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1 Foreword

The synopses for Part C will be available on the website at:

http://www.maths.ox.ac.uk/current-students/undergraduates/handbooks-synopses/

before the start of Michaelmas Term 2014.

See the current edition of the Examination Regulations for the full regulations governing
these examinations.

Examination Conventions can be found at: http://www.maths.ox.ac.uk/notices/undergrad

In the unlikely event that any course receives a very low registration we may offer this
course as a reading course (this would include some lectures but fewer classes).

1.1 Honour School of Mathematics

1.1.1 “Units”

Students staying on to take Part C will take the equivalent of eight units. One unit is
the equivalent of a 16 hour lecture course. The equivalent of six units must be taken
from the schedule of “Mathematics Department units” and may include a dissertation on a
mathematical topic. Up to two units may be taken from the schedule of “Other Units”.

Most Mathematics Department lecture courses are independently available as units, the
exceptions being:

1. C7.1 Theoretical Physics - this is available as a double-unit only.

All the units described in this booklet are “M–Level”.

1.2 Language Classes

Mathematics students may apply to take classes in a foreign language. In 2014-15 classes will
be offered in French and German. Students’ performances in these classes will not contribute
to the degree classification awarded. However, successful completion of the course may be
recorded on students’ transcripts. See section 5 for more details.

1.3 Registration

Classes

Students will have to register in advance for the courses they wish to take. Students will
have to register by Friday of Week 10 of Trinity Term 2014 using the online system which
can be accessed at https://www.maths.ox.ac.uk/courses/registration/. Students will then
be asked to sign up for classes at the start of Michaelmas Term 2014. Further information
about this will be sent via email before the start of term.

http://www.maths.ox.ac.uk/current-students/undergraduates/handbooks-synopses/
http://www.maths.ox.ac.uk/notices/undergrad
https://www.maths.ox.ac.uk/courses/registration/
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Note on Intercollegiate Classes

Where undergraduate registrations for lecture courses fall below 5, classes will not run as
part of the intercollegiate scheme but will be arranged informally by the lecturer.

Lectures

Every effort will be made when timetabling lectures to ensure that lectures do not clash.
However, because of the large number of options in Part C this may sometimes be unavoid-
able. In the event of clashes being necessary, then students will be notified of the clashes
by email and in any case options will only be allowed to clash when the take-up of both
options is unlikely or inadvisable.

1.4 Course list by term

Table 1: Michaelmas Term Courses

Code Title Term

C1.1 Model Theory MT
C1.3 Analytic Topology MT
C2.1 Lie Algebras MT
C2.2 Homological Algebra MT
C3.1 Algebraic Topology MT
C3.2 Geometry Group Theory MT
C3.4 Algebraic Geometry MT
C3.6 Modular Forms MT
C3.8 Analytic Number Theory MT
C4.1 Functional Analysis MT
C4.3 Functional Analytic Methods for PDEs MT
C4.5 Ergodic Theory MT
C5.1 Solid Mechanics MT
C5.3 Statistical Mechanics MT
C5.5 Perturbation Methods MT
C5.7 Topics in Fluid Mechanics MT
C5.11 Mathematical Geoscience MT
C6.1 Numerical Linear Algebra MT
C6.3 Approximation of Functions MT
C7.1 Theoretical Physics MT
C7.2 Electromagnetism MT
C7.3 Further Quantum Theory MT
C7.5 General Relativity I MT
C8.1 Stochastic Differential Equations MT
C8.3 Combinatorics MT
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Table 2: Hilary Term Courses

Code Title Term

C1.2 Godel’s Incompleteness Theorems HT
C1.4 Axiomatic Set Theory HT
C2.4 Infinite Groups HT
C2.5 Noncommutative Rings HT
C2.6 Commutative Algebra HT
C3.3 Differentiable Manifolds HT
C3.5 Lie Groups HT
C3.7 Elliptic Curves HT
C4.2 Linear Operators HT
C4.4 Hyperbolic Equaitons HT
C5.2 Elasticity and Plasticity HT
C5.4 Networks HT
C5.6 Applied Complex Variables HT
C5.8 Stochastic modelling of biological processes HT
C5.9 Mathematical Mechanical Biology HT
C5.12 Mathematical Physiology HT
C6.2 Continuous Optimisation HT
C6.4 Finite Element Methods for PDEs HT
C7.1 Theoretical Physics HT
C7.4 Introduction to Quantum Information HT
C7.6 General Relativity II HT
C8.2 Stochastic Analysis and PDEs HT
C8.4 Probabilistic Combinatorics HT
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2 Mathematics Department units

2.1 C1.1: Model Theory — Prof. Zilber — 16MT

Level: M-level Method of Assessment: Written examination.

Weight: Unit

Recommended Prerequisites

This course presupposes basic knowledge of First Order Predicate Calculus up to and includ-
ing the Soundness and Completeness Theorems. A familiarity with (at least the statement
of) the Compactness Theorem would also be desirable.

Overview

The course deepens a student’s understanding of the notion of a mathematical structure
and of the logical formalism that underlies every mathematical theory, taking B1 Logic as
a starting point. Various examples emphasise the connection between logical notions and
practical mathematics.

The concepts of completeness and categoricity will be studied and some more advanced
technical notions, up to elements of modern stability theory, will be introduced.

Learning Outcomes

Students will have developed an in depth knowledge of the notion of an algebraic mathe-
matical structure and of its logical theory, taking B1 Logic as a starting point. They will
have an understanding of the concepts of completeness and categoricity and more advanced
technical notions.

Synopsis

Structures. The first-order language for structures. The Compactness Theorem for first-
order logic. Elementary embeddings. Löwenheim–Skolem theorems. Preservation theorems
for substructures. Model Completeness. Quantifier elimination.

Categoricity for first-order theories. Types and saturation. Omitting types. The Ryll
Nardzewski theorem characterizing aleph-zero categorical theories. Theories with few types.
Ultraproducts.

Reading

1. D. Marker, Model Theory: An Introduction (Springer, 2002).

2. W. Hodges, Shorter Model Theory (Cambridge University Press, 1997).
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3. J. Bridge, Beginning Model Theory (Oxford University Press, 1977). (Out of print
but can be found in libraries.)

Further reading

1. All topics discussed (and much more) can also be found in W. Hodges, Model Theory
(Cambridge University Press, 1993).

2.2 C1.2: Gödel’s Incompleteness Theorems — Dr Isaacson — 16HT

Level: M-level Method of Assessment: Written examination.

Weight: Unit

Recommended Prerequisites

This course presupposes knowledge of first-order predicate logic up to and including sound-
ness and completeness theorems for a formal system of first-order predicate logic (B1 Logic).

Overview

The starting point is Gödel’s mathematical sharpening of Hilbert’s insight that manipulating
symbols and expressions of a formal language has the same formal character as arithmetical
operations on natural numbers. This allows the construction for any consistent formal
system containing basic arithmetic of a ‘diagonal’ sentence in the language of that system
which is true but not provable in the system. By further study we are able to establish
the intrinsic meaning of such a sentence. These techniques lead to a mathematical theory
of formal provability which generalizes the earlier results. We end with results that further
sharpen understanding of formal provability.

Learning Outcomes

Understanding of arithmetization of formal syntax and its use to establish incompleteness
of formal systems; the meaning of undecidable diagonal sentences; a mathematical theory
of formal provability; precise limits to formal provability and ways of knowing that an
unprovable sentence is true.

Synopsis

Gödel numbering of a formal language; the diagonal lemma. Expressibility in a formal lan-
guage. The arithmetical undefinability of truth in arithmetic. Formal systems of arithmetic;
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arithmetical proof predicates. Σ0-completeness and Σ1-completeness. The arithmetical hi-
erarchy. ω-consistency and 1-consistency; the first Gödel incompleteness theorem. Sepa-
rability; the Rosser incompleteness theorem. Adequacy conditions for a provability predi-
cate. The second Gödel incompleteness theorem; Löb’s theorem. Provable Σ1-completeness.
Provability logic; the fixed point theorem. The ω-rule.

Reading

1. Lecture notes for the course.

Further Reading

1. Raymond M. Smullyan, Gödel’s Incompleteness Theorems (Oxford University Press,
1992).

2. George S. Boolos and Richard C. Jeffrey, Computability and Logic (3rd edition, Cam-
bridge University Press, 1989), Chs 15, 16, 27 (pp 170–190, 268-284).

3. George Boolos, The Logic of Provability (Cambridge University Press, 1993).

2.3 C1.3: Analytic Topology — Dr Suabedissen — 16MT

Level: M-level Method of Assessment: Written examination.

Weight: Unit

Recommended Prerequisites

Part A Topology; a basic knowledge of Set Theory, including cardinal arithmetic, ordinals
and the Axiom of Choice, will also be useful.

Overview

The aim of the course is to present a range of major theory and theorems, both impor-
tant and elegant in themselves and with important applications within topology and to
mathematics as a whole. Central to the course is the general theory of compactness and
Tychonoff’s theorem, one of the most important in all mathematics (with applications across
mathematics and in mathematical logic) and computer science.

Synopsis

Bases and initial topologies (including pointwise convergence and the Tychonoff product
topology). Separation axioms, continuous functions, Urysohn’s lemma. Separable, Lin-
delöf and second countable spaces. Urysohn’s metrization theorem. Filters and ultrafilters.
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Tychonoff’s theorem. Compactifications, in particular the Alexandroff One-Point Com-
pactification and the Stone–Čech Compactification. Connectedness and local connected-
ness. Components and quasi-components. Totally disconnected compact spaces, Boolean
algebras and Stone spaces. Paracompactness (brief treatment).

Reading

1. S. Willard, General Topology (Addison–Wesley, 1970), Chs. 1–8.

2. N. Bourbaki, General Topology (Springer-Verlag, 1989), Ch. 1.

2.4 C1.4: Axiomatic Set Theory — Dr Suabedissen — 16HT

Level: M-level Method of Assessment: Written examination.

Weight: Unit

Recommended Prerequisites

This course presupposes basic knowledge of First Order Predicate Calculus up to and includ-
ing the Soundness and Completeness Theorems, together with a course on basic set theory,
including cardinals and ordinals, the Axiom of Choice and the Well Ordering Principle.

Overview

Inner models and consistency proofs lie at the heart of modern Set Theory, historically as
well as in terms of importance. In this course we shall introduce the first and most important
of inner models, Gödel’s constructible universe, and use it to derive some fundamental
consistency results.

Synopsis

A review of the axioms of ZF set theory. The recursion theorem for the set of natural
numbers and for the class of ordinals. The Cumulative Hierarchy of sets and the consistency
of the Axiom of Foundation as an example of the method of inner models. Levy’s Reflection
Principle. Gödel’s inner model of constructible sets and the consistency of the Axiom of
Constructibility (V = L). The fact that V = L implies the Axiom of Choice. Some
advanced cardinal arithmetic. The fact that V = L implies the Generalized Continuum
Hypothesis.

Reading

For the review of ZF set theory:

1. D. Goldrei, Classic Set Theory (Chapman and Hall, 1996).
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For course topics (and much more):

1. K. Kunen, Set Theory: An Introduction to Independence Proofs (North Holland, 1983)
(now in paperback). Review: Chapter 1. Course topics: Chapters 3, 4, 5, 6 (excluding
section 5).

Further Reading

1. K. Hrbacek and T. Jech, Introduction to Set Theory (3rd edition, M Dekker, 1999).

2.5 C2.1: Lie Algebras — Prof. Ciubotaru — 16MT

Level: M-level Method of Assessment: Written examination.

Weight: Unit

Recommended Prerequisites

Part B course B2a. A thorough knowledge of linear algebra and the second year algebra
courses; in particular familiarity with group actions, quotient rings and vector spaces, iso-
morphism theorems and inner product spaces will be assumed. Some familiarity with the
Jordan–Hölder theorem and the general ideas of representation theory will be an advantage.

Overview

Lie Algebras are mathematical objects which, besides being of interest in their own right,
elucidate problems in several areas in mathematics. The classification of the finite-dimensional
complex Lie algebras is a beautiful piece of applied linear algebra. The aims of this course
are to introduce Lie algebras, develop some of the techniques for studying them, and describe
parts of the classification mentioned above, especially the parts concerning root systems and
Dynkin diagrams.

Learning Outcomes

Students will learn how to utilise various techniques for working with Lie algebras, and they
will gain an understanding of parts of a major classification result.

Synopsis

Definition of Lie algebras, small-dimensional examples, some classical groups and their Lie
algebras (treated informally). Ideals, subalgebras, homomorphisms, modules.

Nilpotent algebras, Engel’s theorem; soluble algebras, Lie’s theorem. Semisimple algebras
and Killing form, Cartan’s criteria for solubility and semisimplicity, Weyl’s theorem on
complete reducibility of representations of semisimple Lie algebras.
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The root space decomposition of a Lie algebra; root systems, Cartan matrices and Dynkin
diagrams. Discussion of classification of irreducible root systems and semisimple Lie alge-
bras.

Reading

1. J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate
Texts in Mathematics 9 (Springer-Verlag, 1972, reprinted 1997). Chapters 1–3 are
relevant and part of the course will follow Chapter 3 closely.

2. B. Hall, Lie Groups, Lie Algebras, and Representations. An Elementary Introduction,
Graduate Texts in Mathematics 222 (Springer-Verlag, 2003).

3. K. Erdmann, M. J. Wildon, Introduction to Lie Algebras (Springer-Verlag, 2006),
ISBN: 1846280400.

Additional Reading

1. J.-P. Serre, Complex Semisimple Lie Algebras (Springer, 1987). Rather condensed,
assumes the basic results. Very elegant proofs.

2. N. Bourbaki, Lie Algebras and Lie Groups (Masson, 1982). Chapters 1 and 4–6 are
relevant; this text fills in some of the gaps in Serre’s text.

3. William Fulton, Joe Harris, Representation theory: a first course, GTM, Springer.

2.6 C2.2 Homological Algebra — Prof. Kremnitzer — 16MT

Level: M-level Method of Assessment: Written examination.

Weight: Unit

Synopsis

Chain complexes: complexes of R-modules, operations on chain complexes, long exact se-
quences, chain homotopies, mapping cones and cylinders (4 hours) Derived functors: delta
functors, projective and injective resolutions, left and right derived functors (5 hours) Tor
and Ext: Tor and flatness, Ext and extensions, universal coefficients theorems, Koszul res-
olutions (4 hours) Group homology and cohomology: definition, interpretation of H1 and
H2, universal central extensions, the Bar resolution (3 hours).

