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Part I

A. STATISTICS

� Numbers and percentages in each class.

See Table 1.

Numbers Percentages %
2025 (2024) (2023) (2022) (2021) 2025 (2024) (2023) (2022) (2021)

I 52 (51) (54) (55) (51) 41.27 (38.93) (36.24) (41.04) (39.84)
II.1 50 (50) (72) (53) (58) 39.68 (38.17) (48.32) (39.55) (45.31)
II.2 18 (24) (18) (24) (18) 14.29 (18.32) (12.08) (17.91) (14.06)
III - (-) (-) (-) (-) - (-) (-) (-) (-)
P - (-) (-) (-) (-) - (-) (-) (-) (-)
F - (-) (-) (-) (-) - (-) (-) (-) (-)

Total 126 (130) (149) (134) (157) 100 (100) (100) (100) (100)

Table 1: Numbers and percentages in each class

� Numbers of vivas and effects of vivas on classes of result.

As in previous years there were no vivas conducted for the FHS of Mathematics Part
B.



� Marking of scripts.

BOE Extended Essays, BSP Mathematical Modelling and Numerical Computation
Structured Projects and coursework submitted for the History of Mathematics course
were double marked.

The remaining scripts were all single marked according to a pre-agreed marking scheme
which was strictly adhered to. For details of the extensive checking process, see Part
II, Section A.

� Numbers taking each paper.

See Table 5.

B. Changes in examining methods and procedures currently under discus-
sion or contemplated for the future

None.

C. Notice of examination conventions for candidates

The Notice to Candidates Offering Coursework was issued on 25 February 2025. The first
Notice to Candidates was issued on 25 February 2025 and the second notice on 19 May
2025.

All notices and the examination conventions for 2025 are online at
Examination conventions.

Part II

A. General Comments on the Examination

The examiners would like to record their thanks to all those who helped in the preparation,
administering, and assessing of this year’s examinations. The chair would like to thank
Charlotte Turner-Smith, Waldemar Schlackow, Matt Brechin, Clare Donnelly and the rest
of the academic administration team for their support of the Part B examinations.

In addition the internal examiners would like to express their gratitude to Professor Matt
Tointon and Dr Ed Brambley for carrying out their duties as external examiners in such
a constructive and supportive way during the year and for their thoughtful contributions
during the final examiners’ meetings.

For further comments on the examination process, see Section D below.

Standard of performance

The standard of performance was broadly in line with recent years. In setting the USMs,
we took note of

� the Examiners’ Report on the 2024 Part B examination, and in particular recommen-
dations made by last year’s examiners, and the Examiners’ Report on the 2024 Part

https://www.maths.ox.ac.uk/members/students/undergraduate-courses/examinations-assessments/examination-conventions


A examination, in which the 2025 Part B cohort were awarded their USMs for Part
A;

� the guidelines provided by the Mathematics Teaching Committee, including its rec-
ommendations on the proportion of candidates that might be expected in each class.

Setting and checking of papers and marks processing

The internal examiners initially divided between them responsibility for the units of assess-
ment (that is, the exam papers and projects).

Following established practice, the questions for each paper were initially set by the course
lecturer, with the lecturer of a related course involved as checker before the first draft of
the questions was presented to the examiners. The course lecturers also acted as assessors,
marking the questions on their course(s).

Requests to course lecturers to act as assessors, and to act as checker of the questions of
fellow lecturers, were sent out early in Michaelmas Term, with instructions and guidance
on the setting and checking process, including a web link to the Examination Conventions.

The internal examiners met at the beginning of Hilary Term to consider those draft papers
on Michaelmas Term courses, and changes and corrections were agreed with the lecturers
where necessary. Where necessary, corrections and any proposed changes were agreed with
the setters. The revised draft papers were then sent to the external examiners. Feedback
from external examiners was given to examiners and to the relevant assessor for response.
The internal examiners at their meeting in mid Hilary Term considered the external ex-
aminers’ comments and the assessor responses, making further changes as necessary before
finalising the questions. The process was repeated for the Hilary Term courses, but neces-
sarily with a much tighter schedule. Before questions were submitted to the Examination
Schools, setters were required to sign off a camera-ready copy of their questions.

Exams were held in-person in the Exams Schools. Papers were collected by the Academic
Administration team and made available to assessors approximately half a day following
the examination. Assessors were made aware of the marking deadlines ahead of time and
all scripts and completed mark sheets were returned, if not by the agreed due dates, then
at least in time for the script-checking process.

A team of graduate checkers, under the supervision of Clare Donnelly, Charlotte Turner-
Smith, and Rosalind Mitchell sorted all the marked scripts for each paper of this exami-
nation, cross checking against the mark scheme to spot any unmarked questions or parts
of questions, addition errors or incorrectly recorded marks. Also sub-totals for each part
were checked against the mark scheme, noting correct addition. In this way a number of
errors were corrected,and each change was signed by one of the examiners who were present
throughout the process.

Throughout the examination process, candidates were treated anonymously, identified only
by a randomly-assigned candidate number.

Timetable

Examinations began on Monday 2 June and ended on Friday 20 June.



Consultation with assessors on written papers

Assessors were asked to submit suggested ranges for which raw marks should map to USMs
of 60 and 70 along with their mark-sheets, and all did so. In most cases these were in line
with the assignments given by the assessors.

Determination of University Standardised Marks

The Mathematics Teaching Committee issued each examination board with broad guidelines
on the proportion of candidates that might be expected in each class. This was based on
the average in each class over the last four years, together with recent historic data for Part
B.

We followed the Department’s established practice in determining the University standard-
ised marks (USMs) reported to candidates. Papers for which USMs are directly assigned
by the markers or provided by another board of examiners are excluded from consideration.

For details on the scaling process please see the Mathematical Institute’s website where it is
outlined in full: https://www.maths.ox.ac.uk/members/students/undergraduate-courses/examinations-

assessments/examiners-reports/scaling-algorithm.

This year a preliminary meeting of the internal examiners was held in advance of the final
exam board meeting to compare the default settings produced by the algorithm alongside
the reports from assessors. It was agreed that only a selection of scaling maps would be
further reviewed at the final exam board, and that external examiners would be given
an opportunity to review all maps prior to the meeting. Adjustments were made to the
default settings as appropriate, paying particular attention to borderlines and to raw marks
which were either very high or very low. Where the examiners were in doubt as to the
most appropriate scaling, the preliminary scalings were held over to the final exam board
meeting, where the factors considered by those in the preliminary meeting were reviewed
and weighed before a final decision was made.

Table 2 on page gives the final positions of the corners of the piecewise linear maps used
to determine USMs.

In accordance with the agreement between the Mathematics Department and the Computer
Science Department, the final USM maps were passed to the examiners in Mathematics &
Computer Science. USM marks for Mathematics papers of candidates in Mathematics &
Philosophy were calculated using the same final maps and passed to the examiners for that
School.

Comments on use of Part A marks to set scaling boundaries

None.

Mitigating Circumstance Notice to Examiners

A subset of the examiners (the ‘Mitigating Circumstances Panel’) attended a pre-board
meeting to band the seriousness of the individual notices to examiners. The outcome of
this meeting was relayed to the Examiners at the final exam board, who gave careful regard

https://www.maths.ox.ac.uk/members/students/undergraduate-courses/examinations-assessments/examiners-reports/scaling-algorithm
https://www.maths.ox.ac.uk/members/students/undergraduate-courses/examinations-assessments/examiners-reports/scaling-algorithm


to each case, scrutinised the relevant candidates’ marks and agreed actions as appropriate.
See Section E for further details.

The full board of examiners considered all of the notices in the final meeting, along with
a number of MCEs carried over from Part A. The examiners considered each application
alongside the candidate’s marks and the recommendations proposed by the Part A 2024
Exam board.



Table 2: Position of corners of the piecewise linear maps

Paper P1 P2 P3 P4 Additional Corners Difficulty Score

B1.1 6.8;37 12.46;59.5 26.38;68.5 38.19;79 50;100 5.54
B1.2 10.06;37 18.44;59.5 32.36;68.5 41.18;79 50;100 -0.44
B2.1 8.65;37 15.86;59.5 29.78;68.5 39.89;79 50;100 2.14
B2.2 9.12;37 16.72;59.5 30.64;68.5 40.32;79 50;100 1.28
B2.3 9.16;37 16.79;59.5 30.71;68.5 40.36;79 50;100 1.21
B3.1 11.85;37 21.73;59.5 35.65;68.5 42.83;79 50;100 -3.73
B3.2 8.68;37 15.91;59.5 29.83;68.5 39.92;79 50;100 2.09
B3.3 13.73;37 25.18;59.5 39.1;68.5 44.55;79 50;100 -7.18
B3.4 9.47;37 17.36;59.5 31.28;68.5 40.64;79 50;100 0.64
B3.5 12.2;37 22.36;59.5 36.28;68.5 43.14;79 50;100 -4.36
B4.1 9.09;37 16.67;59.5 30.59;68.5 40.3;79 50;100 1.33
B4.2 8.05;37 14.75;59.5 28.67;68.5 39.34;79 50;100 3.25
B4.3 10.57;37 19.37;59.5 33.29;68.5 41.65;79 50;100 -1.37
B5.1 9.65;37 17.7;59.5 31.62;68.5 40.81;79 50;100 0.3
B5.2 10.54;37 19.33;59.5 33.25;68.5 41.63;79 50;100 -1.33
B5.3 9.59;37 17.59;59.5 31.51;68.5 40.76;79 50;100 0.41
B5.4 9.63;37 17.65;59.5 31.57;68.5 40.79;79 50;100 0.35
B5.5 9.39;37 17.22;59.5 31.14;68.5 40.57;79 50;100 0.78
B5.6 10.69;37 19.6;59.5 33.52;68.5 41.76;79 50;100 -1.6
B6.1 12.75;37 23.38;59.5 37.3;68.5 43.65;79 50;100 -5.38
B6.2 11.65;37 21.35;59.5 35.27;68.5 42.64;79 50;100 -3.35
B6.3 12.18;37 22.33;59.5 36.25;68.5 43.13;79 50;100 -4.33
B7.1 9.4;37 17.24;59.5 31.16;68.5 40.58;79 50;100 0.76
B7.2 9.13;37 16.74;59.5 30.66;68.5 40.33;79 50;100 1.26
B7.3 8.61;37 15.79;59.5 29.71;68.5 39.86;79 50;100 2.21
B8.1 8.82;37 16.17;59.5 30.09;68.5 40.05;79 50;100 1.83
B8.2 10.24;37 18.78;59.5 32.7;68.5 41.35;79 50;100 -0.78
B8.3 12.32;37 22.58;59.5 36.5;68.5 43.25;79 50;100 -4.58
B8.4 13.37;37 24.51;59.5 38.43;68.5 44.22;79 50;100 -6.51
B8.5 10.57;37 19.37;59.5 33.29;68.5 41.65;79 50;100 -1.37
B8.6 14.35;37 26.3;59.5 40.22;68.5 45.11;79 50;100 -8.3
BSP 2000;100 0
SB1 7.24;37 32;59.5 43;68.5 66;100 10.48
SB1 34;100 10.48
SB2.1 14.57;37 26.71;59.5 40.63;68.5 45.32;79 50;100 -8.71
SB2.2 9.82;37 18.01;59.5 31.93;68.5 40.97;79 50;100 -0.01
SB3.1 7.86;37 14.41;59.5 28.33;68.5 39.17;79 50;100 3.59



