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1 Foreword

Notice of misprints or errors of any kind, and suggestions for improvements in this booklet
should be addressed to the Academic Administrator in the Mathematical Institute.

1.1 Honour School of Mathematics

[See the current edition of the Examination Regulations for the full regulations governing
these examinations.]

For Part A, each candidate shall be required to offer 8 written papers. These papers must
include:

A1 – Algebra 1 and Differential Equations 1 (3 hours)

A2 – Metric Spaces and Complex Analysis (3 hours)

ASO – Short Options (1.5 hours)

and five papers from the Long Options (each 1.5 hours long)

A3 Algebra 2

A4 Integration

A5 Topology

A6 Differential Equations 2

A7 Numerical Analysis

A8 Probability

A9 Statistics

A10 Waves and Fluids

A11 Quantum Theory

Paper ASO will examine the eight Short Options (Number Theory, Algebra 3, Projective
Geometry, Introduction to Manifolds, Integral Transforms, Calculus of Variations, Graph
Theory and Special Relativity). Students are recommended to take three of these Short
Options.

Part A shall be taken on one occasion only (there will be no resits). At the end of the Part A
examinations, a candidate will be awarded eight ‘University Standardised Marks’ (USMs).
The USMs from Papers A1 and A2 will have twice the weight of the USMs awarded for
each Long Option and for Paper ASO. A weighted average of these USMs will be carried
forward for the classification awarded at the end of the third year, with this average from
the second year papers counting for 40%.
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All students who complete Parts A and B will be classified. Those who have achieved
honours and who wish to graduate at this point may supplicate for a BA.

Students wishing to take the four-year course should register to do so at the beginning
of their third year, and will be permitted to do so on the basis of an upper second class
performance, or better, in the third year classification. They will take Part C in their fourth
year, be awarded a separate classification and, if successful, may supplicate for an MMath.

Examination Conventions can be found at:http://www.maths.ox.ac.uk/notices/undergrad

Syllabus and Synopses

The examination syllabus, as referred to in the Examination Regulations, and synopses have
been approved by the Mathematics Teaching Committee for examination in 2015.

The synopses in this booklet give additional detail to the syllabus (for example, showing
how the material is split by lectures) and are also accompanied by lists of recommended
reading.

The Part A examination syllabus is the mathematical material of the synopses, as sepa-
rately detailed by paper below, for examination in 2015.

Masters in Theoretical and Mathematical Physics

There is a Mathematical Physics stream as an alternative to Part C (the fourth year).
Students who move on to this stream and successfully complete the year will be awarded
an MMathPhys.

Mathematics students interested in transferring to the MMathPhys will need to make an
application during their third year. This option will not be available to students on the
joint degrees.

Interested students should bring this up with their tutors. Full details relating to this
masters will be in the MMathPhys handbook, including details of those second and third
year options which are suggested background or recommendations for the masters and a
description of the application process and deadlines. Further details available online:
http://www-thphys.physics.ox.ac.uk/MMathPhys/MMathPhysweb/

1.2 Honour School of Mathematics & Philosophy

See the current edition of the Examination Regulations for the full regulations governing
these examinations. For the Schedule of Mathematics Papers for Part A, see the Supplement
to the Undergraduate Handbook for the Honour School of Mathematics & Philosophy:

http://www.maths.ox.ac.uk/current-students/undergraduates/handbooks-synopses/mathsphil.

1.3 Honour School of Mathematics & Statistics

See the current edition of the Examination Regulations for the full regulations governing
these examinations, and the details published by the Statistics Department:
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http://www.stats.ox.ac.uk/current students/bammath/course handbooks.

1.4 Honour Schools of Computer Science and Mathematics & Computer
Science

See the current edition of the Examination Regulations for the full regulations governing
these examinations, and the details published in a handbook by the Department of Com-
puter Science:

http://www.cs.ox.ac.uk/teaching/handbooks.html.
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2 CORE MATERIAL

2.1 Syllabus

The examination syllabi of the two core papers A1 and A2 shall be the mathematical content
of the synopses for the courses

• Algebra 1

• Differential Equations 1

• Metric Spaces and Complex Analysis

as detailed below.

2.2 Synopses of Lectures

This section contains the lecture synopses associated with the two core papers A1 and A2.

2.2.1 A1: Algebra 1: Linear Algebra — Prof. Tillmann — 16 lectures MT

Overview

The core of linear algebra comprises the theory of linear equations in many variables, the
theory of matrices and determinants, and the theory of vector spaces and linear maps. All
these topics were introduced in the Prelims course. Here they are developed further to
provide the tools for applications in geometry, modern mechanics and theoretical physics,
probability and statistics, functional analysis and, of course, algebra and number theory.
Our aim is to provide a thorough treatment of some classical theory that describes the
behaviour of linear maps on a finite-dimensional vector space to itself, both in the purely
algebraic setting and in the situation where the vector space carries a metric derived from
an inner product.

Learning Outcomes

Students will deepen their understanding of Linear Algebra. They will be able to define and
obtain the minimal and characteristic polynomials of a linear map on a finite-dimensional
vector space, and will understand and be able to prove the relationship between them; they
will be able to prove and apply the Primary Decomposition Theorem, and the criterion for
diagonalisability. They will have a good knowledge of inner product spaces, and be able
to apply the Bessel and Cauchy–Schwarz inequalities; will be able to define and use the
adjoint of a linear map on a finite-dimensional inner product space, and be able to prove
and exploit the diagonalisability of a self-adjoint map.
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Synopsis

Definition of an abstract vector space over an arbitrary field. Examples. Linear maps. [1]

Definition of a ring. Examples to include Z, F [x], F [A] (where A is a matrix or linear
map), End(V ). Division algorithm and Bezout’s Lemma in F [x]. Ring homomorphisms
and isomorphisms. Examples. [2]

Characteristic polynomials and minimal polynomials. Coincidence of roots. [1]

Quotient vector spaces. The first isomorphism theorem for vector spaces and rank-nullity.
Induced linear maps. Applications: Triangular form for matrices over C. Cayley-Hamilton
Theorem. [2]

Primary Decomposition Theorem. Diagonalizability and Triangularizability in terms of
minimal polynomials. Proof of existence of Jordan canonical form over C (using primary
decomposition and inductive proof of form for nilpotent linear maps). [3]

Dual spaces of finite-dimensional vector spaces. Dual bases. Dual of a linear map and
description of matrix with respect to dual basis. Natural isomorphism between a finite-
dimensional vector space and its second dual. Annihilators of subspaces, dimension formula.
Isomorphism between U∗ and V ∗/U◦. [3]

Recap on real inner product spaces. Definition of non-degenerate symmetric bilinear forms
and description as isomorphism between V and V ∗. Hermitian forms on complex vector
spaces. Review of Gram-Schmidt. Orthogonal Complements. [1]

Adjoints for linear maps of inner product spaces. Uniqueness. Concrete construction via
matrices [1]

Definition of orthogonal/unitary maps. Definition of the groups On, SOn, Un, SUn. Diago-
nalizability of self-adjoint and unitary maps. [2]

Reading

Richard Kaye and Robert Wilson, Linear Algebra (OUP, 1998) ISBN 0-19-850237-0. Chap-
ters 2–13. [Chapters 6, 7 are not entirely relevant to our syllabus, but are interesting.]

