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Abstract
We consider a class of stochastic reaction-diffusion equations on the three dimensional
torus. The non-linearities are odd polynomials in the weakly non-linear regime, and the
smoothing mechanisms are very general higher order perturbations of the Laplacian.
The randomness is the space-time white noise without regularisation. We show that
these processes converge to the dynamical Φ4

3(λ) model, where the coupling constant λ
has an explicit expression involving non-trivial interactions between all details of the
smoothing mechanism and the non-linearity, even though they all formally vanish in the
limit.
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1 Introduction

1.1 Statement of the main result
The dynamical Φ4

3(λ) model (λ > 0) is the equation formally given by

∂tφ = ∆φ− λφ3 + ξ , (1.1)

where ξ is the space-time white noise on the three dimensional torus T3 = (R/Z)3.
There are two principle reasons that sparked interest in the equation. Firstly, the formal
equilibrium measure of the dynamics (1.1) is the measure on Schwartz distributions
associated to Bosonic Euclidean quantum field theory. The construction of this measure
was one of the main achievements of constructive field theory in the seventies; see for
instance the articles [EO71, Fel74, FO76, GJ73, Gli68] and references therein.

Secondly, the solution to (1.1) is expected to describe the 3D Ising model with
Glauber dynamics and Kac interactions near critical temperature (see [GLP99]). The
one dimensional version of this result was shown in [BPRS93]. The two dimensional
situation requires a renormalisation to the equation. It was shown in [MW17a] that the 2D
dynamical Kac-Ising model does rescale to (1.1) in 2 dimensions, and the renormalisation
constant has a beautiful interpretation as a shift of the temperature from its mean field
value. The 3D case is expected to be much more involved.

The problem with (1.1) for d ≥ 2 is that the equation is not well posed. Indeed,
the roughness of the noise ξ forces the solutions to (1.1) to be distrubitions rather than
functions. Therefore, the cubic term lacks any interpretation. The 2D case was resolved
by Da Prato and Debussche [DPD03] using a first order expansion around the solution
to the corresponding linear equation. This type of “global expansion” breaks down
for dimension three, and the problem stayed open until Hairer in his breakthrough
paper [Hai14] developed the theory of regularity structures allowing expanding the
solution around each space-time point systematically. The local well-posedness of
the 3D problem comes as an application. The theory has now been developed into a
blackbox machinary that allows to solve essentially all subcritical SPDEs automatically
([BHZ19, CH16, BCCH17]), including the “4 − δ” dimensional case. The theory of
para-controlled distributions developed in [GIP15] also allows to tackle a large class of
singular SPDEs, and the well-posedness of (1.1) in 3D was also shown in [CC18] using
paracontrolled distributions. Kupiainen also developed renormalisation group arguments
in [Kup15]. The local well-posedness of (1.1) can be loosely stated as follows.

Theorem 1.1. Given a smooth approximation ξε of the space-time white noise ξ, there
exists a sequence of constants Cε → +∞ as ε → 0 such that the solution φε to the
regularised equation

∂tφε = ∆φε − λφ3
ε + ξε + Cεφε
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converges in probability as ε→ +∞. Cε has the form Cε = c1
ε

+ c2 log ε+O(1). The
family of limits parametrised by the O(1) quantity is the family of solutions to Φ4

3(λ).

We will give a characterisation of one particular element in the limiting family in
Appendix B.2. In the case λ > 0, global well-posedness and quantitative bounds on large
scale behaviour of the solution for (1.1) and more singular equations of the same form
have been established in [MW17b, MW18, CMW19].

In this article, we study the ε→ 0 limit of the family of processes Φε satisfying the
equation

∂tΦε = LεΦε − ε−
3
2V ′(
√
εΦε) + ξ + CεΦε , (t, x) ∈ R+ × T3 , (1.2)

where ξ is the space-time white noise on R× T3, V is an even polynomial of degree at
least 4, and the differential operator is of the form Lε = −ε−2Q(iε∇) in the sense that
its Fourier transform is given by L̂ε(k) = −ε−2Q(2πεk). HereQ is a function satisfying
Assumption 1.2 below. Finally, Cε is a constant depending on ε and its precise form will
be determined in the sequel.

Assumption 1.2. Q is radially symmetric, and its radial version (also denoted by Q)
Q : R+ → R has five continuous derivatives and satisfies the following:

1. Q(0) = 0 and 1
2
Q′′(0) = 1. In particular, for every Λ > 0 there exists C > 0 such

that
|Q(z)− z2| ≤ Cz4 , ∀z ∈ [0,Λ] . (1.3)

2. Q(z) > 0 for all z > 0.

3. There exists c > 0 and η > 0 such that

Q(z) > cz3+η , ∀z ≥ 1 . (1.4)

4. For every δ ∈ (0, 1), there exists Cδ > 0 such that

max
0≤n≤5

|znQ(n)(z)| ≤ Cδ|Q(z)|1+δ , ∀z ≥ 1 . (1.5)

Note that the first three conditions together imply Q(z) ≥ cz3+η for all z. Our main
theorem is the following.

Theorem 1.3. Suppose Q satisfies Assumption 1.2, and V is an even polynomial of
degree 2n with n ≥ 2, and let Φε be the solution to (1.2). Let

σ2 :=
1

2

∫
R3

1

Q(2π|θ|)
dθ . (1.6)

Suppose also that the initial conditions {Φε(0, ·)} converges as ε→ 0 in a suitable space
to some Φ(0, ·). Then, there exist c1, c2 depending on Q as well as on V such that for
Cε = c1

ε
+ c2 log ε+O(1), the processes {Φε}ε>0 converge as ε→ 0 to the Φ4

3(λ) family
of solutions with initial data Φ(0, ·) with

λ =
1

6
(V (4) ∗ µ)(0) , (1.7)

where µ ∼ N (0, σ2) with σ2 given as above.
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The precise notion of convergence (of the initial data and the solution) and a proof
(assuming Theorems 3.3 and 4.1) will be given in Section 1.3 below. We first give some
remarks on the statement of the theorem as well as the assumptions on Q.
Remark 1.4. The expressions (1.6) and (1.7) suggest that all details of Q (and hence
Lε) contribute to the limiting coupling constant λ. A typical function Q satisfying
Assumption 1.2 is the even polynomial

Q(z) =

q∑
j=1

νjz
2j

with q ≥ 2, ν1 = 1 and such that Q(z) > 0 for all z 6= 0. In this case, the differential
operator Lε takes the form

Lε = − 1

ε2
Q(iε∇) =

q∑
j=1

(−1)j−1νjε
2(j−1)∆j.

We see that all higher powers of the Laplacian vanish as ε → 0, but their coefficients
νj still contribute to the coupling constant λ of the limiting equation (even though the
smoothing operator of the limiting equation is just the Laplacian with coefficient ν1 = 1).
The same is true for V ′, where all its coefficients also contribute to λ.

Example 1.5. In the simplest nontrivial case where Lε = ∆− νε2∆2 for some ν > 0,
and V consists of the sixth power only, the equation for Φε is

∂tΦε = (∆− νε2∆2)Φε − aεΦ5
ε + ξ + CεΦε , on R+ × T3 .

In this situation, with the proper choice of Cε, we have that Φε converges to Φ4
3(λ) with

λ =
5a

4π2

∫
R3

1

|θ|2(1 + 4π2ν|θ|2)
dθ.

We see that λ depends on both ν and a (even though V ′ itself does not have a cubic term),
and that λ would not be defined if ν ≤ 0.

Remark 1.6. We now comment on the assumptions on Q.

1. The first assumption ensures that Lε approximates the Laplacian at low frequencies.

2. The positivity assumption says that Lε should be “smoothing” at all scales. It is
almost necessary in the sense that if Q(z0) < 0 for some z0 6= 0, then even the
deterministic linear evolution etLεf does not converge to et∆f in L2 unless one
imposes very restrictive assumptions on the decay of f̂ .

3. Since we consider the equation with the space-time white noise (not its regularised
version), Lε should have a sufficient smoothing effect in order for Φε to make sense
even for fixed ε. This requires Q to grow sufficiently fast at infinity so that 1

Q is
integrable (as can be seen from the expression (1.6)).
On the other hand, if in (1.2), the noise ξ is replaced by its Fourier truncated version
ξε as ξ̂ε(t, k) := ρ(ε|k|) ξ̂(t, k) with some nice cutoff function ρ, then Theorem 1.3
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holds with λ in the same form as (1.7), but the variance σ2 of the Gaussian is given
by

σ2 =
1

2

∫
R3

ρ2(|θ|)
Q(2π|θ|)

dθ .

In this case with the presence of the approximation to the noise, the growth
assumption on Q can be removed since ρ2 is integrable at large scales.

4. Finally, the assumption 1.5 ensures that the perturbed heat kernel etLε has the right
smoothing properties with a δ-loss at t = 0 (see Lemma A.6). We do not know if
this δ-loss indeed happens or can be removed by improving our estimates. Note that
even though one requires (1.5) to hold for every δ > 0, this already includes a large
class of functions with no restriction on their growth. What this condition prevents
is the situation that the derivative oscillates much faster than the function grows.
On the other hand, if we require (1.5) to hold for δ = 0 with a finite proportionality
constant, then this would restrict to functions bounded by polynomial growth. We
finally note that this condition is only used in the PDE part of the proof, and is not
needed for the convergence of the stochastic objects.

1.2 Motivation and related works
1.2.1 Hairer-Quastel universality

Our work is not the first one in which the non-linearity of a singular SPDEs is generalised.
To the best of our knowledge, motivated by the weak universality conjecture of the KPZ
equation, the first work in that context is by Hairer and Quastel [HQ18], who considered
an approximation to the KPZ equation of the form

∂thε = ∂2
xhε + ε−1F (

√
ε∂xh) + ξε − Cε (1.8)

for some even polynomial F . They observed that as ε tends to zero one recovers the
usual KPZ equation. Yet, the crux is that powers larger than two of F do not simply
vanish but they produce additional quadratic non-linearities. They therefore alter the
coupling constant in front of the non-linearity which is a mean to regulate the strength of
the asymmetry inherent to the equation. The Hairer-Quastel result has been extended to
non-Gaussian noise ([HS17]) and general non-linearities ([HX19]). See also [GP16] for
similar results when the processes are at stationarity.

As for the Φ4
3-equation, a similar universality result has been established in [HX18]

where the approximations (1.2) with Lε = ∆ and mollified noise ξε was studied. It
has been again observed that the non-linearity collapses into a cubic non-linearity
with an altered coupling constant λ. These results have been extended to more general
non-linearities and noises ([SX18, FG19, ZZ18]), and the same phenomena was observed.

It was therefore a curiosity to investigate the effect of higher smoothing mechanisms.
Do they simply vanish as ε converges to zero, do they alter the strength of the final
smoothing by producing a constant in front of the Laplacian, or is the effect different?
Indeed, it was already expected in [HQ18, Section 1.3] that these smoothing mechanisms
should contribute to the limiting equation, and such effects was shown in [Hai12] in a
simpler situation. Theorem 1.3 shows in the current case that the coupling constant is a
function of Q and therefore confirms that the last guess is the correct one, i.e., higher
powers of the Laplacian produce additional non-linearities.
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1.2.2 Derivation from microscopic phase coexistence model

The equation (1.2) can be derived as macroscopic processes for microscopic phase
coexistence models as follows. Consider the microscopic process φ(ε) defined by

∂tφ
(ε) = L(ε)φ(ε) − εV ′θ (φ(ε)) + ξ(ε) , on R+ × [0, 1/ε]3

with periodic boundary condition. Here, ξ(ε) is the space-time white noise on (T/ε)3,
{Vθ} is a family of even polynomial potentials parametrised by θ, and L(ε) = −Q(i∇) is
a differential operator on functions on (T/ε)3 such that L̂(ε)(η) = −Q(2πη) for η ∈ (εZ)3.
Vθ can be viewed as a perturbation of V = V0 by a small parameter θ.

Consider the macroscopic process Φε defined by

Φε(t, x) := ε−
1
2φ(ε)(t/ε2, x/ε) .

Then Φε satisfies the equation

∂tΦε = LεΦε − ε−
3
2V ′θ (
√
εΦε) + ξ , (t, x) ∈ R+ × T3

where Lε = −ε−2Q(iε∇) and ξ(t, x) = ε−
5
2 ξ(ε)(t/ε2, x/ε) is the space-time white noise

on T3.
Let µ be the centered Gaussian measure on R with variance σ2 given in (1.6). Define

the averaged potential 〈Vθ〉 to be

〈Vθ〉(x) :=

∫
R
Vθ(x+ y)dy .

Now, if 〈V 〉 : (θ, u) 7→ Vθ(u) satisfies the pitchfork bifurcation at the origin in the sense
that

∂4〈V 〉
∂u4

(0, 0) > 0 ,
∂2〈V 〉
∂u2

= 0 ,
∂3〈V 〉
∂θ∂x2

(0, 0) < 0 ,

then the choice of c1 in Theorem 1.3 is necessarily 0, and for small θ, the non-linearity
behaves like

−ε−
3
2V ′θ (
√
εΦε) ≈ −ε−

3
2V ′(
√
εΦε) +

cθ

| log ε|
Φε .

With proper choice of θ(ε) = O(ε log ε), we are then in the form of (1.2). This says that
when {Vθ} is "critical" in that it satisfies the pitchfork bifurcation, then the equation (1.2)
can be derived as the macroscopic process for phase coexistence model near criticality
(with a small shift of θ(ε) = O(ε log ε) from its critical value).

1.3 Proof of Theorem 1.3
The precise notion of convergence is as follows. The solutions Φε to (1.2) and Φ to (1.1)
can be decomposed as

Φε = ε − λ ε + vε + wε , Φ = − λ + v + w , (1.9)

where ε and are the stationary solutions to the linearised equations in (2.2), and ε and
are stochastic objects specified in Section 2.2. (vε, wε) and (v, w) are remainders that
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satisfy the systems (3.10) and (3.6). Here we have replaced Lε and ∆ by Lε − 1 and
∆− 1. The precise statement of Theorem 1.3 is that if there exists a (possibly random)
distribution Φ(0, ·) such that the initial data Φε(0, ·)− ε(0, ·) converges to Φ(0, ·)− (0, ·)
in Bκ in probability, where Bκ is the Besov space further specified in the appendix, then
there is a random time T such that ‖(vε, wε)− (v, w)‖YT,ε → 0 in probability where YT,ε
is given as in Definition 3.2. Together with the convergence of ε to and ε to this
justifies our notion of convergence1. Furthermore, if λ in (1.7) is positive, then the time
T can be taken to be any (deterministic) positive number.

Proof of Theorem 1.3. Wegive a quick proof of themain theorem assuming Theorems 3.3
and 4.1. According to the decomposition (1.9) and the derivation in Section 2.3, (vε, wε)
and (v, w) satisfy the PDE systems (3.10) and (3.6) with initial data

vε(0, ·) + wε(0, ·) = Φε(0, ·)− ε(0, ·) + λ ε(0, ·) ,
v(0, ·) + w(0, ·) = Φ(0, ·)− (0, ·) + λ (0, ·) .

By Theorem 4.1, arbitrarily high moments of ε − converge in B 1
2
−κ. Combined

with the assumption on the convergence of the initial condition, we deduce that the sum
vε(0, ·) + wε(0, ·) converges to v(0, ·) + w(0, ·) in Bκ. Hence, we can allocate the initial
data of (vε, wε) and (v, w) such that the pair (vε(0, ·), wε(0, ·)) converges in Bκ × Bκ.
Again by the convergence of the stochastic objects in Theorem 4.1, we see that the
assumptions of Theorem 3.3 are satisfied. Hence, ‖(vε, wε)− (v, w)‖YT → 0, which in
turn implies the convergence of Φε to Φ in the sense described above.

