded real-valued functions on
a set, and on the bounded continuous real-valued functions on a metric space. Continuous
functions (ε, δ definition). Uniformly continuous functions; examples to include Lipschitz
functions and contractions. Open balls, open sets, accumulation points of a set. Complete-
ness (but not completion). Contraction Mapping Theorem. Completeness of the space of
bounded real-valued functions on a set, equipped with the sup norm, and the completeness
of the space of bounded continuous real-valued functions on a metric space, equipped with
the sup metric.

Axiomatic definition of an abstract topological space in terms of open sets. Continuous
functions, homeomorphisms. Closed sets. Accumulation points of sets. Closure of a set
(Ā = A together with its accumulation points). Interior of a set. Continuity if f(Ā) ⊆
f(A). Examples to include metric spaces (definition of topological equivalence of metric
spaces), discrete and indiscrete topologies, subspace topology, cofinite topology, quotient
topology. Base of a topology. Product topology on a product of two spaces and continuity
of projections. Hausdorff topology.

Connected spaces: closure of a connected space is connected, union of connected sets is
connected if there is a non-empty intersection, continuous image of a connected space is
connected. Path-connectedness implies connectedness. Connected open subset of a normed
vector space is path-connected.

Compact sets, closed subset of a compact set is compact, compact subset of a Hausdorff
space is closed. Heine-Borel Theorem in Rn. Product of two compact spaces is compact.
A continuous bijection from a compact space to a Hausdorff space is a homeomorphism.
Equivalence of sequential compactness and abstract compactness in metric spaces.

Further discussion of quotient spaces: simple classical geometric spaces such as the torus
and Klein bottle.

3.1.6 Multivariable Calculus

Definition of a derivative of a function from Rm to Rn; examples; elementary properties;
partial derivatives; the chain rule; the gradient of a function from Rm to R; Jacobian.
Continuous partial derivatives imply differentiability, Mean Value Theorems. Higher order
derivatives.

The Implicit Function Theorem (proof for special case, non-examinable), the Inverse Func-
tion Theorem (proof non-examinable).

The definition of a submanifold of Rm, its tangent space at a point. Examples, defined
parametrically and implicitly, including curves and surfaces in R3.

Lagrange multipliers.
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3.1.7 Calculus of Variations

The basic variational problem and Euler’s equation. Examples, including axi-symmetric
soap films. Extension to several dependent variables. Hamilton’s principle for free
particles and particles subject to holonomic constraints. Equivalence with Newton’s second
law. Geodesics on surfaces. Extension to several independent variables. Examples includ-
ing Laplace’s equation. Lagrange multipliers and variations subject to constraint. The
Rayleigh-Ritz method and eigenvalue problems for Sturm-Liouville equations.

3.1.8 Classical Mechanics

Angular momentum of a system of particles about a fixed point and about the centre of
mass. The description of the motion of a rigid body with one fixed point in terms of a
time-dependent rotation matrix. Definition of angular velocity. Moments of inertia, kinetic
energy, and angular momentum of a rigid body with axial symmetry. Lagrangian equations
of motion; holonomic constraints [derivation non-examinable]. Gyroscopes and the classical
integrable cases of rigid body motion. Oscillations near equilibrium; normal frequencies,
normal modes.

3.1.9 Quantum Theory

Wave-particle duality; the Schrödinger equation; stationary states; quantum states of a
particle in a box (infinite square-well potential)

Interpretation of the wave function; boundary conditions; probability density and conser-
vation of current; degeneracy and parity.

The one-dimensional harmonic oscillator; higher-dimensional oscillators and normal modes.

The rotationally symmetric and general radial states of the hydrogen atom with fixed nu-
cleus.

3.1.10 Fluid Dynamics and Waves

Incompressible flow. Convective derivative, streamlines and particle paths. Euler’s equa-
tions of motion for an inviscid fluid. Bernoulli’s Theorem. Vorticity, circulation and Kelvin’s
Theorem.

Irrotational incompressible flow; velocity potential. Two-dimensional flow, stream function
and complex potential. Line sources and vortices. Method of images, circle theorem and
Blasius’s Theorem.