Further Reading

1. Paul R. Halmos, Finite-dimensional Vector Spaces, (Springer Verlag, Reprint 1993 of
the 1956 second edition), ISBN 3-540-90093-4. §§1–15, 18, 32–51, 54–56, 59–67, 73,
74, 79. [Now over 50 years old, this idiosyncratic book is somewhat dated but it is a
great classic, and well worth reading.]

2. Seymour Lipschutz and Marc Lipson, Schaum’s Outline of Linear Algebra (3rd edition,
McGraw Hill, 2000), ISBN 0-07-136200-2. [Many worked examples.]

3. C. W. Curtis, Linear Algebra—an Introductory Approach, (4th edition, Springer,
reprinted 1994).

4. D. T. Finkbeiner, Elements of Linear Algebra (Freeman, 1972). [Out of print, but
available in many libraries.]
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2.2.2 A1: Differential Equations 1 — Dr. Dyson — 16 lectures MT

Overview

The aim of this course is to introduce students reading mathematics to some of the basic
theory of ordinary and partial differential equations.

Much of the study of differential equations in the first year consisted of finding explicit
solutions of particular ODEs or PDEs. However, for many differential equations which
arise in practice one is unable to give explicit solutions and, for the most part, this course
considers what information one can discover about solutions without actually finding the
solution. Does a solution exist? Is it unique? Does it depend continuously on the initial
data? How does it behave asymptotically? What is appropriate data? In this course some
techniques will be developed for answering such questions.

The course will furnish undergraduates with the necessary skills to pursue any of the applied
options in the third year and will also form the foundation for deeper and more rigorous
courses in differential equations, such as the Part B course Dynamical Systems and En-
ergy Minimization and the Part C courses Functional Analytic Methods for PDEs, and
Hyperbolic Equations.

Learning Outcomes

Students will have learnt a range of different techniques and results used in the study of
ODEs and PDEs, such as: Picards theorem proved both by successive approximation and
the contraction mapping theorem; Gronwalls inequality; phase plane analysis; method of
characteristics for first order semi-linear PDEs; classification of second order semi-linear
PDEs and their reduction to normal form using characteristic variables; well posedness; the
maximum principle and some of its consequences. They will have gained an appreciation
of the importance of existence and uniqueness of solution and will be aware that explicit
analytic solutions are the exception rather than the rule.

Synopsis

Picard’s Existence Theorem: Picard’s Theorem for first-order scalar ODEs with proof.
Gronwalls inequality leading to uniqueness and continuous dependence on the initial data.
Examples of blow-up and nonuniqueness, discussion of continuation and global existence.
Proof of Picard’s Theorem via Contraction Mapping Principle (CMP to be covered in Metric
Spaces course) and relationship between the two proofs; extension to systems. Application
to scalar second order ODEs, with particular reference to linear equations. (4/5 lectures)

Phase plane analysis: Phase planes, critical points, definition of stability, classification of
critical points and linearisation, Bendixson-Dulac criterion. (4/5 lectures)

PDEs in two independent variables: First order semi-linear PDEs (using parameterisation).
Classification of second order, semilinear PDEs; Normal form; Ideas of uniqueness and well-
posedness. Illustration of suitable boundary conditions by example. Poisson’s Equation and
the Heat Equation: Maximum Principle leading to uniqueness and continuous dependence
on the initial data. (7 lectures)
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Reading

The best single text is:

P. J. Collins, Differential and Integral Equations (O.U.P., 2006), Chapters 1-7, 14,15.

Further Reading

W. E. Boyce & R. C. DiPrima, Elementary Differential Equations and Boundary Value
Problems (7th edition, Wiley, 2000).

Erwin Kreyszig, Advanced Engineering Mathematics (8th Edition, Wiley, 1999).

F. B. Hildebrand, Methods of Applied Mathematics (Dover, 1992).

W. A. Strauss, Partial Differential Equations: an Introduction (Wiley, 1992).

G. F. Carrier & C E Pearson, Partial Differential Equations — Theory and Technique
(Academic, 1988).

J. Ockendon, S. Howison, A. Lacey & A. Movchan, Applied Partial Differential Equations
(Oxford, 1999). [More advanced.]

2.2.3 A2: Metric Spaces and Complex Analysis — Dr. Earl and Dr. Neumann
— 32 lectures MT

Overview

The theory of functions of a complex variable is a rewarding branch of mathematics to study
at the undergraduate level with a good balance between general theory and examples. It
occupies a central position in mathematics with links to analysis, algebra, number theory,
potential theory, geometry, topology, and generates a number of powerful techniques (for
example, evaluation of integrals) with applications in many aspects of both pure and applied
mathematics, and other disciplines, particularly the physical sciences.

In these lectures we begin by introducing students to the language of topology before using
it in the exposition of the theory of (holomorphic) functions of a complex variable. The
central aim of the lectures is to present Cauchy’s Theorem and its consequences, particularly
series expansions of holomorphic functions, the calculus of residues and its applications.

The course concludes with an account of the conformal properties of holomorphic functions
and applications to mapping regions.

Learning Outcomes

Students will have been introduced to point-set topology and will know the central impor-
tance of complex variables in analysis. They will have grasped a deeper understanding of
differentiation and integration in this setting and will know the tools and results of com-
plex analysis including Cauchy’s Theorem, Cauchy’s integral formula, Liouville’s Theorem,
Laurent’s expansion and the theory of residues.

9



Synopsis

Metric Spaces (10 lectures)

Basic definitions: metric spaces, isometries, continuous functions (ε − δ definition), home-
omorphisms, open sets, closed sets. Examples of metric spaces, including metrics derived
from a norm on a real vector space, particularly l1, l2, l∞ norms on Rn, the sup norm on
the bounded real-valued functions on a set, and on the bounded continuous real-valued
functions on a metric space. The characterisation of continuity in terms of the pre-image
of open sets or closed sets. The limit of a sequence of points in a metric space. A subset
of a metric space inherits a metric. Discussion of open and closed sets in subspaces. The
closure of a subset of a metric space. [3]

Completeness (but not completion). Completeness of the space of bounded real-valued
functions on a set, equipped with the norm, and the completeness of the space of bounded
continuous real-valued functions on a metric space, equipped with the metric. Lipschitz
maps and contractions. Contraction Mapping Theorem. [2.5]

Connected metric spaces, path-connectedness. Closure of a connected space is connected,
union of connected sets is connected if there is a non-empty intersection, continuous image
of a connected space is connected. Path-connectedness implies connectedness. Connected
open subset of a normed vector space is path-connected. [2]

Compactness. Heine-Borel theorem. The image of a compact set under a continuous map
between metric spaces is compact. The equivalence of continuity and uniform continuity
for functions on a compact metric space. Compact metric spaces are sequentially compact.
Statement (but no proof) that sequentially compact metric spaces are compact. Compact
metric spaces are complete. [2.5]

Complex Analysis (22 lectures)

Basic geometry and topology of the complex plane, including the equations of lines and
circles. [1]

Complex differentiation. Holomorphic functions. Cauchy-Riemann equations (including
z, z̄ version). Real and imaginary parts of a holomorphic function are harmonic. [2]