Reading

Weibel, Charles An introduction to Homological algebra (see Google Books)
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2.7 C2.4: Infinite Groups — Prof. Nikolov — 16HT

Level: M-level Method of Assessment: Written examination.

Weight: Unit

Recommended Prerequisites

A thorough knowledge of the second-year algebra courses; in particular, familiarity with
group actions, quotient rings and quotient groups, and isomorphism theorems will be as-
sumed. Familiarity with the Commutative Algebra course will be helpful but not essential.

Overview

The concept of a group is so general that anything which is true of all groups tends to be
rather trivial. In contrast, groups that arise in some specific context often have a rich and
beautiful theory. The course introduces some natural families of groups, various questions
that one can ask about them, and various methods used to answer these questions; these
involve among other things rings and trees.

Synopsis

Free groups and their subgroups; finitely generated groups: counting finite-index subgroups;
finite presentations and decision problems; Linear groups: residual finiteness; structure
of soluble linear groups; Nilpotency and solubility: lower central series and derived se-
ries; structural and residual properties of finitely generated nilpotent groups and polycyclic
groups; characterization of polycyclic groups as soluble Z-linear groups; Torsion groups and
the General Burnside Problem.

Reading

1. D. J. S. Robinson, A course in the theory of groups, 2nd ed., Graduate texts in
Mathematics, (Springer-Verlag, 1995). Chapters 2, 5, 6, 15.

2. D. Segal, Polycyclic groups, (CUP, 2005) Chapters 1 and 2.

2.8 C2.5: Non-Commutative Rings — Prof. Ardakov — 16HT

Level: M-level Method of Assessment: Written examination.

Weight: Unit
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Recommended Prerequisites

Prerequisites: Part A Algebra (Algebra 1 and 2 from 2015-2016).
Recommended background: Introduction to Representation Theory B2a, Part B Commu-
tative Algebra (from 2016 onwards).

Overview

This course builds on Algebra 2 from the second year. We will look at several classes of non-
commutative rings and try to explain the idea that they should be thought of as functions
on ”non-commutative spaces”. Along the way, we will prove several beautiful structure
theorems for Noetherian rings and their modules.

Learning Outcomes

Students will be able to appreciate powerful structure theorems, and be familiar with ex-
amples of non-commutative rings arising from various parts of mathematics.

Synopsis

1. Examples of non-commutative Noetherian rings: enveloping algebras, rings of differential
operators, group rings of polycyclic groups. Filtered and graded rings. (3 hours)

2. Jacobson radical in general rings. Jacobson’s density theorem. Artin-Wedderburn. (3
hours)

3. Ore localisation. Goldie’s Theorem. Lifting Ore sets from graded rings. (4 hours)

4. Gabber’s Theorem on the integrability of the characteristic variety. (3 hours)

5. Hilbert polynomials. Bernstein’s Inequality for modules over the Weyl algebra. (3 hours)

Reading

1. K.R. Goodearl and R.B. Warfield, An Introduction to Noncommutative Noetherian
Rings (CUP, 2004).

Further reading

1. M. Atiyah and I. MacDonald, Introduction to Commutative Algebra (Westview Press,
1994).

2. S.C. Coutinho, A Primer of Algebraic D-modules (CUP, 1995).

3. J. Björk, Analytic D-Modules and Applications (Springer, 1993).
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2.9 C2.6: Commutative Algebra — Prof. Segal — 16HT

Level: M-level Method of Assessment: Written examination.

Weight: Unit

Recommended Prerequisites

A thorough knowledge of the second-year algebra courses, in particular rings, ideals and
fields.

Overview

Amongst the most familiar objects in mathematics are the ring of integers and the poly-
nomial rings over fields. These play a fundamental role in number theory and in algebraic
geometry, respectively. The course explores the basic properties of such rings.

Synopsis

Modules, ideals, prime ideals, maximal ideals.
Noetherian rings; Hilbert basis theorem. Minimal primes.
Localization.
Polynomial rings and algebraic sets. Weak Nullstellensatz.
Nilradical and Jacobson radical; strong Nullstellensatz.
Artin-Rees Lemma; Krull intersection theorem.
Integral extensions. Prime ideals in integral extensions.
Noether Normalization Lemma.
Krull dimension; ‘Principal ideal theorem’; dimension of an affine algebra.

Reading

1. M. F. Atiyah and I. G. MacDonald: Introduction to Commutative Algebra, (Addison-
Wesley, 1969).

2.10 C3.1: Algebraic Topology — Prof. Douglas — 16MT

Level: M-level. Method of Assessment: Written examination.

Weight: Unit

Recommended Prerequisites

Helpful but not essential: Part A Topology, B3.1a Topology and Groups.
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Overview

Homology theory is a subject that pervades much of modern mathematics. Its basic ideas
are used in nearly every branch, pure and applied. In this course, the homology groups of
topological spaces are studied. These powerful invariants have many attractive applications.
For example we will prove that the dimension of a vector space is a topological invariant
and the fact that ‘a hairy ball cannot be combed’.

Learning Outcomes

At the end of the course, students are expected to understand the basic algebraic and
geometric ideas that underpin homology and cohomology theory. These include the cup
product and Poincaré Duality for manifolds. They should be able to choose between the
different homology theories and to use calculational tools such as the Mayer-Vietoris se-
quence to compute the homology and cohomology of simple examples, including projective
spaces, surfaces, certain simplicial spaces and cell complexes. At the end of the course,
students should also have developed a sense of how the ideas of homology and cohomology
may be applied to problems from other branches of mathematics.

Synopsis

Chain complexes of free Abelian groups and their homology. Short exact sequences. Delta
(and simplicial) complexes and their homology. Euler characteristic.

Singular homology of topological spaces. Relative homology and the Five Lemma. Homo-
topy invariance and excision (details of proofs not examinable). Mayer-Vietoris Sequence.
Equivalence of simplicial and singular homology.

Degree of a self-map of a sphere. Cell complexes and cellular homology. Application: the
hairy ball theorem.

Cohomology of spaces and the Universal Coefficient Theorem (proof not examinable). Cup
products. Künneth Theorem (without proof). Topological manifolds and orientability.
The fundamental class of an orientable, closed manifold and the degree of a map between
manifolds of the same dimension. Poincaré Duality (without proof).

Reading

1. A. Hatcher, Algebraic Topology (Cambridge University Press, 2001). Chapters 3 and
4.

2. G. Bredon, Topology and Geometry (Springer, 1997). Chapters 4 and 5.

3. J. Vick, Homology Theory, Graduate Texts in Mathematics 145 (Springer, 1973).
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2.11 C3.2: Geometric Group Theory — Prof Papazoglou — 16MT

Level: M-level. Method of Assessment: Written examination.

Weight: Unit

Recommended Prerequisites.

The Topology & Groups course is a helpful, though not essential prerequisite.

Overview.

The aim of this course is to introduce the fundamental methods and problems of geometric
group theory and discuss their relationship to topology and geometry.

The first part of the course begins with an introduction to presentations and the list of
problems of M. Dehn. It continues with the theory of group actions on trees and the
structural study of fundamental groups of graphs of groups.

The second part of the course focuses on modern geometric techniques and it provides an
introduction to the theory of Gromov hyperbolic groups.

Synopsis.

Free groups. Group presentations. Dehn’s problems. Residually finite groups.

Group actions on trees. Amalgams, HNN-extensions, graphs of groups, subgroup theorems
for groups acting on trees.

Quasi-isometries. Hyperbolic groups. Solution of the word and conjugacy problem for
hyperbolic groups.

If time allows: Small Cancellation Groups, Stallings Theorem, Boundaries.

Reading.

1. J.P. Serre, Trees (Springer Verlag 1978).

2. M. Bridson, A. Haefliger, Metric Spaces of Non-positive Curvature, Part III (Springer,
1999), Chapters I.8, III.H.1, III. Gamma 5.

3. H. Short et al., ‘Notes on word hyperbolic groups’, Group Theory from a Geometrical
Viewpoint, Proc. ICTP Trieste (eds E. Ghys, A. Haefliger, A. Verjovsky, World
Scientific 1990)

available online at: http://www.cmi.univ-mrs.fr/ hamish/

4. C.F. Miller, Combinatorial Group Theory, notes:
http://www.ms.unimelb.edu.au/ cfm/notes/cgt-notes.pdf.

http://www.cmi.univ-mrs.fr/~hamish/
http://www.ms.unimelb.edu.au/~cfm/notes/cgt-notes.pdf
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Additional Reading.

1. G. Baumslag, Topics in Combinatorial Group Theory (Birkhauser, 1993).

2. O. Bogopolski, Introduction to Group Theory (EMS Textbooks in Mathematics, 2008).

3. R. Lyndon, P. Schupp, Combinatorial Group Theory (Springer, 2001).

4. W. Magnus, A. Karass, D. Solitar,Combinatorial Group Theory: Presentations of
Groups in Terms of Generators and Relations (Dover Publications, 2004).

5. P. de la Harpe, Topics in Geometric Group Theory, (University of Chicago Press,
2000).

2.12 C3.3: Differentiable Manifolds — Prof. Hitchin — 16HT

Level: M-level. Method of Assessment: Written examination.

Weight: Unit

Recommended Prerequisites

2nd year core algebra, topology, multivariate calculus. Useful but not essential: groups in
action, geometry of surfaces.

Overview

A manifold is a space such that small pieces of it look like small pieces of Euclidean space.
Thus a smooth surface, the topic of the B3 course, is an example of a (2-dimensional)
manifold.

Manifolds are the natural setting for parts of classical applied mathematics such as mechan-
ics, as well as general relativity. They are also central to areas of pure mathematics such as
topology and certain aspects of analysis.

In this course we introduce the tools needed to do analysis on manifolds. We prove a very
general form of Stokes’ Theorem which includes as special cases the classical theorems of
Gauss, Green and Stokes. We also introduce the theory of de Rham cohomology, which is
central to many arguments in topology.

Learning Outcomes

The candidate will be able to manipulate with ease the basic operations on tangent vectors,
differential forms and tensors both in a local coordinate description and a global coordinate-
free one; have a knowledge of the basic theorems of de Rham cohomology and some simple
examples of their use; know what a Riemannian manifold is and what geodesics are.
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Synopsis

Smooth manifolds and smooth maps. Tangent vectors, the tangent bundle, induced maps.
Vector fields and flows, the Lie bracket and Lie derivative.

Exterior algebra, differential forms, exterior derivative, Cartan formula in terms of Lie
derivative. Orientability. Partitions of unity, integration on oriented manifolds.

Stokes’ theorem. De Rham chomology. Applications of de Rham theory including degree.

Riemannian metrics. Isometries. Geodesics.

Reading

1. M. Spivak, Calculus on Manifolds, (W. A. Benjamin, 1965).

2. M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol. 1, (1970).

3. W. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry,
2nd edition, (Academic Press, 1986).

4. M. Berger and B. Gostiaux, Differential Geometry: Manifolds, Curves and Surfaces.
Translated from the French by S. Levy, (Springer Graduate Texts in Mathematics,
115, Springer–Verlag (1988)) Chapters 0–3, 5–7.

5. F. Warner, Foundations of Differentiable Manifolds and Lie Groups, (Springer Grad-
uate Texts in Mathematics, 1994).

6. D. Barden and C. Thomas, An Introduction to Differential Manifolds. (Imperial
College Press, London, 2003.)

2.13 C3.4: Algebraic Geometry — Dr Berczi — 16MT

Level: M-level. Method of Assessment: Written examination.

Weight: Unit

Recommended Prerequisites

Part A Group Theory and Introduction to Fields (B3 Algebraic Curves useful but not es-
sential).

Overview

Algebraic geometry is the study of algebraic varieties: an algebraic variety is roughly speak-
ing, a locus defined by polynomial equations. One of the advantages of algebraic geometry
is that it is purely algebraically defined and applied to any field, including fields of finite
characteristic. It is geometry based on algebra rather than calculus, but over the real or
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complex numbers it provides a rich source of examples and inspiration to other areas of
geometry.

Synopsis

Affine algebraic varieties, the Zariski topology, morphisms of affine varieties. Irreducible
varieties.

Projective space. Projective varieties, affine cones over projective varieties. The Zariski
topology on projective varieties. The projective closure of affine variety. Morphisms of
projective varieties. Projective equivalence.

Veronese morphism: definition, examples. Veronese morphisms are isomorphisms onto their
image; statement, and proof in simple cases. Subvarieties of Veronese varieties. Segre maps
and products of varieties, Categorical products: the image of Segre map gives the categorical
product.

Coordinate rings. Hilbert’s Nullstellensatz. Correspondence between affine varieties (and
morphisms between them) and finitely generate reduced k-algebras (and morphisms between
them). Graded rings and homogeneous ideals. Homogeneous coordinate rings.

Categorical quotients of affine varieties by certain group actions. The maximal spectrum.

Primary decomposition of ideals.

Discrete invariants projective varieties: degree dimension, Hilbert function. Statement of
theorem defining Hilbert polynomial.

Quasi-projective varieties, and morphisms of them. The Zariski topology has a basis of affine
open subsets. Rings of regular functions on open subsets and points of quasi-projective vari-
eties. The ring of regular functions on an affine variety in the coordinate ring. Localisation
and relationship with rings of regular functions.

Tangent space and smooth points. The singular locus is a closed subvariety. Algebraic
re-formulation of the tangent space. Differentiable maps between tangent spaces.

Function fields of irreducible quasi-projective varieties. Rational maps between irreducible
varieties, and composition of rational maps. Birational equivalence. Correspondence be-
tween dominant rational maps and homomorphisms of function fields. Blow-ups: of affine
space at appoint, of subvarieties of affine space, and general quasi-projective varieties along
general subvarieties. Statement of Hironaka’s Desingularisation Theorem. Every irreducible
variety is birational to hypersurface. Re-formulation of dimension. Smooth points are a
dense open subset.

Reading

KE Smith et al, An Invitation to Algebraic Geometry, (Springer 2000), Chapters 1–8.

Further Reading

1. M Reid, Undergraduate Algebraic Geometry, LMS Student Texts 12, (Cambridge
1988).
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2. K Hulek, Elementary Algebraic Geometry, Student Mathematical Library 20. (Amer-
ican Mathematical Society, 2003).

2.14 C3.5: Lie Groups — Prof. Ritter — 16HT

Level: M-level Method of Assessment: Written examination.

