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Terminology

Liquid crystals were discovered by Reinitzer (1888)

. . . it struck me that the substance, in this case, melted

not into a clear transparent [liquid] but always into a

cloudy, only translucent liquid, which I initially consid-

ered to be a sign of impurities . . . Upon closer exami-

nation, it was then also noted that when it was heated

at to higher temperatures, the clouding suddenly van-

ished. This remarkable phenomenon of the presence of

two melting points, if one may express it thus, . . .

Mesophases

Liquid crystals aremesophases, that is, intermediate states of matter,

which flow like nearly incompressible viscous fluids, and yet retain

several features, especially optical, characteristic of crystals.
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There are essentially two distinct ways to induce the liquid crystalline

phase in a mesogenic substance:

• thermotropic, by changing its temperature;

• lypotropic, by changing its concentration.

molecular perspectives

Liquid crystals are characterised by a molecular organization interme-

diate between different types of order.

• nematics: No positional order (of the molecules’ centre of

mass), long-range orientational order (of the molecules’ long

axis)

• smectics: one-dimensional positional order (layering), long-

range orientational order (within layers)
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molecular shape

Distinctive features of nematogenic molecules are their

• elongated shape

• head-tail symmetry
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ordering cartoons
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Order Parameters

A sound theory of liquid crystals must be based on a quantitative

description of the collective behaviour of molecules that makes them

tend to be organized.

Orientation Distribution

We shall consider only the orientational degrees of freedom of uniaxial

molecules.

̺ : S2 → R
+ probability density

m ∈ S
2 molecular axis

S
2 unit sphere in R

3

̺(m) = ̺(−m) head-tail symmetry

̺ is integrable on S
2 and it may vanish

∫

S2
̺(m)dA(m) = 1
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If N molecules constitute an ensemble,

n[S ] := N

∫

S

̺(m)dA

is the number of molecules expected to be oriented with m in S ∈ S
2.

symmetry consequences

• Let S
− := {m ∈ S

2 : −m ∈ S }. Then n[S −] = n[S ]

• Let m :=
∫

S2
̺(m)mdA denote the first moments of ̺. Then

m = 0.

second moments

The first non-vanishing moments of ̺ are expressed by the second-rank

tensor

M :=

∫

S2

̺(m)m⊗mdA
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properties of M

• trM =
∫

S2
̺(m) tr(m⊗m)dA =

∫

S2
̺(m)dA = 1

• MT =
∫

S2
̺(m)(m⊗m)TdA = M

M is a symmetric tensor with unit trace.

averages

Let e ∈ S
2 be any given unit vector.

e ·Me =

∫

S2

̺(m)(m · e)2dA =:
〈
(m · e)2

〉

e ·Me =
〈
cos2 ϑ

〉
∈ [0, 1]

ϑ angle between m and e
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eigenvalues of M

µ1 + µ2 + µ3 = 1

0 ≦ µi ≦ 1

isotropic distribution

̺0 ≡ 1
4π

M0 =
∫

S2
̺0m⊗mdA

Since S
2 in invariant under rotations, for any R ∈ SO(3),

M0 =

∫

S2

̺0Rm⊗RmdA =

∫

S2

̺0R(m⊗m)RTdA = RM0R
T

Since RTR = RRT = I

M0R = RM0 for all R ∈ SO(3)
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Since trM0 = 1,

M0 =
1

3
I and so

〈
cos2 ϑ

〉
=

1

3

Order Tensor

Q := M−M0 de Gennes (1974)

pitfall

Let SO(e) := {R ∈ SO(3) : Re = e}. Consider a probability density

̺ which is axis-symmetric about e

̺(Rm) = ̺(m) for all R ∈ SO(e)

Then,

M =
1

2
(3α− 1)e⊗ e+

1

2
(1− α)I where α = e ·Me
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conical distribution

Letting α = 1
3 , we see that M = M0 also for molecules distributed

uniformly about a cone with axis e and semi-amplitude equal to the

magic angle

ϑ0 := arccos

√

1

3

properties of Q

• trQ = 0

• Q = λ1n1 ⊗ n1 + λ2n2 ⊗ n2 + λ3n3 ⊗ n3

• λ1 + λ2 + λ3 = 0

• − 1
3 ≦ λi ≦

2
3
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scalar order parameters

Three cases may arise

• λ1 = λ2 = λ3 = 0 Q is isotropic

Q = 0

• λ1 = λ2 λ3 = −2λ1 Q is uniaxial

Q = S

(

n⊗ n− 1

3
I

)

n = n3, S = −3λ1

S degree of orientation n nematic director

• λ1 6= λ2 6= λ3 Q is biaxial

Q = S1

(

n1 ⊗ n1 −
1

3
I

)