B. Equality and Diversity issues and breakdown of the results by gender

Table 3: Breakdown of results by gender
Class Number

2025 2024 2023
Female Male Total Female Male Total Female Male Total

I 12 40 52 7 44 51 5 49 54
II.1 12 38 50 14 36 50 23 49 72
II.2 10 8 18 9 15 24 7 11 18
III - - - - - - - - -
P - - - - - - - - -
F - - - - - - - - -

Total 34 97 131 37 112 149 40 93 134

Class Percentage

2025 2024 2023
Female Male Total Female Male Total Female Male Total

I 34.29 43.96 41.27 20.59 45.36 38.93 13.51 43.75 36.24
II.1 34.29 41.76 39.68 41.18 37.11 38.16 62.16 43.75 48.32
II.2 28.57 8.79 14.29 26.47 15.46 18.32 18.92 9.82 12.08
III - - - - - - - - -
P - - - - - - - - -
F - - - - - - - - -

Total 100 100 100 100 100 100 100 100 100



Table 4: Rank and percentage of candidates with this or greater overall USMs
Av USM Rank Candidates with %

this USM and above

91 1 1 0.79
89 4 4 3.17
86 6 6 4.76
85 7 7 5.56
84 8 8 6.35
81 10 10 7.94
80 12 12 9.52
79 13 13 10.32
78 16 16 12.7
77 18 18 14.29
76 21 21 16.67
75 22 22 17.46
74 26 26 20.63
73 31 31 24.6
72 37 37 29.37
71 44 44 34.92
70 47 47 37.3
69 54 55 43.65
68 58 58 46.03
67 65 65 51.59
66 75 75 59.52
65 79 79 62.7
64 83 83 65.87
63 87 87 69.05
62 89 89 70.63
61 96 96 76.19
60 102 102 80.95
59 105 105 83.33
58 107 107 84.92
57 110 110 87.3
56 113 113 89.68
55 114 114 90.48
54 117 117 92.86
53 118 118 93.65
52 119 119 94.44
51 120 120 95.24
50 121 121 96.03
48 122 122 96.83
45 124 124 98.41
41 125 125 99.21
35 126 126 100



C. Detailed numbers on candidates’ performance in each part of the ex-
amination

The number of candidates taking each paper is shown in Table 5.

Table 5: Numbers taking each paper
Paper Number of Avg StDev Avg StDev

Candidates RAW RAW USM USM

B1.1 47 20.6 9.48 62.96 11.3
B1.2 41 26.78 11.31 63.83 15.49
B2.1 29 27.9 13.38 66.59 19.33
B2.2 18 29.28 13.24 67.78 16.41
B2.3 11 31.55 12.86 70.27 20.14
B3.1 29 34.21 10.66 71.31 13.49
B3.2 20 28.75 9.65 68.05 12.26
B3.3 17 38.59 9.49 71.41 14.17
B3.4 21 30.38 9.45 67.86 12.65
B3.5 28 34.89 8.86 69.89 12.46
B4.1 43 29.67 9.78 69.49 13.05
B4.2 35 28.8 9.06 70.03 10.08
B4.3 15 35.13 7.25 71.93 7.71
B5.1 23 27.82 8.92 63.35 17.81
B5.2 50 30.24 9.86 67.44 11.3
B5.3 33 28.15 6.94 66.82 6.63
B5.4 31 28.45 8.72 66.39 10.77
B5.5 30 26.87 7.44 65.9 7.58
B5.6 21 28.9 6.2 65.67 5.44
B6.1 12 36.08 8.74 70.75 12.05
B6.2 16 27.56 6.61 63.19 6.89
B6.3 14 29.71 5.58 63.79 5.31
B7.1 25 29.88 8.34 69.2 8.49
B7.2 25 27.72 6.93 67.16 7.08
B7.3 12 26.5 12.12 65.33 16.21
B8.1 51 27.55 11.97 66.84 16.16
B8.2 29 32.34 10.99 70.31 14.91
B8.3 42 30.07 12.05 62.79 18.23
B8.4 34 32.88 10.36 64.79 15.99
B8.5 36 28.44 10.46 65.22 13.76
B8.6 4 34.5 9.54 65 11.46
BSP 21 1442.71 280.43 72.29 14.17
SB1 8 26.38 7.96 61.25 2.66
SB2.1 14 37.86 10 69.29 14.58
SB2.2 19 22.68 8.41 59 12.41
SB3.1 43 22.7 9.63 62.42 12.1



Individual question statistics for Mathematics candidates are shown below for those papers
offered by no fewer than six candidates.

Paper B1.1: Logic

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 11.1 11.52 5.32 40 2
Q2 9.39 10.77 6.28 26 5
Q3 7.32 8.11 4.73 28 6

Paper B1.2: Set Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 12.96 14.77 6.72 22 5
Q2 9.88 9.88 4.89 26 0
Q3 14.36 15.18 6.74 34 2

Paper B2.1: Introduction to Representation Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 11.93 13.84 8.62 25 4
Q2 8.55 13.78 8.63 18 11
Q3 7.72 14.33 8.66 15 14

Paper B2.2: Commutative Algebra

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.54 15.54 6.79 13 0
Q2 15.56 15.56 5.35 16 0
Q3 12.67 12.67 9.54 6 0

Paper B2.3: Lie Algebras

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.5 17.5 6.04 10 0
Q2 14.27 14.27 8.83 11 0
Q3 15 15 1 0

Paper B3.1: Galois Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.87 16.87 6.95 23 0
Q2 17.59 18.04 5.34 28 1
Q3 11.33 14.14 6.96 7 2

Paper B3.2: Geometry of Surfaces



Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 11.89 12.71 5.43 17 2
Q2 16.27 16.27 6.08 11 0
Q3 14.15 15 6.15 12 1

Paper B3.3: Algebraic Curves

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.79 17.79 6.12 14 0
Q2 20.57 20.57 5.09 14 0
Q3 19.83 19.83 2.32 6 0

Paper B3.4: Algebraic Number Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 11.12 11.86 4.16 7 1
Q2 16 16.76 6.62 17 1
Q3 14.32 15 4.91 18 1

Paper B3.5: Topology and Groups

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18.55 18.55 4.57 22 0
Q2 16.73 17.19 5.41 21 1
Q3 15.12 16 4.15 13 3

Paper B4.1: Functional Analysis I

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 13.79 14.03 5.32 38 1
Q2 11.24 13.31 6.13 13 4
Q3 16.29 16.29 5.26 35 0

Paper B4.2: Functional Analysis II

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 14.11 14.11 4.77 27 0
Q2 14.69 15.06 5.26 31 1
Q3 11.73 13.33 5.82 12 3

Paper B4.3: Distribution Theory and Fourier Analysis: An Introduction

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.7 16.7 3.2 10 0
Q2 17.44 17.44 5.53 9 0
Q3 18.45 18.45 3.59 11 0



Paper B5.1: Stochastic Modelling and Biological Processes

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.55 15.55 5.35 20 0
Q2 13 14.42 6.04 12 2
Q3 9.57 10.67 4.47 12 2

Paper B5.2: Applied PDEs

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 13.26 13.5 3.99 32 2
Q2 16.77 16.96 7.05 47 1
Q3 10.52 13.48 5.57 21 12

Paper B5.3: Viscous Flow

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.76 16.76 3.44 29 0
Q2 13.15 13.15 4.77 26 0
Q3 9.18 9.18 3.34 11 0

Paper B5.4: Waves and Compressible Flow

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 13.6 13.6 5.62 20 0
Q2 14.74 14.74 4.9 27 0
Q3 13.44 14.13 5.18 15 1

Paper B5.5: Further Mathematical Biology

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 11.55 12.1 5.82 10 1
Q2 11.29 12.17 4.76 24 4
Q3 14.85 15.12 4.13 26 1

Paper B5.6: Nonlinear Systems

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 12.79 13.31 4.77 13 1
Q2 14.63 15.94 4.78 16 3
Q3 12.73 13.77 4.13 13 2

Paper B6.1: Numerical Solution of Differential Equations I



Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.62 16.62 4.24 8 0
Q2 19.67 19.67 4.69 9 0
Q3 15.38 17.57 9.65 7 1

Paper B6.2: Numerical Solution of Differential Equations II

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 13.55 14.3 3.56 10 1
Q2 13.23 13.23 4.36 13 0
Q3 14 14 3.94 9 0

Paper B6.3: Integer Programming

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 14.36 14.36 2.53 14 0
Q2 14.92 14.92 4.27 13 0
Q3 21 21 1 0

Paper B7.1: Classical Mechanics

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 11.23 14.38 7.12 16 6
Q2 15.5 15.5 4.94 22 0
Q3 13.14 14.67 5.6 12 2

Paper B7.2: Electromagnetism

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 11.92 11.92 3.67 24 0
Q2 11.1 13.14 6.44 7 3
Q3 15.29 16.58 5.82 19 2

Paper B7.3: Further Quantum Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 14.38 16.14 8.48 7 1
Q2 12.67 13.88 6.56 8 1
Q3 10.44 10.44 6.46 9 0

Paper B8.1: Martingales through Measure Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 12.51 13.44 7.8 36 3
Q2 10.41 10.73 4.84 26 1
Q3 15.45 16.05 6.3 40 2



Paper B8.2: Continuous Martingales and Stochastic Calculus

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.63 16.08 6.03 26 1
Q2 16.14 16.14 9.03 7 0
Q3 16.28 16.28 5.37 25 0

