
Examiners’ Report: Final Honour School
of Mathematics Part B Trinity Term 2022

November 30, 2022

Part I

A. STATISTICS

• Numbers and percentages in each class.

See Table 1.

Numbers Percentages %
2022 (2021) (2020) (2019) (2018) 2022 (2021) (2020) (2019)

I 55 (51) (73) (59) (58) 41.04 (39.84) (46.5) (39.07) (38.16)
II.1 53 (58) (66) (67) (67) 39.55 (45.31) (42.04) (44.37) (44.08)
II.2 24 (18) (13) (20) (25) 17.91 (14.06) (8.28) (13.25) (16.45)
III 2 (1) (4) (4) (2) 1.49 (0.78) (2.55) (2.65) (1.32)
P 0 (1) (0) (0) (2) 0 (0.64) (0) (0) (1.52)
F 0 (0) (1) (0) (0) 0 (0.66) (0) (0) (0)
Total 134 (157) (151) (152) (132) 100 100 (100) (100) (100)

Table 1: Numbers and percentages in each class

• Numbers of vivas and effects of vivas on classes of result.

As in previous years there were no vivas conducted for the FHS of
Mathematics Part B.
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• Marking of scripts.

BE Extended Essays and coursework submitted for the History of
Mathematics course were double marked. Due to an unforeseen
shortage of available markers, BSP projects were single-marked, but
the submissions for each project were then reviewed by the asses-
sor for another project to ensure the marks awarded were kept to a
consistent standard.

The remaining scripts were all single marked according to a pre-
agreed marking scheme which was strictly adhered to1. For details
of the extensive checking process, see Part II, Section A.

• Numbers taking each paper.

See Table 5 on page 12.

B. New examining methods and procedure in the 2022 ex-
aminations

In light of the unusual circumstances in which this year’s candidates for
Part B had been taught and examined up to this point, a special committee
was formed to consider how their examinations should be arranged. Its
recommendation, made in September 2021, was that candidates should
be permitted to bring a “summary sheet” with them into each of their
examination. Candidates were thus permitted to use both sides of a sheet
of A4 paper to This consisted of both sides of a sheet of A4 paper on which
candidates could record whatever notes they wished on, and were free to
consult this sheet while taking that paper. This had consequences both for
the nature of questions that were set, and for the experience of in-person
examinations that candidates had, but it is difficult to know what, if any,
affect it had on results of the examination.

1In the case of one paper, the marking scheme on the paper given to candidates differed
slightly from the pre-agreed scheme. The latter was used when marking.
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C. Changes in examining methods and procedures currently
under discussion or contemplated for the future

There were a number of typographical errors in mathematics examination
papers which caused complications in assessing the work of candidates
who offered those papers. In almost all of these errors, the correction
required should have been evident to anyone with a basic knowledge of
the material, but given that candidates should feel able to assume that
their examination questions are correctly posed, even very able candidates
could have spent time second-guessing their assessment that a question
was posed incorrectly.

Had it been possible, as has previously been the case, for the assessor who
wrote the paper (or someone with suitable knowledge of the subject acting
as their deputy) to be present at the start of these examinations, it is likely
that all of these errors would have been corrected, either by the assessor
spotting the error themselves, or in response to a query from a candidate. It
is unfortunate that the University Regulations currently do not permit this
safety-net for errors which are more likely to occur in papers for technical
subjects such as mathematics.

Unlike in the last two years, examinations this year did not have general
provisions in place as a result of the pandemic, but it impact was never-
theless noticeable in some cases through MCE applications.

D. Notice of examination conventions for candidates

The first Notice to Candidates was issued on 25 March 2022 and the second
notice on 25 May 2022.

All notices and the examination conventions for 2022 are on-line at
http://www.maths.ox.ac.uk/members/students/undergraduate-courses/
examinations-assessments.

Part II

A. General Comments on the Examination

The examiners would like to record their heartfelt thanks to all those who
helped in the preparation, administering, and assessing of this year’s ex-
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aminations. We would like in particular to thank Elle Styler for her un-
flappable efficiency throughout the whole process, and Clare Sheppard,
Charlotte Turner-Smith and Waldemar Schacklow, each of whom provided
indispensable assistance.

In addition the internal examiners would like to express their gratitude
to Professor John Hunton and Professor Anne Skeldon for carrying out
their duties as external examiners in such a constructive and supportive
way during the year (in particular for accommodating the tardy arrival
of some of the draft examination papers) and for their input thoughtful
contributions during the final examiners’ meetings.

Standard of performance

The standard of performance was broadly in line with recent years. In
setting the USMs, we took note of

• the Examiners’ Report on the 2021 Part B examination, and in par-
ticular recommendations made by last year’s examiners, and the
Examiners’ Report on the 2021 Part A examination, in which the 2022
Part B cohort were awarded their USMs for Part A;

• the guidelines provided by the Mathematics Teaching Committee,
including its recommendations on the proportion of candidates that
might be expected in each class.

It should also be noted however, that because each of the the last few
years has presented examiners with its own highly exceptional set of cir-
cumstances, comparability between cohorts in those years has been more
difficult to consider than it would usually be.

Setting and checking of papers and marks processing

The internal examiners initially divided between them responsibility for
the units of assessment (that is, the exam papers and projects). It was noted
that the research interests of this year’s board were not distributed so as
to allow the examiners to be responsible for topics in the general area of
expertise.

Requests to course lecturers to act as assessors, and to act as checker of the
questions of fellow lecturers, were sent out early in Michaelmas Term, with
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instructions and guidance on the setting and checking process, including
a web link to the Examination Conventions.

Most assessors acted properly, though a small number failed to meet the
stipulated deadlines by a considerable margin, and some papers needed
significant revision from the draft first seen by the examiners. It might
be useful to emphasise to lecturers in future years that it is helpful if they
can make the examiners aware of any potential delays or difficulties in
producing an examination paper as early as possible, to avoid placing
unreasonable demands on the external examiners.

The internal examiners met at the beginning of Hilary Term to consider
those draft papers on Michaelmas Term courses which had been submitted
in time; consideration of the remaining papers had to be deferred. Where
necessary, corrections and any proposed changes were agreed with the
setters. The revised draft papers were then sent to the external examiners.
Feedback from external examiners was given to examiners and to the
relevant assessor for response. The internal examiners at their meeting in
mid Hilary Term considered the external examiners’ comments and the
assessor responses, making further changes as necessary before finalising
the questions. The process was repeated for the Hilary Term courses, but
necessarily with a much tighter schedule.

A team of graduate checkers, under the supervision of Elle Styler, sorted
all the marked scripts for each paper of this examination, cross check-
ing against the mark scheme to spot any unmarked questions or parts of
questions, addition errors or incorrectly recorded marks. Also sub-totals
for each part were checked against the mark scheme, noting correct addi-
tion. In this way a number of errors were corrected,and each change was
signed by one of the examiners who were present throughout the process.
A check-sum was also carried out to ensure that marks entered into the
database were correctly read and transposed from the marks sheets.

Throughout the examination process, candidates were treated anonymously,
identified only by a randomly-assigned candidate number.

Standard and style of papers

It was noted in the final meeting that B2.2 and B3.1 had both proved to be
very challenging for candidates. It was noted that unexpectedly difficult
(or easy) papers can present difficulties in assigning USMs as the scalings
in such cases are often overly sensitive to small changes in raw marks.
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Timetable

Examinations began on Monday 30 May and ended on Friday 17 June.

Consultation with assessors on written papers

Assessors were asked to submit suggested ranges for which raw marks
should map to USMs of 60 and 70 along with their mark-sheets, and
almost all did so. In most cases these were in line with the assignments
given by the assessors, and where there were discrepancies, the examiners
in general settled on boundaries which were somewhat more generous
than the assessors recommendation.

Determination of University Standardised Marks

We followed the Department’s established practice in determining the
University standardised marks (USMs) reported to candidates. Papers for
which USMs are directly assigned by the markers or provided by another
board of examiners are excluded from consideration. Calibration uses
data on the Part A performances of candidates in Mathematics and Mathe-
matics & Statistics (Mathematics & Computer Science and Mathematics &
Philosophy students are excluded at this stage). Working with the data for
this population, numbers N1, N2 and N3 are first computed for each paper:
N1, N2 and N3 are, respectively, the number of candidates taking the paper
who achieved in Part A average USMs in the ranges [69.5, 100], [59.5, 69.5)
and [0, 59.5).

The algorithm converts raw marks to USMs for each paper separately. For
each paper, the algorithm sets up a map R→ U (R = raw, U = USM) which
is piecewise linear. The graph of the map consists of four line segments:
by default these join the points (100, 100), P1 = (C1, 72), P2 = (C2, 57),
P3 = (C3, 37), and (0, 0). The values of C1 and C2 are set by the requirement
that the number of I and II.1 candidates in Part A, as given by N1 and N2,
is the same as the I and II.1 number of USMs achieved on the paper. The
value of C3 is set by the requirement that P2P3 continued would intersect
the U axis at U0 = 10. Here the default choice of corners is given by U-values
of 72, 57 and 37 to avoid distorting nonlinearity at the class borderlines.

The results of the algorithm with the default settings of the parameters
provide the starting point for the determination of USMs, and the Exam-
iners may then adjust them to take account of consultations with assessors
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(see above) and their own judgement. The examiners have scope to make
changes, either globally by changing certain parameters, or on individ-
ual papers usually by adjusting the position of the corner points P1,P2,P3

by hand, so as to alter the map raw → USM, to remedy any perceived
unfairness introduced by the algorithm. They also have the option to in-
troduce additional corners. For a well-set paper taken by a large number
of candidates, the algorithm yields a piecewise linear map which is fairly
close to linear, usually with somewhat steeper first and last segments. If
the paper is too easy or too difficult, or is taken by only a few candidates,
then the algorithm can yield anomalous results—very steep first or last
sections, for instance, so that a small difference in raw mark can lead to a
relatively large difference in USMs. For papers with small numbers of can-
didates, moderation may be carried out by hand rather than by applying
the algorithm.

Following customary practice, a preliminary, non-plenary, meeting of ex-
aminers was held in advance of the plenary examiners’ meeting to compare
the default settings produced by the algorithm alongside the reports from
assessors. Adjustments were made to the default settings as appropriate,
paying particular attention to borderlines and to raw marks which were
either very high or very low. Where the examiners were in doubt as to the
most appropriate scaling, the preliminary scalings were held over to the
plenary meeting, where the factors considered by those in the preliminary
meeting were reviewed and weighed before a final decision was made.