1.4 Structure of the article
According to the argument given after Theorem 1.3, the proof of the main theorem will
be complete if we prove Theorems 3.3 and 4.1. In Section 2, we give an outline leading
to the derivation of the PDE system, and in particular explains why λ takes the value in
(1.7). In Section 3, we prove Theorem 3.3, establishing the well-posedness and stability
of the PDE. Section 4 is devoted to the proof of Theorem 4.1, the convergence of all
relevant stochastic objects. In the appendix, we give necessary backgrounds on Besov
spaces, paraproducts and a brief description of the stochastic objects that arise from the
standard dynamical Φ4

3 model.

1.5 Notations
We write

〈k〉ε =
√

1 + ε−2Q(2πε|k|) and 〈k〉 =
√

1 + 4π2|k|2 . (1.10)

The above definition also works for ε = 0, and we have 〈k〉0 = 〈k〉 in that situation.
For α ∈ R, we write ‖ · ‖α for ‖ · ‖Bα , the Besov norm for functions on the torus

defined in (A.1). We refer to Appendix A for its precise definition and properties. Also,
for T > 0, θ ∈ (0, 1) and α ∈ R, we use CαT and Cθ,αT to denote the following norms on
space-time functions:

‖f‖CαT := sup
t∈[0,T ]

‖f (t)‖α , ‖f‖Cθ,αT := sup
0≤<s<t≤T

‖f (t)− f (s)‖α
|t− s|θ

. (1.11)

1Φε converges to Φ means that each component in (1.9) converges in their corresponding space



Setting up the proof 8

We also let Iε and I denote operators on space-time functions such that

(Iεf )(t, ·) =

∫ t

0

e(t−r)(Lε−1)f (r, ·)dr , (If )(t, ·) =

∫ t

0

e(t−r)(∆−1)f (r, ·)dr . (1.12)

We further use the notations

[et(Lε−1),≺ ](f, g) = et(Lε−1)(f ≺ g)− f ≺ (et(Lε−1)g), (1.13)

as well as
[Iε,≺ ](f, g) = Iε(f ≺ g)− f ≺ Iε(g). (1.14)

Here, ≺ denotes the paraproduct introduced in Appendix A. Moreover, properties that
will be used in the sequel of the above norms and operators are provided therein as well.

We use κ > 0 to denote a fixed constant that is sufficiently small which ensures that
all arguments go through.
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2 Setting up the proof

In this section, we give a heuristic explanation on why one expects Theorem 1.3 to be true.
We then introduce proper setups and frameworks under which one can prove it rigorously.
Since the operator Lε takes a form that is convenient to work in Fourier space, we adapt
the theory of paracontrolled distributions introduced in [GIP15] and its application to the
Φ4

3 equation in [CC18]. It will be interesting to work through all relevant bounds of the
convolution kernel given by (∂t − Lε)−1 in the real space, and then to apply the general
framework in [Hai14, CH16, EH19] to prove convergence.

For technical simplicity, we consider the equation

∂tΦε = (Lε − 1)Φε − ε−
3
2V ′(
√
εΦε) + ξ + CεΦε . (2.1)

Compared to (1.2), we have subtracted the constant 1 from Lε to make the 0-th Fourier
mode stationary. This does not change the equation since one can add it back by changing
Cε. The particular choice of Cε which makes Φε converge to the limiting φ characterised
in Appendix B.2 will be specified in Section 2.3 below.

Let ε and denote the space-time stationary solutions to the linearised equations

∂t ε = (Lε − 1) ε + ξ and ∂t = (∆− 1) + ξ (2.2)

respectively. ε is the key object from which all subsequent quantities are constructed
from.
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2.1 Heuristic explanation of Theorem 1.3
We first explain why one expects Theorem 1.3 to be true, and in particular why λ, the
coupling constant of the limiting equation, takes the form in (1.7), involving nontrivial
contributions both from all higher order smoothings beyond the Laplacian, and from all
higher order powers in V ′ beyond the cubic term.

If Φε solves (1.2), then the remainder Zε = Φε − ε satisfies

∂tZε = (Lε − 1)Zε − ε−
3
2V ′(
√
ε ε +

√
εZε) + Cε( ε + Zε) .

The quantity
√
ε ε is asymptotically distributed as N (0, σ2) for σ2 as in (1.6) (see

Proposition 4.5), and in analogy with the standard Φ4
3 equation, we expect Zε to be

uniformly bounded. Hence, Taylor expanding V ′ near the quantity
√
ε ε yields

ε−
3
2V ′(
√
ε ε+
√
εZε) = ε−

3
2V ′(
√
ε ε) + ε−1V ′′(

√
ε ε) · Zε

+
1

2
√
ε
V (3)(
√
ε ε) · Z2

ε +
1

6
V (4)(
√
ε ε) · Z3

ε +O(ε
1
2
−) .

(2.3)

Since ε is stationary Gaussian with an explicit variance, one can perform a chaos
expansion to show that there exists a large constant C (1)

ε such that for λ given in (1.7), the
quantities

ε−
3
2V ′(
√
ε ε)− C (1)

ε ε, ε−1V ′′(
√
ε ε)− C (1)

ε ,
1

2
√
ε
V (3)(
√
ε ε),

1

6
V (4)(
√
ε ε) (2.4)

behave like λ �3ε , 3λ �2ε , 3λ ε and λ respectively. Here �jε denotes the j-th Wick power of
ε. Plugging them back into the equation for Zε, we get

∂tZε = (Lε − 1)Zε − λ( ε + Zε)�3 + (Cε − C (1)
ε )( ε + Zε) +Rε ,

where the Wick product is with respect to the Gaussian structure of ε, andRε is an error
term which vanishes in a proper sense as ε→ 0. Now the above equation for Zε is almost
the same as the remainder equation for the standard Φ4

3(λ) model (in particular, with λ
multiplying the cubic “Wick" term), except that the Laplacian is replaced by Lε and that
there is an error termRε. Hence, it is reasonable to expect that Φε convergences to Φ4

3(λ).
We see that λ arises as part of the coefficients of certain Wick powers in the expansion

of the quantities in (2.4). Since
√
ε ε is asymptotically non-degenerate, these coefficients

come as combined effects of all terms in V ′ (except the linear one) and the variance of√
ε ε. The latter depends on higher order smoothing effects in Lε. Together they give the

expression (1.7).

2.2 Definition of the stochastic objects
Since part of the construction and estimates we are relying on have been already carried
out and derived in [CC18] and in [MWX17], we only sketch some of the arguments and
refer to the articles just alluded to for more details.

Recall from (1.7) that λ = 1
6
E[V (4)(N (0, σ2))]. In view of the quantities appearing

in the expansion (2.3), it is natural to introduce processes ε, ε, ε and ε by setting

ε :=
1

6λ
V (4)(
√
ε ε) , ε :=

1

6λ
√
ε
V (3)(
√
ε ε) ,

ε :=
1

3λε
V ′′(
√
ε ε)− C (1)

ε , ε :=
1

λε3/2
V ′(
√
ε ε)− 3C (1)

ε ε .

(2.5)
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τε : ε ε ε ε ε ε ε

Φ4
3 : 1

Besov reg.:. −κ −1
2
− κ −1− κ 1

2
− κ −κ −κ −1

2
− κ

Table 1: List of processes, their limits and their respective regularities.

Here, the constant C (ε)
1 is given by

C (1)
ε =

1

3λε
EV ′′(

√
ε ε) . (2.6)

The reason for dividing by multiples of λ is to normalise, so that ε, ε and ε should
converge to the constant 1, the free field and its Wick square �2, while ε should behave
like �3

ε , which converges only after further convolution with the heat kernel.
We now introduce two new processes ε and ε by setting

ε(t) =

∫ t

−∞
e(t−r)(Lε−1)

ε(r)dr , ε(t) =

∫ t

−∞
e(t−r)(Lε−1)

ε(r)dr . (2.7)

Note that these are different from Iε( ε) and Iε( ε) since the integration in time starts
from −∞. Therefore they are stationary in both space and time. Finally, we define

ε
,

ε
and

ε
by

ε
:= ε ◦ ε − C (2)

ε ,
ε

:= ε ◦ ε − C (3)
ε ,

ε
:= ε ◦ ε − (3C (2)

ε + 2C (3)
ε ) ε ,

(2.8)

where C (2)
ε and C (3)

ε are given by

C (2)
ε = E[ ε ◦ ε ] , and C (3)

ε = E[ ε ◦ ε ] . (2.9)

The C (j)
ε ’s above do not depend on (t, x) since all the processes defined above are

space-time stationary. One can see from the expression of (2.6) that C (1)
ε diverges at

order ε−1. We will see from Proposition 4.11 below that C (2)
ε diverges logarithmically

while C (3)
ε is uniformly bounded in ε.

The above definition of the stochastic objects will ensure that

( ε , ε , ε , ε , ε
,

ε
,

ε
)→ ( 1 , , , , , , )

as ε→ 0 in a suitable topology. The symbols on the right hand side above are the stochastic
objects that appear in the standard Φ4

3 model, which are described in Appendix B.1. For
convenience, we have summarised our processes, their corresponding limiting objects
and their Besov regularities in Table 1.
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2.3 Formal derivation of the (system of) PDEs for the remainder
We now start to formally derive a system of equations for the remainder. The solution
theory for this perturbed equation is essentially the same as that of Φ4

3. We give a brief
description below for the sake of completeness. We follow the formulation in [MW17b].
We choose Cε to be

Cε = 3λC (1)
ε − 9λ2C (2)

ε − 6λ2C (3)
ε , (2.10)

where C (1)
ε , C (2)

ε and C (3)
ε are given in (2.6) and (2.9). In view of (2.3) and that

ε−
3
2V ′(
√
ε ε) behaves like λ ε, it is natural to add λ ε to the remainder Zε and consider

uε := Zε + λ ε = Φε − ε + λ ε .

Using the definition of the processes in (2.5) and the choice of Cε in (2.10), we see that
uε satisfies the equation

∂tuε =(Lε − 1)uε − 3λ ε (uε − λ ε)− 3λ ε (uε − λ ε)
2 − λ ε (uε − λ ε)

3

− ε−
3
2V ′(
√
ε ε;
√
ε(uε − λ ε))− (9λ2C (2)

ε + 6λ2C (3)
ε )( ε + uε − λ ε) ,

where

V ′(x; y) := V ′(x+ y)−
3∑
j=0

1

j!
V (j+1)(x) · yj (2.11)

denotes the Taylor remainder.
Because of the term ε (uε − λ ε) on the right hand side, the best regularity one

can hope for uε (uniformly in ε) is C1−, which does not allow us to close the loop since
both ε (uε − λ ε) and ε (uε − λ ε)

2 involve products between terms that are below the
threshold of analytic well-posedness (in the limit as ε→ 0). We first decompose these
two products into paraproducts, and combine with part of the renormalisation to get

∂tuε =(Lε − 1)uε − 3λ(uε − λ ε) ≺ ε − 3λ(uε − λ ε) � ε − 3λuε ◦ ε

−
3∑
j=0

F̃ju
j
ε − ε−

3
2V ′(
√
ε ε;
√
ε(uε − λ ε))− 9λ2C (2)

ε (uε − λ ε) .
(2.12)

where the coefficients F̃j are given by

F̃3 = −λ ε , F̃2 = 3λ2
ε ε − 3λ ε ,

F̃1 = −3λ3
ε( ε)

2
+ 6λ2

[
ε ≺ ε + ε � ε + ( ε ◦ ε − C (3)

ε︸ ︷︷ ︸
ε

)
]
,

F̃0 = λ4
ε( ε)

3 − 3λ3
[
( ε)

2 ≺ ε + ( ε)
2 � ε + ( ε ◦ ε) ◦ ε

+ 2( ε ◦ ε − C (3)
ε︸ ︷︷ ︸

ε

) ε + 2Com( ε; ε; ε)
]

+ 3λ2( ε ◦ ε − (3C (2)
ε + 2C (3)

ε ) ε︸ ︷︷ ︸
ε

) ,

(2.13)
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and the commutator operator Com is given in Proposition A.4. We see that if all the
stochastic objects live in their corresponding regularity spaces (as in Table 1) and that if
uε ∈ C1−, then all of the above terms would be well defined except the resonance product
uε ◦ ε.

For this term we need to employ the structures of uε inherited by the fact that it solves
the equation (2.12), and combine it with the remaining renormalisation terms to give a
meaningful expression of this reasonance product. To employ such structures given by
the equation, we split uε into vε + wε where vε satisfies

∂tvε = (Lε − 1)vε − 3λ(vε + wε − λ ε) ≺ ε. (2.14)

From the equation for vε and the regularities of the stochastic objects, it is natural to
expect that vε inherits the regularity of uε while wε is almost in B 3

2
− and hence ε ◦ wε

can be defined uniformly in ε. To treat the only problematic term ε ◦ vε, we use the
equation for vε so that

vε(t) = et(Lε−1)vε(0)− 3λ(uε − λ ε) ≺ Iε( ε)− 3λ[Iε,≺](uε − λ ε, ε) ,

where we recall the operator Iε and commutator [Iε,≺] from (1.12) and (1.14).Plugging
this expression into ε ◦ vε and combine it with the remaining renormalisation, we get

−3λ ε ◦ vε − 9λ2C (2)
ε (uε − λ ε) = −3λ ε ◦ et(Lε−1)vε(0)

+ 9λ2
[

ε ◦ [Iε,≺](uε − λ ε, ε) + Com(uε − λ ε; Iε( ε); ε)

+ ( ε ◦ ε − C (2)
ε︸ ︷︷ ︸

ε

− ε ◦ et(Lε−1)
ε(0))(uε − λ ε)

]
,

(2.15)

where we have used (Iε ε)(t) = ε(t)− et(Lε−1)
ε(0), and all processes unless indicated

otherwise are evaluated at time t. If uε has a positive Hölder-in-time regularity, then all
the above terms will be well defined. Hence, combining (2.12) and (2.15), we derive the
system of (vε, wε) as{

∂tvε = (Lε − 1)vε − 3λ(vε + wε − λ ε) ≺ ε

∂twε = (Lε − 1)wε − 3λ(et(Lε−1)vε(0) + wε) ◦ ε +Gε(vε + wε)
(2.16)

where

Gε(u) =
3∑
j=0

Fju
j − 3λ(u− λ ε) � ε − ε−

3
2V ′(
√
ε ε;
√
ε(u− λ ε))

+ 9λ2
[
Com(u− λ ε; Iε( ε); ε) + ε ◦ [Iε,≺](u− λ ε, ε)

− ( ε ◦ et(Lε−1)
ε(0)) · (u− λ ε)

]
,

(2.17)

and the coefficients Fj are given by

F3 = F̃3 , F2 = F̃2 , F1 = F̃1 + 9λ2
ε
, F0 = F̃0 − 9λ3

ε
· ε , (2.18)

with F̃j given in (2.13).



Solution theory 13

Remark 2.1. In addition to the operator Lε and the remainder term ε−
3
2V ′(
√
ε·;
√
ε·), the

system (2.16) is also different from that in [MW17b, CC18] in that our last term in Gε

(the one involving et(Lε−1)
ε(0)) is extra. The reason for the appearance of this additional

term is that our definition of ε is slightly different – the integration of heat kernel starts
from −∞ rather than 0, and hence both ε and ε

are stationary.
If we define ε to be the same as Iε( ε) so that ε(0) = 0, then there would be no

such term, but the trade-off is that the process
ε
would not be stationary in time.

3 Solution theory

In this section, we prove pathwise well-posedness and stability properties of the system
(2.16). It is then natural to introduce spaces that encode the pathwise analytic properties
of the relevant stochastic processes. In the rest of this section, all functions/distributions
in relevant spaces are treated deterministically, and the only information used are their
relevant norms.

3.1 The fixed point equation
We start by introducing the relevant spaces for the external functions/distribution as well
as the space in which we are going to construct the solution pair (vε, wε).