Paper B8.3: Mathematical Models of Financial Derivatives

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 13.89 13.89 5.8 27 0
Q2 13.44 13.44 7.53 25 0
Q3 17.25 17.25 6.01 32 0

Paper B8.4: Communication Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.7 16.36 6.09 25 2
Q2 14.89 15.47 6.33 17 1
Q3 16 17.15 6.76 26 2

Paper B8.5: Graph Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 14.35 14.35 4.21 34 0
Q2 14.18 14.59 6.64 27 1
Q3 11.92 12.91 8.33 11 1

Paper B8.6: High Dimensional Probability

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 21.5 21.5 1 4 0
Q2 17 17 6.56 3 0
Q3 1 1 1 0

Paper SB1.1/1.2: Applied Statistics/Computational Statistics

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 10.75 10.75 3.81 8 0
Q2 8.25 8.25 3.81 8 0
Q3 10.67 10.67 5.82 6 0
Q4 8 8 0 2 0
PR 23.75 23.75 6.07 8 0

Paper SB2.1: Foundations of Statistical Inference



Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 19.38 22.45 7.75 11 2
Q2 16.2 16.2 6.05 10 0
Q3 17.29 17.29 6.58 7 0

Paper SB2.2: Statistical Machine Learning

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 10.08 10.91 6.73 11 1
Q2 9.94 10.56 4.74 16 1
Q3 12.25 12.91 5.01 11 1

Paper SB3.1: Applied Probability

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 11.45 11.68 5.09 38 2
Q2 10.83 10.83 6.12 42 0
Q3 10.33 12.83 5.48 6 3



Assessors’ comments on sections and on individual questions

The comments which follow were submitted by the assessors, and have been reproduced with
only minimal editing. The examiners have not included assessors’ statements suggesting
where possible borderlines might lie; they did take note of this guidance when determining
the USM maps. Some statistical data which can be found in Section C above has also been
removed.

B1.1: Logic

Question 1: Subpart (b)(iv) was correctly answered by only a few. A common mistake
was to assume that if a partial valuation is inconsistent with Σ, then a single formula from
Σ must be responsible. The compactness exercise in part (c) was often done well, but a
distressing number invoked the compactness theorem to prove the trivial and irrelevant fact
that a satisfiable set has a finite satisfiable subset. Part (d) on an incorrect strengthening
of van der Waerden attracted a variety of answers, but only a handful put their finger on
the key point that n′ and k′ might be nonstandard. The rest of the question was done well
on the whole.

Question 2: In (b)(ii), many seemed not to understand that the point of the question
was to find a model of Σ, as in the proof of completeness, and instead just equipped some
structure with constants. In (b)(iii), which treated a version of the Tarski test, very few
realised that they had to replace the constants in an L′-sentence with unused variables in
order to obtain an L-sentence, but most of those who saw this could do it correctly. Part
(c) saw the expected steep drop-off in correct answers as the question progressed, with (iii)
attracting creative and sometimes correct solutions.

Question 3: There was a minor mistake in the formulation of (a): the formulas are referred
to as sentences, but x1 appears free in each. This does not affect the content of the question,
and seems not to have confused anyone. A surprising number considered the equivalence in
(iii) to be valid. Part (b) was mostly done well, though some wasted time by writing out
a formal proof in full, when they were only asked to prove existence of a proof. The for-
malisation exercise in (c)(i) was done surprisingly badly, with many changing the language
and trying to work with A and B as predicates, or even using second-order quantification.
Few really attempted (c)(iii), and only one succeeded. In (c)(iv), many implicitly assumed
consistency of the theory. In part (d), some got marks for progress in (i), but there was
only one full solution. Few got anywhere with (ii), and only three gave real solutions, of
which two were fully correct.

B1.2: Set Theory

Question 1 Most made decent progress. Part (b) was too easy, and should probably have
replaced with a ”you may assume without proof” in the later part using it. In (d), few were
careful enough to properly explain the role of FC1 (non-emptiness).

Question 2 The bookwork in (a) was done surprisingly badly by many, perhaps because
it is material from the end of the course. In (b)(iii), few really explained the role of AC in
finding a family of witnesses to countability. Part (c) stumped most; many had the correct
idea of considering the order on an ordinal in (c)(i), but missed that in the uncountable
case, that ordinal must be precisely ℵ1. There were only two correct solutions to (c)(ii);



many tried to derive a contradiction by applying (b)(iii) to f directly, which leads nowhere.

Question 3 The logical structure of (a) seemed to confuse many. It required showing two
things: that no ordinal is both a successor and a limit, and that every ordinal is either a
successor or a limit – but many attempted only one, and some tried to prove as separate
statements that no successor ordinal is a limit ordinal, and that no limit ordinal is a successor
ordinal, apparently without realising that these are equivalent. Parts (b) and (c) were often
done well, though solutions were often messy, particularly in (b)(ii), and many attempted
a transfinite induction in (c)(i) which went nowhere.

B2.1 Introduction to Representation Theory

Question 1 the most popular question, offering an alternative proof of Maschke’s Theorem
for complex representations of finite groups. It was pleasing to see a majority of candidates
being able to construct the G-invariant inner product as required in Q1(b), although this
task did elude a significant number of students. Part (c) was not done very well, but there
were one or two correct alternative proofs, applying the Spectral Theorem to the Gram
matrix of the G-invariant inner product from part (b). Nearly everyone got part (d) out.
Part (e) was mostly fine, with the following lovely alternative solution being offered by a
candidate: if ⟨−,−⟩ is a ⟨g⟩-invariant bilinear form and e1, e2 is the standard basis for C2,
then ⟨e1, e2⟩ = ⟨ge1, ge2⟩ = ⟨e1, e1 + e2⟩ implies ⟨e1, e1⟩ = 0, so ⟨−,−⟩ cannot be positive
definite.

Question 2 the least popular question, but still attempted by over half of the candidates.
It was concerning to see that many people forgot how to do part (a) (which was on the
problem sheets) —- a number of people tried to apply the Fixed Point Formula and use
character theory, which is a very roundabout way to do the question. The bookwork part
(b) was done very well. Part (c) proved to be challenging, and only one person realised that
the one needs to look at subsets of G of the form HxH (the double cosets) to do part (d).

Question 3 a popular question. Part (a) was done very well; there were also several
correct solutions for (b) using the Column Orthogonality Theorem. The character table
in part (c) was correctly completed by about a third of the students who attempted Q3;
it is difficult (but possible) to do this without using Sylow’s Theorems. Only one or two
students, however, managed to correctly explain why the values of the non-linear irreducible
characters on the elements of order 11 cannot be real.

B2.2: Commutative Algebra

Question 1 was attempted by most students. There was a surprising number of mistakes
in the statement of Zorn’s lemma (the poset was not assumed to be non-empty, and totally
ordered subsets were assumed to be countable chains), and many students failed to appre-
ciate that one had to consider only proper ideals in part (a). In part (d), a very common
mistake was the claim that all prime ideals of Z are of the form (p) where p is a prime,
whereas of course (0) is also an example. Similarly, (0) was forgotten in K [x]. There was
a variety of examples given in (d)(iii).

Question 2 was also very popular. Part (e) was difficult, with only a small number of
correct solutions. Most students failed to notice how the Going- Up theorem is helpful here.

Question 3 was attempted by seven students. There was a strong bifurcation here: some



solutions were very good, with hiccups only in part (e), whereas the other solutions were
severely flawed already in the book-work part.

B2.3: Lie Algebras

Question 1 was the best-answered question, with the majority of candidates providing
largely complete solutions. A common mistake in part (b) was to claim (sometimes implic-
itly) that the restriction of the adjoint representation of g to D(g) was the adjoint repre-
sentation of D(g), and hence to assert that its kernel was z(D(g)) rather than z(g) ∩D(g).
In part (c), surprisingly many candidates had difficulty determining whether or not D(h)
was nilpotent.

Question 2 was also generally well-answered. A number of candidates showed that g =
D(g) when g is semisimple by reducing to the case where g is simple, which is a less
efficient than simply noting g/D(g) must be abelian and semisimple. Part (c) was the most
demanding, with some students seemingly failing to see that the condition that p(r) = p(g)
is equivalent to g = r+D∞(g) and hence to q(D∞(g)) = q(g) where q : g → g/r.

Question 3 was the least popular, though it does not appear to have been more demanding
than the other questions. Overall the vast majority of candidates were able to exhibit a
good understanding of the course material in the answers they submitted.

B3.1: Galois Theory

Question 1 Most candidates performed well on part (a), though some were confused about
the precise statement of the invariant factor decomposition for finitely generated abelian
groups. In part (b), several candidates lost marks either for misinterpreting what was to be
proved or for assuming non trivial facts about finite fields without justification. Nearly all
candidates accurately reproduced the required bookwork in part (c)(i), and many succeeded
in using it to prove part (c)(ii). In part (d), many candidates correctly identified the need
for an inductive approach, but some struggled to carry it through.

Question 2 The bookwork in part (a) was generally handled well, but some marks were
lost for incomplete definition of separability or for failing to verify that P(x) belongs to
K[x]. Performance on part (b) was varied. Many candidates correctly answered (b)(i) and
(b)(ii), but some omitted key steps in their reasoning — for instance, neglecting to verify
irreducibility in (b)(ii). Part (b)(iii) proved more challenging, and only a small number
successfully completed this challenging computation.

Question 3 Relatively few candidates attempted Question 3. Part (a) was generally an-
swered well, although some candidates assumed the Fundamental Theorem of Symmetric
Functions without proof, which was not admissible. Part(b)(i) proved more difficult while
many realised that degrees were needed, some could not use this to provide a proof. Part
(b)(ii) received fewer attempts, but those who did engage with it often performed well. Part
(c) attracted many correct solutions.

B3.2: Geometry of Surfaces

Question 1 : The most popular question, though (c) proved rather difficult for many;
overall this question was the least well done. The question mainly concerns geodesics,
and in particular geodesic polar co-ordinates which lead to E = 1 and F = 0 in the first



fundamental form. (a) was largely done well, though in (b) many missed that the half-line
needs parameterizing as (0, e±s) or equivalently noting that ẏ = ±y when arc length is used.

Part (c) sets up the geodesic polar co-ordinates in H, centred at z = i. Whilst the resulting
expressions are a little messy, the necessary algebra had been completed for candidates and
could be assumed without justification. Setting s = 0 shows that all curves θ = c pass
through i. In (ii), setting θ = c in the second expression for z and eliminating s shows that
the curve is actually a semicircle with centre (cot c, 0) and radius csc c.