Table 2 on page 9 gives the final positions of the corners of the piecewise
linear maps used to determine USMs.

In accordance with the agreement between the Mathematics Department
and the Computer Science Department, the final USM maps were passed
to the examiners in Mathematics & Computer Science. USM marks for
Mathematics papers of candidates in Mathematics & Philosophy were cal-
culated using the same final maps and passed to the examiners for that
School.

Comments on use of Part A marks to set scaling boundaries

None.
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Mitigating Circumstance Notice to Examiners

A subset of the examiners (the ‘Mitigating Circumstances Panel’) attended
a pre-board meeting to band the seriousness of the individual notices to
examiners. The outcome of this meeting was relayed to the Examiners at
the final exam board, who gave careful regard to each case, scrutinised the
relevant candidates’ marks and agreed actions as appropriate.

The full board of examiners considered all of the notices in the final meet-
ing, along with a number of MCEs carried over from Part A. The examiners
considered each application alongside the candidate’s marks and the rec-
ommendations proposed by the Part A 2020 Exam board.
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Table 2: Position of corners of the piecewise linear maps

Paper P1 P2 P3 Additional N1 N2 N3

Corners
B1.1 12.70;37 22.1;57 41.6;72 50;100 11 20 6
B1.2 13.61;37 21;57 40.2;72 50;100 19 22 8
B2.1 7.99;37 25;60 44;72 50;100 21 11 0
B2.2 2;30 15;60 24;70 50;100 13 7 1
B3.1 5.57;37 9.7;57 32;72 50;100 27 16 7
B3.2 18;50 31;57 41.5;72 50;102 13 5 3
B3.3 12.64;37 22;57 37;72 50;100 13 9 3
B3.4 10.00;37 17.4;57 35.4;72 50;100 18 13 4
B3.5 12.52;37 21.8;57 42.8;72 50;100 19 11 3
B4.1 7.64;37 16;50 30;70 50;100 31 14 5
B4.2 5;30 16;50 21;60 30;70, 50;100 25 12 4
B4.3 18.44;37 30;60 36.6;72 50;100 8 3 2
B4.4 30;60 35;70 50;100 4 2 1
B5.1 14;50 41.4;72 50;100 6 14 13
B5.2 10.86;37 18.9;57 44.4;72 50;100 14 29 9
B5.3 6.49;37 11.3;57 29;70 50;100 5 11 7
B5.4 13.27;37 23.1;57 42.6;72 50;100 4 9 6
B5.5 14.36;37 23;57 40;72 50;100 10 21 16
B5.6 14.70;37 25.6;57 46;70 50;100 7 20 9
B6.1 25;50 32;60 42;70 50;100 3 9 7
B6.2 13.10;37 22.8;57 43.8;72 50;100 6 12 7
B6.3 7.99;37 13.9;57 33;70 50;100 2 5 4
B7.1 15.51;37 27;57 42;72 50;100 8 6 5
B7.2 15.68;37 27.3;57 40.8;72 50;100 7 7 6
B7.3 13.56;37 23.6;57 36;70 50;100 6 2 0
B8.1 14;50 18.3;57 31.8;72 50;100 29 31 18
B8.2 13.39;37 23.3;57 36;70 50;100 15 14 7
B8.3 9;40 23;50 27;57 37;70, 50;100 18 37 19
B8.4 10.17;37 17.7;57 45;70 50;100 9 29 14
B8.5 12;37 28.5;57 46;70 50;100 6 31 9
BSP 2000;100 1 5 6
SB1 18.15;37 31.6;57 58.6;72 66;100 11 29 11
SB1 34;100 10 35 6
SB2.1 15.97;37 27.8;57 45;70 50;100 14 41 17
SB2.2 11.78;37 20.5;57 43;72 50;100 18 31 15
SB3.1 11;40 19.5;57 42;72 50;100 24 52 22
SB3.2 7.64;37 13.3;57 34;70 50;100 3 6 6
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B. Equality and Diversity issues and breakdown of the re-
sults by gender

Table 3: Breakdown of results by gender

Class Number
2022 2021 2020

Female Male Total Female Male Total Female Male Total
I 5 50 55 13 38 51 18 55 73
II.1 19 34 53 22 36 58 28 38 66
II.2 15 9 24 4 14 18 3 10 13
III 1 1 2 1 0 1 1 3 4
P 0 0 0 0 1 1 0 0 0
F 0 0 0 0 0 0 0 1 1
Total 40 93 134 40 89 129 50 107 157
Class Percentage

2022 2021 2020
Female Male Total Female Male Total Female Male Total

I 12.5 53.19 41.04 32.5 42.70 39.53 36 51.4 46.50
II.1 47.5 36.17 39.56 55 40.45 44.96 56 35.51 42.04
II.2 37.5 9.57 18.32 10 15.73 13.95 6 9.35 8.28
III 2.5 1.06 5.88 2.5 0 0.78 2 2.8 2.55
P 0 0 0 0 1.12 0.78 0 0 0
F 0 0 0 0 0 0 0 0.93 0.64
Total 100 100 100 100 100 100 100 100 100

Table 3 shows the performances of candidates broken down by gender. It
reveals a troubling feature of this year’s results, which for that reason is
important to highlight: the proportion of first-class degrees obtained by
women dropped markedly this year, from 32.5% in 2021 to only 12.5%
in 2022. This contrasts starkly with the proportion of first-class degrees
awarded to male candidates, which jumps from 42.7% in 2021 to 53.19%
in 2022, the highest in recent years (and presumably the highest ever).
As a result, the overall proportion of first-class degrees awarded appears
relatively stable, moving only slightly from 42.70% in 2021 to 41.04%.

The anonymity of the assessment process means that it is not easy to discern
what factors may have contributed to this divergence in the performance
of men and women in this year’s exams.
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Table 4: Rank and percentage of candidates with this or greater overall USMs

Av USM Rank Candidates with %
this USM and above

90 1 1 0.75
88 2 2 1.49
87 3 3 2.24
85 4 5 3.73
84 6 6 4.48
83 7 7 5.22
82 8 10 7.46
81 11 16 11.94
80 17 21 15.67
79 22 22 16.42
78 23 24 17.91
77 25 28 20.9
76 29 31 23.13
75 32 36 26.87
74 37 38 28.36
73 39 40 29.85
72 41 46 34.33
71 47 50 37.31
70 51 55 41.04
69 56 57 42.54
68 58 62 46.27
67 63 66 49.25
66 67 71 52.99
65 72 75 55.97
64 76 79 58.96
63 80 89 66.42
62 90 94 70.15
61 95 101 75.37
60 102 107 79.85
59 108 111 82.84
58 112 113 84.33
57 114 117 87.31
56 118 120 89.55
55 121 122 91.04
54 123 124 92.54
53 125 126 94.03
52 127 128 95.52
51 129 130 97.01
50 131 131 97.76
49 132 133 99.25
40 134 134 100
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C. Detailed numbers on candidates’ performance in each
part of the examination

The number of candidates taking each paper is shown in Table 5. Details
of papers with 5 or less candidates are not included.

Table 5: Numbers taking each paper

Paper Number of Avg StDev Avg StDev
Candidates RAW RAW USM USM

B1.1 35 35.71 8.76 70.51 12.68
B1.2 44 34.75 7.68 69.61 9.72
B2.1 33 38.03 10.19 74.28 13.61
B2.2 23 17.83 12.44 58.35 21.27
B3.1 51 25.2 12.76 67.63 16.52
B3.2 21 41.33 7.36 77.29 13.43
B3.3 25 34.2 7.56 71.24 10.41
B3.4 34 31.5 9.71 69.32 13.52
B3.5 33 38.24 7.8 71.64 10.15
B4.1 46 28.57 9.55 68.26 14.22
B4.2 40 30.28 10.76 72.05 14.83
B4.3 13 36.77 7.61 72.77 14.98
B4.4 7 40.14 7.06 80.29 14.12
B5.1 28 27.43 10.89 60.61 13.13
B5.2 40 34.05 8.45 66 5.85
B5.3 23 23.83 10 67 10.74
B5.4 19 31.79 9.34 64.68 12.26
B5.5 33 32.12 9.81 65.52 14.52
B5.6 29 39.24 9.36 71.45 16.19
B6.1 16 9.35 9.51 62.19 15.73
B6.2 19 31.05 9.35 62.11 10.14
B6.3 11 23.18 10.48 62.36 13.45
B7.1 19 35.74 7.52 67.58 11.26
B7.2 21 34.86 8.81 67.71 14.71
B7.3 9 34.44 7.89 70.11 11.95
B8.1 58 27.12 9.52 66.66 13.89
B8.2 31 32.48 9.74 67.74 15.75
B8.3 45 33.33 8.53 67.14 12.85
B8.4 40 31.12 11.03 64.75 12.54
B8.5 41 38 7.68 67.17 13.04
SB1 8 32.12 12.99 63.25 4.68
SB2.1 31 38.84 7.71 68.1 11.39
SB2.2 21 31.38 11.19 65.55 9.58
SB3.1 58 30.48 10.68 63.64 11.2
SB4 - - -
BEE 8 - - 81.13 14.87
BSP TBC TBC TBC TBC TBC
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Individual question statistics for Mathematics candidates are shown below
for those papers offered by fewer than six candidates.