Recap on power series and differentiation of power series. Exponential function and loga-
rithm function. Fractional powers examples of multifunctions. The use of cuts as method
of defining a branch of a multifunction. [3]

Path integration. Cauchy’s Theorem. (Sketch of proof only students referred to vari-
ous texts for proof.) Fundamental Theorem of Calculus in the path integral/holomorphic
situation. [2]

Cauchy’s Integral formulae. Taylor expansion. Liouville’s Theorem. Identity Theorem.
Morera’s Theorem. [4]

Laurent’s expansion. Classification of isolated singularities. Calculation of principal parts,
particularly residues. [2]

Residue Theorem. Evaluation of integrals by the method of residues (straightforward ex-
amples only but to include the use of Jordan’s Lemma and simple poles on contour of
integration). [3]
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Extended complex plane, Riemann sphere, stereographic projection. Möbius transforma-
tions acting on the extended complex plane. Möbius transformations take circlines to cir-
clines. [2]

Conformal mappings. Riemann mapping theorem (no proof): Möbius transformations,
exponential functions, fractional powers; mapping regions (not Christoffel transformations
or Joukowski’s transformation). [3]

Reading

1. W. A. Sutherland, Introduction to Metric and Topological Spaces (Second Edition,
OUP, 2009).

2. H. A. Priestley, Introduction to Complex Analysis (second edition, OUP, 2003).

Further Reading

1. L. Ahlfors, Complex Analysis (McGraw-Hill, 1979).

2. Reinhold Remmert, Theory of Complex Functions (Springer, 1989) (Graduate Texts
in Mathematics 122).
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3 OPTIONS

3.1 Syllabus

The examination syllabi of the options paper, A3-A11, shall be the mathematical content
of the synopses for the courses

• Algebra 2

• Integration

• Topology

• Differential Equations 2

• Numerical Analysis

• Probability

• Statistics

• Waves and Fluids

• Quantum Theory

as detailed below.

3.2 Synopses of Lectures

This section contains the lecture synopses associated with the options papers A3-A11.

3.2.1 A3: Algebra 2: Rings and Modules — Prof. McGerty — 16 lectures HT

Overview

The first abstract algebraic object which are normally studied are groups, which arise natu-
rally from the study of symmetries. The focus of this course is on rings, which generalise the
kind of algebraic structure possessed by the integers: a ring has two operations, addition
and multiplication, which interact in the usual way. The course begins by studying the
fundamental concepts of rings: what are maps between them, when are two rings isomor-
phic etc. much as was done for groups. As an application, we get a general procedure for
building fields, generalising the way one constructs the complex numbers from the reals. We
then begin to study the question of factorization in rings, and find a class of rings, known as
Principal Ideal Domains, where any element can be written uniquely as a product of prime
elements generalising the case of the integers. Finally, we study modules, which roughly
means we study linear algebra over certain rings rather than fields. This turns out to have
useful applications to ordinary linear algebra and to abelian groups.
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Learning Outcomes

Students should become familiar with rings and fields, and understand the structure theory
of modules over a Euclidean domain along with its implications. The material underpins
many later courses in algebra and number theory, and thus should give students a good
background for studying these more advanced topics.

Synopsis

Definition of rings (not necessarily commutative or with an identity) and examples: Z,
fields, polynomial rings (in more than one variable), matrix rings. [1]

Zero-divisors, integral domains. Units. The characteristic of a ring. Discussion of fields of
fractions and their characterization (proofs non-examinable) [1]

Homomorphisms of rings. Quotient rings, ideals and the first isomorphism theorem and
consequences, e.g. Chinese remainder theorem. Relation between ideals in R and R/I. [2]

Prime ideals and maximal ideals, relation to fields and integral domains. Examples of ideals.
[1]

Euclidean Domains. Examples. Principal Ideal Domains. EDs are PIDs. Application
of quotients to constructing fields by adjunction of elements; examples to include C =
R[x]/(x2 + 1) and some finite fields. Degree of a field extension, the tower law. [2]

Unique factorisation for PIDs. Gauss’s Lemma and Eisenstein’s Criterion for irreducibility.
[2.5]

Modules: Definition and examples: vector spaces, abelian groups, vector spaces with an
endomorphism. Submodules and quotient modules and direct sums. The first isomorphism
theorem. [1.5]

Row and column operations on matrices over a ring. Equivalence of matrices and canonical
forms of matrices over a Euclidean Domain. [1.5]

Free modules and presentations of finitely generated modules. Structure of finitely generated
modules of a Euclidean domain. [2]

Application to rational canonical form for matrices, and structure of finitely generated
Abelian groups. [1]

Reading

1. Michael Artin, Algebra (2nd ed. Pearson, (2010). (Excellent text covering everything
in this course and much more besides).

2. Neils Lauritzen, Concrete Abstract Algebra, CUP (2003) (Excellent on groups, rings
and fields, and covers topics in the Number Theory course also. Does not cover
material on modules).

3. P. B. Bhattacharya, S. K. Jain, S. R. Nagpaul, Basic Abstract Algebra, CUP (1994)
(Covers all of the basic algebra material most undergraduate courses have).
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4. B. Hartley, T. O. Hawkes, Chapman and Hall, Rings, Modules and Linear Algebra.
(Possibly out of print, but many library should have it. Relatively concise and covers
all the material in the course).

3.2.2 A4: Integration — Prof. Qian — 16 lectures HT

Overview

The course will exhibit Lebesgue’s theory of integration in which integrals can be assigned to
a huge range of functions on the real line, thereby greatly extending the notion of integration
presented in Mods. The theory will be developed in such a way that it can be easily extended
to a wider framework, but measures other than Lebesgue’s will only be lightly touched.

Operations such as passing limits, infinite sums, or derivatives, through integral signs, or
reversing the order of double integrals, are often taken for granted in courses in applied
mathematics. Actually, they can occasionally fail. Fortunately, there are powerful conver-
gence and other theorems allowing such operations to be justified under conditions which
are widely applicable. The course will display these theorems and a wide range of their
applications.

This is a course in rigorous applications. Its principal aim is to develop understanding of
the statements of the theorems and how to apply them carefully. Knowledge of technical
proofs concerning the construction of Lebesgue measure will not be an essential part of the
course, and only outlines will be presented in the lectures.

Learning Outcomes

Synopsis

Measure spaces. Outer measure, null set, measurable set. The Cantor set. Lebesgue
measure on the real line. Counting measure. Probability measures. Construction of a
non-measurable set (non-examinable). Measurable function, simple function, integrable
function. Reconciliation with the integral introduced in Prelims.

A simple comparison theorem. Integrability of polynomial and exponential functions over
suitable intervals. Changes of variable. Fatou’s Lemma (proof not examinable). Monotone
Convergence Theorem (proof not examinable). Dominated Convergence Theorem. Corol-
laries and applications of the Convergence Theorems (including term-by-term integration
of series).

Theorems of Fubini and Tonelli (proofs not examinable). Differentiation under the integral
sign. Change of variables.

Brief introduction to Lp spaces. Hölder and Minkowski inequalities (proof not examinable).

Reading

1. Lecture notes for the course.
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2. M. Capinski & E. Kopp, Measure, Integral and Probability (Second Edition, Springer,
2004).