Uniform flow past a circular cylinder. Circulation, lift. Use of conformal mapping to
determine flow past a flat wing. Water waves, including effects of finite depth and surface
tension. Dispersion, simple introduction to group velocity. The vorticity equation and
vortex motion.
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3.1.11 Probability

Random variables and their distribution; joint distribution, conditional distribution; func-
tions of one or more random variables. Convergence in probability, in distribution and in
mean square. Moment generating functions and applications. Characteristic functions, def-
inition only. Statements of the continuity and uniqueness theorems for moment generating
functions. Chebychev and Markov inequalities. The weak law of large numbers and cen-
tral limit theorem for independent identically distributed variables with a second moment.
Discrete-time Markov chains: definition, transition matrix, n-step transition probabilities,
communicating classes, absorption, irreducibility, calculation of hitting probabilities and
mean hitting times, recurrence and transience. Invariant distributions, mean return time,
positive recurrence, convergence to equilibrium (proof not examinable). Examples of appli-
cations in areas such as: genetics, branching processes, Markov chain Monte Carlo. Poisson
processes in one dimension: exponential spacings, Poisson counts, thinning and superposi-
tion.

3.1.12 Statistics

Order statistics, probability plots.

Estimation: observed and expected information, statement of large sample properties of
maximum likelihood estimators in the regular case, methods for calculating maximum like-
lihood estimates, large sample distribution of sample estimators using the delta method.

Hypothesis testing: simple and composite hypotheses, size, power and p-values, Neyman-
Pearson Lemma, distribution theory for testing means and variances in the normal model,
generalized likelihood ratio, statement of its large sample distribution under the null hy-
pothesis, analysis of count data.

Confidence intervals: exact intervals, approximate intervals using large sample theory, re-
lationship to hypothesis testing.

Regression: correlation, least squares and maximum likelihood estimation, use of matrices,
distribution theory for the normal model, hypothesis tests and confidence intervals for linear
regression problems, examining assumptions by plotting residuals.

3.1.13 Numerical Analysis

Lagrange interpolation, Newton-Cotes quadrature, Gaussian elimination and LU factoriza-
tion, QR factorization. Eigenvalues: Gershgorin’s theorem, symmetric QR algorithm. Best
approximation in inner product spaces, least squares, orthogonal polynomials. Piecewise
polynomials, splines, Richardson Extrapolation.
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3.2 Synopses of Lectures

This section contains the lecture synopses associated with the two papers AO1 and AO2.

3.2.1 Introduction to Fields — Dr Kremnizer — 8 lectures HT

Weeks 1 to 4 in Hilary Term.

Overview

Informally, finite fields are generalisations of systems of real numbers such as the rational
or the real numbers— systems in which the usual rules of arithmetic (including those for
division) apply. Formally, fields are commutative rings with unity in which division by
non-zero elements is always possible. It is a remarkable fact that the finite fields may
be completely classified. Furthermore, they have classical applications in number theory,
algebra, geometry, combinatorics, and coding theory, and they have newer applications in
other areas. The aim of this course is to show how their structure may be elucidated, and
to present the main theorems about them that lead to their various applications.

Learning Outcomes

Students will have a sound knowledge of field theory including the classification of finite
fields. They will have an appreciation of the applications of this theory.

Synopsis

Fields, characteristic of a field, field extensions, algebraic and transcendental elements (1
lecture). The degree of a field extension and the tower theorem (1 lecture). Constructions
with ruler and compass (2 lectures). Symbolic adjunction of roots (1 lecture). Multiple roots
(0.5 lecture). Finite fields: existence, uniqueness, primitive element, number of irreducible
polynomials over the field with p elements, subfields of finite fields (2.5 lectures)

Reading

1. Michael Artin, Algebra (2nd ed. Pearson, 2010) Chapter 13

2. P.J. Cameron, Introduction to Algebra (2nd. ed., OUP, 2008) pp. 99-103, 220-223,
268-276.

3. Joseph J. Rotman, A First Course in Abstract Algebra (Second edition, Prentice Hall,
2000), ISBN 0-13-011584-3. Chapters 1,3.

Further Reading

1. I. N. Herstein, Topics in Algebra (Wiley, 1975). ISBN 0-471-02371-X 5.1, 5.3, 7.1.
[Harder than some, but an excellent classic. Widely available in Oxford libraries; still
in print.]
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2. P. M. Cohn, Classic Algebra (Wiley, 2000), ISBN 0-471-87732-8, parts of Chapter 6.
[This is the third edition of his book on abstract algebra, in Oxford libraries.]