For every T > 0, let XT be the space of a collection of continuous evolutions in
certain Besov spaces (to be specified in Definition 3.1) up to time T . We denote a generic
element in XT by

Υ = ( , , , , , , ) . (3.1)

Definition 3.1. We define the norm ‖ · ‖XT by

‖Υ‖XT :=
∑
τ

sup
t∈[0,T ]

‖τ (t)‖|τ | + sup
0≤s<t≤T

‖ (t)− (s)‖ 1
4
−κ

|t− s| 18
, (3.2)

where the sum is taken over all the seven components in Υ, |τ | is the homogeneity of the
component τ as specified in Table 1, and ‖ · ‖|τ | is the Besov norm as defined in (A.1).
We also write X = X1 for T = 1.

The symbols in (3.1) are abstract placeholders for generic elements in XT . We do not
assume any relationship between them and the processes introduced in Section 2.2.

Let {ψε} and {hε} be families of space-time functions indexed by ε ∈ (0, 1). Let
h be another space-time function. We will specify relevant analytic bounds for these
functions later but we mention already now that they play the roles of

√
ε ε, et(Lε−1)

ε(0)
and its limit et(∆−1) (0) respectively. In view of (2.17), (2.18) and (2.13), for every
λ ∈ R, ε ∈ (0, 1) and every Υ ∈ XT , we define a mapGε(λ,Υ, ·) on the set of sufficiently
regular space-time functions by

Gε(λ,Υ, u) :=
3∑
j=0

Fj(λ,Υ)uj − 3λ(u− λ ) � − ε−
3
2V ′(
√
εψε;
√
ε(u− λ ))

+ 9λ2
[
Com(u− λ ; Iε( ); ) + ◦ [Iε,≺](u− λ , )− ( ◦ hε) · (u− λ )

]
,

(3.3)
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where the coefficients Fj are given by

F3(λ,Υ) = −λ , F2(λ,Υ) = 3λ2 · − 3λ ,

F1(λ,Υ) = −3λ3 · ( )2 + 6λ2
(
≺ + � +

)
+ 9λ2

F0(λ,Υ) = λ4 · ( )3 − 3λ3
[
( )2 ≺ + ( )2 � + ( ◦ ) ◦

+ 2 · + 2 Com( ; ; )
]

+ 3λ2 − 9λ3 · .

(3.4)

By Bony’s estimate and the definition of ‖ · ‖XT , we see that the coefficients Fj’s are all
well defined, and satisfy the bounds

‖F3(Υ)‖C−κT . ‖Υ‖XT , ‖F2(Υ)‖
C
− 1

2−κ
T

. ‖Υ‖XT (1 + ‖Υ‖XT ) ,

‖F1(Υ)‖
C
− 1

2−κ
T

. ‖Υ‖XT (1 + ‖Υ‖2
XT ) , ‖F0(Υ)‖

C
− 1

2−κ
T

. ‖Υ‖XT (1 + ‖Υ‖3
XT ) ,

where the dependence of λ are hidden in the proportionality constants. For ε = 0, we
define G0 as

G0(λ,Υ, u) :=
3∑
j=0

Fj(λ,Υ)uj − 3λ(u− λ ) � + 9λ2
[
Com(u− λ ; I( ); )

+ ◦ [I,≺](u− λ , )− ( ◦ h) · (u− λ )
]
,

(3.5)

and consider the systems of equations for (v, w) given by

v(t) = et(∆−1)v(0)− 3λ

∫ t

0

e(t−r)(∆−1)
[
(v(r) + w(r)− λ (r)) ≺ (r)

]
dr ,

w(t) = et(∆−1)w(0)− 3λ

∫ t

0

e(t−r)(∆−1)
[
(er(∆−1)v(0) + w(r)) ◦ (r)

]
dr

+

∫ t

0

e(t−r)(∆−1)G0(λ,Υ(r), v(r) + w(r))dr .

(3.6)

This is the natural candidate for the limiting equation. We now specify the space in which
we are seeking the solutions. Since the linear evolution allows a singularity at t = 0 (even
when measured as a map between the same Besov spaces), we set up ε-dependent spaces
to encode this possible singularity. Recall that V ′ has degree 2n− 1.

Definition 3.2. We fix δ0 ∈ (0, κ
n

). Define the norms ‖ · ‖Y (1)
T,ε

and ‖ · ‖Y (2)
T,ε

on the space
of space-time functions up to time T by

‖v‖Y (1)
T,ε

:= sup
t∈[0,ε2]

((
√
t/ε)δ0‖v(t)‖κ) + sup

t∈[ε2,T ]
‖v(t)‖κ

+ sup
t∈[0,T ]

(t
2
3‖v(t)‖1−2κ) + sup

0≤s<t≤T
s

1
4
‖v(t)− v(s)‖κ
|t− s| 18

,

‖w‖Y (2)
T,ε

:= sup
t∈[0,ε2]

((
√
t/ε)δ0‖w(t)‖κ) + sup

t∈[ε2,T ]
‖w(t)‖κ

+ sup
t∈[0,T ]

(t
2
3‖w(t)‖1+2κ) + sup

0≤s<t≤T
s

1
4
‖w(t)− w(s)‖κ
|t− s| 18

.

(3.7)
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For ε = 0, define the norms ‖ · ‖Y (1)
T

and ‖ · ‖Y (2)
T

by

‖v‖Y (1)
T

:= sup
t∈[0,T ]

(
‖v(t)‖κ + t

2
3‖v(t)‖1−2κ

)
+ sup

0≤s<t≤T
s

1
4
‖v(t)− v(s)‖κ
|t− s| 18

,

‖w‖Y (2)
T

:= sup
t∈[0,T ]

(
‖w(t)‖κ + t

2
3‖w(t)‖1+2κ

)
+ sup

0≤s<t≤T
s

1
4
‖w(t)− w(s)‖κ
|t− s| 18

.

(3.8)

We define the norm on the space YT,ε and YT of pairs of space-time functions by

‖(v, w)‖YT,ε := ‖v‖Y (1)
T,ε

+ ‖w‖Y (2)
T,ε
, ‖(v, w)‖YT := ‖v‖Y (1)

T
+ ‖w‖Y (2)

T
. (3.9)

The only difference between Y (1)
T,ε and Y

(2)
T,ε is that the spatial regularity (at fixed time) for

the former is 1− 2κ while it is 1 + 2κ for the latter, and the same is true for Y (1)
T and Y (2)

T .

In the sequel, we will write YT,ε for ε ∈ [0, 1], with ε = 0 corresponding to the
space YT . The following is the main statement on the existence and convergence of the
solutions (vε, wε).

Theorem 3.3. Let {ψε}ε∈(0,1] and {hε}ε∈[0,1] be families of space-time functions such
that

sup
ε∈(0,1]

sup
(t,x)∈[0,1]×T3

ε
1
2

+κ|ψε(t, x)| < +∞ , sup
ε∈(0,1)

sup
t∈[0,1]

(
t

1
4‖hε(t)‖1+2κ

)
< +∞ .

Recall the definition of the spaces XT and YT in (3.2) and (3.9). Consider the fixed point
problem

vε(t) = et(Lε−1)vε(0)− 3λε

∫ t

0

e(t−r)(Lε−1)
[
(vε(r) + wε(r)− λε ε(r)) ≺ ε(r)

]
dr ,

wε(t) = et(Lε−1)wε(0)− 3λε

∫ t

0

e(t−r)(Lε−1)
[

ε(r) ◦ (er(Lε−1)vε(0) + wε(r))
]
dr

+

∫ t

0

e(t−r)(Lε−1)Gε(λε,Υε(r), vε(r) + wε(r))dr ,

(3.10)

where Gε for ε > 0 and ε = 0 are given in (3.3) and (3.5) respectively. Then for every
λε ∈ R, Υε ∈ X and (vε(0), wε(0)) ∈ Bκ × Bκ, there exists Tε ≤ 1 such that the fixed
point problem (3.10) has a unique solution (vε, wε) ∈ YTε . Furthermore, if λε, Υε and
(vε(0), wε(0)) are uniformly bounded in their respective spaces, the local existence time
Tε can be taken uniform in ε ∈ [0, 1].

Fix arbitrary λ ∈ R,Υ ∈ X and (v(0), w(0)) ∈ X . Let (v, w) ∈ YT denote the unique
solution to (3.10) with ε = 0 and with the above inputs. Suppose λε → λ, Υε → Υ in
X , (vε(0), wε(0))→ (v(0), w(0)) in Bκ ×Bκ, and supt∈[0,1] (t

1
4‖hε(t)− h(t)‖1+2κ)→ 0.

Then there exists ε0 > 0 such that for every ε ∈ (0, ε0), the solution (vε, wε) ∈ YT to (3.10)
can be defined up to the same time T . Furthermore, we have ‖(vε, wε)− (v, w)‖YT,ε → 0
as ε→ 0.
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Remark 3.4. The solution Φε to (2.1) can be written as Φε = ε − λ ε + vε +wε. Hence,
the requirement on the initial condition in Theorem 1.3 is that Φε(0, ·)− ε(0, ·) converges
in Bκ to Φ(0, ·)− (0, ·) for some function Φ(0, ·). Then, we have that Φε converges to
the solution of the dynamical Φ4

3(λ)-equation with initial data Φ(0, ·).
Note that this puts restriction on the local behaviour of Φε(0, ·). Ideally we would

like condition on the convergence of Φε(0, ·) itself without giving reference to ε. Then
in order to extend local solution to longer time intervals, one necessarily needs to be
able to treat initial data below B− 1

2
−. But this will create a problem of non-integrable

singularity (even for fixed ε) for higher powers in V ′ if the smoothing effect of Lε is not
strong enough. One way to circumvent this without putting further assumption on Lε or
V is to set up a weighted space, separating small and large scale behaviours. We choose
to put restrictions on the initial condition to avoid technical complications.
Remark 3.5. The existence of solutions to (3.10) has been proven in [MW17b, Theo-
rem 2.1] and [CC18, Theorem 3.1], at least for ε = 0. The existence of solutions for ε > 0
can be proven with essentially the same arguments, except that the operator ∆ is replaced
by Lε (which satisfies all the necessary bounds), that the choice of exponents are slightly
different, and that there are two additional terms: the small remainder ε− 3

2V ′(
√
ε·;
√
ε·),

and the one involving hε (or h). The setup here follows that in [MW17b]. In the proof
below, we only give details for the small remainder term as well as terms involving
commutators. The convergence of the solutions as ε → 0 employs additional bounds
involving the difference of the heat semi-groups et(Lε−1) − et(∆−1) which are provided in
the appendix.

3.2 Some preliminary bounds
We give some preliminary bounds that are needed in the proof of Theorem 3.3. We
write YT,ε for ε ∈ [0, 1], with ε = 0 corresponding to YT . Also recall that ‖f‖Cαr =
supr′∈[0,r] ‖f (r′)‖α.

Lemma 3.6. We have the bounds

‖[Iε,≺](u, )(r)‖1+2κ . r−
1
4‖ ‖C−1−κ

r
‖u‖Y (1)

r,ε
,

and

‖[Iε,≺]( , )(r)‖1+2κ .
(
r

1
4
−2κ‖ ‖

C
1
2−κ
r

+ r
1
8
− 3κ

2 ‖ ‖
C

1
8 ([0,r],C

1
4−κ(T3))

)
‖ ‖C−1−κ

r
.

Both are uniform in ε ∈ [0, 1] and r ∈ (0, 1). As a consequence, we have

‖ (r) ◦ [Iε,≺](u− λ , )(r)‖κ . r−
1
4‖Υ‖2

Xr(‖u‖Y (1)
r,ε

+ ‖Υ‖Xr) .

Proof. It suffices to prove the first two bounds. The third follows from the first two and
the estimate of the resonance product in Proposition A.3.

For the first, we have

[Iε,≺](u, )(r) =

∫ r

0

[e(r−r′)(Lε−1),≺ ](u(r′), (r′))dr′

+

∫ r

0

(u(r′)− u(r)) ≺
(
e(r−r′)(Lε−1) (r′)

)
dr′ .

(3.11)
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By the commutator estimate for the heat kernel (A.7) and the definition of Y (1) in (3.7),
we can control the first term on the right hand side by∫ r

0

‖[e(r−r′)(Lε−1),≺ ](u(r′), (r′))‖1+2κdr′

.
∫ r

0

(r − r′)−
1+5κ+δ0

2 ‖u(r′)‖1−2κ‖ (r′)‖−1−κdr′

.

(∫ r

0

(r − r′)−
1+5κ+δ0

2 (r′)−
2
3 dr′

)
‖ ‖C−1−κ

r
‖u‖Y (1)

r

. r−
1
6
− 5κ+δ0

2 ‖ ‖C−1−κ
r
‖u‖Y (1)

r,ε
.

As for the second term on the right hand side of (3.11), using Proposition A.3 and
Lemma A.6, we have∫ r

0

∥∥∥(u(r′)− u(r)) ≺
(
e(r−r′)(Lε−1) (r′)

)∥∥∥
1+2κ

dr′

.
∫ r

0

‖u(r)− u(r′)‖κ(r − r′)−1− 3κ+δ0
2 ‖ (r′)‖−1−κdr′

.

(∫ r

0

(r − r′)−
7
8
− 3κ+δ0

2 (r′)−
1
4 dr′

)
‖ ‖C−1−κ

r
‖u‖Y (1)

r

. r−
1
8
− 3κ+δ0

2 ‖ ‖C−1−κ
r
‖u‖Y (1)

r,ε
.

Since δ0 <
κ
n
and κ is sufficiently small, we can enlarge both bounds to r− 1

4 . This
completes the proof of the first bound.

The proof for the second one is the same – one splits the quantity into two sums as
above, and uses the C

1
2
−κ

r and C
1
8
, 1
4
−κ

r norms of respectively. Finally, one combines the
two bounds with Proposition A.3 and the fact that r ≤ 1 to conclude the lemma.

Remark 3.7. The commutator estimate for [Iε,≺] (and for [Iε − I,≺]) is the only place
that requires Hölder-in-time continuity of the process and the solution (v, w).

We recall at this point that V is an even polynomial of degree 2n.

Lemma 3.8. We have

ε−
3
2‖V ′(

√
εψε;
√
εf)‖L∞(T3) . ε

1
4‖f‖

(
1 + ε

1
2

+κ‖ψε‖+ ‖f‖
)2n−2

, (3.12)

and

ε−
3
2‖V ′(

√
εψε;
√
εf)− V ′(

√
εψε;
√
εf̄)‖L∞(T3)

. ε
1
4‖f − f̄‖

(
1 + ε

1
2

+κ‖ψε‖+ ‖f‖+ ‖f̄‖
)2n−2

,
(3.13)

where all the norms on the right hand sides of the two bounds above are L∞(T3)-norms,
and all functions are evaluated at a fixed time. Both bounds are uniform in ε ∈ (0, 1)
and in ψε, f, f̄ ∈ L∞(T3), and the proportionality constants are also independent of the
actual time.
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Proof. By the mean value theorem, there exists a g with 0 ≤ |g| ≤ |f | such that

V ′(
√
εψε;
√
εf ) =

1

24
V (5)(
√
εψε +

√
εg) · (

√
εf )4 .

Since V (5) has polynomial growth or order at most 2n− 5, we have

|V ′(
√
εψε;
√
εf )| . ε2|f |4(1 +

√
ε|ψε|+

√
ε|g|)2n−5

.

Using |g| ≤ |f | and that we can choose κ sufficiently small (κ < 1
8n

would be sufficient),
we get

ε−
3
2 |V ′(

√
εψε;
√
εf )| . ε

1
4 |f |(1 + ε

1
2

+κ|ψε|+ |f |)2n−2
.

Taking L∞-norm in [0, T ]×T3 yields the desired bound (3.12). As for (3.13), we notice
the identity

ε−
3
2

(
V ′(
√
εψε;
√
εf)− V ′(

√
εψε;
√
εf̄)
)

= ε−
3
2V ′(
√
ε(ψε + f̄ );

√
ε(f − f̄ ))

+ ε−
3
2

3∑
`=1

(
√
ε(f − f̄ ))`

`!