For (iii), the hyperbolic distance of z from i can be seen to equal s (using the second
expression for z) and consequently E = 1 as θ = c is parameterized by arc length. Finally
in (iv) we fix s and eliminate c to find an equation connecting x and y. This is the equation
of the Euclidean circle with centre (0, cosh s) and radius sinh s. As the square of the distance
between the circles’ centres equals the sum of their radii, the circles in (iii) and (iv) are
orthogonal and so the co-ordinate curves meet at right angles, or equally F = 0. No script
successfully progressed this far.

Question 2 : The least popular of the three questions, though a number of close-to-perfect
solutions were achieved; overall it was the best attempted question. (a) and (b) were done
well in most attempts. Some solutions to (c) comment that there is a limit at ∞, showing
continuity, but failed to change co-ordinates to show smoothness there. Many realized there
was a minimum at 0 and a maximum at ∞, though further details were sometimes missing.

Derivations only appeared marginally in the lectures and notes, but (d) could be done using
little more than the multivariate chain rule. The extended vector field has stationary points
at 0 and ∞, each with index 1.

Question 3 : A popular question but there were only a few attempts achieving 20+ and
many weak solutions. A good number of solutions forgot to mention that the Riemann-
Hurwitz formula applies to non-constant holomorphic maps. In (b) only one person was
able to show that C∞/Γ is homeomorphic to the sphere. One approach is to note that
the upper unit semi-disc is a fundamental region and to appreciate how Γ identifies the
semicircular boundary. The resulting quotient map then has degree 4 (the order of Γ) and
6 ramification points each with valency 2. In (c)(i) many correctly calculated the area of
R to be 2π using the Local Gauss-Bonnet Theorem. In (iii) f is of the given form with
c = (1− i)/2. It was also important to check that the ends of a map to the ends of a′.

B3.3 Algebraic Curves

Question 1 (a) In the proof, when writing pi = [vi] with vn+2 = λ1v1 + · · ·+ λn+1vn+1 in
Cn+1 as v1, . . . , vn+1 are a basis, most students forgot to use the general position condition
to justify that λi ̸= 0, before replacing vi by λivi.

(d) The answer I wanted for ‘Find the intersection points of C ′ and D′ ’ was the explicit
formula [

(µ1λ2 − λ1µ2)
1/2,±(µ2λ0 − λ2µ0)

1/2,±(µ0λ1 − λ0µ1)
1/2

]
, (1)

or something equivalent to this. Very few students found this.

There was a minor mistake in the last part of (d): C ′ and D′ can also intersect in 1 point,
for example if λ0 = µ0 = 0 and C ′, D′ intersect in [1, 0, 0] only. Only one student noticed



this. There are 1, 2 or 4 points of intersection according to whether 1, 2 or 3 terms in (1)
are nonzero.

Question 2 Was the most popular question and was mostly answered well.

Question 3 Students found part (c) and (e) difficult. For (c), one proof is to note that
℘′(z)−1d℘(z) is a meromorphic differential on C/Λ with no zeroes or poles. An alternative
method is to take ω to be a meromorphic differential with canonical divisor (ω) = κ, and use
Riemann–Roch to show that ℓ(κ) = 1. So L(κ) = ⟨f⟩C, and then 0 = (fω) is a canonical
divisor.

For (e), the answer I wanted was that
{
℘(z)k℘′(z)l : k ∈ N, l ∈ {0, 1}, 2k + 3l ≤ m

}
is a

basis for L(mp). Few students got the condition l ∈ {0, 1}, without which the set is linearly
dependent for m ≥ 6.

B3.4: Algebraic Number Theory

Question 1 answered by 11 (out of 29) candidates; this is the question which the candidates
found overall the most difficult part (d) in particular.

Question 2 was answered by 22 (out of 29) candidates, overall handled well.

Question 3 was answered by 25 (out of 29) candidates; parts (a) and (b) were answered
very well; there was a range in quality of answer for part (c), with most students making
partial progress, and there was difficulty for many students in giving complete answers to
part (d).

B3.5 Topology and Groups

Question 1 (31 attempts): This question tested the understanding of cell complexes and
homotopy equivalence. The general level of solutions was high. In (a)(i), many candidates
failed to assume that the attaching map of the cell was continuous and there was little
mention of the fact that the quotient topology was being used. In (a)(ii), few candidates
mentioned that the 0-skeleton of a cell complex is endowed with the discrete topology. (b)(i)
was typically fine. Many candidates attempted to do (b)(ii) by retracting each point along
the unique edge path to a fixed root of the tree, without actually making sure that these
homotopies fit together continuously. In (b)(iii), the assumption that X is path-connected
was missing, but all candidates assumed this either implicitly or explicitly. Furthermore,
there was a typo in the last line of the hint: The range of H is Y and not X. All candidates
seemed to realise this was a typo.

Question 2 (33 attempts): This question tested knowledge of the fundamental group,
homotopy retracts, and the Seifert–van Kampen theorem. The general level of solutions
was good. Solutions for (a)(i) were typically correct. However, there were relatively few
completely correct solutions for (a)(ii). Several candidates got the main idea. Solutions
of (b)(i) were almost all correct. The majority of candidates got the key ideas for (b)(ii),
however, the amount of technical detail was often lacking.

Question 3 (20 attempts): This question tested knowledge of the Cayley graph, the Cayley
2-complex, and covering spaces. The general level of solutions was mixed. In (a)(i), many
candidates failed to mention that the graph was directed and that the edges were labelled
by generators. Solutions for the rest of part (a) were typically correct. The description



of the Cayley 2-complex is (b)(i) often lacked technical detail (one 2-cell for each group
element), and few mentioned that it was the universal cover of the 2-complex associated
with the presentation obtained by attaching 2-cells according to the relations to the bouquet
corresponding to the generators. In (b)(ii), few candidates realised that one needs n 2-cells
(likely stemming from the above issues in the definition of the Cayley 2-complex), and
even fewer that the covering transformation not only rotates the 2-cells but also cyclically
permutes them. In (b)(ii), again, few realised that there are two 2-cells for each small loop
in the Cayley graph, forming a copy of S2 each. Furthermore, very few managed to explain
why this was the universal cover of RP2 ∨ RP2.

B4.1: Functional Analysis I

Question 1 Almost all candidates attempted this question with variable degrees of success.
Although key ideas were spotted, many candidates did not properly manage the delivery
of their strategy, particularly in the easier part of the question. The following errors were
common:

� In (a), while proving a sequence (fn) converges uniformly to a function f , after estab-
lishing only pointwise convergence, it was claimed incorrectly that ∥fn−g∥ → ∥f−g∥
by ‘continuity of norm’.

� In (b)(i), it was incorrectly claimed that the function x 7→ |x| is not continuously
differentiable in [0, 1].

� In (b)(ii), after saying that (fn) and (f ′
n) are Cauchy in X, it was claimed immediately

and prematurely that (fn) converges uniformly to some f ∈ X and (f ′
n) converges

uniformly to f ′ in X.

� In (b)(iii), it was incorrectly claimed that Z forms a sublattice of X.

Question 2 40% of the candidates attempted this question. Part (a) was done well by
most candidates. In part (b), many candidates did not realise in (i) that the span of Sε

is the whole space, and these candidates had an issue with (ii) too. In part (c), most
candidates spotted the relevant consequence of the Hahn-Banach theorem they should use,
but a portion of the candidates either struggled with the proof of that statement or with
how to use it to complete the question. In part (d), (i) and (ii) were handled relatively well.
Very few candidates managed well part (d)(iii).

Question 3 80% of the candidates attempted this question. Parts (a), (b)(i), (b)(ii),
(c)(i), (c)(ii) were handled reasonably well with minor exceptions. In part (b)(iii), many
candidates did not manage to get A′ in simple form and subsequently struggled somewhat
with the computation of ∥A′∥. In part (c)(iii), many candidates attempted to use Bessel’s
inequality, which over-complicates the problem. Not many candidates attempted (c)(iv) –
only those who had some proper sense of (c)(iii) could get a sense of (c)(iv).

B4.2: Functional Analysis II

Question 1 Part a) of question 1 tested the understanding of basic material and I was
glad to see that most of the students did very well on this. Part b i) and ii) are standard
applications of concepts and results discussed in the course, and while i) was solved very
well, quite a few students did not spot that ii) is related to the convergence of Fourier



coefficients. Part b)iii) was designed to be more challenging, and while most students
attempted to provide explicit functions f , many of these arguments were incomplete or
incorrect as they did consider the cancellation effects coming from the oscillatory and/or
symmetry behaviour of sin. These difficulties can be avoided by instead considering the
operator norms and arguing via uniform boundedness principle and a few students did this
successfully. Many students successfully proved the implication (α) ⇒ (β) in c) using a
standard rescaling argument and quite a few students realised that the reverse direction
could be approached using uniform boundedness principle, though the full proof via PUB
was as expected quite challenging and only completed by a few students as the presence
of the absolute valued makes it necessary to consider general linear combinations of the
fn with unit coefficients. Alternative arguments via either Baire’s category theorem or by
using the fn to define a map into ℓ1 were possible and used successfully by several students.

Question 2 The bookwork part of a) was done well, though quite a few students forgot to
comment on how the open mapping theorem implies the inverse mapping theorem. Most
students struggled to provide a correct example for a)ii), with only few realising that one
can e.g. use a bijection whose algebraic inverse was unbounded. Parts b)i) and ii) covered
very standard material on weak convergence and were very well solved and while iii) was
a bit more challenging, this was solved quite well, though in a few cases through rather
complicated arguments using dual operators rather than more directly via closed graph
theorem and Hahn-Banach. Part c), in particular the implication that (β) ⇒ (α), was
designed to be the most challenging part of the question and this was indeed the case, with
only few complete solutions, though quite a few partial answers which correctly used Riesz
representation theorem to deduce the easier direction.

Question 3 The early parts of a,) which covered basic material were solved well, but I was
surprised to see how few students successfully solved a iii), given that orthogonal projections
are well known examples of selfadjoint operators and that the easiest way of obtaining a
strict inequality is to use non-zero operators whose composition is zero, such as projections
onto orthogonal subspaces. The first part of b) was very well solved, with most students
who solved question 3 successfully proving the compactness of the operator based on the
Theorem of Arzela-Ascoli and then exploiting this to show that the spectrum only contains
0. The second part of b) was designed to be challenging and that indeed was the case,
and while several students realised that Sf if Hölder continuous if f ∈ L2 and used this
to discuss the convergence of the Fourier series, they did not spot that this could also be
used to solve (α). Part c) was then pretty standard and in general well solved, including
(ii) for which some students constructed explicit counterexamples while others successfully
translated this into a statement about the existence of operators whose approximate point
spectrum does not agree with the point spectrum.