+ S2

(

n2 ⊗ n2 −
1

3
I

)

S1 = 2λ1 + λ2, S2 = λ1 + 2λ2
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alternative representation

For a generic, biaxial Q, we can also write

Q = S

(

n3 ⊗ n3 −
1

3
I

)

+ T (n1 ⊗ n1 − n2 ⊗ n2)

S := − 1
2 (S1 + S2) uniaxial scalar order parameter

T := 1
2 (S1 − S2) biaxial scalar order parameter

admissible order parameters

By requiring

−1

3
≦ e ·Qe ≦

2

3
for all e ∈ S

2

we obtain

−1

2
≦ S ≦ 1 and − 1

3
(1− S) ≦ T ≦

1

3
(1− S)
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order parameter interpretation

For any given e ∈ S
2,

e ·Me =
1

3
(1− S) + S(n3 · e)2 + T [(n1 · e)2 − (n2 · e)2]

=
〈
(m · e)2

〉

• e = n3 S = 3
2

[〈
(m · n3)

2
〉
− 1

3

]
= 〈P2(m · n3)〉

P2(x) :=
1
2 (3x

2 − 1) second Legendre polynomial

• e = n1 & e = n2 T = 1
2

[〈
(m · n1)

2
〉
−
〈
(m · n2)

2
〉]

limiting cases

• m ‖ n3 S = 1 T = 0

• m ⊥ n3 S = − 1
2 T = 0

• m ‖ n1,2 S = − 1
2 T = ± 1

2
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order parameter conjugacies

In the general biaxial case, the eigenframe (n1,n2,n3) of Q has no

intrinsic meaning. A permutation of the ni’s, with S and T left

unchanged, delivers aQ representing the samemolecular organization

seen in a different frame.

Conversely, we can keep the eigenframe of Q fixed and permute its

eigenvalues. This results in a six-fold conjugacy group generated by

the elementary eigenvalue exchanges

(S, T ) 7→ (S,−T )

(S, T ) 7→
(
3T − S

2
,
T + S

2

)

(S, T ) 7→
(−3T − S

2
,
T − S

2

)
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uniaxial lines

The loci of the (S, T ) plane invariant under the eigenvalue exchanges

are the lines

T = 0 T = ±S

• The union of these lines is a set invariant under all eigenvalue

exchanges.

• They represent all uniaxial states of Q.
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admissible triangle
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Optical Properties

A proper description of the optic properties of liquid crystals relies

on understanding their electric and magnetic behaviour in response to

applied external fields.

Magnetic permeability

The magnetic properties of macroscopic media are described by the

fields

B magnetic induction

H magnetic strength

M magnetization

H :=
1

µ0
B −M

µ0 = 4π × 10−7 SI magnetic permeability of free space

M = χH linear constitutive law

χ magnetic susceptibility tensor
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B = µ0(I+ χ
︸ ︷︷ ︸

µrel

)H

µrel relative permeability tensor

molecular magnetic susceptibility

An individual molecule feels a magnetic field that differs from the

applied field by the field Hmag produced by the molecular currents

associated with the induced magnetic dipole µmol.

µmol = χmol(H−Hmag)

uniaxial symmetry

If the molecular response is uniaxial, symmetry dictates that

χmol = χ
(mol)
‖ m⊗m+ χ

(mol)
⊥ (I−m⊗m)

χ
(mol)
‖ parallel molecular susceptibility

χ
(mol)
⊥ perpendicular molecular susceptibility
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remarks

• To compute Hmag we need some kind of molecular model.

• Hmag is expected to be (linearly) related to µmol.

• Liquid crystal molecules are diamagnetic with small (nega-

tive) susceptibilities.