[
V (`+1)(

√
εψε +

√
εf̄)−

3−∑̀
j=0

V (`+1+j)(
√
εψε)

j!
· (
√
εf̄ )j

] ,
and the desired bound follows from the same argument as above.

3.3 Proof of Theorem 3.3
The statement (and hence the proof) consists of two parts: the existence of solutions
(vε, wε) for each ε ∈ [0, 1], and the convergence of (vε, wε) to (v, w) as ε→ 0.

Part 1.

Fix λ ∈ R, Υ ∈ X , ψε ∈ L∞([0, T ]×T3), hε ∈ C((0, 1];B1+2κ) and (vε(0), wε(0)) ∈
Bκ × Bκ with

ε
1
2

+κ‖ψε‖L∞([0,1]×T3) + sup
t∈[0,1]

(t
1
4‖hε(t)‖1+2κ) + ‖Υ‖X ≤ K ,

and ‖vε(0)‖κ + ‖wε(0)‖κ ≤M .

For T, ε ∈ [0, 1], define the mild solution map ΓT,ε = (Γ(1)
T,ε,Γ

(2)
T,ε) by

Γ(1)
T,ε(v, w)(t) =et(Lε−1)vε(0)− 3λ

∫ t

0

e(t−r)(Lε−1)
(

(v(r) + w(r)− λ (r)) ≺ (r)
)

dr ,

Γ(2)
T,ε(v, w)(t) =et(Lε−1)wε(0)− 3λ

∫ t

0

e(t−r)(Lε−1)
(

(r) ◦ (er(Lε−1)vε(0) + w(r))
)

dr

+

∫ t

0

e(t−r)(Lε−1)Gε(λ,Υ(r), v(r) + w(r))dr ,

(3.14)

where we recall the symbols in the generic element Υ ∈ X from (3.1), and the expression
of Gε in (3.3) and (3.5) for ε > 0 and ε = 0 respectively. We need to show that for
suitable T and R (depending only on λ, K andM but independent of ε), ΓT,ε is a
contraction map from the ball in YT with radiusR into itself.
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Step 1.

We first check ΓT,ε maps the ball in YT,ε with radiusR (centered at the origin) into
itself. For notational simplicity, we write u = v + w.

We give details for three terms appearing in the definition of Γ(2)
T,ε: the initial data

term et(Lε−1)wε(0), the term involving the commutator [Iε,≺] and the remainder term
ε−

3
2V ′(
√
ε·;
√
ε·). The bounds for the other terms (including those appearing in the

definition of Γ(1)
T,ε) can be obtained in the same way.

For the initial data term, we have by Lemma A.6

‖et(Lε−1)wε(0)‖γ . t−
γ−κ

2 (1 + εδ0t−
δ0
2 )‖wε(0)‖κ . t−

γ−κ
2 (1 + εδ0t−

δ0
2 )M .

Taking γ = κ and 1+2κ respectively gives the corresponding bounds in spatial regularity.
As for the term with temporal Hölder regularity, using the continuity estimate for the
perturbed heat semigroups in Lemma A.7 (with θ = 1

4
and γ = α = κ), we have

‖(et(Lε−1) − es(Lε−1))wε(0)‖κ . (t− s)
1
8 s−

1
8
− δ0

2 ‖wε(0)‖κ .

This shows that for the term with the initial data, we have

‖et(Lε−1)wε(0)‖Y (2)
T,ε

.M . (3.15)

We now turn to Gε, focusing on the commutator term [Iε,≺] and the remainder
ε−

3
2V ′(
√
ε·;
√
ε·). Recall that we write u = v + w. For the commutator term, we also

write fε = ◦ [Iε,≺](u− λ , ) for simplicity. By Lemma 3.6, we have

‖fε(r)‖κ . r−
1
4K2(‖v + w‖Y (1)

T,ε
+K) . r−

1
4K2(R+K) ,

where the last inequality comes from ‖w‖Y (1)
T,ε
≤ ‖w‖Y (2)

T,ε
by definition of the norms.

Hence, we have∥∥∥∫ t

0

e(t−r)(Lε−1)fε(r)dr
∥∥∥
γ
.
(∫ t

0

(t−r)−
γ−κ+δ0

2 r−
1
4 dr
)
K2(K+R) . t

3
4
− γ−κ+δ0

2 K2(K+R) .

Taking γ = κ and 1 + 2κ respectively gives the bounds for spatial regularity with a factor
bounded by T 1

8 provided κ and δ0 are small enough. As for the temporal regularity, we
write the difference between times s and t as∫ s

0

(e(t−r)(Lε−1) − e(s−r)(Lε−1))fε(r)dr +

∫ t

s

e(t−r)(Lε−1)fε(r)dr ,

and we want to control the Bκ norm of these two quantities. For the first term, using
Lemma A.7 with θ = 1

4
and γ = α = κ and the bound on ‖fε(r)‖κ, we have∥∥∥∫ s

0

(e(t−r)(Lε−1) − e(s−r)(Lε−1))fε(r)dr
∥∥∥
κ
. (t− s)

1
8

(∫ s

0

(s− r)−
1
8
− δ0

2 r−
1
4 dr
)
K2(K +R)

. s−
1
4 (t− s)

1
8 s

7
8
− δ0

2 K2(K +R) .
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For the second one, by Lemma A.6, we can control its Bκ-norm by∫ t

s

(t− r)−
δ0
2 ‖fε(r)‖κdr .

(∫ t

s

(t− r)−
δ0
2 r−

1
4 dr
)
K2(K +R)

. s−
1
4 (t− s)

1
8 t

7
8
− δ0

2 K2(K +R) .

Hence, we obtain∥∥∥∫ t

0

e(t−r)(Lε−1)
(

(r) ◦ [Iε,≺](u, )(r)
)

dr
∥∥∥
Y (2)
T,ε

. T
1
8K2(K +R) . (3.16)

We now turn to the remainder term V ′. For simplicity, we write

Fε := ε−
3
2V ′(
√
εψε;
√
ε(u− λ )) .

Lemma 3.8 implies

‖Fε(r)‖L∞(T3) . ε
1
4 r−

(2n−1)δ0
2 (1 +K +R)2n−1.

We then have∥∥∥∫ t

0

e(t−r)(Lε−1)Fε(r)dr
∥∥∥
γ
.
∫ t

0

(t−r)−
γ+δ0

2 ‖Fε(r)‖L∞(T3)dr . ε
1
4 t1−

γ+2nδ0
2 (1+K+R)2n−1 ,

where the first inequality follows from Lemma A.6 and that ‖ · ‖0 . ‖ · ‖L∞ , which is the
content of Lemma A.2 and the second one is valid for γ ∈ (0, 2). Again, taking γ = κ
and 1 + 2κ gives the respective bounds for the two different spatial regularities.

As for the time difference, similar as before, we write∫ t

0

e(t−r)(Lε−1)Fε(r)dr −
∫ s

0

e(s−r)(Lε−1)Fε(r)dr

=

∫ s

0

(e(t−r)(Lε−1) − e(s−r)(Lε−1))Fε(r)dr +

∫ t

s

e(t−r)(Lε−1)Fε(r)dr .

For the first term, using Lemma A.7 with θ = 1
4
, γ = κ, α = 0 and that ‖ · ‖0 . ‖ · ‖L∞ ,

we can control it by∥∥∥∫ s

0

(e(t−r)(Lε−1) − e(s−r)(Lε−1))Fε(r)dr
∥∥∥
κ
. (t− s)

1
8

∫ s

0

(s− r)−
1
8
−κ+δ0

2 ‖Fε(r)‖L∞(T3)dr

. ε
1
4 s−

1
4 (t− s)

1
8 s

9
8
−κ

2
−nδ0(1 +K +R)2n−1 .

For the second one, we have∫ t

s

‖e(t−r)(Lε−1)Fε(r)‖κdr .
∫ t

s

(t− r)−
κ+δ0

2 ‖Fε(r)‖L∞(T3)dr

. ε
1
4 s−

1
4 (t− s)1−κ+δ0

2 t
1
4
− (2n−1)δ0

2 (1 +K +R)2n−1 .

Hence, for κ (and δ0) small enough we obtain

ε−
3
2

∥∥∥∫ t

0

e(t−r)(Lε−1)V ′(
√
εψε(r);

√
ε(u(r)− λ (r)))dr

∥∥∥
Y (2)
T,ε

. ε
1
4T

1
6 (1 +K +R)2n−1 .
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The bounds for w ◦ and the nonlinear terms Fjuj are treated in detail in [MW17b], and
we omit the details here. Overall, if ‖(v, w)‖YT,ε ≤ R, we deduce that

‖ΓT,ε(v, w)‖YT,ε ≤ C
(
M+ T θ(1 +M+K +R)2n+1

)
for some θ > 0 universal, and the constant C depends on λ only. Hence, if we take
R > 2CM and T > 0 sufficiently small such that

C
(
M+ T θ(1 +M+K +R)2n+1

)
≤ R

2
,

we see ΓT,ε maps the ball in YT,ε with radiusR into the smaller ball in YT with radius R
2
.

Also, the local existence time T is independent of ε since both θ and C are.

Step 2.

We now show that ΓT,ε is a contraction map between the above mentioned space
for sufficiently small T (independent of ε). We need to get a bound for ‖ΓT,ε(v, w) −
ΓT,ε(v̄, w̄)‖YT,ε . Most of the terms in ΓT,ε are “constant” or linear, in which case the
quantities either completely cancel out, or the same bound as in Step 1 holds by replacing
R with ‖(v, w) − (v̄ − w̄)‖YT,ε . The only nonlinear terms are Fjuj for j = 2, 3 and
the remainder ε− 3

2V ′(
√
ε·;
√
ε·). In these two cases, one replaces one factor of R by

‖(v, w)− (v̄ − w̄)‖YT,ε (see Lemma 3.8 for example). Hence, we obtain the bound

‖ΓT,ε(v, w)− ΓT,ε(v̄, w̄)‖YT,ε . T θ‖(v, w)− (v̄, w̄)‖YT,ε(1 +K +R)
2n

for some θ > 0 independent of ε. One then deduces that for every ε ∈ [0, 1], one can
choose Tε > 0 sufficiently small so that ΓTε,ε gives a contraction in a bounded ball in
YTε . In addition, the local existence time Tε is uniform in ε (bounded away from 0) since
the proportionality constant in the above bound is.

Part 2.

We now turn to the second part of the theorem, namely ‖(vε, wε) − (v, w)‖YT,ε
converging to 0, where T > 0 is the time up to which (v, w) is defined. By the previous
part, we know that there exists 0 < S < T such that for all sufficiently small ε, the
solution (vε, wε) to (3.10) is defined in YS,ε.

The difference (vε, wε)− (v, w) is a linear combination of the terms of the form∫ t

0

e(t−r)(Lε−1)fε(r)dr −
∫ t

0

e(t−r)(∆−1)f (r)dr ,

where fε and f come from the right hand sides of the equations, and can also depend on
(vε, wε) and (v, w). The difference can be split into∫ t

0

e(t−r)(Lε−1)(fε(r)− f (r))dr +

∫ t

0

(
e(t−r)(Lε−1) − e(t−r)(∆−1)

)
f (r)dr . (3.17)
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By invoking the above bounds in the fixed point map as well as the bound for the difference
of the kernels e(t−r)(Lε−1) − e(t−r)(∆−1) (see the bound (A.4) in Lemma A.6), we can
obtain the bound

‖(vε, wε)− (v, w)‖YS,ε . (S + ε)θ‖(vε, wε)− (v, w)‖YS,ε
+ ‖Υε −Υ‖X + |λε − λ|+ ‖vε(0)− v(0)‖κ + ‖wε(0)− w(0)‖κ + (εT )θ

+ ‖(et(Lε−1) − et(∆−1))v(0)‖CκS,ε + ‖(et(Lε−1) − et(∆−1))w(0)‖CκS,ε ,
(3.18)

for some θ > 0, where we have written CκS,ε as a shorthand for continuous evolution
in Bκ such that the part t ∈ [0, ε2] is weighted by (

√
t/ε)δ0 and the rest is taken in the

supremum norm in t ∈ [ε2, S]. The proportionality constant above is independent of ε
(but depends on the sizeM of the limiting solution (v, w) and the size K of the external
inputs). Here, the first five terms on the right hand side of (3.18) come from the estimates
of the first term in (3.17) (with fε being Gε and polynomials of solutions), and the last
three terms come from the estimates for the second term in (3.17). We do not have a
positive power of ε in the last two since we are measuring those quantities in the same
space as the initial data, but they still vanish as ε→ 0 (LemmaA.8).

If S > 0 is sufficiently small (still uniform in ε ≤ ε0 for some fixed small ε0), we can
absorb the first term on the right hand side of (3.17) into its left hand side to obtain

‖(vε, wε)−(v, w)‖YS,ε . ‖Υε −Υ‖X + |λε − λ|+ ‖vε(0)− v(0)‖κ + ‖wε(0)− w(0)‖κ
+ (εT )θ + ‖(et(Lε−1) − et(∆−1))v(0)‖CκS,ε + ‖(et(Lε−1) − et(∆−1))w(0)‖CκS,ε .

(3.19)

All the terms on the right hand side above vanish as ε→ 0 (the first four are by assumption,
while the last two follow from Lemma A.8). In particular, we will have S > ε2 and that

‖vε(S)‖κ + ‖wε(S)‖κ ≤ sup
t∈[0,T ]

(
‖v(t)‖κ + ‖w(t)‖κ

)
+ 1 =:M

if ε is sufficiently small. This enables us to iterate the bound (3.19) up to time T and thus
complete the proof of the theorem.

4 Convergence of the stochastic objects

In this section, we show that the assumptions in Theorem 3.3 on the convergences of the
external inputs (Υε, ψε and hε) are indeed true if they are for the stochastic objects as
defined in Section 2.2. Note that in this section we are only using the first three conditions
in Assumption 1.2, and no control on the derivative ofQ is assumed. The main statement
is Theorem 4.1 below.

4.1 The main convergence theorem and a convergence criterion
For ε ∈ (0, 1), we define

Υε := ( ε, ε, ε, ε, ε
,

ε
,

ε
) ,
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where components of Υε are the stochastic objects defined in (2.5), (2.7) and (2.8). Also
let

Υ := ( 1, , , , , , ) , (4.1)

where the components (except 1) are the standard Φ4
3 stochastic objects described in

Appendix B.1. Υε and Υ are defined on the same probability space (that is, constructed
from the same space-time white noise ξ). We emphasize that in this section these symbols
do mean concrete stochastic processes rather than abstract placeholders representing
generic distributions as in Section 3.1.

We also fix a sufficiently small κ > 0, and recall the norm X from (3.2). The main
convergence theorem for these stochastic objects is the following.

Theorem 4.1. There exists δ > 0 (depending on κ) such that for every p ≥ 1, we have
the bound

E‖Υε‖pX .p 1 , lim
ε→0

E‖Υε −Υ‖pX = 0 .

We also have

εκpE‖ ε‖pL∞([0,T ]×T3) .p ε
δp
2 , E sup

t∈[0,1]

(
t

1
4‖et(Lε−1)

ε(0)− et(∆−1) (0)‖1+2κ

)p
.p ε

δp .

The proportionality constants are independent of ε.

We provide a criterion for the convergence of the (stationary) stochastic objects. The
following proposition is the same as [MWX17, Proposition 3.6].