B4.3: Distribution Theory

Question 1 The general level of answers was good, even though no candidate got the full
marks. Most candidates got full marks for those in Part(a), which were mostly bookwork
and direct-application. Parts (b)–(c) were a combination of unseen, similar, and new riders,
and required not only careful calculations but also a good understanding of the fundamental
concepts/properties of distributions and their orders; these were largely done, even though
some of the candidates struggled to provide examples for illustrations and to perform careful
calculations.



Question 2 The general level of answers was slightly higher than Question 1. No candidate
got the full marks, where in particular some marks were lost in Part (b), which concerned
the extension of a positive distribution with compact support to a linear functional on the
space of continuous functions with an upper-bound inequality, causing difficulties for some
of the candidates. Part (a) was all bookwork, which was very well taken, while Part (c) was
a new example and caused some struggles.

Question 3 Most of the candidates did better overall than Questions 1–2. Part (a) was
either bookwork or new examples, but required good understanding of the concepts of the
support, the singular support, and the derivative of distributions, which did considerably
well, even though several candidates struggled for (iv). Part (b) concerned the solutions of
several differential operators in the sense of distributions, which was done quite well overall;
however, only very few attempted to verify that the differentiation is valid in the sense of
distributions in the proof for (i).

B5.1: Stochastic Modelling and Biological Processes

Question 1 This was the most popular question, attempted by over 90% of students, with
many achieving their best scores on this question. Some students struggled to write down
the deterministic equations required for part (a) correctly, in particular, getting confused
between deterministic rates, and stochastic intensities. This usually didn’t have major
knock-on effects in parts (b) and (c). In part (b), the question should not have said
“(x∗, y∗, z∗) ∈ ∆N”, since (x∗, y∗, z∗) was not necessarily an integer vector; but this did
not seem to cause any confusion – students correctly interpreted this to mean only that
x∗ + y∗ + z∗ = N . Most could correctly write down the master equation, and found more
or less tidy ways to show that the given distribution satisfied it. Inefficient approaches
very likely cost some students quite a lot of time. When it came to calculating the nor-
malising constant quite a few struggled with the combinatorics. Only a small fraction of
students managed to do part (c) to a high standard, with many recognising, but struggling
to calculate, the required sum of probabilities

Question 2 The question was attempted by just over 60% of students. Students fared
slightly worse than on Question 1. In part (a), most correctly wrote down the auxiliary
BVP, and correctly interpreted the given quantities as (scaled) fluxes. Solving the BVP
in part (b) was essentially FSPDE content, and there were more or less quick ways to
do it, leading to slightly different forms for the solution (which was only defined up to
some normalising constant). It was easy to get mired in calculations, and only a minority
of students who managed to solve the BVP went on to correctly show that the “survival
probability” took the form given. Responses to part (c) split students quite clearly into
those who had thought about stochastic simulations, and those who hadn’t. Slightly tricky
was that both the movement and the reproduction needed to be simulated. Several correctly
identified the source of the systematic error in the simulations.

Question 3 The question was attempted by just over 60% of students. This question saw
the lowest marks on average. Quite a few made errors writing down the SDE in part (a),
which is core content. Most could solve for the mean in part (b), but several went wrong
calculating the variance. In part (c), the key was to recognise that there was no need to solve
any ODEs (this would be very time-consuming): it was only necessary to write down the
algebraic equations for stationary values of the moments, and then solve these sequentially.



Many students made some progress on part (c), correctly calculating some moments, but a
small minority completed the calculation of Var(A)/⟨A⟩. Several students at least partially
understood the relationship between the model in part (d) and the models in previous parts
of the question.

B5.2: Applied PDEs

Q2 was the most popular question by far; almost all candidates attempted this question.
Candidates split roughly evenly across the other two questions.

Question 1 Part (a) was done quite well. Part (a)(i) and the scaling analysis in (ii) was
completed by most students who attempted the question. Most students also formulated
the correct ODE and conditions in similiarity variables (thought not in all cases the answers
were complete), and many also got the general form for α and β. Some also got the solution
for n = 1 as required in the (iii) case (except for the value of σ). Many candidates struggled
with part (b). Often the formulation of the problem for the Green’s function was wrong
(i.e. not stating the modified GF that was required.) Determination of the GF was done by
an even smaller group, as it differs in a number of details from the Dirichlet case.

Question 2 Generally well done by most candidates. In particular, most candidates got
far with (a). Some stated a wrong or unproven condition for the causality of shocks. There
were also a number of candidates who got the causality wrong for the examples in (iii) and
(iv). Part (b) was also done well. Some found the final part challenging, which required
the determination and solution of an ODE for the shock trajectory post merger with the
rarefaction wave.

Question 3 (a) was generally done well. Some candidates struggled with getting the
solution q = 1 of the initial value problem in (b), and determining and sketching the
domain of definition was a stumbling stone for quite a few. Similarly for (c). Only very few
succeeded in getting the essence of (d) right.

B5.3: Viscous Flow

Question 1 was attempted by the most candidates. The bookwork was generally well done,
but some students forgot that the flux integral includes a factor of r in polar coordinates.
A good number of candidates correctly found the solution for u(r, t). However, numerous
candidates failed to correctly work out the flux associated with this flow and take the small
λ limit. No candidate found the phase shift α(λ) and only a couple of candidates managed
to find the relationship between the parameters needed at the end.

Question 2 was also attempted by a large number of candidates. Some did not explain well
the reason for the boundary layer. The cartesian version of the boundary-layer equations
were generally well found, although many candidates incorrectly stated that the matching
condition with the outer flow involved V → 0 as Y → ∞, and were penalised accordingly.
In part (b), some candidates were defeated by algebraic manipulation. Some candidates
confused velocity potential with streamfunction, and almost all failed to correctly find the
matching condition for u as Y → ∞; as a result, there were only a few candidates who
correctly found the pressure gradient. A reasonable number of students incorrectly stated
that the boundary layer would separate when dp/dx = 0, rather than when ∂u/∂Y = 0.
Sketches of the flow often didn’t include an indication of the location of boundary layer on



the sphere and that it persists in the flow once separated. For those who got to part (c),
most explained that the leading-order boundary layer equations were the same and that
the geometry only affects the slip velocity and pressure gradient. No candidates mentioned
that the problems are fundamentally different at higher order.

Question 3 was attempted by fewer candidates. There was a superfluous time scaling listed
as part of the nondimensionalisation; most students ignored it. Solutions were marred by
algebraic manipulation errors, and some candidates laboured the calculations. No candi-
dates correctly stated the boundary conditions that should be applied at x′ = 0, 1 and
y′ = 0, 1, and only a couple attempted to find the conservation of mass relationship. Al-
most no candidates tried part (b); of those that did, only one managed to find the q′ui

,
no candidates scored any marks for part (ii), while no candidates attempted (iii). Some
candidates jumped straight to the final part of (iv), and successfully found χ̂ as the solution
to (1).

B5.4: Waves and Compressible Flow

Question 1 This question was quite popular but was found difficult by weaker candidates,
who often struggled with basic algebraic manipulations. There was a notational ambiguity
in part (c)(ii) as to whether the factor of (1 + ϵω1) should be in the numerator or the
denominator. All candidates who got this far assumed it was in the denominator, and the
given solution is correct in either case.

In part (a), the basic bookwork and sometimes even the definition of the entropy had not
been well learned. In part (b), there were many fallacious proofs for ∇ × u = 0. The
derivation of the ϕxxx = 0 boundary conditions was intended to be difficult, and in practice
only the strongest candidates made any serious progress with it. There were many algebraic
slips in part (c), and very few candidates correctly got the final formula for |B|.

Question 2 This was the most popular question, and there were many reasonably good
solutions. In the final displayed equation in part (b), ϕ should have been ϕ1, but no
candidates appeared to be distracted by the typo.

There were some good derivations in parts (a) and (b), albeit with some confusion over which
results hold generally and which rely on linearisation. There were few convincing derivations
of the drag in part (b), with several candidates attempting to fallaciously appeal to Kelvin’s
Theorem or the Kutta-Joukowski Lift Theorem. The Fourier transform calculations in
part (c) caused many problems, despite being almost identical to a problem sheet question.
Basic errors included having the transformed potential ϕ̂1 still depending on x, and trying
to solve the resulting ODE with e−k|y| instead of e−y|k|. There were few convincing solutions
to part (c)(ii). Candidates often tried to evaluate ∂ϕ1/∂x(x, 0) (rather than appealing to
parity directly) unwittingly ending up with undefined singular integrals.

Question 3 This was the least popular question, and there were not many First class
marks.

In part (a), there was some carelessness over applying the given conditions to derive the
PDE and the Rankine–Hugoniot conditions. Part (b) was generally OK though often over-
complicated. Many candidates struggled with the basic trigonometrical identities required
for the first result in part (c). No-one successfully derived the final inequality, and maybe
a hint could have been given to try minimising tan δ first.



B5.5: Further Mathematical Biology

Question 1 Parts (a) and (b) contained mostly bookwork and were answered well by most
candidates. Part (c) required a substitution that not many candidates spotted, however
progress to part (d) was still possible given the solution to part (c) was in the question.
Very few candidates made substantial progress in (d), despite the fact that the algebra was
relatively simple after the required integral was computed.

Question 2 Parts (a)–(b) were well answered by the majority of those that attempted it,
though many did not remember to explicitly state the boundary conditions in (b). Very few
candidates attempted (c) and (d) by converting to a system of three first order equations
and conducting linear stability analysis in the usual way, possibly as a result of the “show
that” in (b).

Question 3 The majority of candidates attempted this question. Parts (a) and (b) were
well answered. In part (c), many candidates did not find the constraints on the parameters
required for the non-zero steady state. In (d) many candidates did not correctly assume
that nutrient dynamics are quasi-steady, which prevented progress in analysing the linear
stability.

B5.6: Nonlinear Systems

Candidates demonstrated a good understanding of the course material and received marks
for the bookwork components of the questions. In the more complex parts, some candi-
dates described general methods from the course rather than applying them to the specific
dynamical systems in question. The most challenging parts required careful consideration
of the best approach to derive solvable equations; a purely mechanical application of theory
often resulted in unnecessarily complex calculations.