• µmol = χmol(H −Hmag); hence, we may neglect Hmag.

macroscopic susceptibility

M = ρ0 〈µmol〉 = χH χ = ρ0 〈χmol〉
χ macroscopic magnetic susceptibility tensor

ρ0 molecular number density

21



molecular uniaxial tensor

q := m⊗m− 1

3
I

χmol = χmolI+ χ(mol)
a q

χmol :=
1
3 (2χ

(mol)
⊥ + χ

(mol)
‖ )

average molecular susceptibility

χ
(mol)
a := χ

(mol)
‖ − χ

(mol)
⊥

molecular susceptibility anisotropy

order tensor

χ = ρ0 〈χmol〉 = ρ0(χmolI+ χ(mol)
a Q) Q = 〈q〉
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Electric permittivity

The electric properties of macroscopic media are described by the fields

E electric field

D electric displacement

P electric polarization

D := ǫ0E + P

ǫ0 = 8.85× 10−12 SI electric permittivity of free space

P = ǫ0αE linear constitutive law

α electric susceptibility (polarizability) tensor

D = ǫ0(I+α
︸ ︷︷ ︸

εrel

)E

εrel relative permittivity tensor

ε := ǫ0εrel dielectric tensor
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(relative) molecular polarizability

In complete analogy with the magnetic case, an individual molecule

feels an electric field that differs from the applied field by the field Epol

produced by the displaced charges responsible for the induced electric

dipole pmol

pmol = ǫ0αmol(E−Epol)

uniaxial symmetry

If the molecular response is uniaxial, symmetry dictates that

αmol = α
(mol)
‖ m⊗m+ α

(mol)
⊥ (I−m⊗m)

α
(mol)
‖ parallel molecular polarizability

α
(mol)
⊥ perpendicular molecular polarizability
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remarks

• We need a molecular model to compute Epol.

• Epol is expected to be (linearly) related to pmol.

• Liquid crystal molecules are easily polarizable.

• We cannot neglect Epol.

molecular model

Let B denote the region in space occupied by an isolated, electrically

neutral molecule and let Vmol be its volume.

Epol =
1

Vmol

∫

B

EmoldV

Emol molecular electric field

ρe molecular charge density generating Emol
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Emol(x) = −∇Φ(x)

Φ(x) = 1
4πǫ0

∫

B

ρe(x
′)

|x−x′|dV (x′) electrostatic potential

Epol = − 1

Vmol

∫

B

1

4πǫ0
ρe(x

′)

(∫

∂B

ν(x)

|x− x′|dA(x)
)

︸ ︷︷ ︸

F (x′)

dV (x′)

ρe molecular charge density

ν outer unit normal to ∂B

shape depolarization factor

Objectivity demands that

F (x′) = λBx′

Scaling invariance demands that λB be a dimensionless function of

the orientation of x′ relative to a frame fixed in B.
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Epol = − 1

Vmol

1

4πǫ0

∫

B

λB ρe(x
′)x′

︸ ︷︷ ︸

moment

dV (x′)

simplest case

For B a ball of radius a,

λB =
4π

3
Epol = − 1

4πǫ0a3
pmol

pmol = ǫ0

(

I− 1

4πa3
αmol

)−1

αmolE

macroscopic polarization

P = ρ0 〈pmol〉 = ǫ0αE

α =




ρ0α

(mol)
‖

1− α
(mol)

‖

4πa3



 〈m⊗m〉+




ρ0α

(mol)
⊥

1− α
(mol)
⊥

4πa3



 〈I−m⊗m〉
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Clausius-Mossotti anisotropic relation

εrel = εI+ εaQ Q = 〈q〉

ε :=
1

3
(2ε⊥ + ε‖) εa := ε‖ − ε⊥

ε‖ := 1 +
ρ0α

(mol)
‖

1− α
(mol)
‖ /4πa3

ε⊥ := 1 +
ρ0α

(mol)
⊥

1− α
(mol)
⊥ /4πa3

Urano & Inoue (1977)
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Maxwell Equations

The fields E, B and their derived counterparts D, H, possibly de-

pending on time t, obey the equations

divD = ρf

divB = 0

curlE = −∂B

∂t

curlH = J +
∂D

∂t

ρf density of free charges

J current density

In a non-conductive, neutral dielectric

ρf = 0 J = 0
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constitutive assumptions

To describe light propagation

• we neglect magnetization effects

M = 0 B = µ0H

• we consider monochromatic waves

E(x, t) = E0e
i(k·x−ωt) H(x, t) = H0e

i(k·x−ωt)

k wave vector k = 2π
λ

= ω
v

λ wavelength

ω wave (angular) frequency

v phase velocity

• we write

D = εE = εE0
︸︷︷︸

D0

ei(k·x−ωt)
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reduced equations

∇E = iE ⊗ k
∂H

∂t
= −iωH

k ·D = 0

k · µ0H = 0

k ×H = −ωD

k ×E = ωµ0H

• The first three equations ensure that k, H, and D are mutually

orthogonal vectors.