Paper B1.1: Logic

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 19.24 19.24 3.9 34 0
Q2 15.3 15.3 6 20 0
Q3 18.13 18.13 5.19 16 0

Paper B1.2: Set Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.21 17.46 6.76 26 2
Q2 20.41 20.41 3.72 39 0
Q3 10.8 12.13 5.03 23 6

Paper B2.1: Introduction to Representation Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 19.37 19.37 5.55 30 0
Q2 19.1 19.1 5.47 31 0
Q3 16.4 16.4 4.88 5 0

Paper B2.2: Commutative Algebra

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 9.9 9.9 7.78 21 0
Q2 0.6 1.5 1.34 2 3
Q3 8.65 9.05 5.98 22 1

Paper B3.1: Galois Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 12.37 12.91 7.49 44 2
Q2 7.88 9 5.93 33 6
Q3 14.37 16.8 7.89 25 5
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Paper B3.2: Geometry of Surfaces

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 21.14 21.14 3.38 21 0
Q2 20.19 20.19 4.71 21 0
Q3 - - - - -

Paper B3.3: Algebraic Curves

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 13.8 13.95 3.91 19 1
Q2 17.94 18.53 4.02 17 1
Q3 19.2 19.64 4.28 14 1

Paper B3.4: Algebraic Number Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18.16 18.16 3.45 19 0
Q2 14.58 14.58 5.74 24 0
Q3 14.65 15.04 5.93 25 1

Paper B3.5: Topology and Groups

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.17 18.86 7.64 21 3
Q2 17.04 17.44 3.29 25 2
Q3 20.32 21.5 5.26 20 2

Paper B4.1: Functional Analysis I

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 14.80 14.8 4.53 41 0
Q2 14.58 14.58 5.94 36 0
Q3 13 13 4.24 14 0
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Paper B4.2: Functional Analysis II

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.69 15.69 6.12 39 0
Q2 14.57 14.93 5.81 29 1
Q3 12.92 13.83 6.92 12 1

Paper B4.3: Distribution Theory and Fourier Analysis: An Introduction

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18.83 18.83 4.37 12 0
Q2 19.56 19.56 2.65 9 0
Q3 15.2 15.2 4.49 5 0

Paper B4.4: Fourier Analysis and PDEs

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 21 21 2.28 6 0
Q2 17.5 17.5 5.97 4 0
Q3 21.25 21.25 3.86 4 0

Paper B5.1: Stochastic Modelling and Biological Processes

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 11.43 11.88 3.88 24 4
Q2 12.36 12.36 5.94 14 0
Q3 18.24 18.24 7.54 17 0

Paper B5.2: Applied PDEs

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.24 17.24 4.4 38 0
Q2 15.55 15.8 5.34 30 1
Q3 19.42 19.42 4.03 12 0
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Paper B5.3: Viscous Flow

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 5.88 5.88 4.97 8 0
Q2 15.57 15.57 3.9 21 0
Q3 9.42 10.24 6.22 17 2

Paper B5.4: Waves and Compressible Flow

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.95 17.95 4.02 19 0
Q2 14.93 14.93 5.57 14 0
Q3 10.8 10.8 7.29 5 0

Paper B5.5: Further Mathematical Biology

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 13.34 13.65 5.17 31 1
Q2 19.4 19.4 5.32 5 0
Q3 18 18 6.64 30 0

Paper B5.6: Nonlinear Systems

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 19.09 20.1 6.43 21 2
Q2 17.58 17.92 5.54 25 1
Q3 22.33 22.33 3.52 12 0

Paper B6.1: Numerical Solution of Differential Equations I

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 14.83 15.6 5.78 5 1
Q2 17.14 17.14 3.03 14 0
Q3 19.75 19.75 4.19 12 0
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Paper B6.2: Numerical Solution of Differential Equations II

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.05 15.05 5.84 19 0
Q3 16 16 4.33 19 0

Paper B6.3: Integer Programming

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 10.55 10.55 5.56 11 0
Q2 12.56 12.56 3.57 9 0
Q3 10.67 13 11.71 2 0

Paper B7.1: Classical Mechanics

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18.44 18.44 4.77 18 0
Q2 17.62 17.62 4.82 13 0
Q3 16.86 16.86 4.14 7 0

Paper B7.2: Electromagnetism

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18.38 18.38 4.36 21 0
Q2 14.86 14.86 5.19 14 0
Q3 19.71 19.71 4.6 7 0

Paper B7.3: Further Quantum Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.57 17.57 5.19 7 0
Q2 17.17 17.17 3.13 6 0
Q3 16.8 16.8 6.3 5 0
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Paper B8.1: Martingales through Measure Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 13.29 14.06 5.35 31 3
Q2 13.53 13.53 5.01 34 0
Q3 13.19 13.28 5.4 51 1

Paper B8.2: Continuous Martingales and Stochastic Calculus

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.87 16.87 5.19 23 0
Q2 11.76 13.24 6.4 17 4
Q3 16 17.91 6.95 2 3

Paper B8.3: Mathematical Models of Financial Derivatives

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.5 16.34 5.01 32 4
Q2 17.26 17.26 4.2 23 0
Q3 17.06 17.06 4.35 34 0

Paper B8.4: Communication Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18.53 18.53 5.13 38 0
Q2 9.67 9.67 5.43 21 0
Q3 16.29 16.9 7.01 20 1

Paper B8.5: Graph Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 22.03 22.03 2.41 38 0
Q2 17.84 17.84 6.23 19 0
Q3 15.04 15.28 5.55 25 1
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Paper SB1.1/1.2: Applied Statistics/Computational Statistics

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 13 13 1 3 0
Q2 15 15 2.16 4 0
Q3 12.25 16.33 9.71 3 0
Q4 8 9.5 7.94 2 0
PR 22.5 22.5 1 4 0

Paper SB2.1: Foundations of Statistical Inference

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18.18 19.3 5.65 10 1
Q2 19.18 19.18 3.78 28 0
Q3 19.75 19.75 4.59 24 0

Paper SB2.2: Statistical Machine Learning

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.38 15.38 6.79 16 0
Q2 14.14 14.14 3.24 7 0
Q3 15.9 16.52 6.71 19 1

Paper SB3.1: Applied Probability

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 13.11 13.56 5.92 43 2
Q2 13.92 13.92 3.13 38 0
Q3 13.18 13.18 5.21 11 0

Assessors’ comments on sections and on individual ques-
tions

The comments which follow were submitted by the assessors, and have
been reproduced with only minimal editing. The examiners have not in-
cluded assessors’ statements suggesting where possible borderlines might
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lie; they did take note of this guidance when determining the USM maps.
Some statistical data which can be found in Section C above has also been
removed.

B1.1: Logic

Question 1 Almost everyone did this question fairly well. The last part
(completeness of the new deductive system) seems to have been the most
challenging - it was often overlooked that both the set of assumptions and
the sentence to be derived from them are in the new language.

Question 2 Here the standard of solutions varied considerably. Part (c)
was clearly the hardest. Very few candidates realized that in (c)(i) the
isomorphism should also respect the interpretation of function symbols.
And for (c)(ii) and (c)(iii) a good number of solutions showed no awareness
of the fact that the Completeness Theorem could be used ”for free” in this
question.

Question 3 This question was rather popular among M&C students, but
not at all among M&P’s. In part (b)(ii) it was often shown that no finite
subset of the given infinite set of axioms would suffice, instead of showing
that no finite set of axioms at all would do the job. In (c)(iv) the relevance
of the underlying language was generally not clearly seen, and so, in
particular, the answer to the second (trick) part of the question went wrong
in many cases.

B1.2: Set Theory

After two years of online teaching and online exams, this year things have
gone back to normal, more or less (though the Covid-19 pandemic hasn’t
gone away). I am not in a position to speak for the students, but for
this particular member of staff, the experience has been transformative.
Perhaps these dreadful years have been a reminder not to take things for
granted.

Two things seem to me to have changed.

The first is a vague impression, rather than an established fact. I found
myself wondering whether two years of lockdowns and online exams
have left people a little out of practice with in-person exams. There were
failures to follow correct procedure, mostly trivial, but one serious: many
candidates did not clearly indicate which of their working was rough.
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My understanding of the rules is that the examiner must disregard any
working that is crossed out or identified as rough, and must take account
of any other working. Frequently I encountered what common sense said
was rough working, but which the rules seemed to say must be marked.
Fortunately I did not encounter any situations where doing so would have
made me give a mark lower than the one I would have wanted to give.
And there were instances where I felt (but of course cannot prove) that a
candidate had been under time pressure, in a way that could have been
avoided with more practice in exam technique.

The second is a deliberate innovation in procedure. From this year, candi-
dates are allowed to take an A4 sheet of revision material into the exam.
This raises the question of how much difference this makes to the quality
of the answers given. My impression is (and it’s only an impression), not
much. If this is correct, then I can think of three possible explanations,
which are not mutually exclusive. (1) You can’t fit much on one A4 piece
of paper. (2) Revision has always been about understanding and knowing
how to use methods, rather than rote learning. Or (3): efficient ways to
compress information into one A4 sheet of paper need to be identified, and
taught.

Question 1. Question 1. is about the ordinals, and there were many good
solutions to it.

Variations on part (a) have occurred on exam papers many times in the
past, and candidates seemed on the whole to be well-prepared for it. The
main difficulty in part (a) was vagueness or confusion about the rules of
ordinal arithmetic; several candidates stated, for example, that ω2 was
equal to ω. They may have been confusing the systems of ordinal and
cardinal arithmetic. Many candidates were completely successful in this
part.

In part (b), again there were many successful solutions. In part (i), some
candidates tried to use the Tarski Fixed Point Theorem, which does not
apply sinceω1 is not equal to the powerset of any set. One or two, however,
managed to make the necessary adjustments. In part (iii), if one is finding
a sequence converging to the hoped-for joint fixed point for f and g, then
both f and g have to be involved in the definitiion of that sequence; not
everyone succeeded in doing this.

Part (c) proved rather tougher. In part (i), the fact that for many α, it might
be the case that f (α) is strictly less than α, caused difficulty. In part (ii), the
main task is to rule out the possibility that as α increases, f (α) approaches
closer and closer to a limit without ever reaching it; many candidates did
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not appreciate this.

Question 2. Question 2. is about ordered triples, and about Zorn’s Lemma.

Variations on part (a) have appeared many times before, and many good
answers to it were given. A few people noticed that in (ii)iii., what is
presented is, if a, b and c are all different, a strict linear order on the set
{a, b, c}. The main difficulty in (ii)iii. is posed by triples in which at least
two of the entries are equal.

Part (b) is about Zorn’s Lemma. Part (ii) has appeared before on an exam
paper. Many people completed it successfully but also quite a few did not,
some due to confusion as to which set to apply Zorn’s Lemma to, some
through not checking correctly that Zorn’s Lemma was applicable.

Part (iii) could be obtained directly from part (ii): for example, the set of all
subsets B of the reals such that B ∪ {p : p is prime} is linearly independent
over the rationals, is of finite character. Most candidates, however, did a
separate Zorn’s Lemma argument, with a great deal of success. It proved
difficult, though, to define precisely the right set to apply Zorn’s Lemma to;
some plausible alternatives turn out not to quite work for subtle reasons.

Question 3.

Question 3. is about cardinal arithmetic.

In part (a) (which is again a standard type of question for this paper), (i),
(ii) and (iii) have all occurred before. Many correct answers were given.
There were, however, some unusual errors, such as the assertion that the
cardinality of the set of real numbers is ℵ0. Several candidates implicitly
assumed the Continuum Hypothesis (saying, for example, that because
an uncountable set had size less than or equal to 2ℵ0 , that its size must
be 2ℵ0 precisely). Often in questions of this sort, topology is relevant to
finding the cardinality of a set, and that is the case in part (iv). The key
here is to recall that a monotonically increasing function on the reals is
continuous except at countably many points, and so it is determined by
what happens at the jumps, and by what happens at a countable dense set.
These facts dramatically cut the number of possibilities. Part (v) proved
difficult. There were a few successes, of which I believe just one used the
solution that I had in mind: given a basis, you can multiply any subset of
it by some non-zero rational different from 1 to get another basis, and thus
there are very many bases.