Question 1 focused on discrete-time dynamical systems (maps), with most candidates
demonstrating the ability to find fixed points and assess their stability. The most challenging
part was part (d), where some candidates attempted to compute the 3-cycles of the map F1

directly by solving the equation F1(F1(F1(x))) = x, but were unsuccessful. A more effective
approach would have been to show that F1 is conjugate to the logistic map, for which the
3-cycles can be computed by using the substitution xk = sin2 θk.

Question 2 covered material on continuous-time dynamical systems modeling chemical
reaction networks. Most candidates were able to formulate the corresponding ODE model
and identify its steady states. However, some struggled to draw the correct conclusion
regarding the stability of the (non-hyperbolic) steady state at the origin. While most can-
didates correctly identified that the system undergoes a Hopf bifurcation at the bifurcation
point µ = 2, some lost marks for not determining whether the bifurcation is supercritical
or subcritical.

Question 3 examined a system of three ODEs near the critical point at the origin. Most
candidates began by analyzing the corresponding linearized system through its eigenval-
ues and eigenvectors. However, some lost marks for incorrectly using the extended center
manifold to classify the bifurcation at the origin.



B6.1: Numerical Solution of Differential Equations I

Question 1 The question was concerned with the finite difference approximation of a
selfadjoint two-point boundary-value problem. A few candidates expanded the differential
operator by applying the product rule to the first term, and constructed a finite difference
approximation of the resulting nonselfadjoint operator using a symmetric or nonsymmetric
difference quotient for the first derivative in that differential operator. These approximations
of the nonselfadjoint form of the differential operator however did not result in a system
of linear algebraic equations with the desired symmetric matrix in the final part of the
question.

Question 2 The question was concerned with the discrete maximum principle for the
five-point finite difference approximation of a linear second-order nonselfadjoint elliptic
boundary-value problem. The question was popular and was generally well done.

Question 3 The question was concerned with the stability analysis of the Lax–Wendroff
finite difference approximation of a first-order linear hyperbolic PDE. This was a popular
question and there were several almost complete answers. There was a typographical error
in the second displayed line of part (c)(i), which should have read |λ(k)|2 = 1 − 4µ2(1 −
µ2) sin4 k∆x

2 . Fortunately this didn’t seem to confuse any of the candidates; those who
obtained the correct expression for λ(k) and/or |λ(k)|2 were awarded full marks for part
(c)(i). This part of the syllabus was clearly very well prepared for the exam by all candidates
who attempted the question.

B6.2 Optimisation for Data Science

The students performed very well on the exam overall. The level of tackling each question
was solid, showing good awareness of the course material. The choice of questions was rela-
tively even, with questions 1 and 2 being preferred. A common occurrence was insufficient
explanations or details of arguments, which were needed for full marks.

B6.3: Integer Programming

Overall the exam did an excellent job at separating candidates by ability.

Question 1 The first question was as attempted by almost all candidates, as it was largely
bookwork and application of known techniques. Nevertheless a number still struggled with
the correct setup and application of the simplex algorithm on what was a very simple
instance. As expected, only a few students were able to correctly answer last part of the
question as it required deep understanding of the material.

Question 2 was attempted by most candidates, no doubt drawn by the familiar territory
of the set theoretic nature of the question. Many different proof techniques were employed,
mostly correctly, for the third part of the question, despite the fact that this was bookwork.
A surprising number of students either failed to correctly state the greedy algorithm in the
final part of the question despite the fact that subsequent subparts of the question all but
gave away the answer, or failed to notice the telescoping sum that was the only non-trivial
step required to correctly answer the final subpart.

Question 3 Very few candidates attempted the final question, presumably because it con-
tained material taught in the last week the course. Those that did generally answered the



question very well, but there were some exceptions.

B7.1: Classical Mechanics

Question 1 This was a popular question and attracted some good answers. However,
most candidates derived the effective potential incorrectly by substituting the conserved
quantities back into the Lagrangian rather than into the energy thereby obtaining the
wrong sign for the centrifugal terms. The u = 1/r substitution was not attempted by many
despite being in some questions and the angle of deflection was only found by a few.

Question 2 This question was also popular with some good solutions. The bookwork
to obtain the Lagrangian was set out with more work than necessary by many, although
the answers were generally good. For the last part, too may candidates did not think to
differentiate the energy to obtain the second order equation needed to identify fixed points
and their stability with very few candidates able to finish the question properly.

Question 3 Despite being on later and perhaps harder material, many candidates at-
tempted this question and picked up respectable marks on the more routine earlier parts.
There were also some good attempts on the later parts connecting the derivative of the ac-
tion variable to the period and finding the equations of motion in the action angle variables.

B7.2: Electromagnetism

Question 1 The average mark on this question was low. Only the strongest candidates
were clear on the strategy of solving the Poisson equation in different regions and then
matching the solutions across the slab and sphere boundaries respectively. Recall that the
electrostatic potential is continuous and the discontinuity of its derivative is proportional
to the surface charge density, which vanishes except in part b)(ii).

In part a) the symmetry considerations were done well. In part a)(i) some candidates only
considered the integrated Gauss law in regions that stretch all the way through the slab,
and hence did not obtain the electric field inside the slab. In part a)(ii) many candidates
tried to force the potential to be zero on both sides of the slab, which is inconsistent with
the continuous differentiability of the solution of the Poisson equation.

In part b) the separation of variables was generally done well and the basic solution
rnYℓ,m(θ, φ) for appropriate n, ℓ,m was constructed. However, many candidates failed to
take different linear combinations of these basic solutions inside and outside the sphere and
then match them appropriately.

Question 2 In the computation ofm some candidates started from the wrong expression for
J(r), but almost all mistakenly treated eθ as a constant unit vector, whereas they should
have realised that it is (cos θ cosφ, cos θ sinφ,− sin θ). In reducing the Ampère-Maxwell
equation to a differential equation for F (r), some candidates made computational mistakes
and obtained equations with some residual angle dependence. This leads to a contradiction,
which many did not appreciate. Only the best candidates realised that outside the sphere
the vector potential is exactly that of a magnetic dipole.

Question 3 The average mark on this question was high, especially on part a). Only
a few candidates failed to treat the time derivative terms in the proof of the matching
conditions appropriately. (Note that these are the same matching conditions that so few



candidates implemented in Question 1.) In part b) it was cleanest to parametrise the
wave and polarisation vectors with angles, but some candidates managed to get to enough
equations by working in components. In some cases, the magnetic matching conditions
were missed. Very few gave a proof of b)(ii), but then many were able to obtain the correct
formula for the Brewster angle θ+ in b)(iii).

B7.3: Further Quantum Theory

Question 1 This question was equally popular with the others. Bookwork was generally
reasonably well done, though at the level of details many candidates missed marks. Parts
(c) and (d) were applications of the Bohr–Somerfeld method for estimating energy levels and
the variational method, respectively. Only a few candidates followed these to completion.
For the WKB problem, there was an integral to wrangle with but the trick to simplify it
was familiar from homework problems. Similarly, for the variational problem one should use
the virial theorem to determine the expectation value of the kinetic energy operator in the
given trial state, while evaluating the potential term required performing an integral. This
was again similar to cases seen in the course. There were typos (in a sign and in the limits
of integration of the second hint integral); the sign did not lead to any a serious issues, and
the correct limit of integration was relatively clear in context. Candidates who got to the
point where the limit of integration was relevant were awarded most of the available marks
for that part.

Question 2 This question was equally popular with the others. The bookwork in part (a)
of this problem was generally well done, though errors did arise and the asymptotic nature
of the plane-wave solutions (in contrast to cases with a bounded interaction region) was
only occasionally appreciated, despite an emphasis on this possibility in lectures. Part (b)
mainly required a suitable change of variables of the time-independent Schrödinger equation,
and candidates who noticed this mostly derived the correct Bessel-function solution for
scattering states. The map between the coefficients of the solution in the Bessel function
basis and the asymptotic plane-wave coefficients proved elusive in many cases, although by
ignoring this subtlety one could incidentally produce the correct answer for the reflection
and transmission coefficients. No candidates completed the final part, though a good deal
of it could be done even if previous parts had not been completed, as it mostly required
manipulating linear expression written in terms of values of Bessel functions and their
derivatives (as specified in the question).

Question 3 This question was equally popular with the others. This perturbation theory
problem proved challenging to candidates, though it had many similarities to a problem from
two years ago. Most (though not all) candidates gave a good account of addition of angular
momentum for the Hydrogen atom. There were already many errors in the treatment of
the system where the perturbation was exactly diagonalisable, with the degeneracy of the
system causing some issues. For the calculations of first-order corrections in part (c), many
candidates made some progress but sloppy accounting regarding the states (inherited from
issues in part (b)) often hindered the computations. Only a few candidates did a very good
job of explaining their treatment of degenerate energy levels. Part (d) received very little
attention.



B8.1: Probability, Measure and Martingales

Question 1 The overall quality of answers to Q1 varied significantly, with some students
handling in perfect solutions and some only completing a very small part of the question.
Q1(a) was bookwork-type problem on basic properties of measures. It was answered mostly
well, some students could only argue one directions, others however got muddled up in their
own arguments and wrote circular and/or involved arguments without actually proving
the desired properties. Q1b(i) was simple bookwork but a non-negligible proportion of
students forgot to say that the conditional expectation needed to be a G-measurable random
variable. Q1b(ii) was answered reasonably well. Some students did not realise it was
enough to establish the defining property on the sets forming the partition, or used this but
without giving any reasons. Individual marks were lost for forgetting to check/state the
measurability and/or that ak were well defined. Small proportion of the students struggled
with this question and kept confusing conditional expectation with conditional probability
seen in the earlier years. Q1c(i) was invariably correct. Q1c(ii) was done well by a majority
of those who attempted it. The simplest argument used BC1 lemma. Some other arguments
were also built, but some students either did not attempt the question or said it holds by
the SLLN, ignoring that SLLN was not applicable and that E[Xk] = 0, as the computed
themselves a moment ago. Q1c(iii) was done correctly by a minority of students. Some
used the natural contradiction argument, others directly checked the backwards martingale
condition was not satisfied for some small n. Q1c(iv) was done correctly by a minority of
students. Some students tried to write a generic formula without much progress. Those
who checked the possible values quickly saw X2 was in fact a function of S3. Q1c(v) was
correctly answered by a slightly higher proportion of students - this was bookwork setup of
the proof of SLLN.