Proposition 4.2. Let N ∈ N and let {τε}ε∈(0,1), τ : R+ → S ′(Td) be a family of random
processes which are in the first N Wiener chaos and which are also stationary in space.
Let τ̂ε(t, ·) and τ̂ (t, ·) denote their Fourier coefficients. If

E|τ̂ε(t, k)|2 . 〈k〉−d−2α , lim
ε→0

sup
k∈Z3

(
〈k〉d+2αE|τ̂ε(t, k)− τ̂ (t, k)|2

)
= 0 , (4.2)

where both bounds are uniform in ε and k, then for every β < α and every p ≥ 1, we
have

E sup
t∈[0,1]

‖τ (t, ·)‖pβ < +∞ , lim
ε→0

E sup
t∈[0,1]

‖τε(t, ·)− τ (t, ·)‖pβ = 0 . (4.3)

If in addition to (4.2), we also have the bounds

E|τ̂ε(t, k)− τ̂ε(s, k)|2 . |t− s|θ〈k〉−d−2α+2θ ,

E|(τ̂ε(t, k)− τ̂ε(s, k))− (τ̂ (t, k)− τ̂ (s, k))|2 . εδ|t− s|θ〈k〉−d−2α+2θ ,
(4.4)

for some θ ∈ (0, 1), uniformly in 0 ≤ s, t ≤ 1 and k ∈ Zd, then for every β < α− θ and
every p ≥ 1, we have

E sup
0≤s,t≤1

‖τ (t)− τ (s)‖pβ
|t− s| θp2

< +∞ , E sup
0≤s,t≤1

‖(τε(t)− τε(s))− (τ (t)− τ (s))‖pβ
|t− s| θp2

. ε
δp
2 .

(4.5)
The proportionality constants depend on β and p.
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Proof. This is [MWX17, Proposition 3.6].

Remark 4.3. We will apply the above result to the collection of symbols in Υε and Υ.
It turns out that for all symbols but for

ε
we are even showing more, namely there

is a rate of convergence (a positive power of ε). If we further use the fourth item in
Assumption 1.2 then one would also obtain a rate of convergence for

ε
.

4.2 Notations and observations
We let Ĩε be the operator defined via

(Ĩεf )(t) :=

∫ t

−∞
e(t−r)(Lε−1)f (r)dr . (4.6)

Note that Ĩε is different from Iε since the integration in time starts from −∞.
For every k ∈ Z3 and N ∈ N, we use the notation

P(N, k) = {(`1, . . . , `N ) ∈ (Z3)N : `1 + · · ·+ `N = k} .

Recall the rescaled smooth cutoff functions Xj from Appendix A. We write with a slight
abuse of notation∑

`+˜̀=k
`∼˜̀

f̂ (`)ĝ(˜̀) :=
∑
`+˜̀=k

(
f̂ (`)ĝ(˜̀) ∑

|i−j|≤1

Xi(`)Xj(˜̀)) = f̂ ◦ g(k) , (4.7)

as well as ∑
`+˜̀=k
`�˜̀

f̂ (`)ĝ(˜̀) :=
∑
`+˜̀=k

(
f̂ (`)ĝ(˜̀)(1−

∑
|i−j|≤1

Xi(`)Xj(˜̀))) . (4.8)

Hence, the "set" {` ∼ ˜̀} can be viewed as complement of A where

A =
{

(`, ˜̀) ∈ Z3 × Z3 :
(
|`| > 8

3
or |˜̀| > 8

3

)
and
|`|
|˜̀| /∈

[ 9

64
,
64

9

]}
.

Note that the left hand sides of (4.7) and (4.8) are not exactly the sum over the sets
{` ∼ ˜̀} or {` � ˜̀}, but rather weighted by the cutoff function χ. But in what follows,
we can regard them as the real sum over these sets without affecting the statements.
Remark 4.4. The above notation will come in handy in Section 4.4.3 when we need to
bound the resonance product between two stochastic objects. We note at this point the
following consequences. For k ∈ Z3:
(1) The set {` ∈ Z3 : `+ k ∼ −`} is contained in {` ∈ Z3 : 〈`〉 ≥ 〈k〉

10
};

(2) The set {` ∈ Z3 : `+ l � −`} is contained in {` ∈ Z3 : 〈`〉 ≤ 10〈k〉}.
Hence, whenever one deals with sums over {`+ k ∼ −`} or {`+ k � −`}, they can be
controlled by the sum over the larger sets as described above.
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4.3 Preliminary lemmas
We start with the correlation of the free field.

Proposition 4.5. Recall that ε and are the stationary solutions to (2.2). Also recall the
notations 〈k〉ε and 〈k〉 introduced in (1.10). Then we have

E
(
ε̂(s, k) ε̂(t, `)

)
= δk,−` ·

e−|t−s|〈k〉
2
ε

2〈k〉2ε
. (4.9)

The bound holds for all ε ≥ 0, where the ε = 0 case corresponds to ̂ and 〈k〉. As a
consequence, for every θ ∈ [0, 1], we have

E| ε̂(s, k)− ε̂(t, k)|2 . |t− s|θ · 1

〈k〉2−2θ
ε

(4.10)

uniformly over s, t ∈ [0, 1]. We also have that

E[| ε(t, x)|2] =
1

2

∑
k∈Z3

1

〈k〉2ε
=
σ2

ε
+ oε(1) , (4.11)

where we recall that σ2 is given in (1.6).

Proof. We first derive the correlation function (4.9). We have the formula

ε̂(t, k) =

∫ t

−∞
e−〈k〉

2
ε(t−r)ξ̂(r, k)dr ,

where {ξ̂(·, k)} are independent complex white noises (in time) except that ξ̂(·, k) =

ξ̂(·,−k). Hence it satisfies E(ξ̂(r, k)ξ̂(r′, `)) = δk,−`δ(r − r′). The correlation relation
(4.9) then follows. Note that it also works for ε = 0 with ε and 〈k〉ε replaced by and
〈k〉. The bound (4.10) is a direct consequence of the correlation relation in (4.9).

As for (4.11), using (4.9) and Parseval’s equality, we see that

E[| ε(t, x)|2] =
∑
k∈Z3

E[| ε̂(t, k)|2] =
∑
k∈Z3

ε2

2(ε2 +Q(2πε|k|)
. (4.12)

Making the change of variables θ = εk and a Riemann sum approximation we see that
the latter term is asymptotically equal to

1

2ε

∫
R3

1

Q(2π|θ|)
dθ (4.13)

which yields (4.11).

Remark 4.6. As a consequence of the above proof we see that the random field
√
ε ε is

stationary and has distribution N (0, σ2
ε ) at every space-time point, where

σ2
ε =

ε

2

∑
k∈Z3

1

〈k〉2ε
=
ε3

2

∑
k∈Z3

1

ε2 +Q(2πε|k|)
, (4.14)

which converges to σ2 as ε→ 0.
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Lemma 4.7. Recall (1.4) which states that Q(z) & |z|3+η for |z| ≥ 1. For any
k, `1, . . . , `n ∈ Z3 and α ∈ [−η, 1] we have the estimates

n∑
j=1

〈`j〉2ε &
n∏
j=1

〈`j〉
2
n
ε , and 〈k〉ε & ε

1−α
2 〈k〉

3−α
2 . (4.15)

Proof. The first inequality follows from the estimate

n∑
j=1

〈`j〉2ε & max
j∈{1,2,...,n}

〈`j〉2ε, (4.16)

whereas the second one follows from the assumptions (1.3) and (1.4).

Lemma 4.8. For every n ∈ N and α ∈ (0, 3
n

), we have the bound

∑ n∏
j=1

1

〈`j〉3−α
.

1

〈k〉3−nα
,

where the sum is taken over {`1, . . . , `n} ∈ (Z3)n such that `1 + · · ·+ `n = k ∈ Z3. The
proportionality constant is independent of k.

Proof. The case n = 2 is the usual convolution estimate. The case n ≥ 3 can be obtained
by induction.

Lemma 4.9. For β, γ ∈ R satisfying β + γ > 3, we have the bound∑
`1+`2=k

`1∼`2

1

〈`1〉β
· 1

〈`2〉γ
.

1

〈k〉β+γ−3
,

uniformly over k ∈ Z3.

Proof. This is the content of [MWX17, Lemma 4.2].

Before we formulate the next proposition, we recall that for n ∈ N, the n-th Hermite
polynomial with parameter ν ≥ 0, denoted by Hn(·, ν), is defined via

Hn(x; ν) = (−1)nex
2/2ννn

∂n

∂xn
(e−x

2/2ν). (4.17)

These polynomials satisfy the relation νn/2Hn( x√
ν
; 1) = Hn(x; ν). Finally, we note that

if X ∼ N (0, ν), then for any nice function f : R→ R, we have the identity

f (X) =
∑
k≥0

ckHk(X; ν), with ck =
E[f (k)(X)]

k!
. (4.18)

To derive the formula for the ck’s, one uses the orthogonality of the Hermite polynomials,
Lemma 1.1.1 in [Nua06] (note however at this point that our normalisation differs
from [Nua06]), and k-times integration by parts.
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Proposition 4.10. Recall the definition of ε, ε and ε from (2.5). For each m ∈ N+

and ε > 0, define a(ε)
m by

a(ε)
m :=

EV (2m+2)(
√
ε ε)

6λ · (2m− 1)!
. (4.19)

We have the chaos expansion

ε =
n−1∑
m=1

a(ε)
m · εm−1 �(2m−1)

ε , ε =
n−1∑
m=1

a(ε)
m

m
· εm−1 �(2m)

ε

ε =
n−1∑
m=1

3a(ε)
m

m(2m+ 1)
· εm−1 �(2m+1)

ε .

(4.20)

Here, we use the shorthand �`
ε = H`( ε,

σ2
ε

ε
), where σ2

ε denotes the variance of the
stationary Gaussian process

√
ε ε.

Proof. For V (3), V ′′ and V ′, we have by (4.18) the chaos expansions

V (3)(
√
ε ε) =

n−1∑
m=1

EV (2m+2)(
√
ε ε)

(2m− 1)!
· (
√
ε ε)�(2m−1) ,

V ′′(
√
ε ε) =

n−1∑
m=0

EV (2m+2)(
√
ε ε)

(2m)!
· (
√
ε ε)�(2m) ,

V ′(
√
ε ε) =

n−1∑
m=0

EV (2m+2)(
√
ε ε)

(2m+ 1)!
· (
√
ε ε)�(2m+1) ,

where the Wick product is with respect to the stationary Gaussian
√
ε ε with variance σ2

ε

as given in (4.14). Now note that (
√
ε ε)�` = ε

`
2
�`
ε . The conclusion then follows from

the Definition (2.5) and the expression for C (1)
ε in (2.6).

Proposition 4.11. The renormalisation constants C (2)
ε and C (3)

ε defined in (2.9) satisfy
the expressions

C (2)
ε =

n−1∑
m=1

(a(ε)
m )2

m2
· ε2m−2 E[Ĩε( �(2m)

ε ) ◦ �(2m)
ε ] ,

C (3)
ε =

n−2∑
m=1

3a(ε)
m a

(ε)
m+1

m(2m+ 1)
· ε2m−1 E[Ĩε( �(2m+1)

ε ) ◦ �(2m+1)
ε ] ,

(4.21)

where a(ε)
m is as given in (4.19), and Ĩε is as given in (4.6).

Proof. This is a direct consequence of the definition of the constants in (2.9), the
expressions in (4.20), and the fact that the (resonance) product between two elements in
different homogeneous chaos has expectation zero.

We can also see that C (2)
ε diverges logarithmically, and that C (3)

ε is uniformly bounded
in ε. In fact, the only term with logarithmic divergence in C (2)

ε is the one withm = 1 in
the sum, and all other terms contributing to that sum are uniformly bounded in ε also,
see (4.39).
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Combining Proposition 4.10 with Proposition 4.11 we obtain the following corollary.

Corollary 4.12. For
ε
we have the chaos expansion

ε
=

n−1∑
m=1

3(a(ε)
m )2

m2(2m+ 1)
· τε,m +

n−2∑
m=1

3a(ε)
m a

(ε)
m+1

m(m+ 1)(2m+ 1)
· σε,m

+
∑
m,`

3a(ε)
m a

(ε)
`

`m(2m+ 1)
· νε,`,m ,

where the last sum is taken over integers 1 ≤ m, ` ≤ n − 1 such that m − ` ≥ 1 or
`−m ≥ 2. Here

τε,m = ε2m−2
[
Ĩε( �(2m+1)

ε ) ◦ �(2m)
ε − (2m+ 1) E[Ĩε( �(2m)

ε ) ◦ �(2m)
ε ] · ε

]
,

σε,m = ε2m−1
[
Ĩε( �(2m+1)

ε ) ◦ �(2m+2)
ε − (2m+ 2) E[Ĩε

�(2m+1)
) ◦ �(2m+1)

ε ] · ε
]
,

νε,`,m = εm+`−2
[
Ĩε( �(2m+1)

ε ) ◦ �(2`)ε

]
.

(4.22)

4.4 Proof of Theorem 4.1
According to Proposition 4.2 and the definition of X , we need to check the bounds (4.2)
for all the seven components in Υε and Υε−Υ (with the suitable α given in Table 1), and
also to check the bounds (4.4) for ε (and also ε− ). For simplicity of the presentation,
we only provide details for three of the components ε, ε and ε

. The first one is the
simplest, and gives a good illustration of the methods and techniques that are used. The
third one is the most complicated and is quite subtle. The middle one is the only one that
requires additional Hölder regularity in time.

Also, for the latter two symbols alluded to above we provide only the first bound
(uniform-in-ε bound) in both (4.2) and (4.4). The other one (convergence in ε) can be
obtained in a similar way.

4.4.1 The process ε

To show that E supt∈[0,1] ‖ ε − ‖p− 1
2
−κ → 0 as ε → 0 according to Proposition 4.2, it

suffices to show that there exists δ > 0 such that

sup
ε∈(0,1)

E|̂ε(t, k)|2 . 〈k〉−2+2κ−δ , E|̂ε(t, k)− (̂t, k)|2 . εδ〈k〉−2+2κ−δ

for all sufficiently small δ > 0. By the chaos expansion in Proposition 4.10 and the fact
that the first coefficient satisfies a(ε)

1 → 1 as ε→ 0, the desired bound will follow from
the following proposition.

Proposition 4.13. For all sufficiently small δ > 0, we have the bounds

E|̂ ε(t, k)|2 . 〈k〉−2 , E[|̂ ε(t, k)− (̂t, k)|2] . ε2δ〈k〉−2+2δ , (4.23)

and
ε2(m−1)E| �̂(2m−1)

ε (t, k)|2 . ε2δ〈k〉−2+2δ , m ≥ 2 . (4.24)
Both proportionality constants are uniform in ε ∈ (0, 1), k ∈ Z3.
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Proof. The first bound in (4.23) follows directly from the formula (4.9). As for the
second one, note that

ε̂(t, k)− (̂t, k) =

∫ t

−∞

(
e−〈k〉

2
ε(t−r) − e−〈k〉2(t−r)

)
ξ̂(r, k)dr. (4.25)

Hence, taking the second moment of the above expression gives

E| ε̂(t, k)− (̂t, k)|2 =

∫ t

−∞

(
e−(t−r)〈k〉2ε − e−(t−r)〈k〉2

)2

dr

=

∫ t

−∞
e−2(t−r)(〈k〉2ε∧〈k〉2)

(
1− e−(t−r)|〈k〉2ε−〈k〉2|

)2

dr .
(4.26)

If ε〈k〉 ≥ 1, then we bound the term in the parenthesis above by 1. Integrating r out and
using 〈k〉 . 〈k〉ε, we obtain

E| ε̂(t, k)− (̂t, k)|2 . 〈k〉−2 . ε2δ〈k〉−2+2δ , ε〈k〉 ≥ 1 .

If ε〈k〉 ≤ 1, we use (1.3) to get(
1− e−(t−r)|〈k〉2ε−〈k〉2|

)2

. (t− r)δ|〈k〉2ε − 〈k〉2|δ . (t− r)δε2δ〈k〉4δ .

Substituting it back into the right hand side of (4.26) and integrating out r, we again
get the bound ε2δ〈k〉−2+2δ for a possibly slightly different δ. This completes the second
claim in (4.23).

