Examiners’ Report:
Final Honour School of Mathematics Part A
Trinity Term 2025

October 23, 2025

Part 1
A. STATISTICS

e Numbers and percentages in each class.

See Table [11
Table 1: Numbers in each class

Range Numbers Percentages %

2025 (2024) (2023) (2022) | 2025 (2024) (2023) (2022)
70-100 50 (44) (44) (59) | 34.97 (34.59) (30.77) (36.65)
60—69 66 (64) (67) (71) | 46.15 (48.12) (46.85) (44.1)
50-59 19 (22) (25) (22) | 13.29 (16.54) (17.48) (13.66)
049 | - O O 6 - 6 6 0
30-39 - (-) (-) (-) - (-) (-) (-)
0-29 - (-) (-) (-) - (-) (-) (-)
Total 143 (133) (143) (161) [ 100  (100)  (100)  (100) |

e Numbers of vivas and effects of vivas on classes of result.
Not applicable.

e Marking of scripts.
All scripts were single marked according to a pre-agreed marking scheme which was
strictly adhered to. The raw marks for paper A2 are out of 100, and for the other
papers out of 50. For details of the extensive checking process, see Part 11, Section A.

¢ Numbers taking each paper.
All 143 candidates are required to offer the core papers A0, Al, A2 and ASO, and five
of the optional papers A3-A11. Statistics for these papers are shown in Table [2|on page



Table 2: Numbers taking each paper

Paper | Number of | Avg | StDev | Avg | StDev

Candidates | RAW | RAW | USM | USM
A0 143 32.16 | 8.63 | 63.86 | 14.74
Al 143 3497 | 7.62 | 67.17 | 11.79
A2 142 68.06 | 14.61 | 65.83 | 10.44
A3 77 35.74 | 10.55 | 66.22 16.7
A4 127 24.66 | 9.08 | 65.13 9.77
A5 92 31.6 9.45 | 64.14 | 13.32
A6 91 32.66 8.1 65.6 9.93
A7 48 34.46 8.74 | 66.04 | 12.19
A8 137 32.18 | 7.58 | 66.35 10.6
A9 89 34.58 | 10.79 | 66.49 | 14.53
A10 33 33.76 | 8.92 | 64.42 | 10.78
All 29 31.9 8.43 | 64.66 | 10.84
ASO 143 35.59 | 8.14 | 66.01 | 12.08
A2 OR - - - - -

B. New examining methods and procedures

None.

C. Changes in examining methods and procedures currently under discus-
sion or contemplated for the future

None.

D. Notice of examination conventions for candidates

The first notice to candidates was issued on the 25th February 2025 and the second notice on
the 14th May 2025.

These can be found at https://www.maths.ox.ac.uk/members/students/
undergraduate-courses/ba-master-mathematics/examinations-assessments/
examination-20, and contain details of the examinations and assessments. The course
handbook contains the link to the full examination conventions and all candidates are
issued with this at induction in their first year. All notices and examination conventions
are online at https://www.maths.ox.ac.uk/members/students/undergraduate-courses/
examinations-assessments/examination-conventions.


https://www.maths.ox.ac.uk/members/students/undergraduate-courses/ba-master-mathematics/examinations-assessments/examination-20
https://www.maths.ox.ac.uk/members/students/undergraduate-courses/ba-master-mathematics/examinations-assessments/examination-20
https://www.maths.ox.ac.uk/members/students/undergraduate-courses/ba-master-mathematics/examinations-assessments/examination-20
https://www.maths.ox.ac.uk/members/students/undergraduate-courses/examinations-assessments/examination-conventions
https://www.maths.ox.ac.uk/members/students/undergraduate-courses/examinations-assessments/examination-conventions

Part 11

A. General Comments on the Examination
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contributing to the decisions of the committee.

Timetable

The examinations began on Monday 16th June and ended on Friday 27th June.

Mitigating Circumstances Notices to Examiners

A subset of the examiners (the ‘Mitigating Circumstances Panel’) attended a pre-board meet-
ing to band the seriousness of the individual notices to examiners. The outcome of this meeting
was relayed to the Examiners at the final exam board, who gave careful regard to each case,
scrutinised the relevant candidates’ marks and agreed actions as appropriate.

Setting and checking of papers and marks processing

As is usual practice, questions for the core papers A0, Al and A2, were set by the examiners
and also marked by them with the assistance of assessors. The papers A3-All, as well as
each individual question on ASO, were set and marked by the course lecturers/assessors.
The setters produced model answers and marking schemes led by instructions from Teaching
Committee in order to minimize the need for recalibration.

The internal examiners met in December to consider the questions for Michaelmas Term
courses (A0, Al, A2 and All). The course lecturers for the core papers were invited to
comment on the notation used and more generally on the appropriateness of the questions.
Corrections and modifications were agreed by the internal examiners and the revised questions
were sent to the external examiners.



In a second meeting the internal examiners discussed the comments of the external examiners
and made further adjustments before finalising the questions. The same cycle was repeated in
Hilary term for the Hilary term long option courses and at the end of Hilary and beginning of
Trinity term for the short option courses. Papers A8 and A9 are prepared by the Department
of Statistics and jointly considered in Trinity term. Before questions were submitted to
the Examination Schools, setters were required to sign off on a camera-ready copy of their
questions.

The whole process of setting and checking the papers was managed digitally on SharePoint.
Examiners adopted specific and detailed conventions to help with version checking and record
keeping.

Examination scripts were collected by the markers from Exam Schools or delivered to the
Mathematical Institute for collection by the markers and returned there after marking. A
team of graduate checkers under the supervision of Hannah Ross, Rosalind Mitchell and
Charlotte Turner-Smith sorted all the scripts for each paper, cross-checking against the mark
scheme to spot any unmarked questions or part of questions, addition errors or wrongly
recorded marks. Also sub-totals for each part were checked against the marks scheme, noting
any incorrect addition.