3.2.2 Group Theory — Dr Kremnizer — 8 lectures HT

Weeks 5 to 8 in Hilary Term.

Overview

This group theory course develops the theory begun in mods. In this course we will use
groups to analyse symmetries. Groups first appeared in the study of symmetries of roots
of polynomials and now have many applications in physics and other sciences as symmetry
groups. The main concept that will be introduced in the course is that of a group acting
on a set.

Learning Outcomes

Students will gain a deeper understanding of the notion of symmetry. They will learn to use
actions of groups and the counting formula. As an application they will see the classification
of finite subgroups of the rotation group which is equivalent to classifying platonic solids.

Synopsis

The group of motions of the euclidean plane (1 lecture). Finite groups of motions (1 lecture).

Group actions (1 lecture). Actions on cosets (1 lecture). Permutation representations and
Cayley’s theorem (1 lecture).

The orbit-counting formula (1 lecture). Finite subgroups of SO(3). Platonic solids and their
symmetries (sketch of proof) (1 lecture). The conjugation action and the class equation (1
lecture).

Reading

1. Michael Artin, Algebra (1st ed. Pearson, 1991) Chapters 5,6 P.J.

2. Cameron Introduction to Algebra (2nd. ed., OUP, 2008) pp. 124-146, 237-250.

Further Reading

3. Peter M. Neumann, G. A. Stoy, E. C. Thompson, Groups and Geometry (OUP, 1994,
reprinted 2002), ISBN 0-19-853451-5. Chapters 1-9, 15.

4. Geoff Smith, Olga Tabachnikova, Topics in Groups Theory (Springer Undergraduate
Mathematics Series, 2002) ISBN 1-85233-2. Chapter 3.

5. M. A. Armstrong, Groups and Symmetry (Springer, 1988), ISBN 0-387-96675-7,
Chapters 1-19.

20



6. Joseph J. Rotman, A First Course in Algebra (Second Edition, Prentice Hall, 2000),
Chapter 2.

3.2.3 Number Theory — Prof. Tillmann — 8 lectures TT

Overview

Number theory is one of the oldest parts of mathematics. For well over two thousand years it
has attracted professional and amateur mathematicians alike. Although notoriously ‘pure’
it has turned out to have more and more applications as new subjects and new technologies
have developed. Our aim in this course is to introduce students to some classical and
important basic ideas of the subject.

Synopsis

The ring of integers; congruences; ring of integers modulo n; the Chinese Remainder The-
orem. [2 lectures]

Wilson’s Theorem; Fermat’s Little Theorem for prime modulus; Euler’s phi-function. Eu-
ler’s generalisation of Fermat’s Little Theorem to arbitrary modulus; primitive roots. [2
lectures]

Quadratic residues modulo primes. Quadratic reciprocity. [2 lectures]

Factorisation of large integers; basic version of the RSA encryption method. [2 lectures]

Reading

Alan Baker, A Concise Introduction to the Theory of Numbers (Cambridge University Press,
1984) ISBN: 0521286549 Chapters 1,3,4.

David Burton, Elementary Number Theory (McGraw-Hill, 2001).

Dominic Welsh, Codes and Cryptography, (Oxford University Press, 1988), ISBN 0-19853-
287-3. Chapter 11.

3.2.4 Integration — Prof. Batty — 16 lectures HT

Overview

The course will exhibit Lebesgue’s theory of integration in which integrals can be assigned to
a huge range of functions on the real line, thereby greatly extending the notion of integration
presented in Mods. The theory will be developed in such a way that it can be easily extended
to a wider framework including summation of series and probability theory (although no
knowledge of probability will be required), but measures other than Lebesgue’s will only be
lightly touched.

Operations such as passing limits, infinite sums, or derivatives, through integral signs, or
reversing the order of double integrals, are often taken for granted in courses in applied

21



mathematics. Actually, they can occasionally fail. Fortunately, there are powerful conver-
gence and other theorems allowing such operations to be justified under conditions which
are widely applicable. The course will display these theorems and a wide range of their
applications.

This is a course in rigorous applications. Its principal aim is to develop understanding of
the statements of the theorems and how to apply them carefully. Knowledge of technical
proofs concerning the construction of Lebesgue measure and the integral will not be an
essential part of the course, and such proofs will usually be omitted from the lectures.