In part (b), we explore the strangeness of cardinal arithmetic without the
Axiom of Choice. This part could be seen as propaganda for the Axiom of
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Choice, or it could be seen as an exploration of some interesting possibilities
that it closes off.

Part (i) was done successfully by many candidates, despite the strangeness
of the result obtained. Various successful strategies were then found for
part (ii). Few, however, managed parts (iii) and (iv) (a version of part (iv)
has appeared on previous papers), but many successfully completed part
(v). The key to part (iv) is to use weirdness of a totally ordered set to define
an injection into it from ω, thus obtaining a contradiction to part (ii).

0.1 B2.1 Introduction to Representation Theory

Question 1. Question 1 was very popular with the students with only four
people not choosing to do this question. Part (a) was done very well; when
calculating the character of the Hom(V,W) representation, those students
who spotted the shortcut of using the basis of Hom(V,W) corresponding to
the matrix units in this vector space, associated with a choice of eigenbases
for V and W were spared the need to talk about tensor products. Part (b)(i)
was more tricky; using the fact that the character table is square would
have made it a bit easier. Part (b)(iii) was done very well indeed.

Question 2. Question 2 was again very popular, with only three people
not choosing to do this question. For part (a)(iii), several people either
forgot to give a counterexample, or gave a counterexample over a different
field to the complex numbers — please read the question more carefully!
Part (b)(v) was done fairly well, although it did catch out some students.

Question 3. Question 3 was the least popular. Part (a)(i) caused some
trouble, and the injectivity required in part (b) was a bit tricky. Part (c)
was harder still – although several people wrote down the correct map p,
no-one was able to prove that it is an isomorphism.

B2.2: Commutative Algebra

Question 1: The ideals p(n) considered in this exercise also appear in the
proof of Krull’s principal ideal theorem described in the lectures, where
some of the properties listed in (a) are mentioned (however it is not neces-
sary to know the proof of this theorem to do this question). The ideal p(n)
is called the n-th symbolic power of p in the literature. Not many candi-
dates thought of using the properties of local Artin rings (local noetherian
rings of dimension 0) in (b). In (a), many candidates got bogged down in
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complicated logical distinctions, due to the fact that their answer to (a) (i)
was too complicated (even if correct).

Question 2: This question was almost never attempted and I therefore
cannot provide any feedback on the solutions given by the candidates.
The core idea of this question is that a property of a finitely generated
module which holds locally - ie after localisation at a prime ideal p - often
holds in a neighbourhood of p for the Zariski topology, in particular in a
basic open set containing it.

Question 3: Part (a) can be reformulated as saying that a polynomial f with
the properties listed must be in the radical of the ideal ( f1, . . . , fk). The ring
Z[x1, . . . , xr] is Jacobson, so the radical of ( f1, . . . , fk) is its Jacobson radical.
In combination with Q5 of Sheet 3, this quickly leads to the result. Very
few candidates thought of using the Jacobson property. Part (b) was done
correctly by most students. Part (c) is a straightforward application of (b)
and the going-up theorem, once it is seen that it is sufficient to consider the
situation of an inclusion of a domain A into a domain B, where B is integral
over A. Many candidates struggled with the reduction of the argument to
this case.

B3.1: Galois Theory

Question 1 This was the most popular question. For (a), note that the
multiplicative group of non zero elements of a finite field Fpn is cyclic of
order pn

− 1. Hence Fpn is the splitting field of xpn
−1
− 1. Most candidates

answered (b) and (c) correctly. Part (d) was answered correctly by very
few candidates. One way to approach (d) is to generalise the computation
made in (c) (iii).

Question 2 This question was answered correctly by few candidates. For
part (a), note that the result can be proven by induction on n, if one uses
the fact that the product of all the Φd with d|n equals xn

−1. Part (b) follows
from the fact that under the given assumptions xn

− 1 has multiple roots.
Hence its derivative nxn−1 must vanish, ie p|n. For (d), it is sufficient by (c)
to show that Φn(k) has infinitely many different prime factors as k varies.
To show this, suppose for contradiction that there are only finitely many
such factors, say p1, . . . , pl. By (a), a prime factor of Φn(p1 . . . pn) is not in the
set p1, . . . , pl, which is absurd.

Question 3. Part (a) was answered correctly by most candidates. In part
(b), few candidates thought of using the hint and assumed irreducibility
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of T without proof. For (b) (ii), some candidates did not think of using (b)
(i), which immediately shows that sigma has the right shape. In part (c),
not everybody though of using Artin’s lemma, which gives one direction
in the equivalence.

B3.2: Geometry of Surfaces

All candidates did questions 1 and 2, and none attempted question 3,
probably as it was longer and looked harder.

Question 1 was well done by most candidates. Question 1(d) caused the
most difficulties: about half proved the

(g+n−1
n−1

)
count by a ‘stars and bars’

combinatorial argument, but noone gave a correct proof by induction on
n.

Question 2 was more mixed. A large minority made calculational mis-
takes in 2(b), and some were then doomed, as they were trying to solve the
wrong o.d.e.s in (c),(d). A distressing number of candidates, having found
the principal curvature equation in the form (aκ+b)(cκ+d) = 0, rather than
writing down κ = −b/a,−d/c, multiplied it out and used the formula for
solutions of a quadratic, not necessarily correctly. For the ‘prove carefully
. . . ’ in part (c), the best method was to verify that the given family of
solutions satisfied the second order o.d.e. (easy), and realized all possible
values (0,∞) × R of ( f (0), f ′(0)), and then appealing to properties of solu-
tions of o.d.e.s (Picard’s Theorem, though I gave full marks at this point
to anyone who made clear that the o.d.e. and ( f (0), f ′(0)) determined f
uniquely). Some candidates also more-or-less managed to integrate the
o.d.e. directly.

B3.3 Algebraic Curves

Question 1: Question 1 was slightly more popular than the other two
questions but was the least well answered. It involved relatively basic
material from the start of the course, but much of it was not very similar to
material seen before in problem sheets or past exam questions, and there
were no solutions which were complete or even nearly complete.

Question 2: Question 2 contained fairly standard applications of Bezout’s
theorem and was mostly answered very well, though the very last part of
the question was decidedly tricky.
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Question 3: Question 3 on the Weierstrass ℘-function and related topics
was slightly less popular than Questions 1 and 2, but almost all the answers
were very competent and quite a number were very good. As with the
other questions, the last part was hard and there were no perfect solutions,
but some candidates got very close.

B3.4: Algebraic Number Theory

Question 1 was answered by 22 (out of 43) candidates and it was done to
a high standard; parts (a) and (b) were well answered; only a few students
managed to do part (c) completeley. Question 2 was answered by 31 (out
of 43) candidates; many candidates found parts (b) and (f) challenging,
and in particular not noticing how the results of parts (b) and (d) can help
with part (f). Question 3 was answered by 33 (out of 43) candidates; for
part (b), many candidates made an initial error in finding the Minkowski
bound, and some also did not fully take into account that the field is of
degree 4 when applying Dedekind’s Theorem; part (d) was generally well
answered.

B3.5 Topology and Groups

Question 1: Most solutions were of a high standard. In part (a), some
candidates failed to conclude that the isomorphism depended on w via
conjugation by the difference between the two choices of paths. In part (b),
candidates typically realised that loops are freely homotopic if and only
if they are conjugate, but some proofs were incorrect or lacking in detail.
Most candidates found correct examples for part (c), which they took to be
a wedge of two circles and two conjugate loops.

Question 2: Essentially all solutions for part (a) were correct. In part (b),
many solutions failed to consider the case n = 0. In the case n > 2, there
were various mistakes. The key idea is to remove two points from Sn and
notice that this is homotopy-equivalent to Sn−1, then use the fundamental
group to distinguish this from S1. Part (c) proved to be difficult with
few completely correct solutions. Candidates did not seem to realise the
difference between a retraction and a deformation retraction and were
looking for the latter. The correct solution is to radially retract U\{x} to a
small circle about x, and consider the maps induced on the fundamental
group by the embedding of the circle and the retraction, which compose
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to the identity.

Question 3: Generally, solutions were correct. A few candidates forgot to
include in (a) the part of the Seifert-van Kampen theorem that the pushout
maps are induced by the embeddings. In (c), some candidates constructed
a cell decomposition of K\B that was more complicated than necessary (a
wedge of two circles). In part (e), some of the solutions did not fully check
that the maps defined on the generators satisfied the relations, and in a
few cases they did not.

B4.1: Functional Analysis I

Question 1 was solved by most students. Part a) was very well solved
and also b)i) was generally well solved, though quite a few students did
not realise that the assumption on g and the continuity of g on the closed
interval [0, 1] implies that g is bounded from below by a positive constant.
For the second part of b) it is best to construct a Cauchy sequence ( fn)
that converges pointwise to a unbounded function f , e.g. by cutting off
f (x) = 1

√
x , and students following that route generally did well on that

part. A common mistake in part (iii) of b) was that students were claiming
that the polynomials are dense in X equipped with the sup-norm thanks
to Stone-Weierstrass. However this theorem does not apply as the interval
is not closed, and a simple counterexample is given by sin(1/x). The very
last part of b) was designed to be challenging, but was successfully solved
by several students, mostly by combining Stone Weierstrass on a compact
interval [δ, 1] with the assumption that g(0) = 0 and hence that |g| ≤ ε on
[0, δ] for suitably chosen δ. Part c) i) was essentially an example from the
lecture where it was shown that the L1 norm on bounded intervals can be
controlled by the L2 norm using Hölder’s inequality, but this part was not
solved well. The second part of c) was designed to be challenging and was
successfully solved only a few students.

Question 2 was solved by many students. 2a) was a variation of bookwork
and was solved very well. A common mistake in b)i) was that students
were claiming that ‖ f ◦ h‖sup ≤ ‖ f ‖sup · ‖h‖sup, possibly because they were
thinking of a multiplication operator instead. Other than that (i) was
solved well and most students argued correctly in (ii) that if h is invertible
then Th is invertible. The reverse direction was less well solved. Not
many students realised in (iii) that since for h(x) = x the operator is simply
the identity, the only point that could be in A is λ = 1. Most students
who attempted (iv) spotted that the functional is not bounded with respect
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to the L1 norm and hence that the claim must be wrong. Part c) was a
question on Hahn-Banach, with (i) a straight forward application that was
well solved, and (ii) easily obtainable from a corollary of Hahn-Banach.
The last part was designed to be the most challenging part of the question.
While several students got close to a solution, using that Tn is Cauchy and
trying to extend Tn−Tm, only one student got a complete solution that dealt
with the difficulty that the extension of an operator can be non-unique.