We now turn to (4.24). We have the identity

�̂(2m−1)
ε (t, k) =

∑
P(2m−1,k)

ε̂(t, `1) � · · · � ε̂(t, `2m−1) ,

where the notation P(2m − 1, k) was introduced at the beginning of Section 4.2. By
Wick’s formula and the correlation relation (4.9), we have

E| �̂(2m−1)
ε (t, k)|2 = (2m− 1)!

∑
P(2m−1,k)

2m−1∏
j=1

E| ε̂(t, `j)|2 .
∑

P(2m−1,k)

2m−1∏
j=1

1

〈`j〉2ε
.

By Lemma 4.7, we have 〈`j〉2ε & ε1−α〈`j〉3−α for α ∈ (0, 1). Substituting it into the above
bound, we get

ε2(m−1)E| �̂(2m−1)
ε (t, k)| . ε2(m−1)−(2m−1)(1−α)

∑
P(2m−1,k)

2m−1∏
j=1

1

〈`j〉3−α
.

Taking α = 1+2δ
2m−1

for δ sufficiently small and applying Lemma 4.8, we obtain the bound
(4.24). Note that the requirement α ∈ (0, 1) of the above step is satisfied for this choice
of α only ifm ≥ 2. This completes the proof of the proposition.
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4.4.2 The process ε

We now treat the term ε. According to the definition of the norm X in (3.2), we need to
show the convergence to both in C([0, 1],B 1

2
−κ(T3)) and in C 1

8 ([0, 1];B 1
4
−κ(T3)).

Taking the Fourier transform of ε and using Proposition 4.10, we get

̂
ε(t, k) =

n−1∑
m=1

3a(ε)
m

m(2m+ 1)
τ̂ε,m(t, k) ,

where
τ̂ε,m(t, k) = εm−1

∫ t

−∞
e−(t−r)〈k〉2ε · �̂(2m+1)

ε (r, k)dr .

By Proposition 4.2 and the fact that a(ε)
1 → 1, the two desired convergences will follow

from the following two propositions.

Proposition 4.14. For all sufficiently small δ, we have the bounds

E|τ̂ε,1(t, k)|2 . 1

〈k〉4
, E|τ̂ε,1(t, k)− ̂(t, k)|2 . ε2δ

〈k〉4−2δ
, (4.27)

and

E|τ̂ε,m(t, k)|2 . ε2δ

〈k〉4−2δ
, m ≥ 2 . (4.28)

All proportionality constants are independent of ε.

Proposition 4.15. For all sufficiently small δ, we have the bounds

E|τ̂ε,1(t, k)− τ̂ε,1(s, k)|2 . (t− s)
1
4 〈k〉−

7
2 ,

E|τ̂ε,1(t, k)− τ̂ε,1(s, k)− (̂(t, k)− ̂(s, k))|2 . ε2δ(t− s)
1
4 〈k〉−

7
2

+2δ ,
(4.29)

and
E|τ̂ε,m(t, k)− τ̂ε,m(s, k)|2 . ε2δ(t− s)

1
4 〈k〉−

7
2
−2δ . (4.30)

The bounds are uniform in ε ∈ (0, 1), k ∈ Z3 and 0 ≤ s ≤ t ≤ 1.

We first prove Proposition 4.14.

Proof of Proposition 4.14. We start with the expression

τ̂ε,m(t, k) = εm−1

∫ t

−∞
e−〈k〉

2
ε(t−s)

∑
P(2m+1,k)

ε̂(s, `1) � · · · � ε̂(s, `2m+1)ds .

By Wick’s formula and the correlation relation (4.9), we have

E|τ̂ε,m(t, k)|2 =2× (2m+ 1)!× ε2(m−1)

×
∫ t

−∞

∫ s

−∞
e−(2t−s−r)〈k〉2ε

∑
P(2m+1,k)

2m+1∏
j=1

e−〈`j〉
2
ε(s−r)

2〈`j〉2ε
drds .

(4.31)



Convergence of the stochastic objects 31

Succesively integrating out r and s, we obtain the bound

E|τ̂ε,m(t, k)|2 .m
ε2(m−1)

〈k〉2ε

∑
P(2m+1,k)

[( 2m+1∏
j=1

〈`j〉2ε
)−1(

〈k〉2ε +
2m+1∑
j=1

〈`j〉2ε
)−1
]
. (4.32)

Form = 1, we have

E|τ̂ε,1(t, k)|2 . 1

〈k〉4−δ
∑

`1+`2+`3=k

1

〈`1〉2+δ〈`2〉2〈`3〉2
.

1

〈k〉4
,

which is the first bound in (4.27). The second bound in (4.27) can be obtained in a similar
way and we omit the details.

We now turn to the casem ≥ 2. By Lemma 4.7 for α ∈ (0, 1) we have

( 2m+1∏
j=1

〈`j〉2ε
)(
〈k〉2ε +

2m+1∑
j=1

〈`j〉2ε
)
&

2m+1∏
j=1

〈`j〉
2+ 2

2m+1
ε &

2m+1∏
j=1

(ε1−α〈`j〉3−α)
1+ 1

2m+1 .

Substituting it back into (4.32), we get

E|τ̂ε,m(t, k)|2 . ε(2m+2)α−4

〈k〉2ε

∑
P(2m+1,k)

( 2m+1∏
j=1

1

〈`j〉3−
(2m+2)α−3

2m+1

)
.

Now we take α = 2+δ
m+1

for sufficiently small δ so that (2m + 2)α − 4 = 2δ. This α
belongs to (0, 1) only whenm ≥ 2. Also with this choice of α, the exponent

(2m+ 2)α− 3

2m+ 1
=

1 + 2δ

2m+ 1
<

3

2m+ 1

satisfies the hypothesis of Lemma 4.8. A direct application of that lemma gives the bound
(4.28), and concluding the proof of the lemma.

We now come to the proof of Proposition 4.15.

Proof. Again, we prove the uniform boundedness only, that is, the first bound in (4.29)
and (4.30). Form ≥ 1, and t ≥ s we have

τ̂ε,m(t, k)− τ̂ε,m(s, k) =εm−1

∫ s

−∞
(e−(t−r)〈k〉2ε − e−(s−r)〈k〉2ε) �̂(2m+1)

ε (r, k)dr

+ εm−1

∫ t

s

e−(t−r)〈k〉2ε �̂(2m+1)
ε (r, k)dr .

(4.33)

For the first term on the right hand side above, since

E
(
�̂(2m+1)
ε (r1, k) �̂(2m+1)

ε (r2,−k)
)
.

∑
P(2m+1,k)

2m+1∏
j=1

e−|r1−r2|〈`j〉
2
ε

〈`j〉2ε
,
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taking the second moment of that term and successivly integrating out r1 and r2, we see
that for every θ ∈ [0, 1], we have the bound

E
∣∣∣εm−1

∫ s

−∞
(e−(t−r)〈k〉2ε − e−(s−r)〈k〉2ε) �̂(2m+1)

ε (r, k)dr
∣∣∣2

. ε2(m−1)(t− s)θ〈k〉−2+2θ
ε

∑
P(2m+1,k)

[
1

〈k〉2ε +
∑2m+1

j=1 〈`j〉2ε
·

2m+1∏
j=1

1

〈`j〉2ε

]
.

(4.34)

The second moment of the second term on the right hand side of (4.33) also satisfies
(4.34). Hence, we arrive in the same situation of (4.32). Taking θ = 1

4
gives the desired

bounds.

4.4.3 The process
ε

We now come to the term
ε
. According to the definition of the norm on X in (3.2) and

Proposition 4.2, we need to show that

sup
k∈Z3

(
〈k〉2−2κE|

ε̂
(t, k)− ̂ (t, k)|2

)
→ 0 (4.35)

as ε→ 0. According to the decomposition of
ε
in Corollary 4.12, it suffices to consider

the Fourier tranforms of τε,m, σε,m and νε,`,m defined therein. We have the following
proposition.

Proposition 4.16. For τε,m, σε,m and νε,`,m given in Corollary 4.12, we have the following
bounds. There exists a universal constant C0 and δ > 0 such that for every Λ > 0, there
exists C(Λ) such that

E|τ̂ε,1(t, k)− ̂ (t, k)|2 ≤
(
C(Λ)ε2δ +

C0

Λ

)
〈k〉−2+2κ ,

E|τ̂ε,m(t, k)|2 ≤
(
C(Λ)ε2δ +

C0

Λ

)
〈k〉−2+2κ , m ≥ 2 .

(4.36)

σ̂ε,m and ν̂ε,`,m satisfy the second bound above for all ` andm.

The above proposition implies that τε,1 converges to in the desired space, while all
other components of

ε
vanish. Since a(ε)

1 → 1 as ε→ 0, this will imply the convergence
of

ε
to . It turns out that the analysis for τ̂ε,m is the hardest, so we will focus on the

bound (4.36) for τ̂ε,m only.

Following [MWX17, page 24] we see that the Fourier transform of τε,m is

τ̂ε,m(t, k) =ε2m−2

[∑[(∫ t

−∞
e−(t−r)〈

∑2m+1
j=1 `j〉2ε

( 2m+1�
j=1

ε̂(r, `j)
)

dr
)

·
( 2m�
j=1

ε̂(t, ˜̀j))]− (2m+ 1) E[Ĩε( �(2m)
ε ) ◦ �(2m)

ε ] · ε̂(t, k)
]
,

(4.37)
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where the sum in the first line is taken over (`1, . . . , `2m+1, ˜̀1, . . . , ˜̀2m) ∈ P(4m+ 1, k)
with the further restriction that `1 + · · ·+ `2m+1 ∼ ˜̀1 + · · · ˜̀2m2.

Note that it has homogeneous Wiener chaos components of orders 1, 3, . . . , 4m+ 1.
We will deal separately with the different chaos components of τ̂ε,m, and we will denote
the chaos component of order i ∈ {1, 3, . . . , 2m+ 1} by τ̂ε,m(i).

Analysis of τ̂ε,m(1):
For this term, we will frequently consider the sum over 2m parameters (`1, . . . , `2m)

in some domain in (Z3)2m. The sum of these parameters will be frequently appearing,
and hence for convenience, we always write

` = `1 + · · ·+ `2m .

Let Gε,m be the integration kernel whose Fourier coefficients are given by

Ĝε,m(t− r, k) =
(2m+ 1)!

22m

∑
`+k∼−`

e−(t−r)(〈`+k〉2ε+
∑2m
j=1〈`j〉2ε)∏2m

j=1〈`j〉2ε
. (4.38)

Here, the sum is taken over all 2m-tuples (`1, . . . , `2m) such that ` + k ∼ −`. This
notation is well defined according to Section 4.2 since we always have `+ k + (−`) = k.

Now we have the expression

E[Ĩε( �(2m)
ε ) ◦ �(2m)

ε ] =
1

2m+ 1

∫ t

−∞
Ĝε,m(t− r, 0)dr

=
(2m)!
22m

∑
`1,...,`2m∈Z3

1

(
∏2m

j=1〈`j〉2ε) · (〈`〉2ε +
∑2m

j=1〈`j〉2ε)
.

Comparing this with Proposition 4.11, we see that

C (2)
ε =

n−1∑
m=1

(a(ε)
m )2

m2(2m+ 1)
· ε2m−2

∫ t

−∞
Ĝε,m(t− r, 0)dr , (4.39)

and hence we can express τ̂ε,m(1) in terms of Ĝε,m as

τ̂ε,m
(1)(t, k) = ε2m−2

[ ∫ t

−∞
Ĝε,m(t− r, k) ε̂(r, k)dr −

∫ t

−∞
Ĝε,m(t− r, 0)dr · ε̂(t, k)

]
.

The first chaos component of the limiting object ̂ has the expression

̂ (1)
(t, k) =

∫ t

−∞
Ĝ(t− r, k)̂ (r, k)dr −

∫ t

−∞
Ĝ(t− r, 0)dr · (̂t, k) ,

where

Ĝ(t− r, k) =
3

2

∑
`1+`2+k∼−(`1+`2)

e−(t−r)(〈`1+`2+k〉2+〈`1〉2+〈`2〉2)

〈`1〉2〈`2〉2
.

2See Section 4.2 for the precise meaning of this notation.
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This is formally Ĝ0,1 (by setting ε = 0). In order to show the convergence of τ̂ε,m(1) tô (1)
, we rewrite it as

τ̂ε,m
(1)(t, k) = ε2m−2

∫ t

−∞
Ĝε,m(t− r, k)

(
ε̂(r, k)− ε̂(t, k)

)
dr

+ ε2m−2

∫ t

−∞

(
Ĝε,m(t− r, k)− Ĝε,m(t− r, 0)

)
dr · ε̂(t, k) .

(4.40)

We control the second moment of the two terms separately.

(a) Analysis of the first term in (4.40):
We first show that form ≥ 2, its second moment vanishes as in (4.36). By positivity

of Ĝε,m and the triangle inequality, we have

ε4(m−1)E
∣∣∣ ∫ t

−∞
Ĝε,m(t− r, k)

(
ε̂(r, k)− ε̂(t, k)

)
dr
∣∣∣2

. ε4(m−1)
[ ∫ t

−∞
Ĝε,m(t− r, k)

(
E| ε̂(r, k)− ε̂(t, k)|2

) 1
2
dr
]2

,

Now, using (4.10), we have

E|̂ ε(r, k)− ε̂(t, k)|2 . (t− r)2δ〈k〉−2+4δ
ε .

Substituting it back into the last expression, we obtain

ε4(m−1)E
∣∣∣ ∫ t

−∞
Ĝε,m(t− r, k)

(
ε̂(r, k)− ε̂(t, k)

)
dr
∣∣∣2

. ε4(m−1)〈k〉−2+4δ
ε

(∫ t

−∞
(t− r)δĜε,m(t− r, k)dr

)2

.

(4.41)

Thus, it remains to bound the quantity(
ε2(m−1)

∫ t

−∞
(t− r)δĜε,m(t− r, k)dr

)2

.

Note that by the expression of Ĝε,m, a change of variable yields∫ t

−∞
(t− r)δĜε,m(t− r, k)dr =m,δ

∑
`+k
∼−`

[( 2m∏
j=1

1

〈`j〉2ε

)
· 1(
〈`+ k〉2ε +

∑2m
j=1〈`j〉2ε

)1+δ

]
,

where =m,δ means that both sides are equal modulo a multiplicative constant that depends
onm and δ, but which is bounded in δ as δ → 0. Now, for the denominator of the term
inside the square bracket, we have by Lemma 4.7 the bound

( 2m∏
j=1

〈`j〉2ε
)
·
(
〈`+ k〉2ε +

2m∑
j=1

〈`j〉2ε
)1+δ

&
2m∏
j=1

〈`j〉
2+ 1+δ

m
ε &

2m∏
j=1

(
ε

1−α
2 〈`j〉

3−α
2

)2+ 1+δ
m
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for any α ∈ (0, 1). Hence, we have

ε2(m−1)
∫ t

−∞
(t− r)δĜε,m(t− r, k)dr . ε(2m+1+δ)α−(3+δ)

∑
`

2m∏
j=1

1

〈`j〉(3−α)(1+ 1+δ
2m

)
,

where we have relaxed the sum to all of (Z3)2m. Now, we choose α = 3+2δ
2m+1+δ

, which is
smaller than 1 for sufficiently small δ only whenm ≥ 2. This choice of α yields

(2m+ 1 + δ)α− (3 + δ) = δ , (3− α)(1 +
1 + δ

2m
) =

6m+ δ

2m
> 3 .

Hence, the above sum is finite, and the right hand side of (4.41) has the bound of the
form (4.36) form ≥ 2 as long as we choose δ < κ.

Form = 1, the convergence of the second moment of the difference∫ t

−∞
Ĝε,1(t− r, k)

(
ε̂(r, k)− ε̂(t, k)

)
dr −

∫ t

−∞
Ĝ(t− r, k)

(̂
(r, k)− (̂t, k)

)
dr

can be obtained in a similar way by "borrowing" δ powers from the continuity of̂ in
time. We omit the details. This completes the proof of the first term in (4.40).