Weight: Unit

Recommended Prerequisites

Part A Group Theory, Topology and Multivariable Calculus.

Overview

The theory of Lie Groups is one of the most beautiful developments of pure mathematics
in the twentieth century, with many applications to geometry, theoretical physics and me-
chanics. The subject is an interplay between geometry, analysis and algebra. Lie groups are
groups which are simultaneously manifolds, that is geometric objects where the notion of
differentiability makes sense, and the group multiplication and inversion are differentiable
maps. The majority of examples of Lie groups are the familiar groups of matrices. The
course does not require knowledge of differential geometry: the basic tools needed will be
covered within the course.

Learning Outcomes

Students will have learnt the fundamental relationship between a Lie group and its Lie
algebra, and the basics of representation theory for compact Lie groups. This will include a
firm understanding of maximal tori and the Weyl group, and their role for representations.

Synopsis

Brief introduction to manifolds. Classical Lie groups. Left-invariant vector fields, Lie
algebra of a Lie group. One-parameter subgroups, exponential map. Homomorphisms of
Lie groups and Lie algebras. Ad and ad. Compact connected abelian Lie groups are tori.
The Campbell-Baker-Hausdorff series (statement only).

Lie subgroups. Definition of embedded submanifolds. A subgroup is an embedded Lie
subgroup if and only if it is closed. Continuous homomorphisms of Lie groups are smooth.
Correspondence between Lie subalgebras and Lie subgroups (proved assuming the Frobenius
theorem). Correspondence between Lie group homomorphisms and Lie algebra homomor-
phisms. Ado’s theorem (statement only), Lie’s third theorem.

Basics of representation theory: sums and tensor products of representations, irreducibil-
ity, Schur’s lemma. Compact Lie groups: left-invariant integration, complete reducibility.
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Representations of the circle and of tori. Characters, orthogonality relations. Peter-Weyl
theorem (statement only).

Maximal tori. Roots. Conjugates of a maximal torus cover a compact connected Lie group
(proved assuming the Lefschetz fixed point theorem). Weyl group. Reflections. Weyl
group of U(n). Representations of a compact connected Lie group are the Weyl-invariant
representations of a maximal torus (proof of inclusion only). Representation ring of Tn and
U(n).

Killing form. Remarks about the classification of compact Lie groups.

Reading

1. J. F. Adams, Lectures on Lie Groups (University of Chicago Press, 1982).

2. T. Bröcker and T. tom Dieck, Representations of Compact Lie Groups (Graduate
Texts in Mathematics, Springer, 1985).

Further Reading

1. R. Carter, G. Segal and I. MacDonald, Lectures on Lie Groups and Lie Algebras
(LMS Student Texts, Cambridge, 1995).

2. W. Fulton, J. Harris, Representation Theory: A First Course (Graduate Texts in
Mathematics, Springer, 1991).

3. F. W. Warner, Foundations of Differentiable Manifolds and Lie Groups (Graduate
Texts in Mathematics, 1983).

2.15 C3.6: Modular Forms — Prof Lauder — 16MT

Level: M-Level. Method of Assessment: Written examination.

Weight: Unit

Prerequisites

Part A Analysis and Algebra (core material) and Prelims Group Actions (core material).
Part A Number Theory Topology and Part B Geometry of Surfaces, Algebraic Curves are
useful but not essential.

Overview

The course aims to introduce students to the beautiful theory of modular forms, one of
the cornerstones of modern number theory. This theory is a rich and challenging blend
of methods from complex analysis and linear algebra, and an explicit application of group
actions.
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Learning Outcomes

The student will learn about modular curves and spaces of modular forms, and understand
in special cases how to compute their genus and dimension, respectively. They will see that
modular forms can be described explicitly via their q-expansions, and they will be familiar
with explicit examples of modular forms. They will learn about the rich algebraic structure
on spaces of modular forms, given by Hecke operators and the Petersson inner product.

Synopsis

1. Overview and examples of modular forms. Definition and basic properties of modular
forms.

2. Topology of modular curves: a fundamental domain for the full modular group; fun-
damental domains for subgroups Γ of finite index in the modular group; the compact
surfaces XΓ; explicit triangulations of XΓ and the computation of the genus using
the Euler characteristic formula; the congruence subgroups Γ(N),Γ1(N) and Γ0(N);
examples of genus computations.

3. Dimensions of spaces of modular forms: general dimension formula (proof non-examinable);
the valence formula (proof non-examinable).

4. Examples of modular forms: Eisenstein series in level 1; Ramanujan’s ∆ function;
some arithmetic applications.

5. The Petersson inner product.

6. Modular forms as functions on lattices: modular forms of level 1 as functions on
lattices; Eisenstein series revisited.

7. Hecke operators in level 1: Hecke operators on lattices; Hecke operators on modular
forms and their q-expansions; Hecke operators are Hermitian; multiplicity one.

Reading

1. F. Diamond and J. Shurman, A First Course in Modular Forms, Graduate Texts in
Mathematics 228, Springer-Verlag, 2005.

2. R.C. Gunning, Lectures on Modular Forms, Annals of mathematical studies 48, Prince-
ton University Press, 1962.

3. J.S. Milne, Modular Functions and Modular Forms:
www.jmilne.org/math/CourseNotes/mf.html

4. J.-P. Serre, Chapter VII, A Course in Arithmetic, Graduate Texts in Mathematics 7,
Springer-Verlag, 1973.

www.jmilne.org/math/CourseNotes/mf.html
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2.16 C3.7 Elliptic Curves — Prof. Kim — 16HT

Level: M-Level. Method of Assessment: Written examination.

Weight: Unit

Recommended Prerequisites

It is helpful, but not essential, if students have already taken a standard introduction to
algebraic curves and algebraic number theory. For those students who may have gaps in
their background, I have placed the file “Preliminary Reading” permanently on the Elliptic
Curves webpage, which gives in detail (about 30 pages) the main prerequisite knowledge for
the course. Go first to: http://www.maths.ox.ac.uk/courses/material then click on “C3.7
Elliptic Curves” and then click on the pdf file “Preliminary Reading”.

Overview

Elliptic curves give the simplest examples of many of the most interesting phenomena
which can occur in algebraic curves; they have an incredibly rich structure and have been
the testing ground for many developments in algebraic geometry whilst the theory is still
full of deep unsolved conjectures, some of which are amongst the oldest unsolved problems
in mathematics. The course will concentrate on arithmetic aspects of elliptic curves defined
over the rationals, with the study of the group of rational points, and explicit determination
of the rank, being the primary focus. Using elliptic curves over the rationals as an example,
we will be able to introduce many of the basic tools for studying arithmetic properties of
algebraic varieties.

Learning Outcomes

On completing the course, students should be able to understand and use properties of
elliptic curves, such as the group law, the torsion group of rational points, and 2-isogenies
between elliptic curves. They should be able to understand and apply the theory of fields
with valuations, emphasising the p-adic numbers, and be able to prove and apply Hensel’s
Lemma in problem solving. They should be able to understand the proof of the Mordell–
Weil Theorem for the case when an elliptic curve has a rational point of order 2, and compute
ranks in such cases, for examples where all homogeneous spaces for descent-via-2-isogeny
satisfy the Hasse principle. They should also be able to apply the elliptic curve method for
the factorisation of integers.

Synopsis

Non-singular cubics and the group law; Weierstrass equations.
Elliptic curves over finite fields; Hasse estimate (stated without proof).
p-adic fields (basic definitions and properties).
1-dimensional formal groups (basic definitions and properties).
Curves over p-adic fields and reduction mod p.
Computation of torsion groups over Q; the Nagell–Lutz theorem.
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2-isogenies on elliptic curves defined over Q, with a Q-rational point of order 2.
Weak Mordell–Weil Theorem for elliptic curves defined over Q, with a Q-rational point of
order 2.
Height functions on Abelian groups and basic properties.
Heights of points on elliptic curves defined over Q; statement (without proof) that this gives
a height function on the Mordell–Weil group.
Mordell–Weil Theorem for elliptic curves defined over Q, with a Q-rational point of order
2.
Explicit computation of rank using descent via 2-isogeny.
Public keys in cryptography; Pollard’s (p − 1) method and the elliptic curve method of
factorisation.

Reading

1. J.W.S. Cassels, Lectures on Elliptic Curves, LMS Student Texts 24 (Cambridge Uni-
versity Press, 1991).

2. N. Koblitz, A Course in Number Theory and Cryptography, Graduate Texts in Math-
ematics 114 (Springer, 1987).

3. J.H. Silverman and J. Tate, Rational Points on Elliptic Curves, Undergraduate Texts
in Mathematics (Springer, 1992).

4. J.H. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics
106 (Springer, 1986).

Further Reading

1. A. Knapp, Elliptic Curves, Mathematical Notes 40 (Princeton University Press, 1992).

2. G, Cornell, J.H. Silverman and G. Stevans (editors), Modular Forms and Fermat’s
Last Theorem (Springer, 1997).

3. J.H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Graduate Texts
in Mathematics 151 (Springer, 1994).

2.17 C3.8: Analytic Number Theory —Prof. Heath-Brown—16MT

Level: M-Level. Method of Assessment: Written examination.

Weight: Unit

Recommended Prerequisites

Complex analysis (holomorphic and meromorphic functions, Cauchy’s Residue Theorem,
Evaluation of integrals by contour integration, Uniformly convergent sums of holomorphic
functions). Elementary number theory (Unique Factorization Theorem).
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Overview

The course aims to introduce students to the theory of prime numbers, showing how the
irregularities in this elusive sequence can be tamed by the power of complex analysis. The
course builds up to the Prime Number Theorem which is the corner-stone of prime number
theory, and culminates in a description of the Riemann Hypothesis, which is arguably the
most important unsolved problem in modern mathematics.

Learning Outcomes

Students will learn to handle multiplicative functions, to deal with Dirichlet series as func-
tions of a complex variable, and to prove the Prime Number Theorem and simple variants.

Synopsis

Introductory material on primes.

Arithmetic functions — Möbius function, Euler function, Divisor function, Sigma function
— multiplicativity.

Dirichlet series — Euler products — von Mangoldt function.

Riemann Zeta-function — analytic continuation to Re(s) > 0.

Non-vanishing of ζ(s) on Re(s) = 1.

Proof of the prime number theorem.

The Riemann hypothesis and its significance.

The Gamma function, the functional equation for ζ(s), the value of ζ(s) at negative integers.

Reading

1. T.M. Apostol, Introduction to Analytic Number Theory, Undergraduate Texts in
Mathematics (Springer-Verlag, 1976). Chapters 2,3,11,12 and 13.

2. M. Ram Murty, Problems in Analytic Number Theory (Springer, 2001). Chapters 1 –
5.

3. G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers (Sixth
edition, Oxford University Press, 2008). Chapters 16 ,17 and 18.

4. G.J.O. Jameson, The Prime Number Theorem, LMS Student Texts 53 (Cambridge
University Press, 2003).

2.18 C4.1: Functional Analysis — Prof. Kristensen — 16MT

Level: M-level Method of Assessment: Written examination.

Weight: Unit
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Recommended Prerequisites

Part A Topology, B4 Analysis

Overview

This course builds on B4, by extending the theory of Banach spaces and operators. As well
as developing general methods that are useful in Operator Theory, we shall look in more
detail at the structure and special properties of “classical” sequence-spaces and function-
spaces.

Synopsis

Normed spaces and Banach spaces; dual spaces, subspaces, direct sums and completions;
quotient spaces and quotient operators.

Baire’s Category Theorem and its consequences (review).

Classical Banach spaces and their duals; smoothness and uniform convexity of norms.

Compact sets and compact operators. Ascoli’s theorem.

Hahn–Banach extension and separation theorems; the bidual space and reflexivity.

Weak and weak* topologies. The Banach–Alaoglu theorem and Goldstine’s theorem. Weak
compactness.

Schauder bases; examples in classical spaces. Gliding-hump arguments.

Fredholm operators.

Reading

1. M. Fabian et al., Functional Analysis and Infinite-Dimensional Geometry (Canadian
Math. Soc, Springer 2001), Chapters 1,2,3,6,7.

Alternative Reading

1. N. L. Carothers, A Short Course on Banach Space Theory, (LMS Student Text, Cam-
bridge University Press 2004).

2.19 C4.2 Linear Operators — Prof. Batty — 16HT

Level: M-level Method of assessment: Written examination.

Weight: Unit
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Recommended Prerequisites

Essential: B4a, B4b. Useful: C4.1

Overview

Many of the linear operators that arise in mathematical physics and models from other
sciences are not bounded operators. Typically they are defined on a dense subspace of a
Banach or Hilbert space. They may be closed operators, but sometimes it is necessary to
find the appropriate closed extension of the operator and the domain of the extension may
be unclear. This course describes some of the theory of unbounded operators, particularly
spectral properties of closed operators and ways to convert them into bounded operators.

Synopsis

Review of bounded operators and spectrum.

Unbounded operators; closed and closable operators; adjoints, spectrum.

Operators on Hilbert space; symmetric, self-adjoint, essentially self-adjoint. Spectral theo-
rem and functional calculus. Quadratic forms, simple differential operators.

Semigroups of operators, generators, Hille-Yosida theorem, dissipative operators.

Reading

E.B. Davies, Linear operators and their spectra, CUP, 2007

P. Lax, Functional Analysis, Wiley, 2002

Further Reading

M. Reed & B. Simon, Methods of modern mathematical physics I,II, Academic Press, 1972,
1975

E.B. Davies, Differential operators and spectral theory, CUP, 1995

2.20 C4.3 Functional Analytic Methods for PDEs — Prof. Seregin —
16MT

Level: M-level Method of assessment: Written examination.

Weight: Unit

Recommended Prerequisites

Part A Integration. There will be a ‘Users’ Guide to Integration’ on the subject website
and anyone who has not done Part A Integration can read it up over the summer vacation.
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In addition some knowledge of functional analysis, in particular Banach spaces (as in B4)
and compactness (as in Part A Topology), is useful. We will however recall the relevant
definitions as we go along so these prerequisites are not strictly needed.

Overview

The course will introduce some of the modern techniques in partial differential equations
that are central to the theoretical and numerical treatments of linear and nonlinear partial
differential equations arising in science, geometry and other fields.

It provides valuable background for the Part C courses on Calculus of Variations, Fixed
Point Methods for Nonlinear PDEs, and Finite Element Methods.