3. F. Jones, Lebesgue Integration on Euclidean Space (Second Edition, Jones & Bartlett,
2000).

Further Reading

1. D. S. Kurtz & C. W. Swartz, Theories of Integration (Series in Real Analysis Vol.9,
World Scientific, 2004).

2. H. A. Priestley, Introduction to Integration (OUP 1997).

[Useful for worked examples, although adopts a different approach to construction of
the integral].

3. H. L. Royden, Real Analysis (various editions; 4th edition has P. Fitzpatrick as co
author).

4. E. M. Stein & R. Shakarchi, Real Analysis: Measure Theory, Integration and Hilbert
Spaces (Princeton Lectures in Analysis III, Princeton University Press,2005).

3.2.3 A5: Topology — Prof. Papazoglou — 16 lectures HT

Overview

Topology is the study of ‘spatial’ objects. Many key topological concepts were introduced in
the Metric Spaces course, such as the open subsets of a metric space, and the continuity of a
map between metric spaces. More advanced concepts such as connectedness and compact-
ness were also defined and studied. Unlike in a metric space, there is no notion of distance
between points in a topological space. Instead, one keeps track only of the open subsets,
but this is enough to define continuity, connectedness and compactness. By dispensing with
a metric, the fundamentals of proofs are often clarified and placed in a more general setting.

In the first part of the course, these topological concepts are introduced and studied. In
the second part of the course, simplicial complexes are defined; these are spaces that are
obtained by gluing together triangles and their higher-dimensional analogues in a suitable
way. This is a very general construction: many spaces admit a homeomorphism to a
simplicial complex, which is known as a triangulation of the space. At the end of the
course, the proof of one of the earliest and most famous theorems in topology is sketched.
This is the classification of compact triangulated surfaces.

Learning Outcomes

By the end of the course, a student should be able to understand and construct abstract
arguments about topological spaces. Their topological intuition should also be sufficiently
well-developed to be able to reason about concrete topological spaces such as surfaces.
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Synopsis

Axiomatic definition of an abstract topological space in terms of open sets. Basic defini-
tions: closed sets, continuity, homeomorphism, convergent sequences, connectedness and
comparison with the corresponding definitions for metric spaces. Examples to include met-
ric spaces (definition of topological equivalence of metric spaces), discrete and indiscrete
topologies, cofinite topology. The Hausdorff condition. Subspace topology. [3 lectures]

Accumulation points of sets. Closure of a set. Interior of a set. Continuity if and only if
f
(
A
)
⊆ f (A). [2 lectures]

Basis of a topology. Product topology on a product of two spaces and continuity of projec-
tions. [2 lectures]

Compact topological spaces, closed subset of a compact set is compact, compact subset
of a Hausdorff space is closed. Product of two compact spaces is compact. A continuous
bijection from a compact space to a Hausdorff space is a homeomorphism. Equivalence of
sequential compactness and abstract compactness in metric spaces. [3 lectures]

Quotient topology. Quotient maps. Characterisation of when quotient spaces are Hausdorff
in terms of saturated sets. Examples, including the torus, Klein bottle and real projective
plane. [3 lectures]

Abstract simplicial complexes and their topological realisation. A triangulation of a space.
Any compact triangulated surface is homeomorphic to the sphere with g handles (g > 0) or
the sphere with h cross-caps (h > 1). (No proof that these surfaces are not homeomorphic,
but a brief informal discussion of Euler characteristic.) [3 lectures]

Reading

W. A. Sutherland, Introduction to Metric and Topological Spaces (Oxford University Press,
1975). Chapters 2-6, 8, 9.1-9.4.
(New edition to appear shortly.)

J. R. Munkres, Topology, A First Course (Prentice Hall, 1974), chapters 2, 3, 7.

Further Reading

B. Mendelson, Introduction to Topology (Allyn and Bacon, 1975). (cheap paperback edition
available).

G. Buskes, A. Van Rooij, Topological Spaces (Springer, 1997).

N. Bourbaki, General Topology (Springer, 1998).

J. Dugundji, Topology (Allyn and Bacon, 1966), chapters 3, 4, 5, 6, 7, 9, 11. [Although out
of print, available in some libraries.]
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3.2.4 A6: Differential Equations 2 — Prof. Moulton — 16 lectures HT

Prerequisites

It will be necessary to take Integral Transforms in parallel with Differential Equations 2.

Overview

This course continues the Differential equations 1 course, with the focus on boundary value
problems. The course aims to develop a number of techniques for solving boundary value
problems and for understanding solution behaviour. The course concludes with an intro-
duction to asymptotic theory and how the presence of a small parameter can affect solution
construction and form.

Learning Outcomes

Students will acquire a range of techniques for solving second order ODE’s, and an appreci-
ation for how ‘real world’ phenomena can lead to boundary value problems. They will gain
a familiarity with ideas that are applicable beyond the direct content of the course, such as
the Fredholm alternative, Bessel functions, and asymptotic expansions.

Synopsis

Models leading to two point boundary value problems for second order ODEs

Inhomogeneous two point boundary value problems (Ly = f); Wronskian and variation of
parameters. Green’s functions, both via variation of parameters and via delta function.

Adjoints. Self-adjoint operators. Eigenfunction expansions (issues of convergence and com-
pleteness noted but full treatment deferred to later courses). Sturm-Liouville theory. Fred-
holm alternative.

Series solutions. Method of Frobenius. Special functions.

Asymptotic sequences. Approximate roots of algebraic equations. Regular perturbations in
ODE’s. Introduction to boundary layer theory.

Reading

K. F. Riley, M. P. Hobson and S. J. Bence, Mathematical Methods for Physics and Engi-
neering, (3rd Ed. Cambridge University Press, 2006).

W. E. Boyce & R. C. DiPrima, Elementary Differential Equations and Boundary Value
Problems (7th edition, Wiley, 2000).

P. J. Collins, Differential and Integral Equations (O.U.P., 2006).

Erwin Kreyszig, Advanced Engineering Mathematics (8th Edition, Wiley, 1999).

E. J. Hinch, Perturbation Methods (Cambridge University Press, Cambridge, 1991).
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J. D. Logan, Applied Mathematics, (3rd Ed. Wiley Interscience, 2006).

3.2.5 A7: Numerical Analysis — Prof. Macdonald — 16 lectures HT

Overview

Scientific computing pervades our lives: modern buildings and structures are designed using
it, medical images are reconstructed for doctors using it, the cars and planes we travel on
are designed with it, the pricing of “Instruments” in the financial market is done using it,
tomorrow’s weather is predicted with it. The derivation and study of the core, underpinning
algorithms for this vast range of applications defines the subject of Numerical Analysis. This
course gives an introduction to that subject.

Through studying the material of this course students should gain an understanding of
numerical methods, their derivation, analysis and applicability. They should be able to
solve certain mathematically posed problems using numerical algorithms. This course is
designed to introduce numerical methods - i.e. techniques which lead to the (approximate)
solution of mathematical problems which are usually implemented on computers. The
course covers derivation of useful methods and analysis of their accuracy and applicability.