(b) Analysis of the second term in (4.40):
By Proposition 4.5 on the variance of the free field, it suffices to show that there exists a
universal constant C0 > 0 such that for every Λ > 0, one has the bound

ε2m−2

∣∣∣∣ ∫ t

−∞

(
Ĝε,m(t− r, k)− Ĝε,m(t− r, 0)

)
dr
∣∣∣∣ ≤ (C(Λ)εδ +

C0

Λ

)
〈k〉δ , m ≥ 2 ,

(4.42)
and that the difference∣∣∣∣ ∫ t

−∞

(
Ĝε,1(t− r, k)− Ĝε,1(t− r, 0)

)
dr −

∫ t

−∞

(
Ĝ(t− r, k)− Ĝ(t− r, 0)

)
dr
∣∣∣∣

has the same upper bound. We give details for the bound (4.42) when m ≥ 2, and the
uniform in ε bound form = 1. The convergence to the limiting quantity (form = 1) can
be shown in exactly the same way.

We first compute the integral on the left hand side of (4.42). By definition of Ĝε,m in
(4.38), we have

22m

(2m+ 1)!

(
Ĝε,m(t− r, k)− Ĝε,m(t− r, 0)

)
=

∑
k+`∼−`

[( 2m∏
j=1

1

〈`j〉2ε

)(
e−(t−r)(〈`+k〉2ε+

∑2m
j=1〈`j〉2ε) − e−(t−r)(〈`〉2ε+

∑2m
j=1〈`j〉2ε)

)]

−
∑

k+`�−`

[( 2m∏
j=1

1

〈`j〉2ε

)
· e−(t−r)(∑2m

j=1〈`j〉2ε+〈`〉2ε)
]
,

where as before we used the abbreviation ` = `1 + . . . `2m with (`1, . . . , `2m) ∈ (Z3)2m.
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Now, integrating out the r variable, and using that by Remark 4.4 we can enlarge the
range of the sums to

A(1)
m,k =

{
(`1, . . . `2m) : 〈`〉 ≥ 〈k〉

10

}}
, and A(2)

m,ε = {(`1, . . . , `2m) : 〈`〉 ≤ 10〈k〉}

respectively, we see the left hand side of (4.42) can be bounded (up to a constant multiple
depending onm) by D(1)

ε,m +D(2)
ε,m, where

D(1)
ε,m(k) = ε2m−2

∑
A(1)
m,k

[( 2m∏
j=1

1

〈`j〉2ε

)( 1

〈`+ k〉2ε +
∑2m

j=1〈`j〉2ε
− 1

〈`〉2ε +
∑2m

j=1〈`j〉2ε

)]
,

D(2)
ε,m(k) = ε2m−2

∑
A(2)
m,k

( 2m∏
j=1

1

〈`j〉2ε

)
· 1

〈`〉2ε +
∑2m

j=1〈`j〉2ε
.

We treat D(2)
ε,m first. By Lemma 4.7, we have

D(2)
ε,m(k) . ε2m−2

∑
A(2)
m,k

( 2m∏
j=1

1

〈`j〉
2+ 1

m
ε

)
. ε(2m+1)α−3

∑
A(2)
m,k

( 2m∏
j=1

1

〈`j〉(3−α)(1+ 1
2m

)

)
for α ∈ [0, 1]. Form = 1, we have the uniform boundD(2)

ε,1(k) . 〈k〉δ by choosing α = 1.
Form ≥ 2, we choose α = 3+δ

2m+1
, which is smaller than 1 if δ is sufficiently small. The

exponent of 〈`j〉 is then

(3− α)(1 +
1

2m
) = 3− δ

2m
,

which satisfies the assumption of Lemma 4.8. Hence, we have

D(2)
ε,m(k) . εδ

∑
`:|`|≤10|k|

1

〈`〉3−δ
. εδ〈k〉δ , m ≥ 2 .

We now turn to D(1)
ε,m. We will first treat the casem ≥ 2. A direct computation yields

D(1)
ε,m(k) . ε2m−2

∑
A(1)
m,k

[( 2m∏
j=1

1

〈`j〉2ε

)
· |〈`+ k〉2ε − 〈`〉2ε|

(〈`+ k〉2ε +
∑2m

j=1〈`j〉2ε)(〈`〉2ε +
∑2m

j=1〈`j〉2ε)

]
.

(4.43)
At this stage, we note that it is here that it turns out to be crucial that we do not use 1.5 or
any assumption that one might impose on the growth of the derivative of Q. Indeed, the
difference |〈` + k〉2ε − 〈`〉2ε| can then only be controlled by the maximum of these two
if either 〈`〉 or 〈k〉 is larger than 1

ε
. In this situation, the sum on the right hand side is

critical with respect to ε and the dimension, and hence no smallness of ε can be obtained
unless the sum for some `j starts far above 1

ε
. This is the place where we can only obtain

a qualitative convergence rather than a rate in terms of ε.
Fix Λ > 0 as in the statement of the proposition. We decompose the domain of the

sum into

A(1,1)
m,k = A(1)

m,k ∩
{
|`j| ≤

Λ

ε
for all j

}
, and A(1,2)

m,k = A(1)
m,k \ A

(1,1)
m,k .
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We denote the sum in (4.43) over A(1,i)
m,k by D(1,i)

ε,m . We will first control D(1,1)
ε,m . We

distinguish between the case |k| ≤ 1
ε
and |k| > 1

ε
.

(1) We first treat the case |k| ≤ 1
ε
. By Assumption (1.3), the first derivative of Q is

locally Lipschitz continuous. Hence, for every M > 0, there exists C = C(M )
such that |Q′(z)| ≤ C(M ) · |z| for all z ∈ [0,M ]. Hence, if |k| ≤ 1

ε
then on A(1,1)

m,k ,
we have

|〈`+ k〉2ε − 〈`〉2ε| =
1

ε2
|Q(2πε|k + `|)−Q(2πε|`|)| .Λ 〈`〉〈k〉 .Λ 〈`〉2−δ〈k〉δ ,

where we used 〈`〉 & 〈k〉 inA(1)
m,k in the last inequality. Note that the proportionality

constant depends on Λ, but the dependence cannot be quantified since we have no
assumption on the growth of Q′. Hence, plugging it back into the right hand side
of (4.43) and using Lemma 4.7 so that

∑2m
j=1〈`j〉2+δ

ε &
∏2m

j=1〈`j〉
2+δ
2m
ε , we get

D(1,1)
ε,m (k) .Λ ε

2m−2〈k〉δ
2m∏
j=1

( ∑
|`j |≤Λ

ε

1

〈`j〉
2+ 2+δ

2m
ε

)
.

The sum in the parenthesis above (for each j) is uniformly bounded ifm = 1, and
is bounded by (Λ/ε)1− 2+δ

2m ifm ≥ 2. Hence, for |k| ≤ 1
ε
, we have

D(1,1)
ε,m (k) .Λ

{
〈k〉δ , ifm = 1,

εδ〈k〉δ , ifm ≥ 2,

(2) We now treat the case |k| > 1
ε
. In that case we use the brutal estimate

|〈`+ k〉2ε − 〈`〉2ε|
(〈`+ k〉2ε +

∑2m
j=1〈`j〉2ε)(〈`〉2ε +

∑2m
j=1〈`j〉2ε)

.
1∑2m

j=1〈`j〉2ε
. (4.44)

Again, using Lemma 4.7 to distribute the two powers to 〈`j〉’s with 1
m
each, we get

D(1,1)
ε,m (k) .Λ ε

2m−2

2m∏
j=1

( ∑
|`j |≤Λ

ε

1

〈`j〉2+ 1
m

)
.Λ

{
| log ε|2 . εδ〈k〉2δ , ifm = 1,

1 . εδ〈k〉δ , ifm ≥ 2,

where we used |k| > 1
ε
in the last estimate. This concludes the bound for D(1,1)

ε,m (k).

We will now analyse the sum in (4.43) overA(1,2)
m,k . Note that up to a constant multiple

of 2m, we can instead consider the sum over{
(`1, . . . , `2m) ∈ (Z3)2m : |`1| >

Λ

ε

}
, (4.45)

where now we also remove the restriction 〈`〉 ≥ 〈k〉
10
. Using (4.44) we see that

|〈`+ k〉2ε − 〈`〉2ε|
(〈`+ k〉2ε +

∑2m
j=1〈`j〉2ε)(〈`〉2ε +

∑2m
j=1〈`j〉2ε)

.
1

〈`1〉2ε
, (4.46)
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Hence, we get

D(1,2)
ε,m (k) . ε2(m−1)

( ∑
|`1|>Λ

ε

1

〈`1〉4
)( 2m∏

j=2

( ∑
`j∈Z3

1

〈`j〉2ε

))
.

1

Λ
,

where the proportionality constant is independent of ε and Λ, and the above bound is true
for allm ≥ 1. Here we have used the bounds∑

|`1|>Λ
ε

1

〈`1〉4
.
ε

Λ
,

∑
`j∈Z3

1

〈`j〉2ε
.
∑
|`j |≤ 1

ε

1

〈`j〉2
+
∑
|`j |≥ 1

ε

1

ε1+η〈`j〉3+η
.

1

ε
,

where the first inequality in the second term is a consequence of Assumption (1.4). This
concludes the analysis of D(1,2)

ε,m (k) and hence of D(1)
ε,m(k) as well.

Analysis of τ̂ε,m(4m+1):
We now give details on the bound for the highest chaos component of τ̂ε,m. Note that

τ̂ε,m
(4m+1)(t, k) = ε2m−2

∑
`+˜̀=k
`∼˜̀

∫ t

−∞
e−(t−r)〈`〉2ε

( 2m+1�
j=1

ε̂(r, `j)
)
�
( 2m�
j=1

ε̂(t, ˜̀j))dr ,

where this time we denote

` =
2m+1∑
j=1

`j and ˜̀=
2m∑
j=1

˜̀
j ,

and the sum is taken over the subset of (Z3)4m+1 such that `+ ˜̀= k and ` ∼ ˜̀.
The second moment of this quantity equals the sum of all possible contractions

between different instances of ε̂, which yields a rather complicated expression. However,
as observed in [Hai14, Section 10] and in ([MWX17, Eq.(3.6)]), one can greatly simplify
it by considering non-symmetric functions. In fact, one has the upper bound

E|τ̂ε,m(4m+1)(t, k)|2 . ε4(m−1)
∑
`+˜̀=k
`∼˜̀

[( 2m∏
j=1

E| ε̂(t, ˜̀j)|2)
∫∫

(−∞,t)2
e−(2t−r−r′)〈`〉2ε

( 2m+1∏
j=1

E[ ε̂(r, `j) ε̂(r′,−`j)]
)

dr′dr
]
.

(4.47)

Using Proposition 4.5 and successively integrating out r and r′, we get the bound

E|τ̂ε,m(4m+1)(t, k)|2 . ε4(m−1)
∑
`+˜̀=k
`∼˜̀

 1

〈`〉2ε

( 2m+1∏
j=1

1

〈`j〉
2+ 2

2m+1
ε

)
·
( 2m∏
j=1

1

〈˜̀j〉2ε
) ,

(4.48)
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where we have used
∑2m+1

j=1 〈`j〉2ε &
∏2m+!

j=1 〈`j〉
2

2m+1
ε to distribute the 2

2m+1
powers to each

〈`j〉ε. To control the sum on the right hand side above, we first note that by Lemma 4.7,
we have

〈`j〉ε & ε
1−α

2 〈`j〉
3−α

2 , 〈 ˜̀j〉ε & ε
1−α̃

2 〈˜̀j〉 3−α̃
2 ,

where α, α̃ ∈ [0, 1] will be specified later. Plugging it back into the right hand side of
(4.48), we get

E|τ̂ε,m(4m+1)(t, k)|2 . ε(2m+2)α+2mα̃−6
∑
`+˜̀=k
`∼˜̀

[
1

〈`〉2
( 2m+1∏

j=1

1

〈`j〉3−
(2m+2)α−3

2m+1

)
·
( 2m∏
j=1

1

〈˜̀j〉3−α̃
)]

.

Ifm ≥ 2 and δ > 0 is sufficiently small, we can choose α, α̃ ∈ [0, 1] such that all of the
following hold:

(2m+ 2)α < 6 , 2mα̃ < 3 , (2m+ 2)α + 2mα̃− 6 = 2δ . (4.49)

The first two requirements guarantee that the exponents of 〈`j〉 and 〈˜̀j〉 satisfy the
hypothesis of Lemma 4.8. Hence, we can apply that lemma to sum up

∑
j `j = ` and∑

j
˜̀= ˜̀first, and then use Lemma 4.9 to sum up ` and ˜̀. This yields the bound

E|τ̂ε,m(4m+1)(t, k)|2 . ε2δ
∑
`+˜̀=k
`∼˜̀

(
1

〈`〉8−(2m+2)α ·
1

〈˜̀〉3−2mα̃

)
. ε2δ 1

〈k〉2−2δ
, m ≥ 2 .

This is of the desired form. Form = 1, the convergence can be shown in a similar way,
and we omit the details.

Analysis of τ̂ε,m(2j+1) for 2 ≤ j ≤ 2m− 1:

This case can be dealt with a mixture of the methods we used to analyse τ̂ε,m(1) and
τ̂ε,m

(4m+1). We omit the details.

Appendix A Besov spaces, paraproducts and (perturbed) heat ker-
nel estimates

We collect in this appendix some definitions and estimates on Besov spaces and paraprod-
ucts that are used throughout the article. Roughly speaking, these are normed spaces of
functions/distributions characterised in terms of the behaviour of their Fourier transforms.
They enjoy remarkable stability properties under paraproduct operations.

A comprehensive account can be found in the book [BCD11]. Most of the statements
below have also been cleanly stated in [GIP15, CC18,MW17b]. Onlyminormodifications
are made in statements concerning uniform (in ε) regularisation properties of the perturbed
heat kernel (∂t − Lε + 1)−1 and its difference with the heat kernel (∂t −∆ + 1)−1.
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A.1 Besov spaces and Bony’s paraproducts
Let χ̃, χ be two C∞c (Rd) functions taking values in [0, 1] such that

1. supp(χ̃) ⊂ B(0, 4
3
), and supp(χ) ⊂ B(0, 8

3
) \B(0, 3

4
).

2. χ̃(ξ) +
∑+∞

j=0 χ(ξ/2j) = 1 for all ξ ∈ Rd.

We also define
χ−1 := χ̃ , and χj := χ(·/2j) for j ≥ 1 .

Let Td = (R/Z)d be the d-dimensional torus. For every function/distribution f on Td,
its Fourier transform f̂ : Zd → C is defined by

f̂ (k) :=

∫
Td
f (x)e−2πik·xdx .

For every integer j ≥ −1 and f on Td, we define the functions ∆jf and Sjf by

∆̂jf = χj f̂ and Sjf :=

j−1∑
i=−1

∆if .

For every α ∈ R and f ∈ C∞(Td), we define the Besov norm ‖ · ‖Bα(Td) of f by

‖f‖Bα(Td) = sup
j≥−1

(2αj‖∆jf‖L∞(Td)) . (A.1)

The right hand side above is finite for every f ∈ C∞(Td).

Definition A.1. For every α ∈ R, the Besov space Bα = Bα(Td) is the completion of
C∞(Td) functions with respect to the norm ‖ · ‖Bα given in (A.1).

We write ‖ · ‖α = ‖ · ‖Bα for simplicity. Note that for α ∈ R+ \ N, the Besov norm
‖ · ‖α is equivalent to the usual Hölder-α norm Cα3. We refer to [BCD11, Page 99] and
[GIP15, Appendix A] for more discussions.

Here, we define the Besov space to be the completion of smooth functions under the
norm Bα rather than functions/distributions with a finite right hand side of (A.1). This
yields a slightly smaller space, but has the advantage that smooth approximations converge
in the same space. In particular, this definition enables us to show that the approximated
solutions (vε, wε) converge in the same space where they are constructed with help of
the fixed point map in Theorem 3.3. The difference between the two definitions are in
complete analogy with the two versions of the Hölder space Cα: completion of smooth
functions with respect to the Cα metric, and functions that fluctuate locally at order α.