The third question was the least popular question. Parts (i)-(iii) of a) were
well solved, the last part of a) was more challenging but several students
realised that it suffices to construct an operator with spectrum S1 and that
the best way to go about this is to try and find an isometric isomorphism
which has point spectrum that is dense in S1. The easiest solution to b)(i)
was to show that ‖Tn

‖
1/n
→ 0, but it was also possible to solve the question

directly. A surprisingly common mistake was that students left out the
factors 1

n when they were trying to invert the operator, so instead ended
up considering the right shift for which the spectrum is different. Part (ii)
of b) was very well solved. The first part of c) was an application of a
corollary of Hahn-Banach, though not many students realised this. Most
students who solved c) observed correctly that the claim becomes false for
a non-complete space as such a space can never be reflexive but can have
a reflexive dual space e.g. if it is a dense subspace of a reflexive space.

B4.2: Functional Analysis II

Question 1: All but one candidates attempted this question. Part (a), (b)(i)
and (ii) were handled generally well. In (b)(i) a number of candidates
contemplate that (Z, ‖ · ‖A) may be incomplete if A is unbounded, without
realising that condition (?) does in fact imply that A is bounded. Part
(b)(iii) was handled well for the most parts, though a number of candidates
missed the subtle part about weak convergence in the graph of A vs. weak
convergence in W. Those candidates who attempted (c) did well.

Question 2: About two thirds of the candidates attempted this question.
Part (a), (b)(i) and (ii) were handled well with some minor exceptions. In
(b)(iii), some candidates failed to see how (b)(ii) could be used to show
that A is unitary, though most had no problem with the dichotomy. Most
candidates who attempted (c) realised that A is isometric, but only about
half of them saw that A is not surjective.

Question 3: About one third of the candidates attempted this question.

28



Part (a)(i), (ii) and (b)(i) were handled well for the most part. Those who
attempted (a)(iii) and realised that A as an operator from H into A(H)
is invertible did well. In (b)(ii), a number of candidates claimed that
f (z) 7→ 1

z f (z) is the left inverse of A without realising that this map is not
well-defined as an operator on H. Most of those who attempted (c) did
well despite the difficulty they had in showing the last bit.

B4.3: Distribution Theory

The exam went without incidents and most candidates performed well,
despite it not being an easy paper. Question 1: was attempted by almost
all candidates and was probably also the easiest question on the paper.
Very good solutions were obtained by many candidates and one got the
full 25 marks. Part (a) (i)–(iii) were bookwork and only few marks were
lost here. The calculation of distributional derivatives in (a)(iv) also didn’t
cause any difficulties. Part (b) was generally also done well, though a few
candidates wanted to show that the Sobolev space W1,1 is closed in the
Lebesgue space L1. Part (c) was done with various degrees of success–the
requested example of a W1,1 function on the plane without a continuous
representative seems to have been more difficult than expected. But for-
tunately the last part of the question, about convergence in W1,1-norm not
implying uniform convergence, can be done without providing the explicit
example and a few candidates obtained marks in that way.

Question 2: was attempted by most candidates. Part (a) was book work
and was done well. Part (b) elaborates on an example related to one dis-
cussed in the lecture notes. Some candidates lost marks when determining
the support of the distribution vα. In part (c) the first question (i) is a variant
of book work and the candidates who attempted it did ok. Marks were lost
in the second question (ii), where a test function must be constructed to
show that (for instance) v1 from (b) yields a counter example. No candidate
obtained full marks on this question.

Question 3: was the least popular question. It explores a variant of what
in the literature is known as Kato’s inequality. Another related and easier
variant had been a question on a problem sheet. The solution involves
showing in part (a) that a distribution of order 0 admits a unique extension
to compactly supported continuous functions. While this is a variant of
book work, most candidates found it difficult. The first part of (b) is similar
to a calculation done on a problem sheet and went well for the candidates
who attempted it. The second part was attempted by very few candidates
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and with limited success.

B4.4: Fourier Analysis and PDE’s

The exam went without incidents and most candidates performed well,
despite it not being an easy paper. Question 1: was attempted by most
candidates. Part (a) was done by all and very few marks were lost here. Part
(b) also went ok for most candidates, but all candidates lost marks on the
last part by not explicitly observing that the functions hn are nonzero and
hence actually are eigenfunctions for the Fourier transform. Part (c) went
quite well for the candidates who managed to get that far–there seems to
have been no problem in recognizing the advantage of expressing the sine
function in terms of complex exponentials and then use a translation rule to
reduce the calculation to one that should be familiar from lectures/problem
sheets.

Question 2: was attempted by most candidates. The first two parts of (a)
were book work and variants thereof and as expected went well with very
few losing any marks. The last part of (a) however caused problems for
about half of the candidates who didn’t manage to complete it. Part (b)
was more challenging, even though the first part is similar to a question
on a problem sheet. About half of the candidates got close to full marks
for their attempts. The last part (c) is a bit more challenging, but about a
third of the candidates managed to obtain close to full marks on this too.

Question 3: was attempted by very few candidates. It is however not a
difficult question and the candidates who attmpted it did quite well.

B5.1: Stochastic Modelling and Biological Processes

Question 1 was attempted by all candidates, while Questions 2 and 3 were
attempted by about a half of the candidates (52% and 58% of candidates
for Questions 2 and 3, respectively). However, this does not mean that
Question 1 could be characterized as “less difficult” than other questions,
because the average raw mark of Question 1 was actually lower than the
average raw marks of Question 2 or Question 3.

Question 1 covered the material discussed during the beginning of the
course, which could explain its popularity. In Question 1, almost all can-
didates correctly formulated the corresponding chemical master equation,
while only a few of them successfully got to the end of Question 1. Less
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successful candidates made either mistakes in deriving the ordinary differ-
ential equation for G(z) or they did not attempt the later parts of Question
1 at all.

Interestingly, the candidates who attempted all three questions (15% of
candidates) scored higher raw marks in Questions 2 and 3 than in Question
1, where they only attempted the bookwork part. In Question 2, most
candidates were able to derive and solve equations for the mean and
variances for one animal (i.e. for the first animal in part (a)), while some of
them had difficulties to apply the concepts from the course to groups of N
animals in parts (b) and (c).

Question 3 covered the material from the last third of the course. Can-
didates demonstrated good understanding of the course material in their
solutions. Candidates used different techniques to calculate the inverse
Laplace transform in part (a). Some of them get to the answer

χ(τ) = 3 exp[−τ] − exp[−3τ],

while others left their answers in a number of equivalent forms, including

χ(τ) = 2 exp[−2τ]
(

cosh(τ) + 2 sinh(τ)
)

or
χ(τ) = 2 exp[−2τ] cos(iτ) − 4i exp[−2τ] sin(iτ).

Such answers can be further simplified to χ(τ) = 3 exp[−τ] − exp[−3τ].
While the candidates did not lose any marks by leaving their answers in
more complicated forms in any question, they could try to aim to derive
as simplest final formulas as possible in their solutions, because such an-
swers can give them more insights into the behaviour of the underlying
mathematical model.

B5.2: Applied PDEs

Question 1: Q1 went smoothly. Most students got through a) i.e. setting
up and solving Charpit’s equation, with occasional mistakes due to poor
algebra. b) was harder, with quite a few students failing to apply the
Jacobian or envelope condition to determine the domain of dependence
correctly. In c), many students got the correct answer, but some failed to
recognize and process the Neumann conditions correctly.

Question 2: In Q2, many students got through (a) and (b) but some failed
to apply the chain rule correctly to get the form (2.1) in polar coordinates,
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or respond sensibly to the question about why the solution vanishes for
r > t > 0. In (b), some students failed to get a, b right or correctly deduce
α, β. The main challenge was (c), getting the form for f (ξ) and completing
the final integrations to the final result.

Question 3: Q3 was only attempted by few students. Most of those who
did got good answers in (a), with them main problems being incomplete
answers (i.e. constants were not determined.) (b)(i) was done well, but
with quite a few students giving no or incomplete answers for the case
Ω = R2. Only few students attempted (b)(ii) and only some obtained the
final answer i.e. h.

B5.3: Viscous Flow

Question 1: This question attracted few attempts, and very few candidates
made significant progress.

For part (b) x′i = li jx j becomes x′ = Lx in matrix notation, so LTx′ = LTLx = x
as L is orthogonal. Hence x j = li jx′i . Using the chain rule,

∂u′i
∂x′j

=
∂
∂x′j

(
lipup

)
=

∂
∂xq

(
lipup

) ∂xq

∂x′j
= lip

∂up

∂xq
l jq.

Adding this result to the equivalent result with i and j swapped gives

E′i j = lipEpql jq = [L]ipEpq[LT]qj.

Sums over adjacent indices are matrix multiplications, so E′ = L E LT in
matrix notation. The velocity u is a vector, and ρ, p and µ are scalars, so
Π′ = L Π LT in matrix notation.

Part (c) adapts a question on a Part A Fluids sheet for a non-ideal fluid.
The only non-zero component of the matrix E is Erθ = −ωa2/r2. Squaring
the matrix E gives E2, and hence the components of the tensor E2. Hav-
ing found σ, it is easiest to calculate Π = ρ(ωa2/r)2 eθ eθ − σ and use the
momentum equation in the form given at the end of the question. The θ
component is automatically satisfied. The r and z components determine
∂p/∂r and ∂p/∂z, which together give p and the free surface p(r, z) = 0. The
free surface rises into z > 0 for a < r <

√
2λ due to the E2 term in σ.

Question 2: This was the most popular and best attempted question.

There was a mistake in the question. The axial viscous terms should have
been ∂2u/∂x2 and ∂2v/∂x2. Part (a) was marked generously, and several
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candidates noted the mistake. The mistake had no effect on the rest of the
question, as these terms do not appear in the leading-order dimensionless
equations.

Many candidates specified a pressure scale from the beginning, rather
than first introducing an arbitrary scale P and then determining P con-
sistently from the momentum equations. In particular, many candidates
incorrectly scaled the pressure to be asymptotically small to justify dis-
carding it from the dimensionless momentum equations. The correct
pressure scale is P = ρU2, so ∂p̂/∂x̂ appears at leading order in the di-
mensionless x-momentum equation. The leading order dimensionless r-
momentum equation is ∂p̂/∂r̂ = 0, so p̂ only depends on x̂. Considering
the x-momentum equation for large r then determines that p̂ is constant.