Determination of University Standardised Marks

The examiners followed the standard procedure for converting raw marks to University Stan-
dardized Marks (USM). The raw marks are totals of marks on each question, the USMs are
statements of the quality of marks on a standard scale. The Part A examination is not clas-
sified but notionally 70 corresponds to ‘first class’, 50 to ‘second class’ and 40 to ‘third class’.
In order to map the raw marks to USMs in a way that respects the qualitative descriptors of
each class the standard procedure has been to use a piecewise linear map. It starts from the
assumption that the majority of scripts for a paper will fall in the USM range 57-72, which
is just below the II(i)/I1(ii) borderline and just above the I/I1(i) borderline respectively. In
this range the map is taken to have a constant gradient and is determined by the corners C}
and Cy, which encode the raw marks corresponding to a USM of 72 and 57 respectively. The
guidance requires that the examiners should use the entire range of USMs. Our procedure
interpolates the map linearly from C; to (M,100) where M is the maximum possible raw
mark. In order to allow for judging the position of the II(i)/III borderline on each paper,
which corresponds to a USM of 40, the map is interpolated linearly between C3 and Cs and
then again between (0,0) and C3. Thus, the conversion of raw marks to USMs is fixed by
the choice of the three corners Ci,Cy and Cs. While the default y-values for these corners
were given above and are not on the class borderlines, the examiners may opt to change those
default values, e.g., to avoid distorting marks around class boundaries. The final choice of
the scaling parameters is made by the examiners, guided by the advice from the Teaching
Committee, considering the distribution of the raw marks and examining individuals on each
paper around the borderlines.

The final resulting values of the parameters that the examiners chose are listed in Table [3]

Table [4] gives the resulting final rank and percentage of candidates with this overall average
USM (or greater).



Table 3: Parameter Values

’Paper‘ C1 C2 C3 ‘
A0 | 12.87:37 | 22.4:57 | 40.4;72
Al 14.94:37 | 26:57 | 42:72
A2 29.3;37 | 51;57 81;72
A3 14.99;37 | 26.1;57 | 43;70
A4 7.35;37 | 12.8;57 | 33.8;72
A5 11.95;37 | 20.8;57 | 41.8;72
A6 12.7:37 | 22.1:57 | 41.6;72
A7 13.67;37 | 23.8;57 | 42;70
A8 | 12.29:37 | 21.4:57 | 39.4;72
A9 12.01;37 | 20.9;57 | 43;70
A10 | 13.84;37 | 24.1,57 | 43.6;72
All | 12.7:37 | 22.1:57 | 41.6;72
Al12 11.66;37 | 20.3;57 | 33.8;72
ASO | 15.34;37 | 26.7;57 | 43.2;72

Table 4: Rank and percentage of candidates with this overall
average USM (or greater)

’ Av USM ‘ Rank ‘ Candidates with this USM or above ‘ % ‘

91.8
86.9
85.33
85.1
83.7
81.7
81.7
81.2
81
80.4
79.5
77.3
7.2
76.95
76.9
76.8
76.8
76.3
76
75.9
75.7
75.7
74.8
74.8
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0.7
1.4
2.1
2.8
3.5
4.9
4.9
5.59
6.29
6.99
7.69
8.39
9.09
9.79
10.49
11.89
11.89
12.59
13.29
13.99
15.38
15.38
16.78
16.78




Table 4: Rank and percentage of candidates with this overall
average USM (or greater) [continued]

] Av USM ‘ Rank ‘ Candidates with this USM or above ‘ % ‘
74.3 25 25 17.48
74 26 26 18.18
73.9 27 27 18.88
73.4 28 28 19.58
72.6 29 29 20.28
72.4 30 30 20.98
71.9 31 31 21.68
71.6 32 32 22.38
71.5 33 34 23.78
71.5 33 34 23.78
71.3 35 36 25.17
71.3 35 36 25.17
71.2 37 37 25.87
71.1 38 38 26.57
70.7 39 39 27.27
70.4 40 42 29.37
70.4 40 42 29.37
70.4 40 42 29.37

70.35 43 43 30.07
70.2 44 44 30.77
70.1 45 46 32.17
70.1 45 46 32.17
70 47 47 32.87
69.8 48 49 34.27
69.8 48 49 34.27
69.5 50 50 34.97
69.4 51 54 37.76
69.4 51 54 37.76
69.4 51 54 37.76
69.4 51 54 37.76
69.3 55 56 39.16
69.3 55 56 39.16
68.7 57 57 39.86
68.5 58 58 40.56
68.3 59 59 41.26
68.2 60 61 42.66
68.2 60 61 42.66
68 62 62 43.36
67.3 63 63 44.06
67 64 64 44.76
66.9 65 66 46.15
66.9 65 66 46.15




Table 4: Rank and percentage of candidates with this overall
average USM (or greater) [continued]

] Av USM ‘ Rank ‘ Candidates with this USM or above ‘ % ‘
66.7 67 68 47.55
66.7 67 68 47.55
66.6 69 69 48.25
66.4 70 70 48.95
66.2 71 71 49.65
65.9 72 72 50.35
65.8 73 74 51.75
65.8 73 74 51.75
65.5 75 75 52.45
65.3 76 76 53.15
65.1 7 7 53.85
64.9 78 78 54.55
64.7 79 79 55.24
64.6 80 81 56.64
64.6 80 81 56.64
64.5 82 83 58.04
64.5 82 83 58.04
64.33 84 84 58.74
64.2 85 85 59.44
64.1 86 86 60.14

64 87 87 60.84
63.7 88 89 62.24
63.7 88 89 62.24
63.67 90 90 62.94
63.6 91 91 63.64
63.5 92 93 65.03
63.5 92 93 65.03
63.3 94 94 65.73
63.2 95 95 66.43
62.9 96 96 67.13
62.7 97 97 67.83
62.6 98 98 68.53
62.5 99 99 69.23
62.4 100 100 69.93
61.9 101 101 70.63
61.89 102 102 71.33
61.7 103 104 72.73
61.7 103 104 72.73
61.6 105 105 73.43
61.4 106 106 74.13
61.25 107 107 74.83
61.1 108 108 75.52




Table 4: Rank and percentage of candidates with this overall
average USM (or greater) [continued]

] Av USM ‘ Rank ‘ Candidates with this USM or above ‘ % ‘
60.8 109 109 76.22
60.6 110 110 76.92
60.4 111 111 77.62
60.3 112 112 78.32
60 113 113 79.02
99.9 114 114 79.72
59.8 115 115 80.42
99.5 116 116 81.12
58.9 117 117 81.82
58.1 118 118 82.52
58 119 119 83.22

57.75 120 120 83.92
57.7 121 121 84.62
57.6 122 122 85.31
57.4 123 124 86.71
57.4 123 124 86.71
57.3 125 125 87.41
57 126 126 88.11
56.6 127 127 88.81

56.11 128 128 89.51
56.1 129 129 90.21
54.4 130 130 90.91

54.22 131 131 91.61
54.1 132 132 92.31
53.5 133 133 93.01
51.6 134 134 93.71
50.7 135 135 94.41

49.33 136 136 95.1
49.1 137 137 95.8
47 138 138 96.5
45.1 139 139 97.2
44.9 140 140 97.9
43.8 141 141 98.6
39.5 142 142 99.3

33.56 143 143 100




B. Equality and Diversity issues and breakdown of the results by gender

Table o] page shows percentages of male and female candidates for each class of the degree.

