Mechanistic Models of Deformation Twinning and Martensitic Transformations

Bob Pond

Acknowledge: John Hirth
Classical Model (CM)

Geometrical
– invariant plane

Topological Model (TM)

Mechanistic
– coherent interfaces, interfacial line-defects
Twinning: e.g. G. Friedel, 1926

PTMC: WLR and BM, 1953

Twinning dislocation: e.g. F.C. Frank, 1949 (disconnection)

Bilby & Crocker, 1965

Martensitic Transformations
Pond and Hirth, 2003

\[\gamma = \frac{b}{h} \]
Interfacial defect character and kinetics
Admissible interfacial defects

Operation characterising defect

\[(W(\lambda), w(\lambda))(W(\mu), w(\mu))^{-1}\]

Interfacial dislocations
\[(I, b)\]

Twinning disconnections
\[b = t(\lambda) - Pt(\mu)\]
\[h = n \cdot t(\lambda)\]

\[\gamma = \frac{b}{h}\]

Pond, 1989
Thermally activated disconnections

• activation energy at fixed stress $\sim b^2$

- loop nucleation rate, \dot{N}, reasonable for small b

• defect mobility, \dot{G}

- enhanced by larger core width, w, which is promoted by small h

- simple shuffles
Motion of a twinning disconnection in a (10\overline{1}2) twin

- $t(\lambda)_{[10\overline{1}0]}$
- $t(\mu)_{[0001]}
- \|b\| = 0.062 \text{ nm}$
- $|b| = 0.062 \text{ nm}$
- $h = 2d_{(10\overline{1}2)}$
- $h = 0.376 \text{ nm}$
- $\gamma = b/h$
- $w \sim 6a$
- $\sigma_b^d = 1 \text{ MPa}$

$E_i = 0.26 Jm^{-2}$

Braisaz et al. 1966

$\alpha - Ti$
Atom Tracking: Shear and Shuffle Displacements in \((10\bar{1}2)\) Twin

\[\gamma_1 = [\bar{1}012] \]

4 distinct atoms

“rocking”

“swapping”

Pond et al., 2013
Deformation twins in Ni$_2$MnGa

Disconnection

$b = \frac{1}{12} [10\bar{1}] = 0.072 \text{ nm}$

$h = d_{(202)} = 0.211 \text{ nm}$

$\gamma = \frac{b}{h} = 0.34$
Twin tip in Ni_2MnGa

$E_i = 0.01 \text{Jm}^{-2}$

4 distinct atoms

no shuffling

$g = 20 \bar{2}$

Muntifering et al. 2014
Topological model for type II twinning
Classical Model: irrational plane of shear

Type I

k_1 rational
γ_1 irrational

$s = 2\tan(\alpha)$

Type II

k_2 irrational
γ_2 rational

$s = 2\tan(\alpha)$
Formation mechanisms for type I and II twins

Type I: glide twin

\[\gamma = \frac{b}{h} \]

competitive mechanisms:
- High \(\dot{G}/\dot{N} \) favours type I
- Low \(\dot{G}/\dot{N} \) favours type II
Type II: formation of glide/rotation twin

![Diagram of Type II: formation of glide/rotation twin](image)

- disconnection glide plane, k_1
- sheared region
- unsheared region
- twin parent
- $\eta_1 = \gamma_2$
- $b/2$
- $K_1 = k_2$
- h
- α
- b^g
- twin
- parent

(a)
(b)
(c)
Type II: growth

\[\eta_1 = \gamma_2 \]

\[\gamma = s = 2\tan(\alpha) \]

Read and Shockley, 1953
Experimental observations: e.g. $\alpha - U$

<table>
<thead>
<tr>
<th>K_1</th>
<th>K_2</th>
<th>η_1</th>
<th>type</th>
<th>b nm</th>
<th>h nm</th>
<th>γ</th>
<th>No. dist. atoms</th>
<th>\dot{G}/\dot{N}</th>
</tr>
</thead>
<tbody>
<tr>
<td>"{176}"</td>
<td>{111}</td>
<td>1/2 $< 512 >$</td>
<td>II</td>
<td>0.098</td>
<td>0.456</td>
<td>0.216</td>
<td>4</td>
<td>low</td>
</tr>
<tr>
<td>"{172}"</td>
<td>{112}</td>
<td>1/2 $< 312 >$</td>
<td>II</td>
<td>0.081</td>
<td>0.356</td>
<td>0.228</td>
<td>4</td>
<td>low</td>
</tr>
<tr>
<td>{130}</td>
<td>{110}</td>
<td>1/2 $< 310 >$</td>
<td>compound</td>
<td>0.048</td>
<td>0.161</td>
<td>0.299</td>
<td>2</td>
<td>high</td>
</tr>
</tbody>
</table>

Type II Twinning in Other Systems

- NiTi
- CuAlNi
- TiPd
- devitrite

$\alpha - U, \text{ Cahn 1953}$
Topological model of martensitic transformations
Shape deformation

\[P_1 = RBP_2 = (I + dp') \]

PTMC

\[d \]

parent

\[\text{martensite} \]

\[\text{invariant plane} \]

\[p' \]