Learning Outcomes

Students will learn techniques and results about Lebesgue and Sobolev Spaces, distribu-
tions and weak derivatives, embedding theorems, traces, weak solution to elliptic PDE’s,
existence, uniqueness, and smoothness of weak solutions.

Synopsis

Why functional analysis methods are important for PDE’s?

Revision of relevant definitions and statements from functional analysis: completeness,
seperability, compactness, and duality.

Revision of relevant definitions and statements from Lebesgue integration theory: sequences
of measurable functions, Lebesgue and Riesz theorems.

Lebesgue spaces: completeness, dense sets, linear functionals and weak convergence.

Distributions and distributional derivatives.

Sobolev spaces: mollifications and weak derivatives, completeness, Friedrichs inequality,
star-shaped domains and dense sets, extension of functions with weak derivatives.

Embedding of Sobolev spaces into Lebesgue spaces: Poincare inequality, Reillich-Kondrachov-
Sobolev theorems on compactness.

Traces of functions with weak derivatives.

Dirichlet boundary value problems for elliptic PDE’s, Fredholm Alternative (uniqueness
implies existence).

Smoothness of weak solutions: embedding from Sobolev spaces into spaces of Hölder con-
tinuous functions, interior regularity of distributional solutions to elliptic equations with
continuous coefficients.

Reading

Lawrence C. Evans, Partial differential equations, (Graduate Studies in Mathematics 2004),
American Mathematical Society
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Elliott H. Lieb and Michael Loss, Analysis, 2nd Edition, (Graduate Studies in Mathematics
2001), American Mathematical Society

Additional Reading

E. Kreyszig, Introductory Functional Analysis with Applications, Wiley (revised edition,
1989)

P.D. Lax Functional analysis (Wiley-Interscience, New York, 2002).

J. Rauch, Partial differential equations, (Springer–Verlag, New York, 1992).

2.21 C4.4: Hyperbolic Equations — Prof. Wang — 16HT

Level: M-level Method of assessment: Written examination.

Weight: Unit

Recommended Prerequisites

Part A Integration, Part A Topology, it would also be useful if the students had attended B4
(Banach and Hilbert Spaces) B5b (Applied PDEs) and C5.1a (Functional Analytic Methods
for PDEs). We expand on the themes briefly discussed in B5b (Applied PDES), and provide
a rigorous treatment in the frame work of Sobolev spaces.

Overview

We introduce geometric and analysis approaches to hyperbolic equations, by discussing
model problems from wave equations and conservation laws. These approaches have been
applied and extended extensively in recent research, and lie in the heart of theory of hyper-
bolic PDEs.

Learning Outcomes

Synopsis

1. Sobolev space and Sobolev inequalities

2. Nonlinear first order equations: Eikonal equations and method of characteristics

3. Introduction to conservation laws in one space dimension (shocks, simple waves, rar-
efaction waves, Riemann problem)

4. Theory of linear wave equation : The solution of Cauchy problem, energy estimates,
finite speed of propagation, domain of determination, ligntcone and null frames, hy-
perbolic rotation and Lorentz vector fields, Klainerman inequality.

5. Weak solution of wave equation, and local well-posedness
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6. Littlewood-Paley theory and harmonic analysis technique for wave equation (off syl-
labus - not required for exam)

Reading

We follow the main structure of [1], and refer to [3] and [2, Chapter 3,5,7] for detailed
exposition. We use notes by Tao, T. to present the last topic.

1. Alinhac, S, Hyperbolic partial differential equations, an elementary introduction, 2008,
http://www.math.u-psud.fr/ alinhac/tot1.pdf

2. Evans, L, Partial differential equations. Second edition. Graduate Studies in Mathe-
matics, 19. American Mathematical Society, 2010.

3. John, F, Partial differential equations. Fourth edition. Applied Mathematical Sci-
ences, 1. Springer-Verlag, New York, 1982

2.22 C4.5: Ergodic Theory — Prof. Green — 16MT

Level: M-level Method of Assessment: Written examination.

Weight: Unit

Prerequisites

A2 Metric Spaces and Complex Analysis (the metric spaces part), A4 Integration (very
helpful), A5 Topology (basic definitions only). Course B4b Hilbert Spaces is relevant but
by no means essential. It will be impossible to avoid talking about measures and Lp-spaces.
However, we will make very little use of the construction of Lebesgue measure, and I will
spend a couple of lectures going over the statements of and ideas behind everything we
need.

Overview

Ergodic theory seeks to study equidistribution and mixing phenomena. Suppose that T :
X → X is a map from a space X to itself. Do the orbits x, Tx, T 2x, T 3x, . . . Tn−1x become
equidistributed on X as n → ∞? If A,B ⊂ X are sets, will iterates of T eventually take
elements of A into B, and if so how often? This course is an introduction to ergodic theory,
motivated by applications in number theory such as continued fractions and Szemerédi’s
theorem that sets of positive density contain arbitrarily long arithmetic progressions.

Synopsis

Review of measure theory and Lp-spaces. Measure preserving systems.

http://www.math.u-psud.fr/~alinhac/tot1.pdf
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The Poincaré recurrence theorem. Definition of ergodicity and basic examples: irrational
rotations and the doubling map.

Ergodic theorems. Von Neumann’s mean ergodic theorem, the maximal ergodic theorem,
Birkhoffs almost-everywhere ergodic theorem.

Applications of the ergodic theorem: normal numbers, Khintchine’s recurrence theorem,
continued fractions and the Gauss map.

Weak mixing and compact systems. The Furstenberg correspon- dence principle and Sze-
merédi’s theorem. Proof in the weak-mixing and compact cases.

Further topics as times allows: entropy, flows on homogeneous spaces.

Reading

Many texts on this subject are rather dense and forbidding. A nice text is the recent book
Ergodic Theory - with a view towards number theory by Einsiedler and Ward, Springer
Graduate Texts in Math 259. I plan to produce full notes for the course.

2.23 C5.1: Solid Mechanics — Prof Goriely — 16 MT

Level: M-level Method of Assessment: Written examination.

Weight: Unit

Prerequisites

There are no formal prerequisites. In particular it is not necessary to have taken any courses
in fluid mechanics, though having done so provides some background in the use of similar
concepts. Use is made of (i) elementary linear algebra in (e.g., eigenvalues, eigenvectors
and diagonalization of symmetric matrices, and revision of this material, for example from
the Mods Linear Algebra course, is useful preparation); and (ii) some 3D calculus (mainly
differentiation of vector-valued functions of several variables). All necessary material is
summarized in the course.

Overview

Solid mechanics is a vital ingredient of materials science and engineering, and is playing
an increasing role in biology. It has a rich mathematical structure. The aim of the course
is to derive the basic equations of elasticity theory, the central model of solid mechanics,
and give some interesting applications to the behaviour of materials.The course is useful
preparation for C6.1b Elasticity and Plasticity. Taken together the two courses will provide
a broad overview of modern solid mechanics, with a variety of approaches.
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Learning Outcomes

Students will learn basic techniques of modern continuum mechanics, such as kinematics of
deformation, stress, constitutive equations and the relation between nonlinear and linearized
models. The emphasis on the course is on the structure of the models, but some applications
are also discussed.

Synopsis

Kinematics: Lagrangian and Eulerian descriptions of motion, deformation gradient, invert-
ibility

Analysis of strain: polar decomposition, stretch tensors, Cauchy–Green tensors Stress Prin-
ciple: forces in continuum mechanics, balance of forces, Cauchy stress tensor, the Piola–
Kirchhoff stress

Constitutive Models: stress-strain relations, hyperelasticity and stored energy function,
boundary value problems, the variational problem, frame indifference, material symmetry,
isotropic materials

Further topics: incompressible elasticity, linearized elasticity and the shape-memory effect
in crystalline solids.

Reading

1. O. Gonzales and A. Stuart, A first course in continuum mechanics, (Cambridge Uni-
versity Press, 2008).

2. M. E. Gurtin, A introduction to continuum mechanics, (Academic Press, 1981).

Further Reading

1. P. G. Ciarlet, Mathematical Elasticity. Vol. I Three-dimensional Elasticity, (North-
Holland, 1988)

2. S. S. Antman, Nonlinear Problems of Elasticity, (Springer, 1995)

3. J. E. Marsden and T.J.R. Hughes, Mathematical Foundations of Elasticity, Prentice–
Hall, 1983

2.24 C5.2: Elasticity and Plasticity — Prof Vella — 16HT

Level: M-level Method of Assessment: Written examination.

Weight: Unit
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Recommended Prerequisites

Familiarity will be assumed with Part A Complex Analysis, Differential Equations and
Calculus of Variations, as well as B568 Introduction to Applied Mathematics. A basic
understanding of stress tensors from either B6a Viscous Flow or C5.1 Solid Mechanics
will also be required. The following courses are also helpful: B5a Techniques of Applied
Mathematics, B5b Applied Partial Differential Equations, C5.5 Perturbation Methods, C5.6
Applied Complex Variables.

Overview

The course starts with a rapid overview of mathematical models for basic solid mechanics.
Benchmark solutions are derived for static problems and wave propagation in linear elastic
materials. It is then shown how these results can be used as a basis for practically useful
problems involving thin beams and plates. Simple geometrically nonlinear models are then
introduced to explain buckling, fracture and contact. Models for yield and plasticity are
then discussed, both microscopically and macroscopically.

Synopsis

Review of tensors, conservation laws, Navier equations. Antiplane strain, torsion, plane
strain. Elastic wave propagation, Rayleigh waves. Ad hoc approximations for thin materi-
als; simple bifurcation theory and buckling. Simple mixed boundary value problems, brittle
fracture and smooth contact. Perfect plasticity theories for granular materials and metals.

Reading

1. P. D. Howell, G. Kozyreff and J. R. Ockendon, Applied Solid Mechanics (Cambridge
University Press, 2008).

2. S. P. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw-Hill, 1970).

3. L.D. Landau and E.M. Lifshitz, Theory of Elasticity (Pergamon Press, 1986).

2.25 C5.3: Statistical Mechanics — Prof. Fowler — 16MT

Level: M-level Method of Assessment: Written examination.

Weight: Unit

Recommended Prerequisites

A familiarity with classical mechanics, probability and fluid mechanics will be helpful.
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Overview

Statistical mechanics is a subject which has fundamental and powerful connections with
probability, mechanics, stochastic processes, fluid mechanics, thermodynamics, quantum
mechanics (though we avoid this), and even philosophy. It is also notoriously inaccessible
to applied mathematicians. This course will endeavour to trace a rational path towards
classical statistical mechanics, beginning with classical mechanics, and then developing the
concepts of thermodynamics through study of the Boltzmann equation. In passing, we
derive the Navier-Stokes equations, before developing a mechanically-based formulation of
thermodynamics and its famous second law concerning entropy. The latter parts of the
course develop a variety of applications of current interest.

Learning Outcomes

Students will have developed a sound knowledge and appreciation of some of the tools,
concepts, and computations used in the study of statistical mechanics. They will also get
some exposure to some modern research topics in the field.

Synopsis

Classical mechanics: Newton’s second law, D’Alembert’s principle, Lagrange’s equations,
Hamilton’s equations. Probability: probability density functions, moment generating func-
tion, central limit theorem. Fluid mechanics: material derivative, Euler and Navier-Stokes
equations, energy equation. Random walks, Brownian motion, diffusion equation. Loschmidt’s
paradox.

Liouville equation, BBGKY hierarchy, Boltzmann equation. The collision integral for a
hard sphere gas. Boltzmann H theorem. Maxwellian distribution. Definition of entropy
and temperature. Gibbs and Helmholtz free energies. Thermodynamic relations.

Classical statistical mechanics. Ergodic theorem, equiprobability. Microcanonical ensemble
for the hard sphere gas, entropy. Canonical ensemble.

Selected applications and extensions: for example, chemical potential, phase change, bi-
nary alloys, surface energy, radiative transfer, polymer solution theory, Arrhenius kinetics,
nucleation theory, percolation theory, renormalisation.

Reading

1. David Chandler, Introduction to Modern Statistical Mechanics (Oxford University
Press 1987)

2. M. Kardar, Statistical Physics of Particles (Cambridge University Press 2007)

3. F. Schwabl, Statistical Mechanics 2nd ed. (Springer-Verlag 2006)

4. J.P. Sethna, Statistical Mechanics: Entropy, Order Parameters, and Complexity (Ox-
ford University Press 2006) [available online at http://pages.physics.cornell.edu/sethna/StatMech]

http://pages.physics.cornell.edu/sethna/StatMech/
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2.26 C5.4: Networks — Prof. Porter — 16HT

Level: M-level Method of Assessment: Written examination.

Weight: Unit

Recommended Prerequisites

None [in particular, C5.3 (Statistical Mechanics) is not
¯

required], though some intuition from
modules like C5.3, the Part B graph theory course, and probability courses (at the level
that everybody has to take anyway) can be useful. However, everything is self-contained,
and none of these courses are required. Some computational experience is also helpful, and
ideas from linear algebra will certainly be helpful.

Overview

This course aims to provide an introduction to network science, which can be used to
study complex systems of interacting agents. Networks are interesting both mathematically
and computationally, and they are pervasive in physics, biology, sociology, information
science, and myriad other fields. The study of networks is one of the “rising stars” of
scientific endeavors, and networks have become among the most important subjects for
applied mathematicians to study. Most of the topics to be considered are active modern
research areas.

Learning Outcomes

Students will have developed a sound knowledge and appreciation of some of the tools,
concepts, and computations used in the study of networks. The study of networks is pre-
dominantly a modern subject, so the students will also be expected to develop the ability
to read and understand current (2015) research papers in the field.