Table 5: Breakdown of results by gender

Class Number
2025 2024 2023
Female | Male | Total | Female | Male | Total | Female | Male | Total
70-100 7 43 50 8 38 46 - 40 44

60-69 18 48 66 16 48 64 19 48 67
50-99 10 9 19 10 12 22 11 14 25

40-49 - - - - - - - - -
30-39 - - - - - - - - -
0-29 - - - - - - - - -
[Total | 36 [ 107 [ 143 [ 35 [ 98 | 133 | 39 | 105 [ 144 |
Class Percentage
2025 2024 2023

Female | Male | Total | Female | Male | Total | Female | Male | Total

70-100| 19.44 [40.19|34.97| 22.86 |38.78|34.59 - 38.46|30.77

60-69 | 50 |44.86]46.15| 45.71 |48.98|48.12| 48.72 |46.15|46.85
50-59 | 27.78 | 8.41 |13.29| 28.57 |12.24|16.54| 28.21 |13.46|17.48
40-49 | - - - - - - - - -
30-39 | - - - - - - - - -
0-29 - - - - - - - - -
[Total [ 100 | 100 | 100 | 100 | 100 [ 100 | 100 [ 100 | 100 |

C. Detailed numbers on candidates’ performance in each part of the exam

Individual question statistics for Mathematics candidates are shown in the tables below.

Paper A0: Linear Algebra
Question | Mean Mark | Std Dev | Number of attempts

All| Used Used Unused
Q1 19.04119.04 5.03| 118 0
Q2 14.02114.25 5.2 93 1
Q3 13.56|13.77 4.39| 109 4




Paper Al: Differential Equations 1

Paper A2:

Paper A2:

Paper A3:

Paper A4:

Paper A5:

Paper A6:

Question | Mean Mark | Std Dev | Number of attempts
All| Used Used Unused

Q1 16.19]16.67 4.79] 60 2
Q2 19.78119.92 4.19| 133 1
Q3 14.43114.53 6.06| 93 1

Metric Spaces

and Complex Analysis

Question | Mean Mark | Std Dev | Number of attempts
All| Used Used Unused

Q1 18.04|18.37 5.31| 103 3
Q2 19.02119.02 4.87| 129 0
Q3 19.94|19.94 3.99| 51 0
Q4 16.47(16.52 3.91| 138 1
Q5 13.4]13.52 4.51| 126 5
Q6 12.85|16.74 7.26| 19 8

Metric Spaces

and Complex Analysis Old Regulations

Question | Mean Mark | Std Dev | Number of attempts
All|  Used Used Unused
Q2 | 12 12 1 0
Q4 20 20 1 0
Q5 16 16 1 0
Q6 6 6 1 0
Rings and Modules
Question | Mean Mark | Std Dev | Number of attempts
All| Used Used Unused
Q1 14.49|15.06 5.62| 36 3
Q2 18.16 | 18.37 5.41 68 1
Q3 19.22|19.22 6.23| 50 0
Integration
Question | Mean Mark | Std Dev | Number of attempts
All| Used Used Unused
Q1 10.22111.32 6.34 60 9
Q2 12.22112.66 5.32 98 6
Q3 12.54(12.62 4.13 96 1
Topology
Question | Mean Mark | Std Dev | Number of attempts
All| Used Used Unused
Q1 14.62(14.62 4.62 76 0
Q2 16.48]16.48 5.46| &4 0
Q3 17.32(17.32 4.74 22 0

Differential Equations 2




Question | Mean Mark | Std Dev | Number of attempts

All| Used Used Unused
Q1 17.2617.26 3.97 84 0
Q2 14.05|15.66 6.97| 35 6
Q3 14.72]15.46 5.62| 63 6




Paper A7: Numerical Analysis

Paper A8: Probability

Paper A9: Statistics

Paper A10: Fluids and Waves

Paper A11l: Qua

Question | Mean Mark | Std Dev | Number of attempts
All| Used Used Unused
Q1 17.09|17.53 51| 32 1
Q2 18.04|18.38 5.04 45 1
Q3 14 14 6.07| 19 0
Question | Mean Mark | Std Dev | Number of attempts
All| Used Used Unused
Q1 17.81|17.95 4.2 128 2
Q2 12.83113.22 5.01 49 4
Q3 15]15.06 3.72| 95 1
Question | Mean Mark | Std Dev | Number of attempts
All| Used Used Unused
Q1 14.07|14.16 6.43 43 2
Q2 16.616.73 6.03| 71 1
Q3 19.5]20.02 5.6 64 2
Question | Mean Mark | Std Dev | Number of attempts
All| Used Used Unused
Q1 13.52 14 4.11 20 1
Q2 18.48118.48 6.1 31 0
Q3 16.81| 174 4.45 15 1
ntum Theory
Question | Mean Mark | Std Dev | Number of attempts
All| Used Used Unused
Q1 16.04|16.04 2.49 26 0
Q2 14.96 | 15.44 6.94| 27 1
Q3 16.67| 18.2 7.5 5 1




Paper ASO: Short Options

Question | Mean Mark | Std Dev | Number of attempts
All| Used Used Unused

Q1 17.48|17.48 4.07| 46 0
Q2 16.37|16.96 5.08| 28 2
Q3 20.91(21.05 4.06| 22 1
Q4 18.32]18.56 4.87 85 2
Q5 16.2816.83 6.9 24 1
Q6 16.57|16.57 4.47| 47 0
Q7 17.2617.26 4.77 34 0




D. Comments on papers and on individual questions

The following comments were submitted by the assessors.