Many candidates spotted (as intended) that it is simplest to first use the
far-field condition for û = 2x̂p−q f ′(η) as η → ∞ to establish that p = q. A
few candidates left their partial derivatives of Ψ expressed using a mixture
of all three of r̂, x̂ and η. It is necessary to eliminate either r̂ or x̂ to find
the right similarity form of the ODE for f (η). A few candidates found p
and q by comparing their differential equation for f with the given answer,
rather than by finding conditions on p and q for which Ψ was a similarity
solution.

As f = f ′ = 0 on the boundary of the body, we expect f to be small close to
the body. We can then linearise the ODE for f to (η f ′′)′ = 0, and solve for
f = A(1− η+ η log η) by applying these two boundary conditions on η = 1.
Several candidates incorrectly argued instead that α� 1 close to the body,
but α is a fixed O(1) parameter for the whole flow.

The solution f (η) = A + Bη corresponds to a uniform axial flow û = 2B and
a radial inflow v̂ = −A/r towards the axis.

Question 3: This was also popular, but less well attempted than Q2.

As in Q2, many candidates specified a pressure scale from the beginning,
rather than determining the pressure scale self-consistently from the mo-
mentum equation.

In part (b) many candidates either just asserted that the pressure p must be
continuous (which is a “show that”) or asserted that the stress σ must be
continuous. The correct condition is continuity of the normal stress σ · n.
The continuity of n · σ · n and t · σ · n gives the required results.

In part (c) many candidates jumped directly from expressions for û1 and
û2 with arbitrary constants to the solution given in the question. Many
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forgot to impose the boundary condition that û1 = û2 on ẑ = εη̂. The
neatest approach writes expressions for (1− ε)û1 and (1 + ε)û2 and imposes
continuity of the tangential stress first.

The two fluids occupy the regions −1 ≤ ẑ ≤ εη̂ and εη̂ ≤ ẑ ≤ 1. It is
necessary to include the εη̂ displacement of the interface in calculating the
volume fluxes on either side of the interface. Each contribution contains
O(ε) terms that cancel when added to compute the total volume flux.

The result in (e) follows from integrating ∂û/∂x̂ + ∂ŵ1/∂ẑ = 0 across the
lower layer and using the kinematic boundary condition on ẑ = εη̂.

The fluid velocity at the channel centre is 3Q̂/4 for an unperturbed interface
at z = 0, so it is natural to expect small disturbances to the interface to
propagate with this speed.

B5.4: Waves and Compressible Flow

Question 1: This question was attempted by every candidate and was
well done overall. The routine Stokes waves calculation in part (a)(i)
caused some difficulties due to a lack of efficiency applying the boundary
condition on the base or solving for the Fourier transform of η. While all
candidates stated correctly the formulae for the phase and group velocities
and many knew how to apply them to the tail of part (a)(ii), only a handful
did so correctly in the limit in which kL� 1. In part (b)(i) many candidates
identified correctly the dynamic boundary condition but did not state
its physical significance; nearly all did not identify that the boundary
conditions on the sides at x = 0 and x = L correspond to the pressure being
held at constant atmospheric pressure, despite precisely this boundary
condition being imposed on a problem sheet question. Many made good
progress separating the variables in part (a)(ii), but again a lack of efficiency
in applying the boundary condition on the base resulted in many attempts
getting bogged down in unnecessary algebra. The tail in part (b)(iii) was
handled reasonably well.

Question 2: This question was attempted by about two-thirds of the can-
didates and was reasonably well done overall. The routine derivations in
part (a) were generally well handled, though many made heavy work de-
riving the linearized version of the no-flux boundary condition. While the
majority sketched correctly the characteristic diagram in part (b)(i), there
were many sketchy applications of the principle of causality and only a
handful received full marks for deriving the given formulae for φ in y > 0
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and y < 0. This sketchiness continued in part (b)(ii) with many applying
incorrectly the boundary conditions on y = 0± or failing to translate correct
ODEs for F(x) and G(x) in x < a, |x| < a and x > a into the correct solutions
for φ in the six corresponding regions in the (x, y)-plane. There were some
good solutions to part (b)(iii) with many candidates realizing that the wing
is inclined to the oncoming flow.

Question 3: This question was attempted by about one-third of the can-
didates and was not well done overall, the average mark being distorted
by one almost perfect solution. The routine derivation of the Rankine-
Hugoniot conditions in part (a) was well done by two candidates, but left
largely unattempted by the rest. Parts (b) and (c) concerned a simple model
for the partial closing of a sluice gate in a uniformly flowing stream. While
the overall setup was new to the candidates, its individual elements are
similar to previously seen examples on the problems sheets and in recent
past papers. Despite heavy signposting for the flow of information in
parts (b)(i) and (ii), the integration of that information into a coherent so-
lution caused difficulties for almost all candidates. This resulted in many
fragmentary solutions to parts (b) and (c), despite part (c) being almost
identical in structure and more straightforward than previously seen ex-
amples because the values of both h and c on the boundary of the domain
are given in the question. The risk of attempting an unfamiliar looking
question was perhaps unattractive compared to the more standard looking
questions 1 and 2.

B5.5: Further Mathematical Biology

Question 1. This question was attempted by the majority of candidates.
The assumptions underlying the model were generally not fully justified.
The phase plane analysis was generally correct, though few candidates
could properly sketch the phase plane. Very few could derive the stated
form for the travelling wave speed, nor properly compare and contrast the
model with the Fisher–KPP model.

Question 2. Very few candidates answered this question. Those that did
generally made good progress as it was quite similar to examples seen in
the lecture notes.

Question 3. The majority of candidates answered this question. The ap-
proaches required were standard up until part (d) and therefore the average
mark on this question was high. Note that there was an error in stating the
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non-dimensional equations, and the mark scheme was adjusted accord-
ingly.

B5.6: Nonlinear Systems

Question 1
This was a popular question and there were a lot of good answers, with a
high average score. Most candidates coped well the finding the extended
centre manifold, despite the extended system being 4-dimensional.

Question 2
This question was also very popular. There were a few very good answers,
but in general the marks were lower than for Q1, with quite a wide spread.
Typical mistakes included ignoring the question on stability in part (b) and
only finding the bifurcation points, and attempting to use the chain rule in
part (c) despite the system being discrete. There were also quite a number
of algebraic errors.

Question 3
This was a very unpopular question, with fewer than half as many attempts
as either Q1 or Q2. The candidates that did attempt this question gave very
good answers, and the average mark for Q3 was higher than that for Q1
or Q2.

B6.1: Numerical Solution of Differential Equations I

Question 1
The question was concerned with the finite difference approximation of
a boundary-value problem for a fourth-order linear differential equation,
restated as a system of second-order differential equations, subject to ho-
mogeneous Dirichlet boundary conditions. There were eight attempts at
the question, but only one was close to being complete. The majority of
the arguments offered by the candidates as proofs of the required equality

‖u′‖2L2((0,1)) + ‖w′‖2L2((0,1)) + ‖w‖2L2((0,1)) = −( f ,w)L2((0,1))

in part (a) of the question were convoluted, and several candidates failed
to observe the trivial pair of inequalities

−( f ,w)L2((0,1)) ≤ ‖ f ‖L2((0,1))‖w‖L2((0,1)) ≤
1
2
‖ f ‖2L2((0,1)) +

1
2
‖w‖2L2((0,1)),
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(i.e. the Cauchy–Schwarz inequality followed by noting that ab ≤ 1
2a2 + 1

2b2

for a, b ∈ R), which would have then directly implied the desired inequality
at the end of part (a) of the question; those candidates then also had
difficulties with the analogous, and relatively simple, discrete counterpart
of the argument in part (b).

Question 2
Almost all candidates attempted this question concerned with the finite
difference approximation of the elliptic boundary-value problem

∆u − (1 + x2 + y2)u = f (x, y) for (x, y) ∈ Ω := (0, 1)2,

subject to the nonhomogeneous Dirichlet boundary condition u|∂Ω = B ≤ 0,
with f < 0 on Ω. The answers offered to parts (a) and (b) of the question
were mostly complete, as were most of the suggested proofs of the discrete
minimum principle in part (d) of the question, but several candidates
found the proof of the inequality in part (c) of the question, which bounds
the discrete maximum norm of the global error by the discrete maximum
norm of the consistency error, challenging.

Question 3
This question on the stability analysis of the explicit Euler finite difference
approximation of the initial-value problem

∂u
∂t

+ u = a
∂2u
∂x2 + b

∂2u
∂y2 , −∞ < x, y < ∞, 0 < t ≤ T,

subject to u(x, y, 0) = u0(x, y), in the discrete `2 norm via Fourier anal-
ysis and in the discrete maximum norm, was well done by most can-
didates. Most managed to produce almost complete answers, although
there were also several attempts which, while conceptually correct, con-
tained algebraic errors. Several candidates missed the fact that for a
problem in two space dimensions there are two different wave num-
bers for the semidiscrete Fourier transform Û: kx ∈ [−π/∆x, π/∆x] and
ky ∈ [−π/∆y, π/∆y], and that the value Uk,` of the mesh function U at the
mesh point (xk, y`) := (k∆x, `∆y) is therefore

Uk,` =
1

(2π)2

∫ π/∆x

−π/∆x

∫ π/∆y

−π/∆y
Û(kx, ky) eıkxxkeıky y` dkx dky, k, ` ∈ Z,

with ı :=
√
−1.
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B6.2: Numerical Solution of Differential Equations II

The students did well in the exam, with Questions 1 and 3 being particu-
larly popular with the students, but Question 2 was also addressed.

Question 1 dealt with the method of steepest descent and the derivation
of its theoretical properties. Parts a)-c) addressed material that was mostly
seen and concerned the theory in the case where a global Lipschitz bound
on the objective function is a priori known. Part d) connected this theory
with a tool the candidates had seen in connetion with Nesterov acceleration
to deal with the situation in which the Lipschitz cnstant is merely known
to exist but no value is at hand. This problem was generally well solved,
but some students found Part d) challenging.

Question 2 was only attempted by 3 candidates, however all of whom did
quite well. Candidates were asked to derive the coefficients of strong con-
vexity and L-smoothness for a particular example of a quadratic objective,
and to use this information in a comparison of the Heavy Ball Method and
Nesterov Acceleration.