Synopsis

1. Introduction and Basic Concepts (1-2 lectures): nodes, edges, adjacencies, weighted
networks, unweighted networks, degree and strength, degree distribution, other types of
networks

2. Small Worlds (2 lectures): clustering coefficients, paths and geodesic paths, Watts-
Strogatz networks [focus is on modelling and heuristic calculations]

3. Toy Models of Network Formation (2 lectures): preferential attachment, generalizations
of preferential attachment, network optimization

4. Additional Summary Statistics and Other Useful Concepts (2 lectures): modularity and
assortativity, degree-degree correlations, centrality measures, communicability, reciprocity
and structural balance

5. Random Graphs (2 lectures): Erdős-Rényi graphs, configuration model, random graphs
with clustering, other models of random graphs or hypergraphs; application of generating-
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function methods [focus is on modelling and heuristic calculations; material in this section
forms an important basis for sections 6 and 7]

6. Community Structure and Mesoscopic Structure (2 lectures): linkage clustering, opti-
mization of modularity and other quality functions, overlapping communities, other meth-
ods and generalizations

7. Dynamics on (and of) Networks (3-4 lectures): general ideas, models of biological and
social contagions, percolation, voter and opinion models, temporal networks, other topics

8. Additional Topics (0-2 lectures): games on networks, exponential random graphs, net-
work inference, other topics of special interest to students [depending on how much room
there is and interest of current students]

Reading

(most important are [2] and [3]):

1. A. Barrat et al, Dynamical Processes on Complex Networks, Cambridge University
Press, 2008

2. M. E. J. Newman, Networks: An Introduction, Oxford University Press, 2010 [also,
Newman’s 2003 review article in SIAM Review for ”older” topics]

3. M. A. Porter, A Terse Introduction to Networks, Springer, in preparation

4. Various papers and review articles (see the Math C6.2b blog at http://networksoxford.blogspot.co.uk
for examples). The instructor will indicate a small number of specific review articles
that should be read along with the notes, and other helpful (but optional) articles will
also be indicated.”

5. Other networks books are also useful. (I will point interested students to them if they
ask, but I have listed enough things here. They can also look in the references in the
textbook I am writing.)

2.27 C5.5: Perturbation Methods — Prof. Oliver — 16MT

Level: M-level Method of Assessment: Written examination.

Weight: Unit

Recommended Prerequisites

Part A Differential Equations and Core Analysis (Complex Analysis). B5, B6 and B8 are
helpful but not officially required.

http://networksoxford.blogspot.co.uk
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Overview

Perturbation methods underlie numerous applications of physical applied mathematics: in-
cluding boundary layers in viscous flow, celestial mechanics, optics, shock waves, reaction-
diffusion equations, and nonlinear oscillations. The aims of the course are to give a clear
and systematic account of modern perturbation theory and to show how it can be applied
to differential equations.

Synopsis

Asymptotic expansions. Asymptotic evaluation of integrals (including Laplace’s method,
method of stationary phase, method of steepest descent). Regular and singular perturbation
theory. Multiple-scale perturbation theory. WKB theory and semiclassics. Boundary layers
and related topics. Applications to nonlinear oscillators. Applications to partial differential
equations and nonlinear waves.

Reading

1. E.J. Hinch, Perturbation Methods (Cambridge University Press, 1991), Chs. 1–3, 5–7.

2. C.M. Bender and S.A. Orszag, Advanced Mathematical Methods for Scientists and
Engineers (Springer, 1999), Chs. 6, 7, 9–11.

3. J. Kevorkian and J.D. Cole, Perturbation Methods in Applied Mathematics (Springer-
Verlag, 1981), Chs. 1, 2.1–2.5, 3.1, 3.2, 3.6, 4.1, 5.2.

2.28 C5.6: Applied Complex Variables — Prof. Howell — 16HT

Level: M-level Method of Assessment: Written examination.

Weight: Unit

Recommended Prerequisites

The course requires second year core analysis (complex analysis). It continues the study of
complex variables in the directions suggested by contour integration and conformal mapping.
Part A Fluid Dynamics and Waves and Part C Perturbation Methods are desirable

Overview

The course begins where core second-year complex analysis leaves off, and is devoted to
extensions and applications of that material. It is assumed that students will be familiar
with inviscid two-dimensional hydrodynamics (Part A Fluid Dynamics and Waves) to the
extent of the existence of a harmonic stream function and velocity potential in irrotational
icompressible flow, and Bernoulli’s equation.
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Synopsis

Review of core complex analysis, especially continuation, multifunctions, contour integra-
tion, conformal mapping and Fourier transforms.

Riemann mapping theorem (in statement only). Schwarz-Christoffel formula. Solution
of Laplace’s equation by conformal mapping onto a canonical domain. Applications to
inviscid hydrodynamics: flow past an aerofoil and other obstacles by conformal mapping;
free streamline flows of hodograph plane. Unsteady flow with free boundaries in porous
media.

Application of Cauchy integrals and Plemelj formulae. Solution of mixed boundary value
problems motivated by thin aerofoil theory and the theory of cracks in elastic solids.
Reimann-Hilbert problems. Cauchy singular integral equations. Transform methods, com-
plex Fourier transform. Contour integral solutions of ODE’s. Wiener-Hopf method.

Reading

1. G.F. Carrier, M. Krook and C.E. Pearson, Functions of a Complex Variable(Society
for Industrial and Applied Mathematics, 2005.) ISBN 0898715954.

2. M. J. Ablowitz and A. S. Fokas, Complex Variables: Introduction and Applications
(2nd edition, Cambridge University Press., Cambridge, 2003). ISBN 0521534291.

3. J. Ockendon, Howison, Lacey and Movichan, Applied Partial Differential Equations
(Oxford, 1999) Pages 195–212.

2.29 C5.7: Topics in Fluid Mechanics — Prof. Muench — 16MT

Level: M-level Method of Assessment: Written examination,

Weight: Unit

Prerequisites

B6 fluid mechanics.

Overview

The course will expand and illuminate the ‘classical’ fluid mechanics taught in the third year
course B6, and illustrate its modern application in a number of different areas in industry
and geoscience.
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Synopsis

Thin film flows: coatings and foams. Lubrication theory: gravity flows, Marangoni effects.
Droplet dynamics, contact lines, menisci. Drying and wetting.

Flow in porous media: Darcy’s law; thermal and solutal convection; gravity-driven flow and
carbon sequestration.

Multiphase flows.

Reading

1. L.G Leal, Advanced Transport Phenomena,(Cambridge University Press, Cambridge,
2007).

2. O.M. Phillips, Geological Fluid Dynamics,(Cambridge University Press, Cambridge,
2009).

3. J.S. Turner, Buoyancy Effects in Fluids, (Cambridge University Press, Cambridge,
1973).

Further Reading

1. G. K. Batchelor, H. K. Moffatt and M. G. Worster (eds.), Perspectives in Fluid Dy-
namics (Cambridge University Press, Cambridge, 2000).

2.30 C5.8: Stochastic Modelling of Biological Processes – Prof. Chapman
– 16HT

Level: M-level Method of Assessment: Written examination.

Weight: Unit

Recommended Prerequisites

A basic understanding of probability is sufficient. The course is designed in such a way that a
Part C student should be able to understand it without taking special stochastic or biological
classes. Computer simulations play an important role in stochastic modelling in biology.
Previous experience with programming is not needed, but enthusiasm and willingness to
implement simple models on the computer will significantly enhance understanding of the
underlying mathematical concepts.

Overview

This course provides an overview of stochastic methods which are used for modelling biolog-
ical systems. The course starts with stochastic modelling of chemical reactions, introducing
stochastic simulation algorithms and mathematical methods which can be used for analysis
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of stochastic models (chemical master equation). Systems with increasing level of complexity
are used to illustrate the theory. Then stochastic differential equations are introduced (from
the computational point of view), explaining their connections with modelling chemical sys-
tems and the Fokker-Planck equation. Different models of molecular diffusion (on-lattice
and off-lattice models, velocity jump processes) and their properties are studied, before
moving to stochastic reaction-diffusion models. Compartment-based and molecular-based
approaches to stochastic reaction-diffusion modelling (Brownian dynamics) are discussed to-
gether with properties of stochastic spatially-distributed models (pattern formation). The
final lectures include discussion of bacterial chemotaxis, Metropolis-Hastings algorithm and
multiscale modelling.

Learning Outcomes

The student will learn: (i) about biological systems which are often described in terms of
stochastic models; (ii) mathematical techniques which are used for the analysis of stochastic
models; (iii) how the models can be efficiently simulated using a computer; (iv) connections
and differences between different stochastic methods, and between stochastic and determin-
istic modelling.

Synopses

Stochastic simulation of chemical reactions: well-stirred systems, Gillespie algorithm, chem-
ical master equation, analysis of simple systems, deterministic vs. stochastic modelling,
systems with multiple favourable states, stochastic resonance, stochastic focusing.

Stochastic differential equations: numerical methods, Fokker-Planck equation, first exit
time, backward Kolmogorov equation, chemical Fokker-Planck equation.

Diffusion: Brownian motion, on-lattice and off-lattice models, compartment-based ap-
proach, velocity jump processes, Einstein-Smoluchowski relation, diffusion to adsorbing
surfaces, reactive boundary conditions.

Stochastic reaction-diffusion models: compartment-based reaction-diffusion algorithm, reaction-
diffusion master equation, pattern formation, morphogen gradients, Turing patterns, molecular-
based approaches to reaction-diffusion modelling, Brownian dynamics, reaction radius.

Bacterial chemotaxis: reaction-diffusion-advection processes, velocity jump processes with
internal dynamics, agent-based modelling.

Metropolis-Hastings algorithm: Markov chain Monte Carlo methods.

Multiscale modelling: efficient stochastic modelling of chemical reactions, multiscale SSA
with partial equilibrium assumption, hybrid modelling approaches.

Reading

1. R. Erban, J. Chapman and P. Maini: “A practical guide to stochastic simulations
of reaction-diffusion processes”, available as http://arxiv.org/abs/0704.1908, 2007
(course lecture notes extend this material)

http://arxiv.org/abs/0704.1908
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Further Reading

1. H. Berg: “Random Walks in Biology”, new, expanded edition, Princeton University
Press, 1993,

2. D. Gillespie: “Markov Processes, an Introduction for Physical Scientists”, Academic
Press, Inc.,1992

3. A.Chorin and O.Hald: “Stochastic Tools for Mathematics and Science”, 2nd Edition,
Springer, 2009

2.31 C5.9: Mathematical Mechanical Biology — Prof. Goriely — 16HT

Level: M-level Method of Assessment: Written examination.

Weight: Unit

Recommended Prerequisites

Fluid Mechanics: Part A Fluid Dynamics and Waves and at least one of Part B fluids
is recommended. Solid mechanics: One of the Part C courses (Solid Mechanics or Elas-
ticity/Plasticity is recommended) Mathematical biology or physiology is desirable but not
necessary as the material for a particular biological system will be part of the course.

Overview

The course will be motivated by outstanding problems in physiology and biology but the
emphasis is on the mathematical tools needed to answer some biologically relevant problems.
The course is divided into modules and three modules will be given during a term but these
modules can change from one year to the next.

Learning Outcomes

The goal of this course is to learn the physical background and mathematical methods
behind many problems arising in mechanical biology from the cellular level all the way to
the organism. Students will familiarise themselves with key notions used in modern research
in bio-physics and mechano-biology.

Synopsis

1. Bio-Filaments (2 1/2 weeks)
(a) Introduction: bio-molecules (actin, microtubules, DNA,...)
(b) Randomly fluctuating chains (statistical mechanics)
(c) Continuous filaments (neurons, stems, roots, plants)
(d) Differential geometry of curves: Kirchhoff rod theory and beam theory
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2. Bio-Membranes (2 1/2 weeks)
(a) Introduction: lipid bilayer, cell membranes
(b) Differential geometry of surfaces: curvatures, Gauss–Bonnet theorem
(c) Fluid membranes: shape equation, fluctuating membranes
(d) Solid membranes, shells and their application to the cell, plants and microbes.

3. Bio-solids and growth (3 weeks)
(a) Introduction: nonlinear elasticity for soft tissues
(b) one-dimensional growth theory
(c) volumetric growth: multiplicative decomposition
(d) application to neuronal growth, tumour

The following 2 modules will not be taught in 2014-15.

4. Bio-Fluids (3 weeks)
(a) Low Reynolds Number: Motility, Scallop theorem.
(b) Complex biofluids: active and non-Newtonian fluids
(c) Circulation: Blood flow, microcirculation, networks

5. Multiphase/Multiphysics methods (3 weeks)
(a) Coupling fluids and solids: poro-elastic tissue
(b) Coupling fluid, solids and chemistry: tissue swelling
(c) A general thermodynamics approach
(d) Application to tissue engineering, wound healing.

Reading

1. Physical Cell Biology, second ed. Rob Phillips et al. Garland Science.

2. Cardiovascular solid mechanics. Cells, tissues, and organs, Humpherey, 2002, Springer.

3. Nonlinear Solid Mechanics: A Continuum Approach for Enineering: A Continuum
Approach for Engineering, G. Holzapfel, 200, Wiley.

2.32 C5.11: Mathematical Geoscience — Prof. Fowler and Prof. Sander
— 16MT

Level: M-level Method of Assessment: Written examination.

Weight: Unit

Recommended Prerequisites

B6 highly recommended.
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Overview

The aim of the course is to illustrate the techniques of mathematical modelling in their
particular application to environmental problems. The mathematical techniques used are
drawn from the theory of ordinary differential equations and partial differential equations.
However, the course does require the willingness to become familiar with a range of different
scientific disciplines. In particular, familiarity with the concepts of fluid mechanics will be
useful.

Synopsis

Applications of mathematics to environmental or geophysical problems involving the use
of models with ordinary and partial differential equations. Examples to be considered are:
Climate dynamics. River flow and sediment transport. Glacier dynamics.

Reading

1. A. C. Fowler, Mathematical Geoscience (Springer, 2011).

2. K. Richards, Rivers (Methuen, 1982).

3. G. B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974).

4. K. M. Cuffey and W. S. B. Paterson, The Physics of Glaciers (4th edition, Butterworth-
Heinemann, 2011).

5. J. T. Houghton, The Physics of Atmospheres (3rd ed., Cambridge University Press.,
Cambridge, 2002).

2.33 C5.12: Mathematical Physiology — Prof. Waters — 16HT

Level: M-level Method of Assessment: Written examination.

Weight: Unit

Recommended Prerequisites

B8a highly recommended.

Overview

The course aims to provide an introduction which can bring students within reach of cur-
rent research topics in physiology, by synthesising a coherent description of the physiological
background with realistic mathematical models and their analysis. The concepts and treat-
ment of oscillations, waves and stability are central to the course, which develops ideas
introduced in the more elementary B8a course. In addition, the lecture sequence aims to
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build understanding of the workings of the human body by treating in sequence problems
at the intracellular, intercellular, whole organ and systemic levels.

Synopsis

Review of enzyme reactions and Michaelis–Menten theory. Trans-membrane ion transport:
Hodgkin–Huxley and Fitzhugh–Nagumo models.

Excitable media; wave propagation in neurons.

Calcium dynamics; calcium-induced calcium release. Intracellular oscillations and wave
propagation.

The electrochemical action of the heart. Spiral waves, tachycardia and fibrillation.