Core Papers
AO: Algebra 1

Question 1 There were many excellent answers to this more computational question, with a
large number of candidates scoring > 20 out of 25. The final computation of the minimal and
characteristic polynomials for an ‘anti-diagonal’ matrix was found easier than expected; some
candidates may have seen this example before. Overall candidates showed an impressive
ability to calculate in dual vector spaces. Omne very common error was to write down a
characteristic polynomial of degree d for the operator T on a (d 4+ 1)-dimensional space.

Question 2 The bookwork part of this question, on the spectral theorem for unitary op-
erators, was done well by most candidates attempting the question. Apart from occasional
confusions between the notions of non-degenerate and positive definite forms, the first half
of part (b) was also done well. As expected, the final two question parts were found more
challenging. Many candidates claimed that the set of matrices U defined in (b)(iii) were
the unitary matrices, even though the form (-,-) considered is not the standard dot product
(and in fact is not even an inner product). Another common mistake was to claim that if a
particular Jordan normal form matrix J is not in U, then there can be no matrix in U with
that Jordan normal form.

Question 3 Candidates generally got the definition of the minimal polynomial in (a) correctly,
and most of them also checked it is well-defined. A common mistake was to define the minimal
polynomial in terms of a matrix, and show that this is independent of the choice of basis,
which was not the point of the question.

Part (b)(i) was also bookwork and was completed by most of the candidates. Some of them
forgot to check T-invariance or to compute the minimal polynomials. In part (b)(ii), most
attempts checked that the image of f(7T') is T-invariant and hence T' descends to a map on
the quotient, but computing the minimal polynomial was found more difficult. The most
successful attempt was simply recognizing that f(T) = 0, so mz(z)|f(z), but it was very
common for students to forget to check that mz(x) # 1, i.e. V # imf(T).

Finally, part (c¢) was found difficult by the candidates. In part (c)(i), common alter-
native solutions included the cyclic permutation matrix and a matrix with all 1s above

11 0 --- 0
1 0 --- 0
and on the diagonal. However, the most common answes were and
1 0
1
10 0 1
1 0 0
. Both of the latter matrices actually have minimal polynomial (z — 1)?
1 0



which divides (z — 1)P = 2P — 1. I think the mode for (c)(ii) was 0/5 and there were very few
correct attempts in general.

A1l: Differential Equations 1

Question 1 This is not so standard question on the core and central theoretical result on
Picard’s iteration of solving ordinary differential equations. Part (a) is a book work, and an
example (or similar) should be seen in the lectures. Still few candidates failed to recognize
the reason why the standard theorem on the existence of solutions can not applied, but most
of those attempted did quite well. Part (b) is about Picard iteration showing the existence by
using the monotone convergence theorem in place of Cauchy’s principle as for the Lipschitz
case. In this sense this part is new, but the steps(i-iv) designed carefully should easy the
arguments the candidate need to work through. However, even under the uniform convergence
of the iteration sequence, still a few of those we did this question failed to prove the limit
of the iteration sequence is a solution. Part (c) is new, and should argue by contradiction,
and received few good solutions to this part. Most of those attempted indicated the use of
Gronwall’s inequality which does not apply here.

Question 2 This is the most popular question among three, and almost every one attempted
this question and gained good marks in general. This demonstrated the good understanding of
the candidates for the core material covered in this paper. Part (a) exam the basic knowledge
about the planer autonomous ODE systems, most candidates are able to demonstrate their
skill for locating critical points and sketching the planer diagram showing the essential features
of the phase plan. Therefore most candidates received good amount of marks for this part.
Part (b) concerns a non-linear but simple planer system. While about half of those attempted
failed to argue properly the nature the only critical point, and thus lose some marks. On the
other hand most candidates are able to reformulate the system in the polar candidate and
therefore are able to sketch the diagram correctly.

Question 3 Many candidates attempted this questions, but received not many good solutions.
Part (a) tests the standard material on solution surface and characteristics. The steps in (a)
are designed so that the candidate can show his/her understanding of the basic concepts and
components about characteristics. Most candidates are able to obtain substantial portion of
the marks allocated. While some candidates made some numerical errors, and failed to the
domain of definition (for part (v)). Part (b) and (c) cover two different topics each has 5
marks. Everyone can state the Maximum Principle for the Laplacians correctly, but more
than half of the candidates who attempted failed do check the condition for the composition
of a harmonic function with a convex function — many candidates even could not apply the
chain rule correctly! A few candidates attempt to apply the Gronwall’s inequality (the version
covered in the lectures) to prove the (generalised version of) Gronwall’s inequality, which in
fact doesn’t work for proving (c).

A2: Metric Spaces and Complex Analysis

Question 1 In (a)(i), for z € K(K(A)) candidates usually correctly picked K(A) > k, — =z,
and an.;m € A with ayp,, — k, as m — oo. Inaccuracies often ensued, e.g. claiming that
the diagonal sequence ay, — z (this would require a judicious choice of ay ), or writing
double limits. Although (a)(ii) is a one-line proof using sequences, the well-meaning emphasis
in the Metric Spaces course on using general Topology definitions rather than emphasizing



sequences, had the practical outcome that students often wrote a full page of solutions to
solve (a)(ii). Part (a)(iii) examples typically involved e~ or arctan or used a patching of
%]121 with 1|;<1; students liked using A = {n € N:n > 1} C R (other options like A = R
often work). For (b), almost all candidates either used the IVT, or showed Y is disconnected.
Almost all candidates did (c¢)(i) successfully. Part (c)(ii) was usually a mess. Candidates often
did not clarify what K(A) was, noting only that (0,0) € K(A) or that {0} x R C K(A), but
not emphasizing/proving that K(A) = AU ({0} x R): an essential step in the proof (only a
handful of candidates elegantly avoided needing this step). Many correct solutions explained
that a path from (—1,0) to (0,0) would have unbounded y-coordinate as it approaches the
y-axis, which contradicts the continuity of the path.