• Combining the last two equations,

k2E − (k ·E)k = µ0ω
2D
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Fresnel Equation

S := E ×H Pointing vector

Compatibility with the constitutive assumption on D requires that

k2E − (k ·E)k = µ0ǫ0ω
2εrelE
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(N2I−N ⊗N − εrel)E = 0 N :=
1

ω
√
µ0ǫ0

k

N refractive vector

N = c/v refractive index

c = 1/
√
µ0ǫ0 speed of light in a vacuum

solubility condition

det(N2I−N ⊗N − εrel) = 0

If εrel is uniaxial (implying that also Q is so)

εrel = ε⊥I+ εan⊗ n εa = ε‖ − ε⊥

det[(N2 − ε⊥)I− (N ⊗N + εan⊗ n)
︸ ︷︷ ︸

det(·)=0

] = 0
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(N2 − ε⊥)(ε‖ε⊥ − ε‖N
2
‖ − ε⊥N

2
⊥) = 0

ordinary wave

no :=
√
ε⊥ ordinary refractive index

the ordinary wave propagates in all directions with the same velocity

refractive index ellipsoid

N2
‖

ε⊥
+

N2
⊥

ε‖
= 1

extraordinary wave

N‖ := N(θ) cos θ N⊥ := N(θ) sin θ

N(θ) =
none

√

n2
e cos

2 θ + n2
o sin

2 θ
N(θ) =

c

v(θ)

ne :=
√
ε‖ extraordinary refractive index
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optically negative medium no > ne

optic axis

The extraordinary refractive ellipsoid and the ordinary refractive sphere

touch in two points aligned with n. Ordinary and extraordinary waves

are indistinguishable when traveling along n.
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optically positive medium no < ne
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polarization of the ordinary wave

(

N ⊗N + εan⊗ n
)

E = 0

E ‖ n×N D = ε⊥E S ‖ k

E‖ = 0 D‖ = 0
S‖

S⊥
=

N‖

N⊥

polarization of the extraordinary wave

(

N2
‖ +N2

⊥ − ε⊥

)

E − (N ·E)N − εa(n ·E)n = 0

E‖

E⊥
= −ε⊥N⊥

ε‖N‖

S‖

S⊥
=

ε‖N‖

ε⊥N⊥
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graphical representation

• ordinary wave: E ⊥ n

• extraordinary wave: E lies in the plane (n,k)
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Schlieren Textures

Consider a nematic texture in a slab of thickness d between crossed

polarizers. The optic axis n lies in the (x, y) plane and is independent

of z.

β(x, y) angle between n and the incoming polarization
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Eo = E⊥ = A0 sinβ cos
(

2πz
λ0

no − ωt
)

ordinary wave

Ee = E‖ = A0 cosβ cos
(

2πz
λ0

ne − ωt
)

extraordinary wave

A0 amplitude of the incoming wave

I0 = A2
0 intensity of the incoming wave

λ0 := ω
c

wavelength in free space

phase shift

∆ϕ =
2πd

λ0
(ne − no)

analyzer transmitted wave

E(a) = E(a)
o + E(a)

e = A0 cosβ sinβ cos

(
2πd

λ0
no − ωt

)

−A0 sinβ cosβ cos

(
2πd

λ0
ne − ωt

)
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E(a) = −A cos (∆ϕ− ωt)

transmitted intensity

I := A2 = I0 sin
2 2β sin2

(
πd

λ0
(ne − no)

)

• extinction branches I = 0 for β = 0, π
2

• colorful patterns I depends on λ0
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two optic axes

If Q is biaxial then the eigenvalues of εrel are all different from one

another.

εx < εy < εz

The refractive surface has four symmetric self-intersection that define

two axes with a single refractive index.
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