Discrete delays in physiological systems. The Glass–Mackey model of respiration. Regula-
tion of stem cell and blood cell production. Dynamical diseases.

Reading

The principal text is:

1. J. Keener and J. Sneyd, Mathematical Physiology (Springer-Verlag, 1998). Chs. 1, 4,
5, 9–12, 14–17. [Or: Second edition Vol I: Chs. 1, 2, 4, 5, 6, 7. Vol II: Chs. 11, 13,
14. (Springer-Verlag, 2009)]

Subsidiary mathematical texts are:

1. J. D. Murray, Mathematical Biology (Springer-Verlag, 2nd ed., 1993). [Third edition,
Vols I and II, (Springer-Verlag, 2003).]

2. L. A. Segel, Modeling Dynamic Phenomena in Molecular and Cellular Biology (Cam-
bridge University Press, 1984).

3. L. Glass and M. C. Mackey, From Clocks to Chaos (Princeton University Press, 1988).

4. P. Grindrod, Patterns and Waves (oup, 1991).

General physiology texts are:

1. R. M. Berne and M. N. Levy, Principles of Physiology (2nd ed., Mosby, St. Louis,
1996).

2. J. R. Levick, An Introduction to Cardiovascular Physiology (3rd ed. Butterworth–
Heinemann, Oxford, 2000).

3. A. C. Guyton and J. E. Hall, Textbook of Medical Physiology (10th ed., W. B. Saunders
Co., Philadelphia, 2000).
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2.34 C6.1 Numerical Linear Algebra — Prof. Tanner — 16MT

Level: M-level Method of Assessment: Written examination.

Weight: Unit

Recommended Prerequisites

Only elementary linear algebra is assumed in this course. The part A Numerical Analysis
course would be helpful, indeed some swift review and extensions of some of the material
of that course is included here.

Overview

Linear Algebra is a central and widely applicable part of mathematics. It is estimated that
many (if not most) computers in the world are computing with matrix algorithms at any
moment in time whether these be embedded in visualization software in a computer game or
calculating prices for some financial option. This course builds on elementary linear algebra
and in it we derive, describe and analyse a number of widely used constructive methods
(algorithms) for various problems involving matrices.

Numerical Methods for solving linear systems of equations, computing eigenvalues and
singular values and various related problems involving matrices are the main focus of this
course.

Synopsis

Common problems in linear algebra. Matrix structure, singular value decomposition. QR
factorization, the QR algorithm for eigenvalues. Direct solution methods for linear systems,
Gaussian elimination and its variants. Iterative solution methods for linear systems.

Chebyshev polynomials and Chebyshev semi-iterative methods, conjugate gradients, con-
vergence analysis, preconditioning.

Reading

L. N. Trefethen and D. Bau III, Numerical Linear Algebra (SIAM, 1997).

J. W. Demmel, Applied Numerical Linear Algebra (SIAM, 1997).

A. Greenbaum, Iterative Methods for Solving Linear Systems (SIAM, 1997).

G. H. Golub and C. F. van Loan, Matrix Computations (John Hopkins University Press,
3rd edition, 1996).

H. C. Elman, D. J. Silvester and A. J. Wathen, Finite Elements and Fast Iterative Solvers
(Oxford University Press, 1995), only chapter 2.
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2.35 C6.2 Continuous Optimization — Prof. Cartis — 16HT

Level: M-level Method of Assessment: Written examination.

Weight: Unit

Overview

The solution of optimal decision-making and engineering design problems in which the
objective and constraints are nonlinear functions of potentially (very) many variables is
required on an everyday basis in the commercial and academic worlds. A closely-related
subject is the solution of nonlinear systems of equations, also referred to as least-squares or
data fitting problems that occur in almost every instance where observations or measure-
ments are available for modelling a continuous process or phenomenon, such as in weather
forecasting. The mathematical analysis of such optimization problems and of classical and
modern methods for their solution are fundamental for understanding existing software and
for developing new techniques for practical optimization problems at hand.

Synopsis

Part 1: Unconstrained Optimization
Optimality conditions, steepest descent method, Newton and quasi-Newton methods, Gen-
eral line search methods, Trust region methods, Least squares problems and methods.

Part 2: Constrained Optimization
Optimality/KKT conditions, penalty and augmented Lagrangian for equality-constrained
optimization, interior-point/ barrier methods for inequality constrained optimization. SQP
methods.

Reading List

Lecture notes will be made available for downloading from the course webpage.
A useful textbook is J.Nocedal and S.J.Wright, Numerical Optimisation, (Springer, 1999 or
2006).

2.36 C6.3 Approximation of Functions — Prof. Sobey — 16MT

Level: M-Level. Method of Assessment: Written examination.

Weight: Unit

Recommended Prerequisites:

None
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Overview

How can a function f(x) be approximated over a prescribed domain by a simpler function
like a polynomial or a rational function? Such questions were at the heart of analysis in
the early 1900s and later grew into a mature subject of approximation theory. Recently
they have been invigorated as problems of approximation have become central to compu-
tational algorithms for differential equations, linear algebra, optimization and other fields.
This course, based on Trefethen’s new text in which results are illustrated by Chebfun
computations, will focus in a modern but still rigorous way on the fundamental results of
interpolation and approximation and their algorithmic application.

Synopsis

Chebyshev interpolants, polynomials, and series. Barycentric interpolation formula. Weier-
strass approximation theorem. Convergence rates of polynomial approximations. Hermite
integral formula and Runge phenomenon. Lebesgue constants, polynomial rootfinding. Or-
thogonal polynomials. Clenshaw-Curtis and Gauss quadrature. Rational approximation.

Reading

1. L. N. Trefethen, Approximation Theory and Approximation Practice

This course will be based on the textbook by Nick Trefethen, Approximation Theory and
Approximation Practice, published by SIAM in 2013. All students taking the course are
recommended to have a copy of this book. The lectures and examination will be closely tied
to the book, and the problems assigned will be largely taken from the book. Trefethen’s
text provides references to many other books and articles that can be read to expand
understanding of the course material so a longer reading list is not included here.

2.37 C6.4 Finite Element Methods for Partial Differential Equations —
Prof. Wathen — 16HT

Level: M-Level. Method of Assessment: Written examination.

Weight: Unit

Recommended Prerequisites

No formal prerequisites are assumed. The course builds on elementary calculus, analysis and
linear algebra and, of course, requires some acquaintance with partial differential equations
such as the material covered in the Maths Mods Waves and Diffusion course, in particular
the Divergence Theorem. Part A Numerical Analysis would be helpful but is certainly not
essential. Function Space material will be introduced in the course as needed.
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Overview

Computational algorithms are now widely used to predict and describe physical and other
systems. Underlying such applications as weather forecasting, civil engineering (design of
structures) and medical scanning are numerical methods which approximately solve partial
differential equation problems. This course gives a mathematical introduction to one of the
more widely used methods: the finite element method.

Synopsis

Finite element methods represent a powerful and general class of techniques for the approx-
imate solution of partial differential equations. The aim of this course is to introduce these
methods for boundary value problems for the Poisson and related elliptic partial differential
equations.

Attention will be paid to the formulation, the mathematical analysis and the implementation
of these methods.

Reading

H. Elman, D. Silvester & A. Wathen, Finite Elements and Fast Iterative Solvers. Second
edition. OUP, 2014. [Mainly Chapters 1 and 3].

or

H. Elman, D. Silvester & A. Wathen, Finite Elements and Fast Iterative Solvers. OUP,
2005. [Mainly Chapters 1 and 5].

Further Reading

S.C. Brenner & L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer,
2nd edition, 2002.[Chapters 0,1,2,3; Chapter 4: Secs. 4.1–4.4, Chapter 5: Secs. 5.1–5.7].

C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element
Method. CUP, 1990. [Chapters 1–4; Chapter 8:Secs. 8.1–8.4.2; Chapter 9: Secs. 9.1–9.5].

Typed lecture notes covering a previous version of the entire course (and more):

Endre Süli, Finite Element Methods for Partial Differential Equations. Mathematical In-
stitute, University of Oxford, 2011.

are available from the course material webpage.

Some of the introductory material is covered in

Endre Süli & David Mayers, An Introduction to Numerical Analysis,CUP 2003; Second
Printing 2006. [Chapter 11 and in particular Chapter 14].
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2.38 C7.1: Theoretical Physics — Prof. Essler and Dr Haisch — 24MT
and 16HT

Note: This double unit is offered by the Physics Department.

Level: M-level Method of Assessment: Written examination.

Weight: Double unit only.

Recommended Prerequisites

Part A Quantum Theory, Part A Classical Mechanics, B7.1a Quantum Mechanics, B7.2a
Special Relativity and Electromagnetism.

Overview

This course is intended to give an introduction to some aspects of many-particle systems,
field theory and related ideas. These form the basis of our current theoretical understanding
of particle physics, condensed matter and statistical physics. An aim is to present some core
ideas and important applications in a unified way. These applications include the classical
mechanics of continuum systems, the quantum mechanics and statistical mechanics of many-
particle systems, and some basic aspects of relativistic quantum field theory.

Synopsis

1. Path Integrals in Quantum Mechanics

- Mathematical tools for describing systems with an infinite number of degrees of
freedom: functionals, functional differentiation; Multi-dimensional Gaussian integrals.

- Quantum mechanical propagator as a path integral. Semiclassical limit. Free parti-
cle.

- Quantum statistical mechanics in terms of path integrals. Harmonic oscillator.

- Perturbation theory for non-Gaussian functional integrals. Anharmonic oscillator.
Feynman diagrams.

2. Quantum Many-Particle Systems

- Second Quantization: bosons and fermions, Fock space, single-particle and two-
particle operators.

- Applications to the Fermi gas, weakly interacting Bose condensates, magnons in
(anti)ferromagnets, and to superconductivity.

- quantum field theory as a low-energy description of quantum many-particle systems.

3. Classical Field Theory

- Group theory and Lie algebra primer: basic concepts, SU(N), Lorentz group.

- Elements of classical field theory: fields, Lagrangians, Hamiltonians, principle of
least action, equations of motion, Noether’s theorem, space-time symmetries.
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- Applications: scalar fields, spontaneous symmetry breaking, U(1) symmetry, Gold-
stone’s theorem, SU(2) U(1) symmetry, vector fields, Maxwell’s theory, scalar elec-
trodynamics.

4. Canonical Quantisation

- Free real and complex scalar fields: Klein-Gordon field as harmonic oscillators,
Heisenberg picture.

- Propagators and Wick’s theorem: correlators, causality, Green’s functions.

- Free vector fields: gauge fixing, Feynman propagator.

5. Interacting Quantum Fields

- Perturbation theory: classification of interactions, interaction picture, Feynman di-
agrams.

- Applications: tree-level decay and scattering processes of scalar and U(1) gauge
fields.

- Path integrals: effective action, Feynman diagrams from path integrals.

6. Statistical Physics, Phase Transitions and Stochastic Processes

- Transfer matrices: one-dimensional systems in classical statistical mechanics. Trans-
fer matrices in D=2 and their relation to path integrals.

- Phase transition in the 2D Ising model: Peierls argument.

- Landau Theory of phase transitions: phase diagrams, first-order and continuous
phase transitions. Landau-Ginzburg-Wilson free energy functionals. Examples in-
cluding liquid crystals. Critical phenomena and scaling theory.

- Stochastic processes: the Langevin and Fokker-Planck equation. Brownian motion
of single particle.

Reading

The lecturers are aware of no book that presents all parts of this course in a unified way
and at an appropriate level. For this reason, detailed lecture notes will be made available.

2.39 C7.2: Electromagnetism — Prof. Alday — 16MT

Level: M-level Method of Assessment: Written examination.

Weight: Unit

Recommended Prerequisites: None.
Not available to students who offered B7.2b Special Relativity and Electromagnetism for
examination at Part B.

Overview

The idea is to have a classical course on Electromagnetism, similar to the one in a theoretical
Physics degree. We will follow closely the book by Jackson, first 8 chapters.
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Learning Outcomes

Students will have a clear understanding of what electromagnetism is, they will dominate
many techniques and will be able to solve most classic problems of electromagnetism. This
course should also enable them to continue learning by themselves, or take more advanced
courses.

Synopsis

Basics of electrostatics;
Boundary value problems in electrostatics;
Multipoles, electrostatics of macroscopic media, dielectrics;
Magnetostatics;
Time-varying fields, Maxwell equations, conservation laws;
Plane electromagnetic waves;
Wave guides and resonant cavities [if time allows]

Reading

The lectures will follow:

J.D. Jackson, Classical Electrodynamics, John Wiley. (1962), chapters 1 to 8.

Further Reading

R. Feynman, Lectures in Physics, Vol.2. Electromagnetism, Addison Wesley.

L.D. Landau and E.M. Lifshitz, A classical theory of fields Volume 2.

2.40 C7.3: Further Quantum Theory — Prof. Mason — 16MT

It is not possible to take C7.3 to examination in Part C in 2015 if C7.1b was taken as part
of the Part B examination in 2014.

Level: M-level Method of Assessment: Written examination.

Weight: Unit

Recommended Prerequisites: Part A Quantum Theory (or the part A examined in
2013 together with B7.1a to be examined in 2014).

Overview

This course builds directly on the first course in quantum mechanics and covers a series
of important topics, particularly features of systems containing several particles. The be-
haviour of identical particles in quantum theory is more subtle than in classical mechanics,
and an understanding of these features allows one to understand the periodic table of ele-
ments and the rigidity of matter.
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There are rarely neat solutions to problems involving several particles, so usually one needs
some approximation methods. These are developed so as to study both energy levels of
interacting Hamiltonians, and scattering.

Learning Outcomes

Students will be able to demonstrate knowledge and understanding of quantum mechanics
of many particle systems, and atomic structure.

Synopsis

Addition of angular momentum and Hamiltonians with a spin interaction.

Identical particles, symmetric and anti-symmetric states, Fermi-Dirac and Bose-Einstein
statistics and atomic structure.

Approximation methods, Rayleigh-Schrödinger time-independent perturbation theory and
variation principles. Born-Oppenheimer approximation. The virial theorem. Helium. WKB
approimation.

Heisenberg representation, interaction representation, time dependent perturbation theory
and FeynmanDyson expansion.

Scattering theory (the S matrix, scattering states, Coulomb scattering).