Synopsis

Motivation: Why do we need a more general theory of integration?
The notion of measure.
Key examples: Lebesgue measure, probability measure, counting measure.
Measurable functions, integrable functions (via simple functions). Reconciliation with Mods
Analysis III. Changes of variable.
Comparison Theorem.
Fatou’s Lemma.
Monotone Convergence Theorem.
Dominated Convergence Theorem.
Corollaries and applications of the Convergence Theorems (term-by-term integration of
series etc). Differentiation under the integral sign.
Double integrals, theorems of Fubini and Tonelli, changes of variable.
A very brief introduction to Lp spaces. Hölder and Minkowski inequalities.

Reading

A. Etheridge, Integration, Mathematical Institute Lecture Notes

M. Capinski & E. Kopp, Measure, Integral and Probability (Second Edition, Springer, 2004).

F. Jones, Lebesgue Integration on Euclidean Space (Second Edition, Jones & Bartlett, 2000).

Further Reading

R. G. Bartle, The Elements of Integration (Wiley, 1966).

D. S. Kurtz & C. W. Swartz, Theories of Integration (Series in Real Analysis Vol.9, World
Scientific, 2004).

H. A. Priestley, Introduction to Integration (OUP 1997).

[Useful for worked examples, although adopts a different approach to construction of the
integral].

H. L. Royden, Real Analysis (Third Edition, Macmillan, 1988).

E. M. Stein & R. Shakarchi, Real Analysis: Measure Theory, Integration and Hilbert Spaces
(Princeton Lectures in Analysis III, Princeton University Press,2005).
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3.2.5 Topology — Prof. Lackenby — 16 lectures HT

Overview

The ideas, concepts and constructions in general topology arose from extending the notions
of continuity and convergence on the real line to more general spaces. The first class of
general spaces to be studied in this way were metric spaces, a class of spaces which includes
many of the spaces used in analysis and geometry. Metric spaces have a distance function
which allows the use of geometric intuition and gives them a concrete feel. They allow
us to introduce much of the vocabulary used later and to understand the formulation of
continuity which motivates the axioms in the definition of an abstract topological space.

The axiomatic formulation of a topology leads to topological proofs of simplicity and clarity
often improving on those given for metric spaces using the metric and sequences. There
are many examples of topological spaces which do not admit metrics and it is an indication
of the naturality of the axioms that the theory has found so many applications in other
branches of mathematics and spheres in which mathematical language is used.

Learning Outcomes

The outcome of the course is that a student should understand and appreciate the cen-
tral results of general topology and metric spaces, sufficient for the main applications in
geometry, number theory, analysis and mathematical physics, for example.

Synopsis

Metric spaces. Examples to include metrics derived from a norm on a real vector space,
particularly l1, l2, l∞ norms on Rn, the sup norm on the bounded real-valued functions on
a set, and on the bounded continuous real-valued functions on a metric space. Continuous
functions (ε, δ definition). Uniformly continuous functions; examples to include Lipschitz
functions and contractions. Open balls, open sets, accumulation points of a set. Complete-
ness (but not completion). Contraction Mapping Theorem. Completeness of the space of
bounded real-valued functions on a set, equipped with the sup norm, and the completeness
of the space of bounded continuous real-valued functions on a metric space, equipped with
the sup metric. [3 lectures].

Axiomatic definition of an abstract topological space in terms of open sets. Continuous
functions, homeomorphisms. Closed sets. Accumulation points of sets. Closure of a set
(Ā = A together with its accumulation points). Interior of a set. Continuity if f(Ā) ⊆
f(A). Examples to include metric spaces (definition of topological equivalence of metric
spaces), discrete and indiscrete topologies, subspace topology, cofinite topology, quotient
topology. Base of a topology. Product topology on a product of two spaces and continuity
of projections. Hausdorff topology. [5 lectures]

Connected spaces: closure of a connected space is connected, union of connected sets is
connected if there is a non-empty intersection, continuous image of a connected space is
connected. Path-connectedness implies connectedness. Connected open subset of a normed
vector space is path-connected. [2 lectures]
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Compact sets, closed subset of a compact set is compact, compact subset of a Hausdorff
space is closed. Heine-Borel Theorem in Rn. Product of two compact spaces is compact.
A continuous bijection from a compact space to a Hausdorff space is a homeomorphism.
Equivalence of sequential compactness and abstract compactness in metric spaces. [4 lec-
tures]

Further discussion of quotient spaces explaining some simple classical geometric spaces such
as the torus and Klein bottle. [2 lectures]

Reading

W. A. Sutherland, Introduction to Metric and Topological Spaces (Oxford University Press,
1975). Chapters 2-6, 8, 9.1-9.4.
(New edition to appear shortly.)