Question 2 Almost all candidates did (a)(i) correctly. Part (a)(ii) was a mess, despite being
bookwork (the course notes consider the general case of bounded functions, and then deduce
(a)(ii) from it; a route that a few candidates reproduced). Most candidates successfully
argued: f, Cauchy implies f,(z) € R Cauchy, so f,(x) converges to some limit, say f(z).
Many candidates jumped from this pointwise convergence to assuming uniform convergence,
without proving this by going back to the uniform Cauchy assumption. Those candidates
that did not forget to prove continuity of f, used the famous “c/3-proof” from the course
notes. A typical but subtle mistake is to run the /3-proof before one has shown ||f — f,| — 0
uniformly (in the £/3-proof one is varying x,y so one needs uniform estimates for |f(z) —
fn(z)] and |fn(y) — f(y)|). No marks were taken off if the candidates switched the order of
these two steps of the proof. Part (b)(i) was a mess: astonishingly many candidates were
unable to write | [ k(z,y)(fi(y) — fo(y)) dyl < [|k(z,y)| - [f1(y) — f2(y)| dy, even though
this is presumably a frequently used basic trick in many courses. Absolute values were often
misplaced e.g. -+ < | [ k(x,y) dy| - [sup(f1 — f2)|. Part (b)(ii) went well (rare mistakes were
caused by assuming that 7" rather than K was linear in f). Part (b)(iii) often involved two
issues. The first: candidates not proving K™(f) — 0 as n — oo in the formula for T"(f)
obtained by inductively generalising (b)(ii). Some candidates elegantly avoided this issue
by choosing f = g or f = 0. The second issue involved candidates who did not realise that
(b)(ii) was a hint: they instead tried to “plug in” the given solution » , K™g¢ to conclude that it
works. Although this approach is in principle acceptable, it would require the additional work
of showing that the infinite sum converges and K commutes with the infinite sum symbol.

Question 3 Part (a)(i) and (ii) are bookwork and done very well by most students. Very
few students forgot to include the Lie derivative L but most were fine. (a)(iii) most student
used a method largely different from the solution which is to use polar coordinates to solve
the problem elegantly. (iv) was surprising as although most of the problem is a simple
substitution a non-neglible number of people have infinities in the results. Others seem to
have an additional multiplicative factor in their final result.

(b)(i) was done well by most. (b)(ii) is where the real challenge came and quite a few student
wrote a trivial proof that tries to avoid the question entirely. But around 1/ 3 students made
the correct observations, utilizing closed disks in their solution. (iii) have similar issues with
students trying to avoid the core of the question by not differentiating between C and Coo.
Those who utilizes the inverse function of f generally continued to find the right solution.
(iv) was done quite well by most students as they observe that ¢ must be 0 and the results
are given following a rescaling.

Question 4 A common loss of points in 4a) was to forget assumptions in the residual theorem,



e.g. that the sum is over a finite set of isolated singularities, that the curve is closed, no
singularities on it, etc. In 4b), most candidates succeeded with part 4bi), many attempted to
spell out the Laurent series for 4bii), but gave sloppy arguments such as not spelling out the
coefficients and just claiming they don’t vanish thereby ignoring potential cancellations, and
few managed 4biii). A common mistake in 4c) was to choose a contour that did not avoid
the singularity at 0, as well as simple calculation mistakes in computing the residues.

Question 5 Almost all candidates managed to get the full points for 5a); however, some lost
points for forgetting some assumptions in the theorem and some didn’t produce the proof.
For 5b), there was generally good progress on parts i) and iii). For ii), most managed to spell
out the derivative of h but did not show boundedness. For 5¢), very few candidates managed
to make substantial progress. Few candiates realised that in ii) the obvious part was that z,
are zeros and that this didn’t much explanation, but that the main challenge of the question
was to show that there are no other zeros. Similarly for iii), only a handful of candidates
attempted to use the logarithmic derivative.

Question 6 Nearly all attempts at 6a) received full points. For 6ai), many candidates ignored
that part of the question asked to show the well-definedness of I" and instead only focused
on the holomorphic part of the question. 6bi) was straightforward and didn’t give trouble to
most candidates. For 6¢), most made good progress on i), but many didn’t give full arguments
for ii), although in general, most attempts did get full or close to full points for 6c¢).

Question 4 and 5 were the most popular. Few candidates attempted Question 6 but those
who did tended to get higher scores.

Long Options
A3: Rings and Modules

Question 1 was on field extensions and algebraic elements. The bookwork in part (a) was
well done. In part (b) quite a few candidates failed to fully exploit the irreducibility of the
minimum polynomial. Some candidates didn’t quite manage to put together the argument
using the tower law and finiteness to show that the algebraic numbers formed a field, but
there were many good solutions too.

The last part, on the relation between algebraic numbers and algebraic integers, proved
difficult, but several candidates did see the right trick to use here.

Question 2 This question, on prime and irreducible elements, proved very popular and
was generally well done. Candidates generally showed good understanding of the relation
between Fuclidean and unique factorisation domains, and the relationship between primes
and irreducibles. In the last part, most people managed to show that p was not prime in
the Gaussian integers, and quite a few were able to complete the argument to show, using
reducibility, that p was a sum of two squares.

Question 3 This question, on modules, proved popular. Candidates mostly seemed comfort-
able with the idea of finitely generated modules.The part of the question on the Noetherian
condition for modules was well done. Many candidates got the right idea for the last part,
exhibiting an infinite chain of strictly ascending submodules by considering functions with
progressively weaker support conditions. Some got the inclusions the wrong way round and
produced a descending chain.



A4: Integration

Question 1

Question 2 This question was attempted by many candidates. Part (a) was broadly well
done, though some candidates claimed incorrectly that the functions involved are uniformly

bounded, rather than spotting the correct dominating function ﬁ Some candidates lost

marks for asserting integrability of % on [0,1] with no comment at all, or by using the
fundamental theorem of calculus over all of [0, 1] without handling the

Part (b) proved challenging, though a reasonable number of candidates gave precise arguments
to justify that

n o
lim (I1—xz/n)"logx = / e “logx.
Others lost quite a few marks by asserting integrability of exp(—z)logx on [0,00) with no
justification, so as to apply the dominated convergence theorem.

The computation of lim,, s fon(l —x/n)"log x proved tricky, with only very few candidates
making the substitution u = 1 — x/n, and valid arguments were rare. Many candidates tried
to use a binominal expansion of (1 — z/n)", and made some progress, for which there was
partial credit, but typically got stuck, or just asserted (often after some computation) that

n n 1
1-— "] =1 — E —.
/0 ( x/n)"logx =logn .

r=1

In fact, this is not true and the correct calculation is that

" n n "1
/0 (].—ﬂj/n) log$:m<logn—;r>,

which was correctly obtained by a small number of candidates.