Lemma A.2. For every α > 0, we have the embeddings

‖f‖0 . ‖f‖L∞ .α ‖f‖α.
3That is, the L∞-norm of the first bαc derivatives plus the Hölder-(α − bαc) norm for the bαc-th

derivative.
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Proof. See [MW17c, Remarks 3.4, 3.5 and 3.6] or [MW17b, Remark A.3] for the first
bound. The second inequality is a direct consequence of the fact that α > 0.

For f, g ∈ C∞(Td), we define the paraproducts ≺, � and the resonant product ◦ as

f ≺ g =
∑
i<j−1

∆if ∆jg =
∑
j

Sj−1f ∆jg , f � g = g ≺ f ,

and
f ◦ g =

∑
|i−j|≤1

∆if ∆jg .

The usual pointwise product can then be decomposed into the sum

fg = f ≺ g + f � g + f ◦ g ,

at least when f and g are sufficiently regular. The following proposition states that the
two paraproducts are always well defined regardless of the regularity of f and g, while
the resonance product requires the sum of the two regularities to be positive.

Proposition A.3. We have the following bounds:

1. ‖f ≺ g‖β . ‖f‖L∞‖g‖β;

2. ‖f � g‖α+β . ‖f‖α‖g‖β if β < 0;

3. ‖f ◦ g‖α+β . ‖f‖α‖g‖β if α + β > 0.

The proportionality constants depend on α and β, but are uniform over f, g in the
respective function classes.

Proposition A.4. Suppose α, β, γ ∈ R satisfy α ∈ (0, 1), β + γ < 0 and α+ β + γ > 0.
Then the commutator Com defined by

Com(f, g, h) := (f ≺ g) ◦ h− f (g ◦ h)

satisfies
‖Com(f, g, h)‖α+β+γ . ‖f‖α‖g‖β‖h‖γ ,

uniformly over f, g, h ∈ C∞c (Td).

With the bounds in Propositions A.3 and A.4, the paraproduct and commutator
operations can be continuously extended to functions/distributions in the Besov spaces
whose exponents satisfy the assumptions of these two propositions.

A.2 Bounds for the (perturbed) heat semi-group
We give bounds on the heat semi-group etLε that are used throughout Section 3. Note
that the assumption 1.5 allows an extra δ power ofQ to control its derivatives. This gives
a small loss at t = 0 in the regularisation estimates (see the statements below). We do not
know whether this loss could indeed happen, or it is because our bounds are not sharp.
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Lemma A.5. Let Q satisfies Assumption 1.2 (in general dimension d, and all derivatives
up to order N satisfy the last item in that assumption). Then there exists c = c(N ) such
that for every δ > 0, there exists C = C(δ,N ) such that

sup
|ζ|≥ 1

20

|∂`ζ(e−rQ(µζ))| ≤ C(1 + r−
δ
2 )e−crµ

2 (A.2)

for all r > 0, µ > 0, and every multi-index ` ∈ Nd with |`| ≤ N . Here |`| denotes the
sum of individual components of `.

Proof. By Faà di Bruno’s formula the quantity ∂`ζ(e−rQ(µζ)) is a linear combination of
terms of the form ( m∏

i=1

(
rµ|`i|(∂`iQ)(µζ)

)ni ) · e−rQ(µζ) ,

where n1, . . . , nm ∈ N and `1, . . . , `m ∈ Nd satisfy

n1|`1|+ · · ·+ nm|`m| = |`| .

If |µζ| ≤ 1, the assumption on Q near the origin and on the range of ζ imply

µ|`i||(∂`iQ)(µζ)| . (µ|ζ|)`i |(∂`iQ)(µζ)| . Q(µζ) ,

and hence( m∏
i=1

(
rµ|`i|(∂`iQ)(µζ)

)ni ) · e−rQ(µζ) . (rQ(µζ))ne−rQ(µζ) . e−crQ(µζ) ,

where we set n =
∑m

i=1 ni. If |µζ| ≥ 1, then Assumption 1.5 and the range of ζ
considered imply

µ|`i||(∂`iQ)(µζ)| . (µ|ζ|)`i|(∂`iQ)(µζ)| . |Q(µζ)|1+δ ,

and hence( m∏
i=1

(
rµ|`i|(∂`iQ)(µζ)

)ni ) · e−rQ(µζ) . r−nδ(rQ(µζ))n(1+δ)
e−rQ(µζ) . r−nδe−crQ(µζ) ,

uniformly over µ ≥ 20 and ζ ≥ 1
20
. Since δ can be chosen arbitrarily (by adjusting

the proportionality constant), we can replace nδ by δ
2
. The conclusion then follows by

combining the two bounds and using |Q(z)| & |z|2 and |ζ| ≥ 1
20
.

Lemma A.6. For every γ ≥ α and every δ ∈ (0, 1), we have

‖et(Lε−1)f‖γ . t−
γ−α

2 (1 + εδt−
δ
2 )‖f‖α . (A.3)

Moreover, for every δ ∈ (0, 1), we have

‖et(Lε−1)f − et(∆−1)f‖γ . εδt−
γ−α+δ

2 ‖f‖α . (A.4)

Both proportionality constants depend on α, γ and δ, but are uniform in ε ∈ [0, 1], t > 0
and f ∈ Bα.
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Proof. Since the operation of e−t id is multiplication by e−t, it suffices to prove the lemma
with the operator etLε .

Let ρ be a smooth cutoff function taking value in [0, 1], with support in the annulus
B(0, 10

3
) \B(0, 1

8
), and equals 1 on the support of χ. Then we have

∆j(e
tLεf) = etLε(∆jf) = φ(ε)

t,j ∗∆jf ,

where φ(ε)
t,j has Fourier transform

φ̂(ε)
t,j(ζ) = etL̂ε(ζ)ρ(ζ/2j) .

By Young’s inequality, we have

‖∆j(e
tLεf)‖L∞ ≤ ‖φ(ε)

t,j‖L1‖∆jf‖L∞ .

It then remains to control ‖φ(ε)
t,j‖L1 . Taking the inversion Fourier transform and performing

a change of variable, we get

‖φ(ε)
t,j‖L1 =

∫
Rd
|g(ε)
t,j (x)|dx ,

where
g(ε)
t,j (x) =

∫
Rd
etL̂ε(2jζ)ρ(ζ)e2πiζ·xdζ .

Now, for N ≥
⌊
d
2

⌋
+ 1, we have

‖g(ε)
t,j‖L1 . sup

x∈Rd

∣∣∣(1 + |x|2)Ngt,j(x)
∣∣∣ . sup

x∈Rd

∣∣∣ ∫
Rd

(1−∆ζ)N(etL̂ε(2jζ)ρ(ζ))e2πiζ·xdζ
∣∣∣

Since ρ is supported on |ζ| ∈ [1
8
, 5

3
], we obtain

‖φ(ε)
t,j‖L1 . sup

ζ:|ζ|∈[ 1
8
, 10

3
]

∑
`:|`|≤2N

∣∣∣∂`ζ(etL̂ε(2jζ))
∣∣∣ .

Recall that L̂ε(ζ) = −ε−2Q(2πε2jζ). Applying LemmaA.5 with r = t
ε2
and µ = 2π ·2jε

gives the bound (A.3).
As for the bound (A.4), it suffices to establish control for the quantity

‖φ(ε)
t,j − φt,j‖L1 . sup

ζ:|ζ|∈[ 1
8
, 10

3
]

∣∣∣∂`ζ(e− t
ε2
Q(2π·2jεζ) − e−t|ζ|2)

∣∣∣
for multi-indices ` ∈ Nd with |`| ≤ 2N = 2(

⌊
d
2

⌋
+ 1). If 2jε ≥ 20, the argument in

Lemma A.5 already gives the factor εδt− δ2 . For 2jε ≤ 20, this factor can be obtained
by controlling the difference of the derivatives between Q and | · |2. This completes the
bound (A.4).



Besov spaces, paraproducts and (perturbed) heat kernel estimates 44

Lemma A.7. For every γ ≥ α and θ ∈ [0, 2], we have

‖et(Lε−1)f − es(Lε−1)f‖γ . (t− s)
θ
2 s−

γ−α+θ
2 (1 + εδs−

δ
2 )‖f‖α . (A.5)

Moreover, if δ ≥ 0 is sufficiently small such that θ
2

+ δ
2
≤ 1, then we have

‖(et(Lε−1) − es(Lε−1))f − (et(∆−1) − es(∆−1))f‖γ . εδ(t− s)
θ
2 s−

γ−α+θ+δ
2 ‖f‖α . (A.6)

All the proportionality constants are independent of ε and of t− s > 0.

Proof. We first explain how to obtain (A.5). For simplicity, we again replace Lε − 1 by
Lε without loss of generality. Similar to Lemma A.6, it suffices to control

‖φ(ε)
t,j − φ

(ε)
s,j‖L1 . sup

ζ:|ζ|∈[ 1
8
, 10

3
]

∣∣∣∂`ζ(etL̂ε(2jζ) − esL̂ε(2jζ))
∣∣∣

= sup
ζ:|ζ|∈[ 1

8
, 10

3
]

∣∣∣∂`ζ(esL̂ε(2jζ)(1− e(t−s)L̂ε(2jζ))
)∣∣∣

A slight modification of the argument in Lemma A.5 allows to extract the factor (t− s) θ2
from the second term inside the derivative and gives the bound (A.5).

The bound (A.6) can be obtained by combining (A.4) and (A.5) and using the
inequality a ∧ b ≤

√
ab for every a, b ≥ 0. This completes the proof of the lemma.

Lemma A.8. For every γ ∈ R, every δ > 0, every f ∈ Bγ and every T > 0, we have

sup
t∈[0,ε2]

((
√
t/ε)δ‖et(Lε−1)f − et(∆−1)f‖γ) + sup

t∈[ε2,T ]
‖et(Lε−1)f − et(∆−1)f‖γ → 0

as ε→ 0.

Proof. By Definition A.1, for every θ > 0, there exists g with compact spectral support
with ‖g − f‖γ < θ. By the triangle inequality, we have

‖et(Lε−1)f − et(∆−1)f‖γ ≤ ‖e
t(Lε−1)(f − g)‖γ + ‖et(Lε−1)g − et(∆−1)g‖γ + ‖g − f‖γ .

The third term on the right hand side above is smaller than θ by assumption on g.
By Lemma A.6, the first one is also smaller than Cθ in both time regimes (with the
corresponding weight for t ∈ [0, ε2]), and C does not depend on ε. Finally, since g has
compactly supported Fourier transform, the second term can be made arbitrarily small
(uniformly in t) by sending ε→ 0.

Proposition A.9. Let α ∈ (0, 1), β ∈ R, and γ > α + β. Then for every δ ∈ (0, 1), we
have the bound

‖et(Lε−1)(f ≺ g)− f ≺ (et(Lε−1)g)‖γ . t−
γ−α−β

2 (1 + εδt−
δ
2 )‖f‖α‖g‖β , (A.7)

uniformly over ε ∈ [0, 1], t > 0 and f ∈ Cα(Td) and g ∈ Cβ(Td). The case ε = 0
corresponds to et(∆−1). Furthermore, for every δ ∈ [0, 1], we have the bound∥∥et(Lε−1)(f ≺ g)− f ≺ (et(Lε−1)g)−

(
et(∆−1)(f ≺ g)− f ≺ (et(∆−1)g)

)∥∥
γ

. ε
δ2

α+δ t−
γ−α−β+δ

2 ‖f‖α‖g‖β .
(A.8)
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Proof. The first claim (A.7) follows from standard commutator estimate for the heat
kernel (see for example [CC18, Lemmas 2.5 & A.1] and [MW17b, Proposition A.16])
and the bound in Lemma A.5, except that we need to take one more derivative since we
need to control the L1-norm of φ̃(ε)

t,j(x) = xφ(ε)
t,j(x), and that the support of the function ρ

is a slightly larger annulus.
As for the second one, applying both (A.4) (with paraproduct estimate) and (A.7), we

see that the left hand side of (A.8) is bounded by

(εδt−
γ−β+δ

2 ∧ t−
γ−α−β

2 )‖f‖α‖g‖β .

The conclusion then follows by optimising the above quantity.

Appendix B The standard dynamical Φ4
3 model

B.1 Stochastic objects
In this short section we construct the diagrams alluded to at the beginning of Section 4.
More precisely, we will give a meaning to the list of symbols

, , , , , . (B.1)

These are the ones in Table 1 (we did not include the constant 1 here). The first symbol in
this list refers to the solution of the stochastic heat equation, and has been defined in (2.2).
To define the remaining symbols from it we need to invoke a limiting procedure. More
precisely, let ξε be a mollification of the white noise ξ, and denote by ε̃ be the solution of
the second equation in (2.2) with ξ replaced by ξε. Recall that

(Ĩf )(t) =

∫ t

−∞
e−(t−r)(∆−1)f (r)dr .

We then define

˜ε := (̃ ε)2 − c(1)
ε ,

˜
ε := Ĩ (̃

3

ε − 3c(1)
ε ε̃), ˜

ε := ˜
ε ◦ ε̃,˜

ε := I( ε̃) ◦ ε̃ − c(2)
ε ,

˜
ε := ˜

ε ◦ ˜ε − 3c(2)
ε ε̃.

(B.2)

Here the constants c(1)
ε and c(2)

ε are defined via

c(1)
ε := E[(̃ ε)2] and c(2)

ε := E[I(˜ε) ◦ ˜ε]. (B.3)

It then follows for instance from [CC18, Theorem 4.3], and [MWX17, Theorem 1.1] that
the processes defined in (B.2) converge in Lp in the space C|τ |, and the limits of these
processes are precisely those symbols listed in (B.1). Here, |τ | refers to the degree of
regularity defined in Table 1.

The Fourier transform of the objects in (B.1) can be explicitly written down. The
expressions are the ones for τε (in the first line of Table 1) by formally setting ε = 0.

Finally, we also let

(t) :=

∫ t

−∞
e(t−r)(∆−1) (r)dr .

This is not part of Υ ∈ X , but (0) appears once in the PDE system.
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B.2 Solution theory
In this section we briefly recall the solution theory (local well-posedness) for the standard
dynamial Φ4

3 equation. Similar as in Section 3.1, we let

G0(λ,Υ, u) :=
3∑
j=0

Fj(λ,Υ)uj − 3λ(u− λ ) �

+ 9λ2
[
Com(u− λ ; I( ); ) + ◦ [I,≺](u− λ , )

− ( ◦ et(∆−1) (0)) · (u− λ )
]
,

(B.4)

where the functions Fj are defined in (3.4), and the stochastic objects are those in (B.1)
described in the previous subsection, which form components of Υ. The following result
is in [MW17b, Theorem 2.1].

Theorem B.1. Recall the definition of the space YT in (3.9). Consider the fixed point
problem

v(t) = et(∆−1)v(0)− 3λ

∫ t

0

e(t−s)(∆−1)
[
(v(r) + w(r)− λ (r)) ≺ (r)

]
dr ,

w(t) = et(∆−1)w(0)− 3λ

∫ t

0

e(t−r)(∆−1)
[
(er(∆−1)v(0) + w(r)) ◦ (r)

]
dr

+

∫ t

0

e(t−r)(∆−1)G0(λ,Υ(r), v(r) + w(r))dr ,

(B.5)

Then for every λ ∈ R, and (v(0), w(0)) ∈ Bκ × Bκ, the fixed point problem (B.5) has
a unique solution (v, w) ∈ YT for any T > 0. Moreover, the solution to (1.1), which is
defined as the limit of φε defined in Theorem 1.1, can be written as φ = − λ + v + w,
where the initidal data satisfies φ(0, ·)− (0, ·) ∈ Bκ.
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