The course begins with a study of methods and errors associated with computation of func-
tions which are described by data values (interpolation or data fitting). Following this we
turn to numerical methods of linear algebra, which form the basis of a large part of compu-
tational mathematics, science, and engineering. Key ideas here include algorithms for linear
equations, least squares, and eigenvalues built on LU and QR matrix factorizations. The
course will also include the simple and computationally convenient approximation of curves:
this includes the use of splines to provide a smooth representation of complicated curves,
such as arise in computer aided design. Use of such representations leads to approximate
methods of integration. Techniques for improving accuracy through extrapolation will also
be described. The course requires elementary knowledge of functions and calculus and of
linear algebra.

Although there are no assessed practicals for this course, the tutorial work involves a mix
of written work and computational experiments. Some minimal working knowledge of a
computing system such as Matlab is recommended, but many examples will be provided.
Some use of Matlab and/or other tools will be demonstrated in lectures.

Learning Outcomes

At the end of the course the student will know how to:

• Find the solution of linear systems of equations.

• Compute eigenvalues and eigenvectors of matrices.

• Approximate functions of one variable by polynomials and piecewise polynomials
(splines).

• Compute good approximations to one-dimensional integrals.
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• Increase the accuracy of numerical approximations by extrapolation.

• Use computing to achieve these goals.

Synopsis

Lagrange interpolation [1 lecture]

Newton-Cotes quadrature [2 lectures]

Gaussian elimination and LU factorization [2 lectures]

QR factorization [1 lecture]

Eigenvalues: Gershgorin’s Theorem, symmetric QR algorithm [3 lectures]

Best approximation in inner product spaces, least squares, orthogonal polynomials [4 lec-
tures]

Piecewise polynomials, splines [2 lectures]

Richardson Extrapolation. [1 lecture].

Reading

You can find the material for this course in many introductory books on Numerical Analysis
such as

A. Quarteroni, R Sacco and F Saleri, Numerical Mathematics (Springer, 2000).

K. E. Atkinson, An Introduction to Numerical Analysis (2nd Edition, Wiley, 1989).

S. D. Conte and C. de Boor, Elementary Numerical Analysis (3rd Edition, Graw-Hill,
1980).

G. M. Phillips and P. J. Taylor, Theory and Applications of Numerical Analysis (2nd
Edition, Academic Press, 1996).

W. Gautschi, Numerical Analysis: An Introduction (Birkhauser, 1977).

H. R. Schwarz, Numerical Analysis: A Comprehensive Introduction (Wiley, 1989).

But the main recommended book for this course is:

E. Süli and D. F. Mayers, An Introduction to Numerical Analysis (CUP, 2003). Of which
the relevant chapters are: 6, 7, 2, 5, 9, 11.
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3.2.6 A8: Probability — Prof. Martin — 16 lectures MT

Overview

The first half of the course takes further the probability theory that was developed in the
first year. The aim is to build up a range of techniques that will be useful in dealing with
mathematical models involving uncertainty. The second half of the course is concerned
with Markov chains in discrete time and Poisson processes in one dimension, both with
developing the relevant theory and giving examples of applications.

Learning Outcomes

Synopsis

Continuous random variables. Jointly continuous random variables, independence, condi-
tioning, functions of one or more random variables, change of variables. Examples including
some with later applications in statistics. Moment generating functions and applications.
Statements of the continuity and uniqueness theorems for moment generating functions.
Characteristic functions (definition only). Convergence in distribution and convergence in
probability. Markov and Chebyshev inequalities. Weak law of large numbers and central
limit theorem for independent identically distributed random variables. Statement of the
strong law of large numbers. Discrete-time Markov chains: definition, transition matrix,
n-step transition probabilities, communicating classes, absorption, irreducibility, periodic-
ity, calculation of hitting probabilities and mean hitting times. Recurrence and transience.
Invariant distributions, mean return time, positive recurrence, convergence to equilibrium
(proof not examinable), ergodic theorem (proof not examinable). Random walks (includ-
ing symmetric and asymmetric random walks on Z, and symmetric random walks on Zd).
Poisson processes in one dimension: exponential spacings, Poisson counts, thinning and
superposition.

Reading

G. R. Grimmett and D. R. Stirzaker, Probability and Random Processes (3rd edition, OUP,
2001). Chapters 4, 6.1-6.5, 6.8.

R. Grimmett and D. R. Stirzaker, One Thousand Exercises in Probability (OUP, 2001).

G. R. Grimmett and D J A Welsh, Probability: An Introduction (OUP, 1986). Chapters 6,
7.4, 8, 11.1-11.3.

J. R. Norris, Markov Chains (CUP, 1997). Chapter 1.

D. R. Stirzaker, Elementary Probability (Second edition, CUP, 2003). Chapters 7-9 exclud-
ing 9.9.
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3.2.7 A9: Statistics — Dr. Laws — 16 lectures HT

Overview

Building on the first year course, this course develops statistics for mathematicians, em-
phasising both its underlying mathematical structure and its application to the logical
interpretation of scientific data. Advances in theoretical statistics are generally driven by
the need to analyse new and interesting data which come from all walks of life.

Part A Probability is recommended for this course, but is not essential. If you are not doing
Part A Probability then you should make sure that you are familiar with Prelims work on
Probability, and you may also need to familiarise yourself with a couple of lectures’ worth
of material from Part A Probability. Should you be interested in taking courses involving
statistics in Parts B or C, then it would be strongly advisable to take Part A Probability.

Learning Outcomes

At the end of the course students should have an understanding of: the use of probability
plots to investigate plausible probability models for a set of data; maximum likelihood esti-
mation and large sample properties of maximum likelihood estimators; hypothesis tests and
confidence intervals (and the relationship between them). They should have a corresponding
understanding of similar concepts in Bayesian inference.

Synopsis

Order statistics, probability plots.

Estimation: observed and expected information, statement of large sample properties of
maximum likelihood estimators in the regular case, methods for calculating maximum like-
lihood estimates, large sample distribution of sample estimators using the delta method.

Hypothesis testing: simple and composite hypotheses, size, power and p-values, Neyman-
Pearson lemma, distribution theory for testing means and variances in the normal model,
generalized likelihood ratio, statement of its large sample distribution under the null hy-
pothesis, analysis of count data.

Confidence intervals: exact intervals, approximate intervals using large sample theory, re-
lationship to hypothesis testing.

Probability and Bayesian Inference. Posterior and prior probability densities. Constructing
priors including conjugate priors, subjective priors, Jeffreys priors. Bayes estimators and
credible intervals. Statement of asymptotic normality of the posterior. Model choice via
posterior probabilities and Bayes factors.

Examples: statistical techniques will be illustrated with relevant datasets in the lectures.

Reading

F. Daly, D.J. Hand, M.C. Jones, A.D. Lunn and K.J. McConway, Elements of Statistics
(Addison Wesley, 1995) Chapters 7-10 (and Chapters 1-6 for background).
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J.A. Rice, Mathematical Statistics and Data Analysis (2nd edition, Wadsworth, 1995) Sec-
tions 8.5, 8.6, 9.1-9.7, 9.9, 10.3-10.6, 11.2, 11.3, 13.3, 13.4.

T Leonard and J.S.J. Hsu, Bayesian Methods (CUP, 1999), Chapters 2 and 3.

Further Reading

G. Casella and R. L. Berger, Statistical Inference (2nd edition, Wadsworth, 2001).

A.C. Davison, Statistical Models (Cambridge University Press, 2003), Chapter 11.