Question 3 was designed to query the candidates’ understanding of the
stochastic gradient descent method and techniques for reducing the noise
floor. This problem was well solved with a comparable marks distribution
to Question 1.

B6.3: Integer Programming

A total of 22 candidates sat the exam. All three problems were attempted,
and judging by the achieved results, they seemed to have been of compa-
rable difficulty level, although Questions 1 & 2 saw much higher uptake
than Question 3. There was a good spread of marks, showing that the
balance of book work and stretch material worked as intended.

Question 1 covered the modelling of a scheduling problem and the con-
cept of total unimodularity in the form of matrices with the sequential
ones property. Although the tested scheduling model had been seen in
the course, candidates struggled getting all aspects right, partcularly the
inclusion of big-M constraints as a tool to encode the condition that the
starting times of different jobs correspond to a feasible schedule. Part b)
concerned TU theory and was generally well solved. Part c) was an ap-
plication of Part b), but most candidates missed this point and tried to
prove the statements from first principles instead of relying on the theory

38



established in Part b).

Question 2 concerned submodular optimisation. Part a) consisted of book
work, but the second half was frequently incomplete. Part b) was generally
well solved and covered an example that could either be solved via the
technique suggested in Part a) or via a completely different technique that
had been seen on one of the problem sheets. Part c) required combining
existing knowledge from the theory of submodular optimisation with ad-
ditional constraints on the sign of some of the variables. Most candidates
missed the connection that allows to model the set of of independent sub-
sets and in terms of the requirement that the indicator vector be an element
of the submodular polyhedron.

Question 3 covered a simple example of the cutting stock problem with
3 different widths and queried theoretical knowledge about the delayed
column generation method along the way. This question saw a lower take
up and resulted in more polarised marks.

B7.1: Classical Mechanics

1. This question was very popular attempted by most candidates who
were able to write down the Lagrangian efficiently and pick up good
marks on the rest of the question. Most candidates were able to apply
the normal frequencies and modes material Good marks were picked
up by most candidates.

2. This question was also popular and showed that many candidates
had been able to use the crib-sheet system efficiently to write out
much of the theory accurately. The second half was more challenging
although there were a number of good solutions.

3. This question, being on the last part of the course was less popular,
but nevetheless attracted a good number of solid attempts.

B7.2: Electromagnetism

Question 1 was on electrostatics and the method of images, and was
attempted by all candidates. Answers to part (a) sometimes lacked a
clear explanation of how superposition leads to the integral formula, in
particular when describing how the charge arises from the line charge
density. Part (b) was generally very well answered. Most candidates made
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good progress through part (c), using the method of images, although there
were sometimes inaccuracies in applying the method, and computational
errors.

Question 2 was on magnetostatics, and answered by the majority of candi-
dates. A common issue with part (a) was not proving that the divergence of
B is zero everywhere, and a lack of explanation of how superposition leads
to the given Biot-Savart law formula. Part (b) was generally answered
well; while the integral can be done with a trigonometric substitution, this
isn’t necessary. Part (c) really differentiated the candidates: some realized
that one could sum n contributions of the type given in part (b), with a
little bit of geometry/trigonometry to work out how to modify the formula
(the intended method), but others went back to first principles, which then
typically didn’t get far.

Question 3 was on electromagnetic waves, and was the least popular ques-
tion. However, those who attempted it generally did well. A common error
in part (b) was to not check all the Maxwell equations are satisfied. An-
swers to parts (c) and (d) were generally very good, with most candidates
getting most of the steps correct, even if some steps were missing, and
some formulas were slightly wrong.

B7.3 Further Quantum Theory

Question 1 This question was popular, and started with a bookwork dis-
cussion of Rayleigh quotients and the variational method that was an-
swered well generally, though some candidates were not very clear in
their discussion of the general use of the method. The next part was a cal-
culation using a variational Ansatz that was the same as the ground state
wave function of the Hydrogen-like atom. The expectation of the kinetic
energy for this Ansatz could be computed quickly using the virial theorem
by comparison with the Hydrogen case, but a number of candidates did not
identify this fact. The expectation of the potential energy was a straightfor-
ward calculation that was performed by most candidates who tried. The
subsequent part required a coherent interpretation of the previous result
so as to find for what values of potential strength the variational Ansatz
could be chosen to give a negative energy. It was important to optimise the
right thing here, and this tripped up many candidates. The final part was
a Bohr–Sommerfeld calculation that could be done quickly by specialising
to the zero-energy case, but candidates who tried to calculate the general
quantisation condition ran into an ungly integral. The description of the
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origin of the appropriate quantisation condition was also hit-and-miss for
candidates who got to this point.

Question 2 This was a perturbation theory question, starting with book-
work which nevertheless required a careful discussion of the degenerate
case in part (b), and this was not always well explained in candidates’ an-
swers. The last two parts were an analysis of a particular three-dimensional
system, which included some degeneracy. While the first order energies
were well computed, the treatement of degeneracy for the analysis of state
corrections caused a lot of trouble, and this carried forward into the last part
where there was very little success in analysing the second-order energy
corrections for the degenerate states (this required tracking the ambiguities
in states through first order).

Question 3 This was an angular momentum question, which started with
a standard description of irreducible representations of angular momen-
tum. The problem then progressed to an addition of angular momentum
problem with intrinsic spin one. This was done fairly well in many cases.
In the last parts there was a perturbative calculation that required eval-
uating some matrix elements of orbital angular momentum operators in
added-basis states. This involved, in the first instance, a Clebsch–Gordan
calculation that was done well by the few candidates who attempted it.
Finally, there was an application of the Wigner–Eckhart theorem. Very few
candidates got to the point of utilising this useful theorem to reproduce
the results of the previous calculation, though a number reproduced the
statement of the theorem correctly.

B8.1: Probability, Measure and Martingales

Question 1 was attempted by half of the students. Part (a).(i) was either
done well or very poorly - in the former case the Monotone Class Theorem
was used successfully, in the later candidates were confused about how to
set up its application. Some candidates missed out on the fact that f was
bounded in the first part but non-negative in the second, so the limiting
procedure was both in the interval [−N,N] and min{ f ,N}. Part (a).(ii)
caused a lot of confusion: the candidates mainly simply said this followed
from Fubini’s theorem, while that result was stated for the product of two
probability spaces (or for the Lebesgue measure in Part A Integration) as the
problem emphasised. A correct solution employed monotone convergence
theorem combined with Fubini for ξN (re-normalising Lebesque measure
on [−N,N]). Parts (b).(i)-(b).(ii) were done very well. Part (b).(iii) was
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either done well using the results from part (a), or caused troubles with
candidates trying to use a conditional Fubini with no proper justification.
Part (b).(iv) was challenging and very few candidates showed it - the rest
either run out of time, or worked with Yλ

n instead of Zn.

Question 2 was attempted by two thirds of candidates. The vast majority
of candidates did part (a).(i) very well, but only about half found a correct
argument for (a).(ii) (restricting either Y,Z or the function g to an interval
[−N,N] and taking N→∞). Solutions to part (b).(i) were also mixed, with
roughly half of candidates being able to derive the identity by considering
the two separate cases, X̄n+1 = X̄n and X̄n+1 = Xn+1. Part (b).(ii) was done
well, though a few candidates dropped a mark for not justifying why M f

is integrable and adapted to the filtration. Part (c).(i) was challenging and
only completed by a small number of candidates. However, many candi-
dates identified that |Xn|was a submartingale or attempted to compute M f

or F(x) when f (x) = ln+(x). Most attempts for (c).(ii) tried to prove that the
sequence was bounded, and so only a couple of candidates received marks
for this part.

Question 3 was attempted by almost all candidates. Part (a) was usually
done well but a number of candidates got confused and instead of using
Vn = 1τ≥n to deduce (a).(ii) from (a).(i) took n ± 1, or used “≤” inequality.
In (a).(iii) saying that “clearly” (An∧τ) is predictable was not enough. Some
candidates also tried to argue predictability separately for different (fixed)
range of values for τ, instead of thinking of the process. Part (b) had a lot
of easy material which some candidates got with no problem, even if many
dropped a mark forgetting to check very simple properties (e.g., thatQ(∅) =
0). However, those who were confused about what conditional expectation
is found this part almost impossible. Part (b).(iv) was challenging and only
a handful of candidates got full marks for it.

B8.2: Continuous Martingales and Stochastic Calculus

Question 1 was well done overall. Some students struggled slightly with
bii, in particular they needed first to show that the stopped process MT

is convergent, so the lim sup and lim inf will agree whenever T = ∞.
This allows the stated assumption to be used more easily. Part c is most
easily addressed by applying the earlier results. Part ciii requires explicitly
calculating the probabilities on the right and left hand side, in order to
obtain an estimate for ε. Many students gave the lower bound on ε (which
is much more interesting than the trivial upper bound, which was asked
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for due to a typo in the exam question).

Question 2 was generally found more difficult than the other two questions.
Many students struggled with part ai, as they said that the spaceH2,c

loc is the
L2 bounded continuous local martingales, rather than the set of processes
which are locally L2-bounded martingales (which is the same as the space
of all continuous local martingales). Part b caused some difficulty; the
simplest approach is to assume the integral is well defined, then compute
the quadratic variation of

∫
HdW. Taking the expectation and applying

Fubini’s theorem gives a simple integral, yielding the condition α > −1.
In part bii, one needs to show that Ht does not converge as t → 0. For
α ≤ −1/2, Ht is normally distributed with variance which does not go
to zero, and so one can check that it’s inf and sup near zero will differ.
Blumenthal’s 0-1 law was well applied overall. Part c was made more
difficult if the covariance was not computed using the quadratic variation,
which gives an easy calculation. For s < T the variance is s, but in cii this is
not sufficient to apply L’evy’s characterization (as the variance is only the
expected quadratic variation). The calculation in ciii is easily done through
quadratic variation, by realizing that W =

∫
1dW.

Question 3 was generally well don. In part ci many students omitted
to show that P̃ is nonnegative, which is a crucial property. In part cii,
many attempted to use a multi-argument version of Ito’s lemma, which
leads to difficulties as it’s easy to forget the covariation terms. An easier
approach is to use Ito’s product rule. In ciii, the key is to show that
Yτ = E[(Nτ − 〈N,M〉τ)XT|Fτ], after which the problem follows by optional
stopping. The hint implicitly assumes that N0 = 0, otherwise the right
hand side of the inequality should be N0.