TM

- low energy terraces (coherently strained epitaxial)
- two defect arrays: disconnections & LID
- distortion field of defect network accommodates coherency strains
- motion of all defects produces shape deformation
Glissile Disconnections

- 2 distinct atoms
- steps cause habit plane to be inclined to terrace plane
- b_n also produces rotational distortions
- motion causes one-to-one atomic exchange between phases with different densities

$bt = h(\lambda) - h(\mu)$

Ti 10 wt % Mo Klenov 2002
Distortion field of a Defect Array

\[D^m(x',y',z') = \begin{pmatrix} \epsilon'_{xx} & \epsilon'_{xy} & \epsilon'_{xz} \\ \epsilon'_{xy} & \epsilon'_{yy} & \epsilon'_{yz} \\ \epsilon'_{xz} & \epsilon'_{yz} & \epsilon'_{zz} \end{pmatrix} + \begin{pmatrix} 0 & -\omega'_{xy} & \omega'_{xz} \\ \omega'_{xy} & 0 & -\omega'_{yz} \\ -\omega'_{xz} & \omega'_{yz} & 0 \end{pmatrix} \]

\[\epsilon'_{xx} = \frac{b_x}{d} \quad \omega'_{yz} = \frac{b_z}{2d} \]
Equilibrium: superposed coherency and defect array distortion fields

Solve the Frank-Bilby Equation for the defect array with long-range distortion matrix, $D_{ij}^{\prime m}$, which compensates $D_{ij}^{\prime c}$.

\[
D_{ij}^{\prime m} = \begin{pmatrix}
D_{xx}^{\prime m} & D_{xy}^{\prime m} & D_{xz}^{\prime m} \\
D_{xy}^{\prime m} & D_{yy}^{\prime m} & D_{yz}^{\prime m} \\
D_{xz}^{\prime m} & D_{yz}^{\prime m} & D_{zz}^{\prime m}
\end{pmatrix} = -D_{ij}^{\prime c}
\]
Habit plane orientation

θ = 11.4°

ϕ = 0.53°

α crystal: $\Theta + \phi$

β crystal: $\Theta - \phi$

homogeneous isotropic approximation

inhomogeneous anisotropic case rotations partitioned according to relative elastic compliances

TM solutions for habit plane orientation differ slightly from PTMC, unless $b_n = 0$
Partitioning of rotations

molecular dynamic simulation of static Cu(111)/Ag(111) interface, Wang et al. 2011

$\epsilon_{yy}^{c} = 12.33\%$

<table>
<thead>
<tr>
<th>Case</th>
<th>ϕ_{Cu}</th>
<th>ϕ_{Ag}</th>
<th>ϕ</th>
<th>$-\phi_{Ag}/\phi_{Cu}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isotropic, inhomogeneous</td>
<td>0.449</td>
<td>-0.698</td>
<td>1.15</td>
<td>1.55</td>
</tr>
<tr>
<td>Anisotropic</td>
<td>0.504</td>
<td>-0.853</td>
<td>1.36</td>
<td>1.69</td>
</tr>
<tr>
<td>MD</td>
<td>0.483</td>
<td>-0.929</td>
<td>1.41</td>
<td>1.92</td>
</tr>
<tr>
<td>MD (Artificial)</td>
<td>0.665</td>
<td>-0.659</td>
<td>1.312</td>
<td>0.97</td>
</tr>
</tbody>
</table>
Orthorhombic to Monoclinic Transformation in ZrO$_2$

Principal strains on terrace plane

$\varepsilon_{xx} = 0 \quad \varepsilon_{yy} = 3.8\%$

considerable shuffling:

8 Zr & 16 O distinct ions
synchronous motion of disconnections

\[
\Gamma_m^D = \begin{pmatrix} 0 & 0 & \gamma_{xz} \\ 0 & 0 & \gamma_{yz} \\ 0 & 0 & \varepsilon_{zz} \end{pmatrix} = \frac{\delta y}{d^D} \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} D \begin{pmatrix} 0 & 0 & n_z \end{pmatrix}
\]
Lath martensite in ferrous alloys

Mn IF steel: Morito et al.

1: terrace plane

\[[\text{110}]_\gamma / [\text{100}]_\alpha \]

\[\varepsilon_{xx} = -12.54\% \]

\[(111)_\gamma / (011)_\alpha \]

\[\varepsilon_{yy} = 7.72\% \]

“N-W OR”
dislocations, \(\sim 10^\circ\) from screw, with spacing 2.8 -6.3 nm

Fe-20Ni-5Mn (Sandvik and Wayman, 1983)

TEM: LID slip dislocations

1/2[\(\bar{1}1\)]_\alpha \) dislocations, \(\sim 10^\circ\) from screw, with spacing 2.8 -6.3 nm
TEM: Disconnections in near screw orientation

Moritani et al. Fe-Ni-Mn

[-101]γ projection
Plate Martensite
\[\sim\{121\}\]

Ogawa and Kajiwara, 2004
Fe-Ni-Mn
Conclusions

Topological modelling provides insights into mechanisms and kinetics.

Twinning:

- proposed new model of type II twin formation.

Martensite:

- predicted interface structures consistent with observations,
- predicted habits differ slightly from PTMC.