3.2.8 A10: Waves and Fluids — Prof. Dellar — 16 lectures HT

Overview

This course introduces students to the mathematical theory of inviscid fluids. The theory
provides insight into physical phenomena such as flight, vortex motion, and water waves.
The course also explains important concepts such as conservation laws and dispersive waves
and, thus, serves as an introduction to the mathematical modelling of continuous media.

Learning Outcomes

Synopsis

Incompressible flow. Convective derivative, streamlines and particle paths. Euler’s equa-
tions of motion for an inviscid fluid. Bernoulli’s Theorem. Vorticity, circulation and Kelvin’s
Theorem. The vorticity equation and vortex motion.

Irrotational incompressible flow; velocity potential. Two-dimensional flow, stream function
and complex potential. Line sources and vertices. Method of images, circle theorem and
Blasius’s Theorem.

Uniform flow past a circular cylinder. Circulation, lift. Use of conformal mapping to
determine flow past a flat wing. Water waves, including effects of finite depth and surface
tension. Dispersion, simple introduction to group velocity.

Reading

D. J. Acheson, Elementary Fluid Dynamics (OUP, 1997). Chapters 1, 3.1-3.5, 4.1-4.8,
4.10-4.12, 5.1, 5.2, 5.6, 5.7.

R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics, volume II,
(Addison Wesley 1964) Chapter 40 http://www.feynmanlectures.info/docroot/II 40.html
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3.2.9 A11: Quantum Theory — Prof. Tod — 16 lectures MT

Overview

Quantum theory was born out of the attempt to understand the interactions between radia-
tion, described by Maxwell’s theory of electromagnetism, and matter, described by Newton’s
mechanics.

Although there remain deep mathematical and physical questions at the frontiers of the
subject, the resulting theory encompasses not just the mechanical but also the electrical
and chemical properties of matter. Many of the key components of modern technology such
as transistors and lasers were developed using quantum theory.

In quantum theory particles also have some wave-like properties. This introductory course
explores some of the consequences of this culminating in a treatment of the hydrogen atom.

Learning Outcomes

By the end of this course, students will be able to solve the Schroedinger equation in a
range of simple situations and understand its significance. In particular they will be able
to calculate the energy levels of hydrogen-like atoms. They will also learn the abstract,
algebraic formulation of quantum mechanics which complements and sometimes replaces
the solution of the Schroedinger equation.

Synopsis

Wave-particle duality; Schrödinger’s equation; stationary states; quantum states of a par-
ticle in a box (infinite squarewell potential).

Interpretation of the wave function; boundary conditions; probability density and conser-
vation of current; parity.

The one-dimensional harmonic oscillator; higher-dimensional oscillators and normal modes;
degeneracy. The rotationally symmetric states of the hydrogen atom with fixed nucleus.

The mathematical structure of quantum mechanics and the postulates of quantum mechan-
ics.

Commutation relations. Heisenberg’s uncertainty principle.

Creation and annihilation operators for the harmonic oscillator. Measurements and the
collapse of the wave function.

Schrödinger’s cat. Angular momentum in quantum mechanics. The particular case of spin-
1/2. Particle in a central potential. General states of the hydrogen atom.

Reading

B.H. Bransden and C.J Joachain Quantum Mechanics (Second edition, Pearson Education
Limited, 2000). Chapters 1-4.
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P.C.W. Davies and D.S. Betts, Quantum Mechanics (Physics and its Applications) (2nd
edition, Taylor & Francis Ltd, 1994). Chapters 1,2,4.

R.P Feynman, R.B Leighton, M. Sands The Feynman Lectures on Physics, Volume 3,
(Addison-Wesley, 1998). Chapters 1,2 (for physical background).

K.C Hannabuss, An Introduction to Quantum Theory (Oxford University Press 1997).
Chapters 1-4.

A.I.M. Rae, Quantum Mechanics (4th Edition, Taylor & Francis Ltd, 2002). Chapters 1-3.
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4 SHORT OPTIONS

4.1 Syllabus

The examination syllabi of the short options paper ASO shall be the mathematical content
of the synopses for the courses

• Number Theory

• Algebra 3

• Projective Geometry

• Introduction to Manifolds

• Integral Transforms

• Calculus of Variations

• Graph Theory

• Special Relativity

as detailed below.

4.2 Synopses of Lectures

This section contains the lecture synopses associated with the short options paper ASO.

4.2.1 Number Theory — Dr. Balakrishnan — 8 lectures TT

Overview

Number theory is one of the oldest parts of mathematics. For well over two thousand years it
has attracted professional and amateur mathematicians alike. Although notoriously ‘pure’
it has turned out to have more and more applications as new subjects and new technologies
have developed. Our aim in this course is to introduce students to some classical and
important basic ideas of the subject.

Learning Outcomes

Students will learn some of the foundational results in the theory of numbers due to math-
ematicians such as Fermat, Euler and Gauss. They will also study a modern application of
this ancient part of mathematics.
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Synopsis

The ring of integers; congruences; ring of integers modulo n; the Chinese Remainder The-
orem.

Wilson’s Theorem; Fermat’s Little Theorem for prime modulus; Euler’s phi-function. Eu-
ler’s generalisation of Fermat’s Little Theorem to arbitrary modulus; primitive roots.

Quadratic residues modulo primes. Quadratic reciprocity.

Factorisation of large integers; basic version of the RSA encryption method.

Reading

Alan Baker, A Concise Introduction to the Theory of Numbers (Cambridge University Press,
1984) ISBN: 0521286549 Chapters 1,3,4.

David Burton, Elementary Number Theory (McGraw-Hill, 2001).

Dominic Welsh, Codes and Cryptography, (Oxford University Press, 1988), ISBN 0-19853-
287-3. Chapter 11.

4.2.2 Algebra 3: Group Theory — Dr. Earl — 8 lectures TT

Overview

This group theory course develops the theory begun in prelims, and this course will build
on that. After recalling basic concepts, the focus will be on two circles of problems.

1. The concept of free group and its universal property allow to define and describe groups
in terms of generators and relations.

2. The notion of composition series and the Jordan-Hölder Theorem explain how to see,
for instance, finite groups as being put together from finitely many simple groups. This
leads to the problem of finding and classifying finite simple groups. Conversely, it will be
explained how to put together two given groups to get new ones.

Moreover, the concept of symmetry will be formulated in terms of group actions and applied
to prove some group theoretic statements.

Learning Outcomes

Students will learn to construct and describe groups. They will learn basic properties of
groups and get familiar with important classes of groups. They will understand the crucial
concept of simple groups. They will get a better understanding of the notion of symmetry
by using group actions.
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Synopsis

Free groups. Uniqueness of reduced words and universal mapping property. Normal sub-
groups of free groups and generators and relations for groups. Examples. [2]

Review of the First Isomorphism Theorem and proof of Second and Third Isomorphism
Theorems. Simple groups, statement that An is simple (proof for n = 5). Definition and
proof of existence of composition series for finite groups. Statement of the Jordan-Hölder
Theorem. Examples. The derived subgroup and solvable groups. [3]

Discussion of semi-direct products and extensions of groups. Examples. [1]

Sylow’s three theorems. Applications including classification of groups of small order. [2]

Reading

1. Humphreys, J. F. A Course in Group Theory, Oxford, 1996

2. Armstrong, M. A. Groups and Symmetry, Springer-Verlag, 1988

4.2.3 Projective Geometry — Prof. Dancer — 8 lectures TT

Overview

Projective spaces provide a means of extending vector spaces by adding points at infin-
ity. The resulting geometry is in some respects better-behaved than that of vector spaces,
especially as regards intersection properties. Projective geometry is a good application of
many concepts from linear algebra, such as bilinear forms and duality. It also provides an
introduction to algebraic geometry proper, that is, the study of spaces defined by algebraic
equations, as many such spaces are best viewed as living inside projective spaces.