Question 3

A5: Topology

Question 1 Most candidates attempted this question.

1.ai Some candidates incorrectly gave a definition of limit points that applies only to metric
spaces and also used this definition to show that limit points map to limit points.

laii was done by most candidates. laiii was book work that was well done by most candidates,
although a few struggled with finding good notation. laiv was done by most candidates but
some failed to see that there is a unique topology.

1bi. This was generally well done. Some candidates used IFT from prelims while other argued
directly showing that the image is an oepn interval, hence homeomorphic to R.

1bii. No candidate gave a complete solution to this. Only one candidate realized the relevance
of Baire’s theorem, while a few candidates followed the hint and solved the problem assuming
f([a,b]) contains a ball for some a,b and got partial credit.

1biii) A small number of candidates managed to solve this. A ‘proof by picture’ was sufficient
to get full credit.



Question 2 2ai. Most candidates gave a correct definition but some made mistakes, for
example saying that one uses only countable unions of basis sets.

2aii. Many candidates struggled with one of the two directions of this, giving incorrect
formulas for the inverse image of an open set.

2aiii. was well done.

2aiv. Around half the candidates did this part, several failed as they did not use that K is
closed.

2bi. This was well done but some students did not give the topology and received only partial
credit.

2bii was generally well done.

2biii Most candidates did this but often they struggled with the notation and their exposition
was longer than necessary.

2biv. A fair number of candidates did this.

2bv. Quite a few candidates that did not do part iv, did realize that it could be applied here
and gave complete solutions. Some candidates lost some mark as they did not show that an
equivalence class is compact.

Question 3 Fewer students attempted this question, but the ones that attempted it did
generally well.

3ai. This was well done by most students. Some found harder to justify Hausdorff.

3aii. This was generally well done apart from compactness. Some students justified compact-
ness showing that combinatorial surfaces are finite simplicial complexes giving an unneces-
sarily longwinded proof. Some proved also that they are Hausdorff even though this was not
part of the question.

3aiii. Was done by practically all who attempted this.

3bi. Very few candidates managed to do this. Some noticed that it was essentially bookwork
and applied the argument in the notes and some managed to give a direct argument. Many
tried to give an argument applying a single cut and paste operation that clearly did not work.

3bii. Many candidates did this and received complete marks. A common mistake was to
claim that the surface given by aUaV is homeomorphic to the one given by aaUV .

A6: Differential Equations 2

Question 1 the majority of candidates answered this question, and it was generally done
quite well. Quite a few thought that a and S needed to be 41 for the problem to be fully
self adjoint, whereas it just required o8 = 1. Some candidates failed to make good use of the
earlier parts to solve subsequent parts, and went through repeated and lengthy calculations
involving integrating by parts to find the adjoint boundary conditions again and again. Quite
a number of candidates didn’t notice they were asked to find any solutions that exist in (a).
The inhomogeneous boundary condition in (¢) confused quite a few people.

Question 2 this question was the least popular, but was done quite well by many who at-
tempted it. Quite a lot of candidates didn’t seem to read the question very carefully and



regurgitated general formulas from the lecture notes (involving the adjoint eigenfunctions wy,
and failing to notice that the given eigenfunctions were normalised, for example, as well as
using ¢, for different constants than how they were defined in the question.) Part (d) unsur-
prisingly was a bit harder, but quite a few candidates managed to identify the eigenfunctions
and eigenvalues.

Question 3 the first part of this question was done quite nicely by many candidates, although
the presentation and explanation was in many cases quite all over the place. Common errors
were sign errors and algebraic slips, as wells as not being clear about when the coefficient a;
was forced to be zero or not. Identifying the solutions as cosh z/x and sinh 2 /x was generally
straightforward for those who had the correct series (there were some creative attempts at
alternative functions from those who had the wrong series coefficients). Part (b) was started
well, but the rescaling of y for the inner solution was new, as was the resulting more nuanced
matching between the two solutions. The full solution was worked out correctly by a handful
of candidates.

AT7: Numerical Analysis

Question 1 About 55 candidates attempted question 1. Most correctly answered parts
(a)(i) and (a)(ii) concerning the QR factorisation and a slight generalisation of the solution
to the least squares problem using an orthogonal-invertible factorisation. In (a)(iii), the most
common mistake was justifying why part (a)(ii) may be used. A fair number of candidates
decided not to use (a)(ii) for the solution using the SVD factorisation.

Part (b) was more difficult. While (b)(i) was meant to be a 2-3 line proof, many students did
not see the simple argument. Most candidates did not do (b)(ii) correctly, with many failing
to justify why USTSU "b = b, despite the hint. A somewhat common mistake was distributing
A through an inner-product: (z,y) = (Ax, Ay). The hint for (b)(iii) was frequently ignored
despite leading to a simple answer.

Question 2 Only 6 candidates did not attempt question 2, which appears to be the easiest
question on the exam. The number of proofs for (a) lacking all of the details seems high for a
problem on a problem sheet. The solutions to the problem sheet should probably be updated
to be more clear so that tutors relay the proof more effectively. Nearly every candidate
received full marks for (b), which was standard bookwork.

Part (c)(i) received a variety of answers. Some candidates did not read the problem statement
carefully enough to see that inner products cost 2n operations. Another mistake was assuming
(Pr, i) takes O(k) operations — it is not clear from where this misconception came. Some
students added their own costs for scalar-vector multiplication and vector-vector addition,
which received full marks. While the intention was to simplify the calculations by assuming
these computations take (1) operations, the problem statement should have included these
costs to make the expectations more clear. Some candidates were clever and noticed that
certain computations can be re-used, leading to cheaper costs, but this was not required.
Part (c)(ii) almost universally received full marks. Some candidates proved orthogonality of
the resulting basis, which was not expected/necessary.

Answers to part (d) depended heavily on the exact cost calculation performed in (c). The
main mistake here was not considering the cost of computing the matrix M when the basis is
not orthogonal. Too many students did not know the proper definition of a positive definite



matrix, where the statement M ' M > 0 appears a number of times. Everyone defined M so
that M is positive definite; this normalisation could have been incorporated into part (b).
Less than half of the candidates successfully proved that M is positive definite.