Reading

The lectures will follow:

S. Weinberg, Lectures on quantum mechanics, CUP, (2013). Sections 4.3-5, 5.1-7, 6.1-3,
7.1-4.

See also:

K. C. Hannabuss, Introduction to quantum mechanics, OUP (1997). Chapter 16.1-4, 11.1-5,
12.1-4, 14.1-4 covers roughly half the course.

J. Binney and D. Skinner, The physics of quantum mechanics, PUP, 2011.

A popular non-technical account of the subject: A. Hey and P. Walters, The New Quantum
Universe (Cambridge, 2003).

Also designed for an Oxford course, though only covering some material: I. .P Grant,
Classical and Quantum Mechanics, Mathematical Institute Notes (1991).

Further Reading

See also: L. I. Schiff, Quantum Mechanics (3rd edition, Mc Graw Hill, 1968).

B. J. Bransden and C. J. Joachain, Introduction to Quantum Mechanics (Longman, 1995).

A. I. M. Rae, Quantum Mechanics (4th edition, Institute of Physics, 1993).
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2.41 C7.4: Introduction to Quantum Information — Prof. Ekert —
16HT

It is not possible to take C7.4 to examination in Part C in 2015 if C7.1b was taken as part
of the Part B examination in 2014.

Level: M-level Method of Assessment: Written examination.

Weight: Unit

Recommended Prerequisites:

Quantum Theory.

The course material should be of interest to physicists, mathematicians, computer scientists,
and engineers. The following will be assumed as prerequisites for this course:

• elementary probability, complex numbers, vectors and matrices;

• Dirac bra-ket notation;

• a basic knowledge of quantum mechanics especially in the simple context of finite
dimensional state spaces (state vectors, composite systems, unitary matrices, Born
rule for quantum measurements);

• basic ideas of classical theoretical computer science (complexity theory) would be
helpful but are not essential.

Prerequisite notes will be provided giving an account of the necessary material. It would
be desirable for you to look through these notes slightly before the start of the course.

Overview

The classical theory of computation usually does not refer to physics. Pioneers such as
Turing, Church, Post and Goedel managed to capture the correct classical theory by intu-
ition alone and, as a result, it is often falsely assumed that its foundations are self-evident
and purely abstract. They are not! Computers are physical objects and computation is a
physical process. Hence when we improve our knowledge about physical reality, we may
also gain new means of improving our knowledge of computation. From this perspective
it should not be very surprising that the discovery of quantum mechanics has changed our
understanding of the nature of computation. In this series of lectures you will learn how
inherently quantum phenomena, such as quantum interference and quantum entanglement,
can make information processing more efficient and more secure, even in the presence of
noise.

Synopsis

1. Bits, gates, networks, Boolean functions, reversible and probabilistic computation

2. ”Impossible” logic gates, amplitudes, quantum interference
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3. One, two and many qubits

4. Entanglement and entangling gates

5. From interference to quantum algorithms

6. Algorithms, computational complexity and Quantum Fourier Transform

7. Phase estimation and quantum factoring

8. Non-local correlations and cryptography

9. Bell’s inequalities

10. Density matrices and CP maps

11. Decoherence and quantum error correction

Reading

Beyond the Quantum Horizon by D. Deutsch and A. Ekert, Scientific American, Sep 2012.

Less reality more security by A. Ekert, Physics World, Sep 2009.

The Limits of Quantum Computers, by S. Aaronson, Scientific American, Mar 2008.

A Do-It-Yourself Quantum Eraser by R. Hillmer and P. Kwiat, Scientific American, May
2007.

Quantum Seeing in the Dark by P. Kwiat et al, Scientific American, Nov 1996

Physical Limits of Computation by C.H. Bennett and R. Landauer, Scientific American,
Jul 1985.

2.42 C7.5: General Relativity I — Dr Monteiro — 16MT

Level: M-level Method of Assessment: Written examination.

Weight: Unit

Recommended Prerequisites

B7.2a Relativity and Electromagnetism.

Overview

The course is intended as an elementary introduction to general relativity, the basic physical
concepts of its observational implications, and the new insights that it provides into the
nature of space time, and the structure of the universe. Familiarity with special relativity
and electromagnetism as covered in the B7 course will be assumed. The lectures will review
Newtonian gravitation, tensor calculus and continuum physics in special relativity, physics
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in curved space time and the Einstein field equations. This will suffice for an account of
simple applications to planetary motion, the bending of light and the existence of black
holes.

Learning Outcomes

This course starts by asking how the theory of gravitation can be made consistent with
the special-relativistic framework. Physical considerations (the principle of equivalence,
general covariance) are used to motivate and illustrate the mathematical machinery of
tensor calculus. The technical development is kept as elementary as possible, emphasising
the use of local inertial frames. A similar elementary motivation is given for Einstein’s
equations and the Schwarzschild solution. Orbits in the Schwarzschild solution are given
a unified treatment which allows a simple account of the three classical tests of Einstein’s
theory. Finally, the analysis of extensions of the Schwarzschild solution show how the
theory of black holes emerges and exposes the radical consequences of Einstein’s theory for
space-time structure. Cosmological solutions are not discussed.

The learning outcomes are an understanding and appreciation of the ideas and concepts
described above.

Synopsis

Review of Newtonian gravitation theory and problems of constructing a relativistic gen-
eralisation. Review of Special Relativity. The equivalence principle. Tensor formulation
of special relativity (including general particle motion, tensor form of Maxwell’s equations
and the energy momentum-tensor of dust). Curved space time. Local inertial coordinates.
General coordinate transformations, elements of Riemannian geometry (including connec-
tions, curvature and geodesic deviation). Mathematical formulation of General Relativity,
Einstein’s equations (properties of the energy-momentum tensor will be needed in the case
of dust only). The Schwarzschild solution; planetary motion, the bending of light, and black
holes.

Reading

1. S. Carroll, Space Time and Geometry: An Introduction to General Relativity (Addison
Welsey, 2003)

2. L.P. Hughston and K.P. Tod, An Introduction to General Relativity, LMS Student
Text 5 (London Mathematical Society, Cambridge University Press, 1990), Chs 1–18.

3. N.M.J. Woodhouse, Notes on Special Relativity, Mathematical Institute Notes. Re-
vised edition; published in a revised form as Special Relativity, Lecture notes in Physics
m6 (Springer-Verlag, 1992), Chs 1–7

Further Reading

1. B. Schutz, A First Course in General Relativity (Cambridge University Press, 1990).
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2. R.M. Wald, General Relativity (Chicago, 1984).

3. W. Rindler, Essential Relativity (Springer-Verlag, 2nd edition, 1990).

2.43 C7.6: General Relativity II — Prof. de la Ossa — 16HT

Level: M-level Method of Assessment: Written examination.

Weight: Unit

Prerequisites

B7.1a, C7.5 General Relativity I

Aims & Objectives

In this, the second course in General Relativity, we have two principal aims. We first aim
to increase our mathematical understanding of the theory of relativity and our technical
ability to solve problems in it. This leads to a greater understanding of the Schwarzschild
solution and an introduction to its rotating counterpart, the Kerr solution. Then we apply
the theory to a wider class of physical situations, notably to the problem of constructing a
cosmological model to represent the universe itself in the large.

Synopsis

The Lie derivative and isometries. Linearised General Relativity and the metric of an
isolated body. The Schwarzschild solution and its extensions; Eddington-Finkelstein co-
ordinates and the Kruskal extension. Stationary, axisymmetric metrics and orthogonal
transitivity; the Kerr solution and its properties; interpretation as rotating black hole.
The Einstein field equations with matter; the energy-momentum tensor for a perfect fluid;
equations of motion form the conservation law. Cosmological principles, homogeneity and
isotropy; cosmological models; the Friedman–Robertson–Walker solutions; observational
consequences.

Reading

1. S. Carroll, Space Time and Geometry: An Introduction to General Relativity (Addison
Welsey, 2003)

2. L. P. Hughston and K. P. Tod, An Introduction to General Relativity, LMS Student
Text 5, CUP (1990), Chs.19, 20, 22-26.

3. R. M. Wald, General Relativity, Univ of Chicago Press (1984).
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Further Reading

1. B. Schutz, A First Course in General Relativity (Cambridge University Press, 1990).

2. R.M. Wald, General Relativity (Chicago, 1984).

3. W. Rindler, Essential Relativity (Springer-Verlag, 2nd edition, 1990).

4. S. Hawking and G. Ellis, The Large Scale of the Universe, (Cambridge Monographs
on Mathematical Physics, 1973).

2.44 C8.1: Stochastic Differential Equations — Prof. Hambly —16MT

Level: M-level Method of Assessment: Written examination.

Weight: Unit

Prerequisites

Part A integration, B10a Martingales Through Measure Theory and B10b Continuous Mar-
tingales and Stochastic Calculus, is expected.

Overview

Stochastic differential equations have been used extensively in many areas of application,
including finance and social science as well as in physics, chemistry. This course develops
the theory of Itô’s calculus and stochastic differential equations.

Learning Outcomes

The student will have developed an appreciation of stochastic calculus as a tool that can
be used for defining and understanding diffusive systems.

Synopsis

Recap on Brownian motion, quadratic variation, Ito’s calculus: stochastic integrals with
respect to local martingales, Ito’s formula.

Lévy’s characterisation of Brownian motion, exponential martingales, exponential inequal-
ity, Burkholder-Davis-Gundy inequalities, Girsanov’s Theorem, the Martingale Represen-
tation Theorem.

Local time, reflected Brownian motion and Tanaka’s formula.

Stochastic differential equations: strong and weak solutions, questions of existence and
uniqueness, diffusion processes. Discussion of the one-dimensional case, a comparison the-
orem.
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Conformal invariance of Brownian motion.

Extension to processes with jumps.

Reading — Main Texts

1. Dr Qian’s online notes:

www.maths.ox.ac.uk/courses/course/26329

2. B. Oksendal, Stochastic Differential Equations: An introduction with applications
(Universitext, Springer, 6th edition). Chapters II, III, IV, V, part of VI, Chapter
VIII (F).

3. F. C. Klebaner, Introduction to Stochastic Calculus with Applications (Imperial Col-
lege Press, 1998, second edition 2005). Sections 3.1 – 3.5, 3.9, 3.12. Chapters 4, 5,
11.

Alternative Reading

1. H. P. McKean, Stochastic Integrals (Academic Press, New York and London, 1969).

Further Reading

1. N. Ikeda & S. Watanabe, Stochastic Differential Equations and Diffusion Processes
(North–Holland Publishing Company, 1989).

2. I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Graduate
Texts in Mathematics 113 (Springer-Verlag, 1988).

3. L. C. G. Rogers & D. Williams, Diffusions, Markov Processes and Martingales Vol 1
(Foundations) and Vol 2 (Ito Calculus) (Cambridge University Press, 1987 and 1994).

2.45 C8.2: Stochastic Analysis and PDEs — Prof. Etheridge — 16HT

Level: M-level Method of Assessment: Written examination.

Weight: Unit

Prerequisites

Recommended Prerequisites: Part A integration, B10a Martingales Through Measure, B10b
Continuous Martingales and Stochastic Calculus and C10a Stochastic Differential Equa-
tions.
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Overview

Stochastic analysis and partial differential equations are intricately connected. This is
exemplified by the celebrated deep connections between Brownian motion and the classical
heat equation, but this is only a very special case of a general phenomenon. We explore
some of these connections, illustrating the benefits to both analysis and probability.

Learning Outcomes

The student will have developed an understanding of the deep connections between concepts
from probability theory, especially diffusion processes and their transition semigroups, and
partial differential equations.

Synopsis

Feller processes and semigroups. Resolvents and generators. Hille-Yosida Theorem (without
proof). Diffusions and elliptic operators, convergence and approximation. Stochastic differ-
ential equations and martingale problems. Dynkin’s formula. Duality. Speed and scale for
one dimensional diffusions. Green’s functions as occupation densities. The Feynman-Kac
formula. Semilinear equations and branching processes. Examples from genetics.

Reading

A full set of typed notes will be supplied.

Important references:

1. O. Kallenberg. Foundations of Modern Probability. Second Edition, Springer 2002.
This comprehensive text covers essentially the entire course, and much more, but
should be supplemented with other references in order to develop experience of more
examples.

2. L.C.G Rogers & D. Williams. Diffusions, Markov Processes and Martingales; Volume
1, Foundations and Volume 2, Itô calculus. Cambridge University Press, 1987 and
1994. These two volumes have a very different style to Kallenberg and complement it
nicely. Again they cover much more material than this course.

Supplementary reading:

1. S.N. Ethier & T.G. Kurtz. Markov Processes: characterization and convergence.
Wiley 1986. It is not recommended to try to sit down and read this book cover to
cover, but it is a treasure trove of powerful theory and elegant examples.

2. S. Karlin & H.M. Taylor. A second course in stochastic processes. Academic Press
1981. This classic text does not cover the material on semigroups and martingale
problems that we shall develop, but it is a very accessible source of examples of
diffusions and things one might calculate for them.
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A fuller list of references will be included in the typed notes.

2.46 C8.3: Combinatorics — Prof. Scott — 16MT

Level: M-level Method of Assessment: Written examination.

Weight: Unit

Recommended Prerequisites

Part B Graph Theory is helpful, but not required.

Overview

An important branch of discrete mathematics concerns properties of collections of subsets of
a finite set. There are many beautiful and fundamental results, and there are still many basic
open questions. The aim of the course is to introduce this very active area of mathematics,
with many connections to other fields.

Learning Outcomes

The student will have developed an appreciation of the combinatorics of finite sets.

Synopsis

Chains and antichains. Sperner’s Lemma. LYM inequality. Dilworth’s Theorem.

Shadows. Kruskal-Katona Theorem.

Intersecting families. Erdos-Ko-Rado Theorem. Cross-intersecting families.

VC-dimension. Sauer-Shelah Theorem.

t-intersecting families. Fisher’s Inequality. Frankl-Wilson Theorem. Application to Bor-
suk’s Conjecture.

Combinatorial Nullstellensatz.

Reading

1. Bela Bollobás, Combinatorics, CUP, 1986.

2. Stasys Jukna, Extremal Combinatorics, Springer, 2007



62

2.47 C8.4: Probabilistic Combinatorics — Prof. McDiarmid — 16HT

Level: M-level Method of Assessment: Written examination.

Weight: Unit

Recommended Prerequisites

Part B Graph Theory and Part A Probability. C8.3 Combinatorics is not as essential
prerequisite for this course, though it is a natural companion for it.