Learning Outcomes

Students will be familiar with the idea of projective space and the linear geometry associated
to it, including examples of duality and applications to Diophantine equations.

Synopsis

1-2: Projective Spaces (as P (V ) of a vector space V ). Homogeneous Co-ordinates. Linear
Subspaces.

3-4: Projective Transformations. General Position. Desargues Theorem. Cross-ratio.

5: Dual Spaces. Duality.

6-7: Symmetric Bilinear Forms. Conics. Singular conics, singular points. Projective equiv-
alence of non-singular conics.

7-8: Correspondence between P 1 and a non-singular conic. Simple applications to Diophan-
tine Equations.
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Reading

1. N.J. Hitchin, Maths Institute notes on Projective Geometry, found at
http://people.maths.ox.ac.uk/hitchin/hitchinnotes/hitchinnotes.html

2. M. Reid and B. Szendrői, Geometry and topology, Cambridge University Press, 2005
(Chapter 5).

4.2.4 Introduction to Manifolds — Prof. Dancer — 8 lectures TT

Overview

In this course, the notion of the total derivative for a function f :Rm → Rn is introduced.
Roughly speaking, this is an approximation of the function near each point in Rn by a linear
transformation. This is a key concept which pervades much of mathematics, both pure and
applied. It allows us to transfer results from linear theory locally to nonlinear functions.
For example, the Inverse Function Theorem tells us that if the derivative is an invertible
linear mapping at a point then the function is invertible in a neighbourhood of this point.
Another example is the tangent space at a point of a surface in R3, which is the plane that
locally approximates the surface best.

Learning Outcomes

Students will understand the concept of derivative in n dimensions and the implict and
inverse function theorems which give a bridge between suitably nondegenerate infinitesimal
information about mappings and local information. They will understand the concept of
manifold and see some examples such as matrix groups.

Synopsis

Definition of a derivative of a function from Rm to Rn; examples; elementary properties;
partial derivatives; the chain rule; the gradient of a function from Rn to R; Jacobian.
Continuous partial derivatives imply differentiability, Mean Value Theorems. [3 lectures]

The Inverse Function Theorem and the Implicit Function Theorem (proofs non-examinable).
[2 lectures]

The definition of a submanifold of Rm. Its tangent and normal space at a point, examples,
including two-dimensional surfaces in R3. [2 lectures]

Lagrange multipliers. [1 lecture]

Reading

Theodore Shifrin, Multivariable Mathematics (Wiley, 2005). Chapters 3-6.

T. M. Apostol, Mathematical Analysis: Modern Approach to Advanced Calculus (World
Students) (Addison Wesley, 1975). Chapters 12 and 13.
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S. Dineen, Multivariate Calculus and Geometry (Springer, 2001). Chapters 1-4.

J. J. Duistermaat and J A C Kolk, Multidimensional Real Analysis I, Differentiation (Cam-
bridge University Press, 2004).

M. Spivak, Calculus on Manifolds: A modern approach to classical theorems of advanced
calculus, W. A. Benjamin, Inc., New York-Amsterdam, 1965.

Further Reading

William R. Wade, An Introduction to Analysis (Second Edition, Prentice Hall, 2000). Chap-
ter 11.

M. P. Do Carmo, Differential Geometry of Curves and Surfaces (Prentice Hall, 1976).

Stephen G. Krantz and Harold R. Parks, The Implicit Function Theorem: History, Theory
and Applications (Birkhaeuser, 2002).

4.2.5 Integral Transforms — Dr. Earl — 8 lectures HT

This course is a prerequisite for Differential Equations 2.

Overview

The Laplace and Fourier Transforms aim to take a differential equation in a function f and
turn it in an algebraic equation involving its transform f̄ or f̂ . Such an equation can then
be solved by algebraic manipulation, and the original solution determined by recognizing
its transform or applying various inversion methods.

The Dirac δ-function, which is handled particularly well by transforms, is a means of rig-
orously dealing with ideas such as instantaneous impulse and point masses, which cannot
be properly modelled using functions in the normal sense of the word. δ is an example of
a distribution or generalized function and the course provides something of an introduction
to these generalized functions and their calculus.

Learning Outcomes

Students will gain a range of techniques employing the Laplace and Fourier Transforms in
the solution of ordinary and partial differential equations. They will also have an appreci-
ation of generalized functions, their calculus and applications.

Synopsis

Motivation for a “function” with the properties the Dirac δ-function. Test functions. Con-
tinuous functions are determined by φ →

∫
fφ. Distributions and δ as a distribution.

Differentiating distributions. (3 lectures)

Theory of Fourier and Laplace transforms, inversion, convolution. Inversion of some stan-
dard Fourier and Laplace transforms via contour integration.
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Use of Fourier and Laplace transforms in solving ordinary differential equations, with some
examples including δ.

Use of Fourier and Laplace transforms in solving partial differential equations; in particular,
use of Fourier transform in solving Laplace’s equation and the Heat equation. (5 lectures)

Reading

P. J. Collins, Differential and Integral Equations (OUP, 2006), Chapter 14

W. E. Boyce & R. C. DiPrima, Elementary Differential Equations and Boundary Value
Problems (7th edition, Wiley, 2000). Chapter 6

K.F. Riley & M. P. Hobson, Essential Mathematical Methods for the Physical Sciences
(CUP 2011) Chapter 5

H.A. Priestley, Introduction to Complex Analysis (2nd edition, OUP, 2003) Chapters 21
and 22

Further Reading

L. Debnath & P. Mikusinski, Introduction to Hilbert Spaces with Applications, (3rd Edition,
Academic Press. 2005) Chapter 6

4.2.6 Calculus of Variations — Dr. Hodges — 8 lectures TT

Overview

The calculus of variations concerns problems in which one wishes to find the minima or
extrema of some quantity over a system that has functional degrees of freedom. Many im-
portant problems arise in this way across pure and applied mathematics and physics. They
range from the problem in geometry of finding the shape of a soap bubble, a surface that
minimizes its surface area, to finding the configuration of a piece of elastic that minimises
its energy. Perhaps most importantly, the principle of least action is now the standard way
to formulate the laws of mechanics and basic physics.

In this course it is shown that such variational problems give rise to a system of differential
equations, the Euler-Lagrange equations. Furthermore, the minimizing principle that un-
derlies these equations leads to direct methods for analysing the solutions to these equations.
These methods have far reaching applications and will help develop students technique.

Learning Outcomes

Students will be able to formulate variational problems and analyse them to deduce key
properties of system behaviour.
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Synopsis

The basic variational problem and Euler’s equation. Examples, including axi-symmetric
soap films.