Question 3 33 candidates attempted question 3, the ODE question. This seems to be a
substantial increase compared to previous years, possibly owing to writing the questions to
encourage more attempts. For (a), many candidates were not very careful when defining
Gauss-Legendre quadrature, forgetting the polynomial degree or not stating that the poly-
nomials are orthogonal. Many also missed the change of variable to integrate over a general
bounded interval. Moreover, many did not correctly state the quadrature error result from
lecture, while others proved the error bound directly. In (b), many candidates did not notice
to use (a) to prove (7). This often led to incorrect lengthy Taylor expansions.

For (c), most candidates provided a reasonable explanation for deriving the scheme. Deriving
some Runge-Kutta methods was moved from nonexaminable to examinable material this
term, so this appears to have been successful. At least half did not write the correct Butcher
table for the scheme, and many did not use the consistency error order conditions from the
lecture to easily verify the consistency order. Most correctly computed the stability function
for (9) and (10) and were able to show that (9) is not A-stable. A large number of candidates
ignored the hint, complicating the proof of A-stability for (10), while nearly every candidate
that computed the stability function verified L-stability correctly.

A8: Probability

See Mathematics and Statistics report.

A9: Statistics

See Mathematics and Statistics report.

A10: Fluids and Waves

Question 1 This question was quite popular, though candidates struggled with part (b) in
particular. Part (a) was generally well done, though several candidates failed to spot that the
differential equation for f(r) was of Euler form and hence were not able to solve for f. In part
(b), candidates generally followed the expected path of writing the difference T'(u’) — T(V¢)
as the integral of |V¢ +11|? — |V¢|?; at this point, however, a surprising number of candidates
attempted to make use of a (non-existent) version of the triangle inequality to make progress,
rather than noting that |V¢ + 6|> — |Vé|? = |i|? + 2@ - V¢ and then using the Divergence
Theorem to show that the second term of the difference ultimately does not contribute to the
difference integral.

Question 2 This question was extremely popular, being attempted by almost all candidates.
This question was also very well done on the whole. Common errors included: not rearranging
the potential from the modified Circle Theorem into the form given in (*), forgetting to
differentiate w(z) when applying Blasius’ Theorem and not noticing that the only singularity
enclosed by the integration contour is the location of the doublet, z = b, rather than the
image doublet at z = a?/b.

Question 3 This question was generally well done. A common error was to give a condition



on L in part (b)(iii) that was dependent on the mode number n — instability may occur
whenever there exists an unstable mode and so the condition for L required in this part must
be independent of n.

A11: Quantum Theory

About 3/4 of the candidates chose Questions 1 and 2, and about 1/4 chose Questions 2 and 3.
(In addition two candidates chose Questions 1 and 3 and one submitted all three.) As in the
previous two years, the first strategy is seemingly preferred by students who are uncomfortable
with angular momentum. The second strategy earned more marks on average, possibly due
to requiring less computations, but better conceptual understanding. The average marks on
all three questions were similar.

Question 1

The bookwork parts of both part a) and b) were done well. In a)(iii) candidates often set
t = 0, which left too little information to prove Z = 0. Only very few candidates made a
serious attempt at b)(iii) and none came close to a solution. A common mistake was not
realising that X simply acts as multiplication by . Candidates often set ¢ = 0 and dropped
cross terms between ¢ and y, both without justification. In fact cross terms can be shown
to vanish by performing the y integral fob dy 1 (y)2(y) = 0. A good solution strategy is
performing the y integral first by using the orthonormality property of the one-dimensional
stationary states.

Question 2

Part a) was generally done well with some candidates struggling to complete the induction
proof. In part b)(i) there was a very good level of commutator manipulations from candidates,
although many made sign and factor mistakes. A good solution strategy is decomposing the
complicated computations into simpler building blocks. In part b)(ii) candidates made many
mistakes in converting G, H, K into differential operators, and subsequently the computation
of [K, H] acting on a wave function ¥ (§) often became chaotic.

Question 3

The bookwork part of part a) was done perfectly, and all candidates had a reasonable strategy
to solve a)(iii), although sometimes they did too much computation instead of appealing to
the facts that Jy is just a component of angular momentum with known spectrum and that
its eigenstates are orthonormal. In part b) candidates made a variety of small mistakes, but
the general picture seems to have been clear. The candidates who got to the Quantum Key
Distribution part gave excellent answers.

Short Options
ASO: Q1. Number Theory

Most students did well on the question. Part (a) was Bookwork and most students answered
it well. Part (b) was Similar. (b)(i) and (b)(ii) were fine for most students. Not all students
saw how to combine (b)(i) and (b)(ii) in order to answer (b)(iii) but there were a few good
answers. Part (c¢) was Similar/ New. (c)(i) was answered well by most students. The first
part of (c)(ii) was also answered well by most students but many did not see how to do the



second part. (c)(iii) was challenging and not many students answered it.

ASO: Q2. Group Theory

The average mark was 16.6 and the median 17. The highest mark was 22/25.

I asked ChatGPT to sit the exam giving it ample time (20 minutes). It produced a script in
58 seconds, which I marked applying the mark scheme. It received 21/25, which is the second
highest score.

Almost everyone received full marks on Questions a), b) and the first two parts of c¢). These
were a combination of book work and material close to example sheets.

Question ciii) was also taken verbatim from an exercise in the second example sheet and was
done well by a large majority of students.

Question civ) however was done well by only 3 students (and by ChatGPT). Nonetheless,
most students only lost one mark here, because the mark scheme was generous in allowing 1
mark for the simple check that the normalizer is a subgroup.

Question d) was devoted to applying the Sylow theorems on a concrete example. It was
harder than the previous two parts of the question.

Question di) required to factorize 2025 appropriately and apply a basic propery of factorization
of groups seen in class. It split students quite evenly with just a bit more than half of them
answering correctly.

Question dii) had three subparts with one mark each. Only one student managed to get the
full three marks on this question (and scored 22/25 overall, the highest mark) by appropriately
justifying the maximality of P3. A majority of students received 2 marks.

Question diii) was awarded 2 marks and split students quite evenly.

None of the students, nor the Al, was able to make any convincing argument for div), which
required more thought than the other questions.

Question dv) was a basic reality check and the vast majority of students got it correctly.