J. R. Munkres, Topology, A First Course (Prentice Hall, 1974), chapters 2, 3, 7.

Further Reading

B. Mendelson, Introduction to Topology (Allyn and Bacon, 1975). (cheap paperback edition
available).

G. Buskes, A. Van Rooij, Topological Spaces (Springer, 1997).

N. Bourbaki, General Topology (Springer, 1998).

J. Dugundji, Topology (Allyn and Bacon, 1966), chapters 3, 4, 5, 6, 7, 9, 11. [Although out
of print, available in some libraries.]
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3.2.6 Multivariable Calculus — Prof. Drutu — 8 lectures TT

Overview

In this course, the notion of the total derivative for a function f : Rm → Rn is introduced.
Roughly speaking, this is an approximation of the function near each point in Rn by a linear
transformation. This is a key concept which pervades much of mathematics, both pure and
applied. It allows us to transfer results from linear theory locally to nonlinear functions.
For example, the Inverse Function Theorem tells us that if the derivative is an invertible
linear mapping at a point then the function is invertible in a neighbourhood of this point.
Another example is the tangent space at a point of a surface in R3, which is the plane that
locally approximates the surface best.

Synopsis

Definition of a derivative of a function from Rm to Rn; examples; elementary properties;
partial derivatives; the chain rule; the gradient of a function from Rm to R; Jacobian.
Continuous partial derivatives imply differentiability, Mean Value Theorems. Higher order
derivatives. [3 lectures]

The Inverse Function Theorem and the Implicit Function Theorem (proofs non-examinable).
[2 lectures]

The definition of a submanifold of Rm. Its tangent and normal space at a point, examples,
including two-dimensional surfaces in R3. [2 lectures]

Lagrange multipliers. [1 lecture]

Reading

Theodore Shifrin, Multivariable Mathematics (Wiley, 2005). Chapters 3-6.

T. M. Apostol, Mathematical Analysis: Modern Approach to Advanced Calculus (World
Students) (Addison Wesley, 1975). Chapters 12 and 13.

S. Dineen, Multivariate Calculus and Geometry (Springer, 2001). Chapters 1-4.

J. J. Duistermaat and J A C Kolk, Multidimensional Real Analysis I, Differentiation (Cam-
bridge University Press, 2004).

Further Reading

William R. Wade, An Introduction to Analysis (Second Edition, Prentice Hall, 2000). Chap-
ter 11.

M. P. Do Carmo, Differential Geometry of Curves and Surfaces (Prentice Hall, 1976).

Stephen G. Krantz and Harold R. Parks, The Implicit Function Theorem: History, Theory
and Applications (Birkhaeuser, 2002).
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3.2.7 Calculus of Variations — Prof. Tod — 8 lectures HT

Weeks 1 to 4 in Hilary Term

Overview

The calculus of variations concerns problems in which one wishes to find the minima or
extrema of some quantity over a system that has functional degrees of freedom. Many im-
portant problems arise in this way across pure and applied mathematics and physics. They
range from the problem in geometry of finding the shape of a soap bubble, a surface that
minimizes its surface area, to finding the configuration of a piece of elastic that minimises
its energy. Perhaps most importantly, the principle of least action is now the standard way
to formulate the laws of mechanics and basic physics.

In this course it is shown that such variational problems give rise to a system of differential
equations, the Euler-Lagrange equations. Furthermore, the minimizing principle that un-
derlies these equations leads to direct methods for analysing the solutions to these equations.
These methods have far reaching applications and will help develop students technique.

Learning Outcomes

Students will be able to formulate variational problems and analyse them to deduce key
properties of system behaviour.