Extension to several dependent variables. Hamilton’s principle for free particles and par-
ticles subject to holonomic constraints. Equivalence with Newton’s second law. Geodesics
on surfaces. Extension to several independent variables.

Examples including Laplace’s equation. Lagrange multipliers and variations subject to
constraint. Eigenvalue problems for Sturm-Liouville equations. Legendre Polynomials.

Reading

Arfken Weber, Mathematical Methods for Physicists (5th edition, Academic Press, 2005).
Chapter 17.

Further Reading

N. M. J. Woodhouse, Introduction to Analytical Dynamics (1987). Chapter 2 (in particular
2.6). (This is out of print, but still available in most College libraries.)

M. Lunn, A First Course in Mechanics (OUP, 1991). Chapters 8.1, 8.2.

P. J. Collins, Differential and Integral Equations (O.U.P., 2006). Chapters 11, 12.

4.2.7 Graph Theory — Prof. McDiarmid — 8 lectures TT

Overview

This course introduces some central topics in graph theory.

Learning Outcomes

Students should have an appreciation of the flavour of methods and results in graph theory.

Synopsis

Introduction. Paths, walks and cycles. Trees and their characterisation, Cayley’s theorem
on counting trees. Euler circuits, Dirac’s theorem on Hamilton cycles. Hall’s theorem and
matchings in bipartite graphs. Ramsey Theory.

Reading

R. J. Wilson, Introduction to Graph Theory, 5th edition, Prentice Hall, 2010.

D.B. West, Introduction to Graph Theory, 2nd edition, Prentice Hall, 2001.
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4.2.8 Special Relativity — Dr. Hodges — 8 lectures TT

Overview

The unification of space and time into a four-dimensional space-time is essential to the
modern understanding of physics. This course will build on first-year algebra, geometry, and
applied mathematics to show how this unification is achieved. The results will be illustrated
throughout by reference to the observed physical properties of light and elementary particles.

Learning Outcomes

Students will be able to describe the fundamental phenomena of relativistic physics within
the algebraic formalism of four-vectors. They will be able to solve simple problems in-
volving Lorentz transformations. They will acquire a basic understanding of how the four-
dimensional picture completes and supersedes the physical theories studied in first-year
work.

Synopsis

Constancy of the speed of light. Lorentz transformations; time dilation, length contraction,
the relativistic Doppler effect.

Index notation, four-vectors, four-velocity and four-momentum; equivalence of mass and
energy; particle collisions and four-momentum conservation; equivalence of mass and energy:
E = mc2; four-acceleration and four-force, the example of the constant-acceleration world-
line.

Reading

N. M. J. Woodhouse, Special Relativity, (Springer, 2002).
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5 Pathways to Part B

Most, but not all, third year options (Part B) have certain pre-requisites from Part A.
Whilst the courses that will be offered in Part B in a year’s time (to follow on from the Part
A courses detailed in this supplement) have not been wholly decided there is not substantial
change year-on-year in the list of Part B options offered.

What follows is a list envisaging how the Part A options for 2014-15 would be pre-requisites
or useful knowledge for the Part B options for 2014-15. You will note that there are also a
good number of courses that have no prerequisites.

• A3 Algebra 2: Rings and Modules

Essential for B2.1: Introduction to Representation Theory

Essential for C2.6: Commutative Algebra

Essential for B3.1: Galois Theory

Essential for B3.4: Algebraic Number Theory

• A4 Integration

Recommended for B4.1: Banach Spaces

Recommended for B4.2: Hilbert Spaces

Useful for B4.3: Dynamical Systems and Energy Minimization

Essential for B8.1: Martingales Through Measure Theory

Essential for B8.2: Continuous Martingales and Stochastic Calculus

Essential for B8.3: Mathematical Models of Financial Derivatives

• A5 Topology

Useful for B4.1: Banach Spaces

Useful for B4.2: Hilbert Spaces

Useful for B3.2: Geometry of Surfaces

Useful for B3.3: Algebraic Curves

Essential for B3.5: Topology and Groups

• A6 Differential Equations II

Recommended for B5.1: Techniques of Applied Mathematics

Useful for B5.3: Viscous Flow

Useful for B5.4: Waves and Compressible Flow

Useful for B5.5: Mathematical Ecology and Biology

Recommended for B5.6: Nonlinear Systems

• A7 Numerical Analysis – no Part B courses explicitly require this.
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• A8 Probability

Essential for B8.1: Martingales Through Measure Theory

Essential for B8.2: Continuous Martingales and Stochastic Calculus

Essential for B8.3: Mathematical Models of Financial Derivatives

Useful for B8.4: Communication Theory

Essential for SB3a: Applied Probability

Essential for SB1 Applied Statistics

Useful for SB2a Foundations of Statistical Inference

Useful for SB4 Actuarial Science

• A9 Statistics

Essential for SB1 Applied Statistics

Essential for SB2a Foundations of Statistical Inference

Essential for SB3b Statistical Life-time Models

• A10 Waves and Fluids

Useful for B5.1: Techniques of Applied Mathematics

Useful for B5.2: Applied Partial Differential Equations

Essential for B5.3: Viscous Flow

Essential for B5.4: Waves and Compressible Flow

• A11 Quantum Theory

Essential for C7.3: Further Quantum Theory

Essential C7.4: Introduction to Quantum Information

• ASO: Number Theory

Useful for B3.1: Galois Theory

Useful for B3.4: Algebraic Number Theory

• ASO: Algebra 3: Group Theory

Recommended for B2.1: Introduction to Representation Theory

Essential for B3.1: Galois Theory

Essential for B3.4: Algebraic Number Theory

Recommended for B3.5: Topology and Groups

• ASO: Projective Geometry

Recommended for B3.3: Algebraic Curves

• ASO: Introduction to Manifolds

Useful for B3.2: Geometry of Surfaces

Useful for B3.3: Algebraic Curves
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• ASO: Integral Transforms

Useful for B4.2: Hilbert Spaces

Essential for B5.1: Techniques of Applied Mathematics

Essential for B5.2: Applied Partial Differential Equations

Recommended for B5.4: Waves and Compressible Flow

Recommended for B5.5: Mathematical Ecology and Biology

Recommended for B5.6: Nonlinear Systems

• ASO: Calculus of Variations

Useful for B5.1: Techniques of Applied Mathematics

Useful for B5.2: Applied Partial Differential Equations

Essential for B7.1: Classical Mechanics

• ASO: Graph Theory

Recommended for B8.5: Graph Theory

• ASO: Special Relativity – no Part B courses explicitly require this.

The following Part B courses in 2014-15 have no prerequisites.

• B1.1: Logic

• B1.2: Set Theory

• B6.1 Numerical Solution of Differential Equations I

• B6.2 Numerical Solution of Differential Equations II

• B6.3 Integer Programming

• C7.2: Electromagnetism

• BEE Mathematical Extended Essay

• BN1.2 Undergraduate Ambassadors’ Scheme

• BSP Structured projects

• BO1.1: History of Mathematics

• OCS1 Lambda Calculus and Types

• OCS2 Computational Complexity

• N101 Early Modern Philosophy

• N102 Knowledge and Reality

• N122 Philosophy of Mathematics

• N127 Philosophical Logic
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