B8.3: Mathematical Models of Financial Derivatives

Question 1 was attempted by most students, and was well done overall.
Part a drew directly on material from the course, and was well answered.
Part bi was well done. Part bii caused some difficulties – the method com-
ing from the suggestion is to consider a portfolio with a decreasing num-
ber of options, the sale of these options being chosen to fund the required
payments, and hence giving a self-financing portfolio (with nonnegative
payoff, and sometimes strictly positive payoff), which has a postive price.
Some student attempted to prove this by assuming the options had zero
value (and hence no fees need to be paid), this argument struggles as the
terminal value needs to be strictly positive (in some states of the world),
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and therefore the fees need to be accounted for. Many students simply
did not consider whether this portfolio was self financing, and applied
Ito’s lemma without considering the financial setting. Part biii was well
done overall, the simplest argument being that as the options have posi-
tive value, it’s never worth exercising them when the exercise value is zero
(even though there are fees to be paid). The derivation of the differential
equation in part biv, and the use of the ansatz in part bv, were well done.

Question 2 was well done overall. Parts a and b were generally well done,
being drawn fairly directly from the course. Part c caused more difficulties;
in part ci the simplest thing is to argue, from part aiii, that the function C
must be decreasing in K. Using the chain rule, this entails an inequality on
V which simplifies to what is shown. In part cii, one needs to explain that
the agent using Black–Scholes will be short ∆BS stocks, however using the
function C, in order to cancel out their sensitivity to the underlying, they
should be short ∆BS + K−1νBSV′(S/K) stocks. Therefore, if V is increasing,
they need to short more stocks in order to reduce their instantaneous risk.

Question 3 was well done overall. Parts ai and aii were drawn from
the course; part aiii required a some explanation of the fact that: “the
dividend payment merely scales the geometric Brownian motion S, and
so its timing has no effect on the terminal value of S, and hence no effect
on the European option value” along with “for an American option, it
might happen that the dividend causes the stock price to jump over the
optimal exercise barrier, which would mean we would exercise before the
dividend is paid, and hence the timing of the dividend will affect the option
price”. Part bi was well done, being a standard application of the reflection
principle. Part bii was not well done – most students were not careful with
defining the option pricing formula below the barrier in part bi, which
meant that they failed to notice that the jump in the stock price could cause
the barrier to be breached at the dividend time, even if the barrier was
not breached immediately beforehand. This lead to difficulties in part biii,
where the importance of the point S = B/(1 − A) was unclear, as this is the
value which jumps to the barrier, causing a discontinuity. Some students
(correctly) noticed that the discontinuity in the stock price automatically
makes hedging difficult, independently of the barrier of the option.

B8.4: Information Theory

Question 1 was fundamental. It was taken by most students, and most
students did well. Part (a) was mostly bookwork. Although some students
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proved equalities from definitions of entropy, and some of them also forgot
to explain some special property used in their proofs, most answers were
good enough. Part (b) has been mentioned in lecture without detailed
example. But there were still wrong conclusion appeared. Part (c) is a
famous inequality in textbook. Its proof is typical. Some student used an
equality, which does hold in this case but not in general.

Question 2 is challenging. There is a similar question in homework with
specific value of the parameter. Part (a) is standard and easy. Part (b) is
not easy if you don’t know how to improve the prefix code by swapping
codewords. Part (c) has been explained for the question in homework.
Part (d) is easy.

Question 3 is a balance of basic calculation and slight difficulty with hints.
Part (a) is very easy, but some students forgot to express the condition on
the matrix. Part (b) can be proved by several ways, some answers from
students are quick and clear, and some are tedious (and hence costly in
time) while correct. Part (c) is in fact not really hard with hints, which can
be solved with brutal force or with a small trick which has been mentioned
in tutorial classes.

Full marks appeared in all the three questions, and the average of total
mark is about 32.2/50, which sounds proper.

B8.5: Graph Theory

Question 1 was attempted by almost all candidates, and was generally
done well. In part (a) many candidates came up with rather convoluted
methods of showing that a tree has at least two leaves, often using results
from the course (e.g., edge count of tree being n − 1) that are arguably
harder that the result to be proved. Parts (b) and (c) were usually done
correctly. Part (d) caused the most trouble, with many candidates having
difficulty counting the number of appropriate codes.

Question 2 was the least popular question. Parts (a) and (c) were usu-
ally done well, although some candidates failed to produce examples of
3-regular or almost 3-regular graphs giving the lower bound on the ex-
tremal number in (c). Part (b) was very much a case of you got it or you
didn’t. Most candidates got the correct result in (d), although sometimes
the arguments as to why it was optimal were a bit vague. The easy way to
do this is to argue that K4 maximises the average degree of a vertex in any
component of the graph.
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Question 3 was probably the hardest of the questions. Many candidates
failed to set up the correct network. For example, failing to put capacity
constraints on the edges from X to Y (without this the ‘subgraph’ H could
end up with multiple edges). Several candidates attempted to use vertex
constraints, which again suffers from the same problem that it does not
force the flow to correspond to a subgraph. Several candidates also failed
to consider sufficiently general cuts, and instead only looked at cuts of a
specific form.

BO1.1: History of Mathematics

Both the extended coursework essays and the exam scripts were blind
double-marked. The marks for essays and exam were reconciled sepa-
rately. The two carry equal weight when determining a candidate’s final
mark. The first half of the exam paper (Section A) consists of six extracts
from historical mathematical texts, from which candidates must choose
two on which to comment; the second half (Part B) gives candidates a
choice of three essay topics, from which they must choose one. The Sec-
tion B essay accounts for 50% of the overall exam mark; the answers to
each of the Section A questions count for 25%.

Throughout the course, candidates were invited to analyse historical math-
ematical materials from the points of view of their ’context’, ’content’ and
’significance’, and these were the three aspects that candidates were asked
to consider when looking at the extracts provided in Section A of the exam
paper. Two candidates chose to use these as subheadings within their an-
swer.

The Section A questions 1-6 were attempted by 5, 1, 9, 1, 3 and 2 candi-
dates, respectively (one candidate attempted three questions in Section A).
Question 1 related to material from the very start of the course, namely the
development of mathematical symbolism and the application of algebra
to the study of geometry. Most candidates focused on Descartes use of the
method of analysis, rather than considering how his work relied on the
development of symbolism. Questions 2 and 3 were both related to the
history of analysis, a core subject in the lecture course. Question 2 was the
only specific extract that candidates had certainly seen before; although
many students used content relating to this extract in Section B, it is possi-
ble that they did not attempt Question 2 as the extract itself does not invite
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much commentary on context. Question 3 was generally well done; there
was a lot that could be said about this extract as it touched on functions,
infinite series, and the notion of transcendental objects. Question 4 was
perhaps only attempted by one student as it related to material of a single
lecture. Question 5 looked at early group theory and was generally well
done, though students could have thought more critically about why Ga-
lois’ work was not immediately accepted for publication. Question 6 was
perhaps the most difficult question in this section, requiring strong back-
ground knowledge in group theory to recognise what Cayley was working
on. Frequently the responses to questions in Section A suffered from being
a little too vague.

Questions 7-9 were attempted by 4, 4, and 2 candidates, respectively. In
general, the essays were well structured with students ensuring that they
referred back to the question regularly, and summarised their argument
clearly in the conclusion. Question 7 pertained to plenty of the material
in the lecture course, and there was a surprising variety in the arguments
made by students. Question 8 was perhaps the most difficult question in
this section, requiring students to think creatively about which material
they drew upon in their essay. Question 9, chosen by the fewest candi-
dates, considered an idea that was occasionally touched upon in lectures,
but was never the focus of an essay or class discussion.

The standard of the extended essays was on the whole quite high, with
good use of source materials and evidence of students completing inde-
pendent reading around the subject. Many students proposed original
arguments in their essays, demonstrating good historical understanding
and innovative thinking. Overall, there was still a tendency to anachro-
nistic language - for example, the word ’derivative’ was frequently used
without explanation or clarification, even though the development of dif-
ferent notations and language used in the calculus was a key component of
the course. Candidates could also have taken more care to use a consistent
referencing style, and ensured that page numbers were always included
in citations where necessary.

Statistics Options

Reports of the following courses may be found in the Mathematics &
Statistics Examiners’ Report.
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SB1.1/1.2: Applied and Computational Statistics

SB2.1: Foundations of Statistical Inference

SB2.2: Statistical Machine Learning

SB3.1: Applied Probability

SB3.2: Statistical Lifetime Models

Computer Science Options

Reports on the following courses may be found in the Mathematics &
Computer Science Examiners’ Reports.

CS3a: Lambda Calculus & Types

CS4b: Computational Complexity

Philosophy Options

The report on the following courses may be found in the Philosophy Ex-
aminers’ Report.

122: Philosophy of Mathematics
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D. Comments and Recommendations from the Examination
Board

(i) The examiners, as noted above, would strongly support examination
Regulations restoring the ability for assessors or suitable delegates
to be present for the first 30 minutes of an examination, so that any
typographical errors which manage to remain undetected before an
examination can be corrected in that period. (It seems exceedingly
likely that all of the errors in this year’s papers would have been
identified and corrected had this arrangement been permitted.)

(ii) There was some concern that checkers for individual papers had not
been uniformly thorough in reviewing draft papers, both in relation
to detecting errors and in monitoring the difficulty of the questions
posed. The role of checker is especially important in cases where the
overseeing examiner’s own mathematical expertise is rather distant
from the topic of the paper, as is likely to be the case for some papers
in many years. The examiners would encourage Teaching Commit-
tee to consider ways in which the importance of the role could be
emphasised.

(iii) There were also a small number of cases where papers were signifi-
cantly delayed. It might be helpful to emphasize to lecturers in future
years that it is helpful to make the examiners aware as early as possi-
ble of any potential delays or difficulties in producing an examination
paper, so that the timetable agreed with the external examiners does
not need to be adjusted on short notice.

(iv) It would be very helpful if examiners (likely through the Chair) re-
ceived clearer and more timely information from the Proctors or the
Disability Advisory Service (DAS) in relation to candidates who may
need reasonable adjustments to be made to the manner in which
they take their examinations. The nature of such adjustments should
surely form part of the support plan for a student with a disability,
and the earlier the examiners can be made aware of the need for
adjustments to be made to exam papers the more time they have to
consider how best to implement these (and if needed seek clarifica-
tion on what is required).

It might also be reasonable to raise the possibility for the Chair of an
examination board to be given latitude to make minor adjustments to
examination arrangements where they receive such a request from a
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student, provided that request appears consistent with the student’s
support plan and the proposed adjustments are deemed reasonable
by the Chair. At present it can take a considerable length of time to
obtain approval for even quite modest proposals of this kind.
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