Synopsis

The basic variational problem and Euler’s equation. Examples, including axi-symmetric
soap films. Extension to several dependent variables. Hamilton’s principle for free par-
ticles and particles subject to holonomic constraints. Equivalence with Newton’s second
law. Geodesics on surfaces. Extension to several independent variables. Examples includ-
ing Laplace’s equation. Lagrange multipliers and variations subject to constraint. The
Rayleigh-Ritz method and eigenvalue problems for Sturm-Liouville equations.

Reading

Arfken Weber, Mathematical Methods for Physicists (5th edition, Academic Press, 2005).
Chapter 17.

Further Reading

N. M. J. Woodhouse, Introduction to Analytical Dynamics (1987). Chapter 2 (in particular
2.6). (This is out of print, but still available in most College libraries.)

M. Lunn, A First Course in Mechanics (OUP, 1991). Chapters 8.1, 8.2.

P. J. Collins, Differential and Integral Equations (O.U.P., 2006). Chapters 11, 12.
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3.2.8 Classical Mechanics — Prof. Tod — 8 lectures HT

Weeks 5 to 8 in Hilary Term

Overview

This course extends the study of the dynamics of point particles in the first year to the
study of extended rigid bodies moving in three dimensions.

The course provides powerful applications of the Lagrangian theory to a range of systems,
in particular to the study of small oscillations near equilibrium, and it introduces some key
classical ideas that also play an important role in modern physical theory, notably angular
momentum and its connection with rotations.

Synopsis

Lagrangian equations of motion with and without holonomic constraints. Oscillations near
equilibrium; normal frequencies, normal modes.

Angular momentum of a system of particles about a fixed point and about the centre of
mass. The description of the motion of a rigid body with one fixed point in terms of a
time-dependent rotation matrix. Definition of angular velocity. Moments of inertia, kinetic
energy, and angular momentum of a rigid body with axial symmetry. Gyroscopes and the
classical integrable cases of rigid body motion.

Reading

N. M. J. Woodhouse, Introduction to Analytical Mechanics (1987). Chapters 3 and 6. (This
is out of print, but still available in most College libraries.)

Further Reading

M. Lunn, A First Course in Mechanics (OUP, 1991). Chapters 6, 7.2, 7.3, 8.3 and 8.4.
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3.2.9 Quantum Theory — Dr Sparks — 8 lectures HT

Lectures are one hour each week in HT

Overview

Quantum theory was born out of the attempt to understand the interactions between radia-
tion, described by Maxwell’s theory of electromagnetism, and matter, described by Newton’s
mechanics.

Although there remain deep mathematical and physical questions at the frontiers of the
subject, the resulting theory encompasses not just the mechanical but also the electrical
and chemical properties of matter. Many of the key components of modern technology such
as transistors and lasers were developed using quantum theory.

In quantum theory particles also have some wave-like properties. This introductory course
explores some of the consequences of this culminating in an elementary treatment of the
hydrogen atom.

Synopsis

Wave-particle duality; the Schrödinger equation; stationary states; quantum states of a
particle in a box (infinite square-well potential)

Interpretation of the wave function; boundary conditions; probability density and conser-
vation of current; degeneracy and parity.

The one-dimensional harmonic oscillator; higher-dimensional oscillators and normal modes.

The rotationally symmetric and general radial states of the hydrogen atom with fixed nu-
cleus.

Reading

B. H. Bransden and C.J Joachain Quantum Mechanics (Second edition, Pearson Education
Limited, 2000). Chapters 1-4.

P.C. W. Davies and D.S. Betts, Quantum Mechanics (Physics and its Applications) (2nd
edition, Taylor & Francis Ltd, 1994). Chapters 1,2,4.

R.P Feynman, R.B Leighton, M. Sands The Feynman Lectures on Physics, Volume 3 (Addison-
Wesley, 1998). Chapters 1,2 (for physical background).

K.C Hannabuss, An Introduction to Quantum Theory (Oxford University Press 1997).
Chapters 1-4.

A.I.M. Rae, Quantum Mechanics (4th Edition, Taylor & Francis Ltd, 2002). Chapters 1-3.
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3.2.10 Fluid Dynamics and Waves — Dr Howell — 16 lectures HT

Overview

This course introduces students to the mathematical theory of inviscid fluids. The theory
provides insight into physical phenomena such as flight, vortex motion, and water waves.
The course also explains important concepts such as conservation laws and dispersive waves
and, thus, serves as an introduction to the mathematical modelling of continuous media.