Overview

Probabilistic combinatorics is a very active field of mathematics, with connections to other
areas such as computer science and statistical physics. Probabilistic methods are essential
for the study of random discrete structures and for the analysis of algorithms, but they can
also provide a powerful and beautiful approach for answering deterministic questions. The
aim of this course is to introduce some fundamental probabilistic tools and present a few
applications.

Learning Outcomes

The student will have developed an appreciation of probabilistic methods in discrete math-
ematics.

Synopsis

First-moment method, with applications to Ramsey numbers, and to graphs of high girth
and high chromatic number.
Second-moment method, threshold functions for random graphs.
Lovász Local Lemma, with applications to two-colourings of hypergraphs, and to Ramsey
numbers.
Chernoff bounds, concentration of measure, Janson’s inequality.
Branching processes and the phase transition in random graphs.
Clique and chromatic numbers of random graphs.

Reading

1. N. Alon and J.H. Spencer, The Probabilistic Method (third edition, Wiley, 2008).

Further Reading

1. B. Bollobás, Random Graphs (second edition, Cambridge University Press, 2001).

2. M. Habib, C. McDiarmid, J. Ramirez-Alfonsin, B. Reed, ed., Probabilistic Methods
for Algorithmic Discrete Mathematics (Springer, 1998).
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3. S. Janson, T. Luczak and A. Rucinski, Random Graphs (John Wiley and Sons, 2000).

4. M. Mitzenmacher and E. Upfal, Probability and Computing : Randomized Algorithms
and Probabilistic Analysis (Cambridge University Press, New York (NY), 2005).

5. M. Molloy and B. Reed, Graph Colouring and the Probabilistic Method (Springer,
2002).

6. R. Motwani and P. Raghavan, Randomized Algorithms (Cambridge University Press,
1995).

2.48 CCD : Dissertations on a Mathematical Topic

Level : M-level

Weight : Unit (5,000 words) or double-unit (10,000).

Students may offer either a unit or a double-unit dissertation on a Mathematical topic for
examination at Part C. A unit is equivalent to a 16-hour lecture course and a double-unit
is equivalent to a 32-hour lecture course. Students will have approximately 4 hours of
supervision for a unit dissertation or 8 hours for a double-unit distributed over Michaelmas
and Hilary terms. In addition there are lectures on writing mathematics and using LaTeX
in Michaelmas and Hilary terms. See the lecture list for details.

Students considering offering a dissertation should read the Guidance Notes on Extended
Essays and Dissertations in Mathematics available at:

https://www.maths.ox.ac.uk/members/students/undergraduate-courses/teaching-and-learning/projects.

Application

Students must apply to the Mathematics Projects Committee for approval of their proposed
topic in advance of beginning work on their dissertation. Proposals should be addressed
to the Chairman of the Projects Committee, c/o Mrs Helen Lowe, Room S0.16, Mathe-
matical Institute and are accepted from the end of Trinity Term. All proposals must be
received before 12noon on Friday of Week 0 of Michaelmas Full Term. For CD dissertations
candidates should take particular care to remember that the project must have substantial
mathematical content. The application form is available at
https://www.maths.ox.ac.uk/members/students/undergraduate-courses/teaching-and-learning/projects.
Once a title has been approved, it may only be changed by approval of the Chairman of
the Projects Committee.

Assessment

Each project is blind double marked. The marks are reconciled through discussion between
the two assessors, overseen by the examiners. Please see the Guidance Notes on Extended
Essays and Dissertations in Mathematics for detailed marking criteria and class descriptors.

https://www.maths.ox.ac.uk/members/students/undergraduate-courses/teaching-and-learning/projects
https://www.maths.ox.ac.uk/members/students/undergraduate-courses/teaching-and-learning/projects
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Submission

THREE copies of your dissertation, identified by your candidate number only, should be
sent to the Chairman of Examiners, FHS of Mathematics Part C, Examination Schools,
Oxford, to arrive no later than 12noon on Monday of week 10, Hilary Term 2015.
An electronic copy of your dissertation should also be submitted via the Mathematical
Institute website. Further details may be found in the Guidance Notes on Extended Essays
and Dissertations in Mathematics.

3 Other Units

3.1 MS: Statistics Units

Students in Part C may take units drawn from Part C of the Honour School of Mathe-
matics and Statistics. For full details of these units see the syllabus and synopses for Part
C of the Honour School Mathematics and Statistics, which are available on the web at
http://www.stats.ox.ac.uk/current students/bammath/course handbooks/

The Statistics units available are as follows:

• SC1 Stochastic Models in Mathematical Genetics

• SC2 Probability and Statistics for Network Analysis

• SC3 Modern Survival Analysis

• SC4 Statistical Data Mining and Machine Learning

• SC5 Advanced Simulation Methods

3.2 Computer Science: Units

Students in Part C may take units drawn from Part C of the Honour School of Mathematics
and Computing. For full details of these units see the Department of Computer Science’s
website (http://www.cs.ox.ac.uk/teaching/courses/)

Please note that these three courses will be examined by mini-project (as for MSc students).
Mini-projects will be handed out to candidates on the last Monday or Friday of the term
in which the subject is being taught, and you will have to hand it in to the Exam Schools
by noon on Monday of Week 1 of the following term. The mini-project will be designed
to be completed in about four to five days. It will include some questions that are more
open-ended than those on a standard sit-down exam. The work you submit should be your
own work, and include suitable references.

http://www.stats.ox.ac.uk/current_students/bammath/course_handbooks/
http://www.cs.ox.ac.uk/teaching/courses/


65

Please note that the Computer Science courses in Part C are 50% bigger than those in earlier
years, i.e. for each Computer Science course in the 3rd year undergraduates are expected to
undertake about 10 hours of study per week, but 4th year courses will each require about
15 hours a week of study. Lecturers are providing this extra work in a variety of ways, e.g.
some will give 16 lectures with extra reading, classes and/or practicals, whereas others will
be giving 24 lectures, and others still will be doing something in between. Students will
need to look at each synopsis for details on this.

The Computer Science units available are as follows:

• CCS1 Categories, Proofs and Processes

• CCS2 Quantum Computer Science

• CCS3 Automata, Logics and Games

3.3 Philosophy: Double Units

Students in Part C may take options, all double units, drawn from Part C of the Honour
School of Mathematics and Philosophy. For full details of these double units see the Faculty
of Philosophy’s website http://www.philosophy.ox.ac.uk/undergraduate/course descriptions

The Philosophy units available are as follows:

• 180 The Rise of Modern Logic (Double unit)

This course will be examined by a three-hour exam and a submitted essay of up to 5000
words.

3.4 COD : Dissertations on a Mathematically related Topic

Level : M-level

Weight : Unit (5,000 words) or double-unit (10,000 words).

Students may offer either a unit or a double-unit dissertation on a Mathematically related
topic for examination at Part C. For example, applications of mathematics to another field
(eg Maths in Music), historical topics, topics concentrating on the analysis of statistical
data, or topics concentrating on the production of computer-generated data are acceptable
as topics for an OD dissertation. (Topics in mathematical education are not allowed.)

A unit is equivalent to a 16-hour lecture course and a double-unit is equivalent to a 32-
hour lecture course. Students will have approximately 4 hours of supervision for a unit
dissertation or 8 hours for a double-unit distributed over Michaelmas and Hilary terms. In
addition there are lectures on writing mathematics and using LaTeX in Michaelmas and
Hilary terms. See the lecture list for details.

http://www.philosophy.ox.ac.uk/undergraduate/course_descriptions
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Candidates considering offering a dissertation should read the Guidance Notes on Extended
Essays and Dissertations in Mathematics available at:

https://www.maths.ox.ac.uk/members/students/undergraduate-courses/teaching-and-learning/projects.

Application

Students must apply to the Mathematics Projects Committee for approval of their proposed
topic in advance of beginning work on their dissertation. Proposals should be addressed
to the Chairman of the Projects Committee, c/o Mrs Helen Lowe, Room S0.16, Math-
ematical Institute and are accepted from the end of Trinity Term. All proposals must
be received before 12noon on Friday of Week 0 of Michaelmas Full Term. The applica-
tion form is available at https://www.maths.ox.ac.uk/members/students/undergraduate-
courses/teaching-and-learning/projects.

Once a title has been approved, it may only be changed by approval of the Chairman of
the Projects Committee.

Assessment

Each project is blind double marked. The marks are reconciled through discussion between
the two assessors, overseen by the examiners. Please see the Guidance Notes on Extended
Essays and Dissertations in Mathematics for detailed marking criteria and class descriptors.

Submission

THREE copies of your dissertation,identified by your candidate number only, should be
sent to the Chairman of Examiners, FHS of Mathematics Part C, Examination Schools,
Oxford, to arrive no later than 12noon on Monday of week 10, Hilary Term 2015.
An electronic copy of your dissertation should also be submitted via the Mathematical
Institute website. Further details may be found in the Guidance Notes on Extended Essays
and Dissertations in Mathematics.

4 Language Classes: French and German

Language courses in French and German or Spanish (in alternate years) are offered by the
University Language Centre.

Students in the FHS Mathematics may apply to take language classes. In 2014-2015, French
and German language classes will be run in MT and HT. We have a limited number of places
but if we have spare places we will offer these to joint school students , Mathematics and
Computer Science, Mathematics and Philosophy and Mathematics and Statistics.

Two levels of French courses are offered, a lower level for those with a good pass at GCSE,
and a higher level course for those with A/S or A level. Acceptance on either course will
depend on satisfactory performance in the Preliminary Qualifying Test held in Week 1 of
Michaelmas Term (Monday, 17.00-19.00 at the Language Centre). Classes at both levels
will take place on Mondays, 17.00-19.00. A single class in German or Spanish at a lower or

https://www.maths.ox.ac.uk/members/students/undergraduate-courses/teaching-and-learning/projects
https://www.maths.ox.ac.uk/members/students/undergraduate-courses/teaching-and-learning/projects
https://www.maths.ox.ac.uk/members/students/undergraduate-courses/teaching-and-learning/projects
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higher level will be offered on the basis of the performances in the Preliminary Qualifying
Test, held at the same time as the French test. Classes will also be held on Mondays,
17-00-19.00.

Performance on the course will not contribute to the class of degree awarded. However, upon
successful completion of the course, students will be issued with a certificate of achievement
which will be sent to their college.

Places at these classes are limited, so students are advised that they must indicate their in-
terest at this stage. If you are interested please contact Nia Roderick (roderick@maths.ox.ac.uk
or tel. 01865 615205), Academic Assistant in the Mathematical Institute, as soon as possi-
ble.

Aims and rationale

The general aim of the language courses is to develop the student’s ability to communicate
(in both speech and writing) in French, German or Spanish to the point where he or she can
function in an academic or working environment in a French-speaking, German-speaking or
Spanish-speaking country.

The courses have been designed with general linguistic competence in the four skills of
reading, writing, speaking and listening in mind. There will be opportunities for participants
to develop their own particular interests through presentations and assignments.

Form and Content

Each course will consist of a thirty-two contact hour course, together with associated work.
Classes will be held in the Language Centre at two hours per week in Michaelmas and Hilary
Terms.

The content of the courses is based on coursebooks together with a substantial amount of
supplementary material prepared by the language tutors. Participants should expect to
spend an additional two hours per week on preparation and follow-up work.

Each course aims to cover similar ground in terms of grammar, spoken and written language
and topics. Areas covered will include:

Grammar:

- all major tenses will be presented and/or revised, including the subjunctive

- passive voice

- pronouns

- formation of adjectives, adverbs, comparatives

- use of prepositions

- time expressions

Speaking
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- guided spoken expression for academic, work and leisure contact (e.g. giving presen-
tations, informal interviews, applying for jobs)

- expressing opinions, tastes and preferences

- expressing cause, consequence and purpose

Writing

- Guided letter writing for academic and work contact

- Summaries and short essays

Listening

- Listening practice of recorded materials (e.g. news broadcasts, telephone messages,
interviews)

- developing listening comprehension strategies

Topics (with related readings and vocabulary, from among the following)

- life, work and culture

- the media in each country

- social and political systems

- film, theatre and music

- research and innovation

- sports and related topics

- student-selected topics

Teaching staff

The courses are taught by Language Centre tutors or Modern Languages Faculty instructors.

Teaching and learning approaches

Each course uses a communicative methodology which demands active participation from
students. In addition, there will be some formal grammar instruction. Students will be
expected to prepare work for classes and homework will be set. Students will also be given
training in strategies for independent language study, including computer-based language
learning, which will enable them to maintain and develop their language skills after the
course.

Entry

Two classes in French and one in German or Spanish (probably at Basic and Threshold
levels) will be formed according to level of French/German/Spanish at entry. The minimum
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entry standard is a good GCSE Grade or equivalent. Registration for each option will take
place at the start of Michaelmas Term. A preliminary qualifying test is then taken which
candidates must pass in order to be allowed to join the course.

Learning Outcomes

The learning outcomes will be based on internationally agreed criteria for specific levels
(known as the ALTE levels), which are as follows:

Basic Level (corresponds to ALTE Level 2 “Can-do” statements)

- Can express opinions on professional, cultural or abstract matters in a limited way,
offer advice and understand instructions.

- Can give a short presentation on a limited range of topics.

- Can understand routine information and articles, including factual articles in news-
papers, routine letters from hotels and letters expressing personal opinions.

- Can write letters or make notes on familiar or predictable matters.

Threshold Level (corresponds to ALTE Level 3 “Can-do” statements)

- Can follow or give a talk on a familiar topic or keep up a conversation on a fairly wide
range of topics, such as personal and professional experiences, events currently in the
news.

- Can give a clear presentation on a familiar topic, and answer predictable or factual
questions.

- Can read texts for relevant information, and understand detailed instructions or ad-
vice.

- Can make notes that will be of reasonable use for essay or revision purposes.

- Can make notes while someone is talking or write a letter including non- standard
requests.

Assessment

There will a preliminary qualifying test in Michaelmas Term. There are three parts to this
test: Reading Comprehension, Listening Comprehension, and Grammar. Candidates who
have not studied or had contact with French or German/Spanish for some time are advised
to revise thoroughly, making use of the Language Centre’s French, German or Spanish
resources.

Students’ achievement will be assessed through a variety of means, including continuous
assessment of oral performance, a written final examination, and a project or assignment
chosen by individual students in consultation with their language tutor.

Reading comprehension, writing, listening comprehension and speaking are all examined.
The oral component may consist of an interview, a presentation or a candidate’s performance
in a formal debate or discussion.
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