The exam’s markscheme attributed a lot of marks to bookwork and exercises from seen
example sheets (roughly 10 marks). The fact that the average was well above is a sign of a
strong cohort. In retrospect, the harder parts of the exam were probably too hard. However
this was balanced by a generous markscheme.

ASO: Q3. Projective Geometry

The question was well answered with candidates achieving an average mark of over 20. This
seemed to be much more a reflection of the quality of the scripts rather than the question
being too easy. Possibly the hint for the last part took the sting out of the new material and
should have been omitted, but that’s a rather marginal comment and it was abundantly clear
that the majority of students had understood the course well, even thoroughly.

In part (a) the expected answer for the dual notion of ‘concurrent’ was ‘coplanar’. For
example, three concurrent lines dualize to three coplanar lines. This was a stumbling block
in quite a few scripts and even if the right answer was given little or no justification was
sometimes given even though explicitly sought in the question.



ASO: Q5. Integral Transforms

Question 4(a) asked to solve a boundary value problem using the Laplace transform. Most
candidates transformed the equation correctly and obtained the correct integrating factor
for the resulting first order ODE. Some failed due to algebraic errors or by including the
initial values for f incorrectly. Obtaining the general solution required integration by parts
which only some candidates got correctly. Some forgot to include the integration constant,
only few gave a correct argument for its value. Inverting to get the correct answer was only
accomplished by the best candidates.

Question 4(b) was easier than the second half of 4(b) and generally done very well. Overall,
many candidates got very good or even complete answers for all sub parts. Some candidates
failed to quote the correct definition, or got the wrong answers for the examples or gave
deficient, sometimes even outrightly wrong reasons for their answer.

ASO: Q6. Calculus of Variations

The question seemed relatively unpopular. Quite a few candidates produced perfect or near-
perfect solutions, but I was disappointed that a lot of candidates stopped after collecting their
first four very easy marks in part (a). The main difficulties in (b) were in calculating (vector)
7, and trying to obtain H from L using lack of explicit theta dependence instead of lack of
explicit time dependence. The main difficulties in parts (c) and (d) were finding the value of
H and H from boundary conditions. Several solutions carries a generic H until the end, then
tried to relate H to 7o to match the solution as given.

The given expression for (d) had a silly mistake (from doing maths in my head while I couldn’t
write with a hand injury). The 1/r should be inside the integral, which should also be over
a dummy variable r . One candidate wrote that they were confused, so I marked their part
(d) generously. Two other candidates commented about the strange expression, and the rest
either didn’t notice or accepted what I meant rather than what I wrote.

ASO: Q7. Graph Theory

Overall this question was perhaps a little on the straightforward side, especially part (a),
although it could (and perhaps should) have been marked significantly more harshly. Indeed,
many descriptions of Kruskal’s algorithm were not mathematically correct, though the reader
could tell what the candidate meant, and that was correct.

In part (a) some candidates were not clear whether they were talking about a graph or a set
of edges. For those who were clear, some elected to add vertices as the algorithm proceeds,
whereas it is cleaner to follow the notes and start with the entire vertex set of G. (Otherwise
you end up writing almost the same argument twice, to prove that the constructed subgraph
is connected, and that it is spanning.) There are many ways to describe the algorithm; a
number of candidates wrote out one that considers each edge once. This is good for efficient
implementation, but slightly less simple for the description and analysis.

(b)(i) was mostly well done, though you do have to mention the graph being connected at
some point. For (b)(ii) it’s simplest (and answers (i) also) to show that at each step, vertices
have the same label if and only if they are in the same component of the graph formed by
the edges chosen so far.



(c)(i) is a variant of the proof that Kruskal works, and turned out to be slightly tricky. Perhaps
the shortest argument is ‘dual’ to that for Kruskal: consider the first edge e deleted from Tj.
This separates T into two components, so there is some not yet deleted edge f joining them;
now compare the costs of e and f.

(c)(ii) and (iii) were generally well done. For (c)(ii) you can observe that Kruskal needs at
most n — 1 rounds whereas algorithm B can take up to order n? rounds. Also (which no-one
commented on), Algorithm A gives a (partial) description of a quick way to actually check
whether each edge would form a cycle when implementing Kruskal. There is no obvious
analogue for B.

ASO: Q9. Modelling in Mathematical Biology

Most candidates were able to make a reasonable attempt at the standard bookwork sections
of this question. A number of candidates did not appear to know the standard method for
linear stability analysis of a steady state for a discrete model (part (a)). Almost all candidates
were able to linearise the model but many then did not know how to solve the resultant linear
discrete equation.

Most candidates made good attempts at cobwebbing (part (b)(iii)) but very few labelled the
cobwebs with arrows and fewer still commented that the solution decreased monotonically.

For the problem concerning the tangent bifurcation (part (c)(i)), most candidates did the
hard part of calculating the derivature of f at the steady state, finding it to be 1 — %,
where N* is the positive steady state. The majority of candidates then failed to notice that

this quantity was trivially strictly less than 1 and so a tangent bifurcation cannot occur.

For part (c)(ii), to obtain the stated inequality required division by (b — 2) without reversal
of the inequality. This is justified because of the given condition b > 2 but most candidates
did not state this.

For part (c)(iii) many candidates just assumed that the non-zero steady state was linearly
stable but did not prove it.

Part (d) was new and challenging and attempted by only a few candidates. Some candidates
misunderstood the phrase “given by f(N™%) and f2(N™) where N™ is the maximum
of f” to mean that the maximum value of f was N™,
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F. Names of members of the Board of Examiners

e Examiners:
Prof. Zhongmin Qian (Chair)
Prof. James Newton
Prof. Alex Ritter
Prof. Harald Oberhauser
Dr. Neil Laws
Prof. James Martin
Prof. Mark Blyth (External Examiner)
Prof. Ali Taheri (External Examiner)
Prof. Owen Jones (External Examiner)

e Assessors:
Prof Emmanuel Breuillard
Prof Paul Dellar
Prof Andrew Dancer
Prof Ian Hewitt
Prof Kobi Kremnitzer
Dr Charles Parker
Prof Philip Maini
Dr Richard Earl
Prof Mark Mezei
Prof Andreas Muench
Prof Panagiotis Papazoglou
Prof Oliver Riordan
Prof Stuart White
Prof Dominic Vella