Synopsis

Incompressible flow. Convective derivative, streamlines and particle paths. Euler’s equa-
tions of motion for an inviscid fluid. Bernoulli’s theorem. Vorticity, circulation and Kelvin’s
Theorem.

Irrotational incompressible flow; velocity potential. Two-dimensional flow, stream function
and complex potential. Line sources and vortices. Method of images, circle theorem and
Blasius’s Theorem.

Uniform flow past a circular cylinder. Circulation, lift. Use of conformal mapping to
determine flow past a flat wing. Water waves, including effects of finite depth and surface
tension. Dispersion, simple introduction to group velocity. The vorticity equation and
vortex motion.

Reading

D. J. Acheson, Elementary Fluid Dynamics (OUP, 1997). Chapters 1, 3.1-3.5, 4.1-4.8,
4.10-4.12, 5.1, 5.2, 5.6, 5.7.

29



3.2.11 Probability — Dr Steinsaltz — 16 lectures HT

Overview

The first half of the course takes further the probability theory that was developed in the
first year. The aim is to build up a range of techniques that will be useful in dealing with
mathematical models involving uncertainty. The second half of the course is concerned
with Markov chains in discrete time and Poisson processes in one dimension, both with
developing the relevant theory and giving examples of applications.

Synopsis

Continuous random variables. Jointly continuous random variables, independence, con-
ditioning, bivariate distributions, functions of one or more random variables. Moment
generating functions and applications. Characteristic functions, definition only. Examples
to include some of those which may have later applications in Statistics.

Basic ideas of what it means for a sequence of random variables to converge in probability,
in distribution and in mean square. Chebychev and Markov inequalities. The weak law of
large numbers and central limit theorem for independent identically distributed variables
with a second moment. Statements of the continuity and uniqueness theorems for moment
generating functions.

Discrete-time Markov chains: definition, transition matrix, n-step transition probabilities,
communicating classes, absorption, irreducibility, calculation of hitting probabilities and
mean hitting times, recurrence and transience. Invariant distributions, mean return time,
positive recurrence, convergence to equilibrium (proof not examinable). Examples of appli-
cations in areas such as: genetics, branching processes, Markov chain Monte Carlo. Poisson
processes in one dimension: exponential spacings, Poisson counts, thinning and superposi-
tion.

Reading

G. R. Grimmett and D. R. Stirzaker, Probability and Random Processes (3rd edition, OUP,
2001). Chapters 4, 6.1-6.5, 6.8.

R. Grimmett and D. R. Stirzaker, One Thousand Exercises in Probability (OUP, 2001).

G. R. Grimmett and D J A Welsh, Probability: An Introduction (OUP, 1986). Chapters 6,
7.4, 8, 11.1-11.3.

J. R. Norris, Markov Chains (CUP, 1997). Chapter 1.

D. R. Stirzaker, Elementary Probability (Second edition, CUP, 2003). Chapters 7-9 exclud-
ing 9.9.
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3.2.12 Statistics — Dr Laws — 16 lectures HT

Overview

Building on the first year course, this course develops statistics for mathematicians, em-
phasising both its underlying mathematical structure and its application to the logical
interpretation of scientific data. Advances in theoretical statistics are generally driven by
the need to analyse new and interesting data which come from all walks of life.

Synopsis

Order statistics, probability plots.

Estimation: observed and expected information, statement of large sample properties of
maximum likelihood estimators in the regular case, methods for calculating maximum like-
lihood estimates, large sample distribution of sample estimators using the delta method.

Hypothesis testing: simple and composite hypotheses, size, power and p-values, Neyman-
Pearson Lemma, distribution theory for testing means and variances in the normal model,
generalized likelihood ratio, statement of its large sample distribution under the null hy-
pothesis, analysis of count data.

Confidence intervals: exact intervals, approximate intervals using large sample theory, re-
lationship to hypothesis testing.

Regression: correlation, least squares and maximum likelihood estimation, use of matrices,
distribution theory for the normal model, hypothesis tests and confidence intervals for linear
regression problems, examining assumptions by plotting residuals.

Examples: statistical techniques will be illustrated with relevant data sets in the lectures.