Question 2 The overall caused students more difficulty than the other questions. While
vast majority of students correctly stated the definition of Fτ , comparably few of them
went on to use this definition and answer Q2a(ii). Instead, many students were confused
in this part and wrote things which the assessors were challenged to make any sense of. A
common mistake was to consider Fτ∧n as if it was a random variable (or a process indexed
by n) and could be analysed on {τ < n} and on its complement, with students writing
“Fτ∧n1τ≥n = Fn”, or similar, mixing σ-algebras and random variables in one expression.
In Q2a(iii) often individual mark was lost either for not stating the results on martingale
transforms correctly (e.g., forgetting V > 0) or, when doing a direct computation, for not
checking the measurability and integrability. Q2b(i) most students had no troubles with.
However many lost marks for forgetting to check measurability and/or integrability, or not
giving even a gentle indication to what properties of conditional expectation they used.
Even students who remembered to check Un was adapted, sometimes carried on with the
same argument and, falsely, asserted that product of integrable functions was integrable.
Q2b(ii) caused serious difficulties. Many students could state the theorem correctly but
either could not argue (Un∧τM ) was bounded in L1 or provided false arguments for this.
Those who saw that Un∧τM ≥ −M usually got this part right. Q2b(iii) was mostly argued
wrongly or incompletely. Similarly for Q2b(iv) were many tried to build involved arguments
instead of relying on non-negativity of Cn and Xn. Very few students completed Q2c. Some
used BC1 to argue

∑
nBn < ∞ a.s. but failed to realise one needed also to show limDn > 0

a.s.

Question 3 On the whole, this question was done best. Students on the whole completed



the bookwork in part (a) well. Some errors involved mixing up the conditions of a λ-
system from an alternative definition (which was not equivalent to the conditions being
replaced). Most students identified that they needed to show the collection on which the
two measures agreed is a λ-system. In part (b), many students struggled to specify the mode
of convergence with justification. Some students recognised the example from lectures, but
not many leveraged the characterisation of UI martingales (Theorem 8.32 in the lecture
notes). Most students followed the hint for part (iii). However, if the convergence in (i) was
not specified correctly, this necessarily made part (iii) more difficult. In such cases, some
students chose to prove the Kolmogorov 0–1 law instead. For part (c), quite a few students
forgot to check that the stochastic process is integrable and adapted when verifying that
the process is a martingale, but otherwise (i) was reasoned well. In part (iii), many students
followed the hint to show that Nn is a martingale bounded in L2, but very few could convert
this to a full, well-justified solution. Many recognised that the convergence of Mn is not in
L1 as the expectation of Mn was usually computed correctly in (i).

B8.2: Continuous Martingales and Stochastic Calculus

Question 1 This was the most popular question attempted by almost all the candidates.
There was a wide range in the quality of answers but many candidates were able to score
well. Part (a) was generally well done. For part (b) the Dambis-Dubins-Schwarz Theorem
was often incorrectly stated. This meant that the candidates did not complete part (c)(iii)
correctly. The final part of the question was more challenging to get right to the end.
Most candidates could use Ito’s formula. However, many did not write the evolution of the
process W in terms of its real and imaginary parts correctly. The conclusion of the question
was argued well by only a few candidates.

Question 2 This was the least popular question, though there were many very good at-
tempts. Part (a) was bookwork which was reproduced with varying degrees of success. Part
(b) was well done. The first part of (c) was found to be tricky by many and putting all the
steps together in the right way to obtain the final inequality was only done by a few.

Question 3 This proved to be a popular question with a number of straight forward marks
available. Part (a) was quite well done. Candidates lost marks for not checking all the
conditions for M to be a martingale. Also a few thought that integrability implied the
martingale was bounded and mistakenly applied the version of the martingale convergence
theorem for UI martingales. Most recognised that this was an example of a martingale
which is not UI. Part (b) was a version of a problem sheet question and the first section
needed a careful argument using the optional stopping theorem. The connection with the
uniform and exponential distributions was well done. The first sections of part (c) were
reasonably well done. Many candidates lost marks for not checking the Gaussianity of the
processes. The final part had a typo in the statement but this was usually recognised by
candidates who got that far.

B8.3: Mathematical Models of Financial Derivatives

Question 1 This question is about the discrete-time binomial model, and was attempted by
nearly all candidates. In Part (a), all the candidates mentioned the no-arbitrage principle.
Only a small number did not clearly explain how an arbitrage opportunity would arise if
that condition were violated. Part (b) tested the definition of Delta hedge. Most students



handled this well, but some made algebraic or sign errors that led to an incorrect value for
q. Part (c) is a new example not covered in the lecture slides but the calculation is relatively
straightforward. When computing the hedge value in (ii), many candidates overlooked the
distinction between n and n + 1 in V , A and B, and lead to incorrect result. Moreover,
the question asked for the cash value of the delta hedge, while some candidates only gave
the number of assets held ∆tn without providing the corresponding cash value ∆tnStn . In
Part (d), which required a brief discussion based on the terminal nodes, most students still
performed detailed calculations, and many nonetheless arrived at the correct conclusion.

Question 2 This question is about the Black-Scholes PDE. It has been clearly noted that
the direct use of Black-Scholes formula for the option price will attract no credit. A few
candidates overlooked this instruction and, as a result, lost the majority of their marks. Part
(a) is a straightforward extension of lecture material, and most of the candidates correctly
identified both the spatial and time invariance. In Part (b), nearly everyone wrote down
the correct Black-Scholes PDE, while some candidates made errors when differentiating the
call price V call with respect to the strike K, and therefore lead to incorrect results. In
Part (c), only a relatively low proportion of candidates noticed that the asset itself S is
a solution of the Black-Scholes PDE, and then provide the correct final answer. Part (d)
involves the valuation impact of a discrete dividend at time TD. This question is a bit
problematic (I have also discussed it with the module director): There should be two cases
with t < TD < T and TD < t < T , but the provided mark scheme addresses only the
first case. There is a few students rightly discussed both cases. However, no marks were
deducted for treating only the first scenario.

Question 3 This question is about some exotic options. Part (a) mirrors the lecture
material on the binary call, but here you price a binary put. In (i) most candidates wrote
down the correct SDE, although a handful slipped up in applying Itô’s lemma (even though
they recalled the final form). In (ii) a modest number of students got the sign wrong. In
(iii) almost everyone invoked put–call parity, but some stopped short of its simplest form
by not using −N(−d) = N(d). Part (b) also mirrors the lecture material on the perpetual
American put. While the majority of students who chose this question set up the correct
ODE, only a handful solved it correctly with the characteristic equation—those who merely
memorised the solution without derivation still lost some marks. Part (c) was well answered
by the majority with clear and brief discussions.

B8.4: Information Theory

Question 1 was attempted by most students. The question was well done, however some
students were not clear in part bi on how to construct an optimal encoding, or succesfully
performed a construction using Huffman’s algorithm (but failed to comment on the fact
this is generally optimal). Question bii had a variety of answers, with most students either
suggesting a standard block code (which they then verified approached the lower bound), or
an arithmetic code. Some students struggled a little with determining whether the binary
expansion of X is a Markov chain (it is not), which becomes clear when you compute the
probabilities explicitly.

Question 2 was attemped by about half of the students. Question 2aii caused some
difficulties, with students failing to give definitions of some relevant terms. Part c also caused
difficulties, where students were not clear in how to define the decoded (which should take



an encoded message and return an estimate of the original message, not a codeword), and
must produce a deterministic outcome (in terms of tie-breaking). This caused difficulties
in part cii, where the minimal number of errors (2) leading to a worst-case error was not
clearly presented.

Question 3 was attempted by most students. There was some clack of clarity in many
of the arguments, with heuristic arguments used to justify inequalities for entropy stated
in the place of explicit calculation, particularly in the proof of Fano’s inequality. In part
cii, many students either did not distinguish recognise that the channel gives bounds on
I(X;Y ), or were not clear in how they used the data processing inequality to derive bounds
on I(f(X); g(Y )).

B8.5: Graph Theory

Question 1 Although the average score was reasonably good, there was a tendency among
students to make minor mistakes and incorrect deductions throughout this question. Part
(a) was generally done well, but it was common in part (b) to assume the two paths neatly
separate and join back up as they go between the two vertices. Another common mistake
was to assume a closed walk must contain a cycle. In part (c) many students failed to note
that G− E(C) can’t have isolated vertices, or proved that a path between adjacent leaves
of T would create a longer cycle in (ii) without reference to the fact that we need this path
not to intersect C. Generally there seemed to be a common assumption among students
that paths and cycles never intersect at inconvenient places! Few students completed part
(c) and I suspect many ran out of time. Also, very few students drew (useful) diagrams.

Question 2 This was generally done well except for the last part. Some students tried to
use various properties associated with connectivity in (b), such as Menger’s theorem, rather
than note that it was just a constraint on the minimum degree. Part (c) was usually done
well. Part (d) caused a lot of trouble as many students did not get that the vertices at
largest distance from each other have degree at most 3. Several students deduced that the
minimum degree is at most 4 and then tried to reproduce the Kempe Chain idea from part
(c). This could in principle work, but needs a proof that the graph is planar.

Question 3 Relatively few students attempted this question. A common mistake in (a)
was to state that all maximal flows are integral, rather than state that there exists one
that is. Students either solved part (b) completely or not at all. Part (c) was generally
done less well. A common mistake was to prove the triviality c−(T, S) ≤ c+(T, S) rather
than ≤ c+(S, T ), or simply to not show that any such condition was necessary. Many
students had trouble with the cut capacity calculation, as they tried to write everything as
complicated double sums. It is helpful to use the c±(S, T ) notation as this simplifies the
algebra. On the other hand, converting the flow back to a circulation was almost always
done correctly.

Summary: Overall, the distribution of marks was reasonable with similar averages for
each question. However, I suspect many students took too long on Question 1 and then had
little time for their second question. It should be noted that if a question has a long list of
statements to prove, then each of them should have a short solution, and students should
not spend too much time on each part. Another point to note is that, like last year, most
students do questions 1 and 2, even though I believe question 3 was not harder.



B8.6: High Dimensional Probability

Question 1 was attempted by the most candidates. The bookwork was generally well done,
but some students forgot that the flux integral includes a factor of r in polar coordinates.
A good number of candidates correctly found the solution for u(r, t). However, numerous
candidates failed to correctly work out the flux associated with this flow and take the small
λ limit. No candidate found the phase shift α(λ) and only a couple of candidates managed
to find the relationship between the parameters needed at the end.

Question 2 was also attempted by a large number of candidates. Some did not explain well
the reason for the boundary layer. The cartesian version of the boundary-layer equations
were generally well found, although many candidates incorrectly stated that the matching
condition with the outer flow involved V → 0 as Y → ∞, and were penalised accordingly.
In part (b), some candidates were defeated by algebraic manipulation. Some candidates
confused velocity potential with streamfunction, and almost all failed to correctly find the
matching condition for u as Y → ∞; as a result, there were only a few candidates who
correctly found the pressure gradient. A reasonable number of students incorrectly stated
that the boundary layer would separate when dp/dx = 0, rather than when ∂u/∂Y = 0.
Sketches of the flow often didn’t include an indication of the location of boundary layer on
the sphere and that it persists in the flow once separated. For those who got to part (c),
most explained that the leading-order boundary layer equations were the same and that
the geometry only affects the slip velocity and pressure gradient. No candidates mentioned
that the problems are fundamentally different at higher order.

Question 3 was attempted by fewer candidates. There was a superfluous time scaling listed
as part of the nondimensionalisation; most students ignored it. Solutions were marred by
algebraic manipulation errors, and some candidates laboured the calculations. No candi-
dates correctly stated the boundary conditions that should be applied at x′ = 0, 1 and
y′ = 0, 1, and only a couple attempted to find the conservation of mass relationship. Al-
most no candidates tried part (b); of those that did, only one managed to find the q′ui

,
no candidates scored any marks for part (ii), while no candidates attempted (iii). Some
candidates jumped straight to the final part of (iv), and successfully found χ̂ as the solution
to (1).

BO1.1: History of Mathematics

Both the extended coursework essays and the exam scripts were blind double-marked. The
marks for essays and exam were reconciled separately. The two carry equal weight when
determining a candidate’s final mark. The first half of the exam paper (Section A) consists
of six extracts from historical mathematical texts, from which candidates must choose two
on which to comment; the second half (Section B) gives candidates a choice of three essay
topics, from which they must choose one. The Section B essay accounts for 50% of the
overall exam mark; the answers to each of the Section A questions count for 25%.

Throughout the course, candidates were invited to analyse historical mathematical materials
from the points of view of their ‘context’, ‘content’, and ‘significance’, and these were the
three aspects that candidates were asked to consider when looking at the extracts provided
in Section A of the exam paper. A number of candidates chose to use these as subheadings
within their answers. The word ‘significance’ was used consistently throughout the course
to capture a broad sense of where a given source sits within the historical development of



mathematics. This usage was repeatedly stressed. Some candidates were penalised however
for considering this only in the narrow sense of ‘importance’. In connection with this,
candidates were also penalised in places for being too ‘presentist’ in their approach to the
extracts — the historical mathematics ought to have been treated on its own terms, rather
than in (negative) comparison to how we do things nowadays. This last remark also applies
to the extended essays (see below).

The Section A questions 1–6 were attempted by 8, 10, 9, 2, 8, and 3 candidates, respectively.

� Question 1 : This was an extract connected with the development of symbolic notation
and the solution of polynomial equations. Candidates who addressed only one of these
strands were penalised. A number of candidates failed to describe specifically what
was going on in the extract (the formation of a quartic equation from one quadratic
and two linear factors, and the identification of the roots), while others omitted to
mention key features, such as the preservation of homogeneity and the presence of
an imaginary root. A misconception included by more than one candidate was that
Thomas Harriot invented the + and − signs (he didn’t).

� Question 2 : On the whole, this question was done quite well, though some candidates
strayed a little too far from the extract. This question was about the notion of limit
that was nascent in Newton’s Principia; the wider style and rigour of the Principia
were certainly relevant, but answers needed to go beyond this. A common omission
was Newton’s debt to John Wallis. Several candidates asserted that the definition
given in the extract concerns infinitesimals — this is certainly one way to interpret it,
but this is probably not what Newton had in mind.

� Question 3 : This is another question that was generally done well. Better marks
were obtained by those candidates who recalled the context of the so-called ‘challenge
problems’, and who were able to comment on the place and form of publication, as
indicated in the reference given for the extract. A common pitfall was not being
precise enough about Euler’s two different definitions of a function, and his reasons
from switching from one to the other.

� Question 4 : This is a question that was quite tricky on the surface, but became doable
if one realised that it concerned the history of determinants.

� Question 5 : This was one of the more difficult questions on the paper, if only be-
cause the material needed to answer it was covered in just half a lecture. A common
omission in answers to this question was a clear statement of the parallel postulate
itself. Surveys of prior study of the postulate could have been more thorough. Some
candidates misinterpreted the content of the extract: Lobachesky was not trying to
prove the parallel postulate in its traditional form, but was asserting that it needed
to be taken as an assumption if one is to prove such seemingly obvious results as the
fact that the internal angles of a triangle add up to two right angles.

� Question 6 : Some candidates misinterpreted this extract as concerning Dedekind cuts
and the nature of numbers, whereas it is in fact about the definition of infinite sets.

The Section B questions 7–9 were attempted by 5, 12, and 3 candidates, respectively.

� Question 7 : This was one of the more straightforward questions on the paper, with
ample material having been supplied in lectures. The better answers were those that



covered more than just tangents and quadrature.

� Question 8 : Answers to this question were generally well done. Many marks could
be attained for a straightforward narrative, but the better answers were those that
included some depth of detail.

� Question 9 : This was a tricky question that attracted some decent answers which
included points that had not previously occurred to the assessors.

The standard of the extended essays was generally good, though candidates relied a little
too heavily on secondary sources — the better essays were those that engaged thoroughly
with the primary materials. In some cases, more care was needed over the use of quotations
— not just providing references, but also making clear that particular passages were quo-
tations (some candidates sailed a little close to the wind in this respect). Some candidates
ought to have been more aware that everything except the bibliography counts towards the
word count; in particular, footnotes and endnotes are both counted. With regard to con-
tent, common pitfalls were: not establishing the link between Robert Woodhouse and the
Analytical Society firmly enough; not being sufficiently critical in approaching the ‘declinist’
narrative of Babbage and others; underestimating the role of inertia in the British retention
of Newtonian calculus.

Statistics Options

Reports of the following courses may be found in the Mathematics & Statistics Examiners’
Report.

SB1.1/1.2: Applied and Computational Statistics

SB2.1: Foundations of Statistical Inference

SB2.2: Statistical Machine Learning

SB3.1: Applied Probability

Computer Science Options

Reports on the following courses may be found in the Mathematics & Computer Science
Examiners’ Reports.

CS3a: Lambda Calculus & Types

CS4b: Computational Complexity

Philosophy Options

The report on the following courses may be found in the Philosophy Examiners’ Report.

102: Knowledge and Reality

127: Philosophical Logic



D. Comments on performance of identifiable individuals

1.Aggregation of marks for the award of the classification on the successful
completion of Parts A and B

Classification for a candidate was determined through the following method:

� 10 units at Part A (counting A2 as a double-unit and, for candidates offering 6 long
options, two of the long option papers as half-units)

� 6 units (or equivalent) at Part B.

The two average USMs will be:

1. The relative weightings of the Parts is as follows:

(a) The weighting of Part A is 40%.

(b) The weighting of Part B is 60%.

2. The relative weightings of the Parts is as follows:

(a) The weighting of Part A is 100%.

(b) The weighting of Part B is 0%.

The first class Strong Paper Rule says that to get a first class degree the candidate must
have:

(a) average USM ≥ 69.5;

(b) at least 6 units in Parts A and B with USMs ≥ 70;

(c) at least 2 units in Part B with USMs ≥ 70.

The analogous rules apply for II.1 and II.2 degrees. The examiners considered all candi-
dates near each borderline who had been caught by the Strong Paper Rule, that is, who
satisfied (a) but failed (b) or (c), and so were due to receive the lower degree class. For two
such candidates at the I/II.1 borderline the examiners decided to suspend the examination
conventions, and placed the candidates in the first class.

2. Prizes

Prizes were awarded as follows.

Gibbs Prize £500: Zhenyu Yang, Corpus Christi College
Gibbs Prize £200: Guoxi Liu, Trinity College

Part B Junior Mathematical Prize £200: Zizheng Fang, Exeter College
Part B Junior Mathematical Prize £200: Rebekah Glaze, Keble College

IMA Prize: Kira Patel, Mansfield College



F. Names of members of the Board of Examiners

� Examiners:

Prof. Ben Green (Chair)
Dr Neil Laws
Prof. Radek Erban
Prof. Xenia De La Ossa
Prof. Alain Goriely
Prof. Gui Qiang Chen

Prof Matt Tointon (External)
Dr Ed Brambley (External)

� Assessors:
Prof. Andras Juhasz
Prof. Andrea Mondino
Prof. Andreas Muench
Prof. Andrew Dancer
Dr Catherine Wilkins
Prof. Christopher Beem
Prof. Christopher Breward
Prof. Christopher Hollings
Prof. Damian Rössler
Prof. Dawid Kielak
Prof. Dmitry Belyaev
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Prof. Endre Suli
Prof. François Caron
Prof. Ian Hewitt
Prof. James Newton
Prof. Jan Kristensen
Prof. Jan Obloj
Dr. Jaroslav Fowkes
Dr. Jasmina Panovska-Griffiths
Prof. Jason Lotay
Prof. Jochen Koenigsmann
Prof. Konstantin Ardakov
Prof. Lionel Mason
Prof. Luc Nguyen
Dr. Lukas Brantner

Prof. Mark Mezei
Prof. Paul Balister
Prof. Peter Howell
Prof. Radek Erban
Dr Robert Hinch
Prof. Ruth Baker
Prof. Sam Cohen
Prof. Sam Howison
Prof. Yuji Nakatsukasa
Prof. Zhongmin Qian
Dr Martin Bays
Dr Jinhe Ye
Dr Catherine Wilkins
Prof. Melanie Rupflin
Dr Murad Banaji
Dr Richard Earl
Dr Shiwei Liu
Mr Edgar Sucar
Prof. Alain Goriely
Prof. Benjamin Hambly
Prof. Christop Reisinger
Prof. Coralia Cartis
Prof. James Maynard
Prof. Kevin McGerty
Pro. Victor Flynn