Reading

F. Daly, D. J. Hand, M. C. Jones, A. D. Lunn and K. J. McConway, Elements of Statistics
(Addison Wesley, 1995). Chapters 7-10 (and Chapters 1-6 for background).

J. A. Rice, Mathematical Statistics and Data Analysis (2nd edition, Wadsworth, 1995).
Sections 8.5, 8.6, 9.1-9.7, 9.9, 10.3-10.6, 11.2, 11.3, 12.2.1, 13.3, 13.4.

Further Reading

G. Casella and R. L. Berger, Statistical Inference (2nd edition, Wadsworth, 2001).
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3.2.13 Numerical Analysis — Prof. Wendland — 16 lectures HT

Overview

Scientific computing pervades our lives: modern buildings and structures are designed using
it, medical images are reconstructed for doctors using it, the cars and planes we travel on
are designed with it, the pricing of “Instruments” in the financial market is done using it,
tomorrow’s weather is predicted with it. The derivation and study of the core, underpinning
algorithm for this vast range of applications defines the subject of Numerical Analysis. This
course gives an introduction to that subject.

Through studying the material of this course students should gain an understanding of
numerical methods, their derivation, analysis and applicability. They should be able to
solve certain mathematically posed problems using numerical algorithms. This course is
designed to introduce numerical methods - i.e. techniques which lead to the (approximate)
solution of mathematical problems which are usually implemented on computers. The
course covers derivation of useful methods and analysis of their accuracy and applicability.

The course begins with a study of methods and errors associated with computation of func-
tions which are described by data values (interpolation or data fitting). Following this we
turn to numerical methods of linear algebra, which form the basis of a large part of compu-
tational mathematics, science, and engineering. Key ideas here include algorithms for linear
equations, least squares, and eigenvalues built on LU and QR matrix factorizations. The
course will also include the simple and computationally convenient approximation of curves:
this includes the use of splines to provide a smooth representation of complicated curves,
such as arise in computer aided design. Use of such representations leads to approximate
methods of integration. Techniques for improving accuracy through extrapolation will also
be described. The course requires elementary knowledge of functions and calculus and of
linear algebra.

Although there are no assessed practicals for this course, the classwork will involve a mix
of written work and Matlab programming. No previous knowledge of Matlab is required.
Specifically, like Numerical Solution of Differential Equations, Numerical Analysis has 16
lectures, no practicals, and 7 classes per term. There will be some simple use of Matlab
which will be demonstrated both in lectures and in problem classes.

Learning Outcomes

At the end of the course the student will know how to:

• Find the solution of linear systems of equations.

• Compute eigenvalues and eigenvectors of matrices.

• Approximate functions of one variable by polynomials and piecewise polynomials
(splines).

• Compute good approximations to one-dimensional integrals.

• Increase the accuracy of numerical approximations by extrapolation.

• Use Matlab to achieve these goals.
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Synopsis

Lagrange interpolation [1 lecture],

Newton-Cotes quadrature [2 lectures],

Gaussian elimination and LU factorization [2 lectures],

QR factorization [1 lecture],

Eigenvalues: Gershgorin’s Theorem, symmetric QR algorithm [3 lectures],

Best approximation in inner product spaces, least squares, orthogonal polynomials [4 lec-
tures],

Piecewise polynomials, splines [2 lectures],

Richardson Extrapolation. [1 lecture].

Reading

You can find the material for this course in many introductory books on Numerical Analysis
such as

A. Quarteroni, R Sacco and F Saleri, Numerical Mathematics (Springer, 2000).

K. E. Atkinson, An Introduction to Numerical Analysis (2nd Edition, Wiley, 1989).

S. D. Conte and C. de Boor, Elementary Numerical Analysis (3rd Edition, Graw-Hill,
1980).

G. M. Phillips and P. J. Taylor, Theory and Applications of Numerical Analysis (2nd
Edition, Academic Press, 1996).

W. Gautschi, Numerical Analysis: An Introduction (Birkhauser, 1977).

H. R. Schwarz, Numerical Analysis: A Comprehensive Introduction (Wiley, 1989).

But the main recommended book for this course is:

E. Suli and D. F. Mayers, An Introduction to Numerical Analysis (CUP, 2003). Of which
the relevant chapters are: 6, 7, 2, 5, 9, 11.
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