
EPSRC Centre for Doctoral Training in
Industrially Focused Mathematical

Modelling

Optimisation methods for machine
learning applications

Ioan Alexandru Puiu

Contents
1 Introduction 1

Glossary of terms 1

2 Optimisation Methods for Deep Learning 2

First and second order order optimisation

methods . 3

3 Comparison of Methods 4

Testing Framework 4

Performance of the methods 5

4 Discussion, conclusions, & recommendations 5

5 Potential Impact 6

1 Introduction

Machine Learning
algorithms perform
inference tasks based
on an input.

Have you ever wondered how facial recognition works or how Siri or Google Assistant
are able to support you in daily tasks through voice communication? At the core of these
artificial intelligence lieMachine Learning (ML) algorithms. These smart algorithms learn
to perform inference tasks such as classification, prediction and many others (e.g. face
recognition, automatic text correction). But howdo these algorithms learn andwhatmakes
them "smart"? Every Machine Learning algorithm is characterised by a set of parameters,
that define its ability to perform a task. These parameters are learned by exposing the
algorithm to data, improving its performance. The process of learning translates to a
mathematical optimisation problem.

The Numerical Algorithms Group (NAG) is an international technology company which
focuses on mathematical software, high performance computing, and associated services.
Mathematical optimization is one of the key focus areas of NAG. Machine learning is an
ubiquitous source of optimization problems, where a good understanding of the most
appropriate optimisation methods can make huge a difference in terms of algorithms’
performance.

Glossary of terms
� Train: the optimisation process of finding the paramters of ML algorithms.

� Objective function: the cost function we are trying to minimise.

� Step: the result of one iteration in the optimisation algorithm (the change made).

� Step size: the length of the distance taken in the chosen direction.

� Descent direction: direction along which the objective function decreases

� Representation capacity: the ability of a function to reproduce some behaviour

� Classification task: the problem of assigning an input to a class.

� Autoencoding task: the problem of reducing the dimensionality of the data.

� MSE: Mean Squared Error, a common type of objective function in ML.

� Hyperparameters: chosen, fixed parameters of the optimisation algorithm.

� Epoch: one pass of the optimisation algorithm through the whole data.

Optimisation is the
problem of finding the
set of values that
minimise a chosen
cost function.

An optimisation problem involves finding the best set of the problem’s variables according
to some performance measure. Without loss of generality, this can always be reduced to
finding the set of values that minimise some cost. In the machine learning context, the
values are the parameters, and the cost is the sum of all wrong inferences. By naively
looking just in the neighbourhood of a set of values, we can find the best values within,
but this does not guarantee they are the absolute best. Thus, an optimisation problem
can have many local solutions, and sometimes finding the global (absolute best one) can be
very challenging or even impossible. This is ubiquitous in Machine Learning and usually,
at best, local solutions are found.

Standard first order
methods are slow.

Consider a landscape and assume we wish to find a peak. If we couldn’t see very far we
would walk a certain distance in the direction which gives largest height increase (largest
slope), re-evaluate the largest slope at the new location, walk again, and so on.
Mathematically, this is the approach taken by first order (gradient) methods. However,
although these methods involve using the largest gradient at a particular point, the
methods do not guarantee fast convergence to the solution. Thus, more advanced
techniques also include the change in the slope (curvature) in order to decide the best
walking direction. These are known as second order methods and use slope and
curvature information.

Traditionally, second order methods are preferred. They decrease the computational time
per step compared to first order methods, because they use more information. However,
there is an extra cost associated with computing the curvature information, since we
need at least two slopes in one direction to get an estimate. For traditional optimisation
problems this extra cost is not an issue. However, in Machine Learning, the number of

1

parameters (d), and thus possible search directions, can be huge (in the order of millions).
Moreover, the data size (n) can also huge, and thus computing the value of the objective
function is expensive as well. In this setting, calculating the slope (gradient) becomes very
computationally expensive while obtaining the curvature becomes infeasible. This makes
the optimisation problems very challenging, with many days of computations potentially
being required even on largest super-computers.

In standard form,
second order
methods are
infeasible for ML.

First order stochastic
algorithms are the
standard optimisation
algorithm choice in
ML.

Stochastic algorithms have been developed to reduce the computational costs. They use a
much smaller subset of data picked at random at each iteration. In this context, first order
methods perform well due to their simplicity, and are the standard choice. However, they
can sometimes stall or find bad solutions. Unfortunately, second order methods are still
infeasible in general, due to quadratic increase of cost with the number of parameters.
However, the hope is that by using approximations or problem specific properties, second
order methods could become feasible whilst also retaining their core strengths.

Our aim is to develop an overview of the latest algorithmic development of optimisation
methods for deep neural networks as a representation of hard optimisation problems
within machine learning, in order to determine whether second order methods can
efficiently leverage the extra information to perform better in stochastic settings than first
order methods.

A deep neural
network is composed
of layers of
interconnected
neurons that process
the data sequentially.

2 Optimisation Methods for Deep Learning
We restrict our attention to Deep Learning, which is one of the most popular Machine
Learning branches. Deep learning is the state-of-the-art method for image or voice
recognition problems, and also performs well in other tasks. Deep Learning results in
very challenging optimisation problems due to the large number of parameters and data
points involved in most applications. Deep Learning algorithms use neural networks,
which are inspired in the brain’s ability to process data. A network is composed of layers
of neurons that take an input and return an output. In the simplest case, the neurons
between consecutive layers are interconnected. These connections must be trained and
they correspond to the parameters that need to be optimised and determine the
network’s performance on the given task.

In figure 1, we show an example of a neural network. Information is propagated left to
right, where each layer of neurons takes an input and returns an output. In the simplest
case, neurons store a single value. Operations are performed based on connections, at
neuron level, and the output is then used by the neurons connected to the right.

input output

Hidden Layer

input

Output Layer

Input Layer

Neuron

Figure 1 – Example of a deep neural network. The network contains an input layer (blue),
hidden layers (orange), where the data is processed, and the output layer (green), that returns
the inferred result.

Clearly, the more neurons and connections (parameters), the higher the capacity to make
inferences. However, it also becomes much harder to find the optimal parameters as the
size of the network increases. Thus, very large neural networks have good representation
capacity, but they are very hard to train, since the number of connections is very large. In
addition, to avoid wrong inferences, a very large number of training examples are needed,
which further complicates the problem.

2

First and second order order optimisation methods
To beginwith, all optimisationmethods start with an initial guess, which is then improved
iteratively. We refer to the estimated solution at each step as an iterate. The hope is that,
by performing good steps or iterations, the algorithm will converge to a local minimum.
Once a local minimum is reached, no further improvement can be achieved.

First order methods only consider the slope information for deciding the movement
direction. Assuming we know a direction along which the cost decreases, we need to
determine the appropriate step size. Due to the stochastic nature of the problem and
computational costs, computation of the best step size is infeasible and thus the size is
usually just chosen in advance. This makes convergence to the exact local minimum
impossible for gradient methods. Moreover, the estimate of the descent direction might
be rather poor, potentially meaning small (or sometimes negative) progress per iteration.
Nevertheless, the time taken per iteration is small, and so these methods usually perform
very well. Adaptive first order methods, that account for the local landscape, were
introduced to overcome the limitations on step size choice. The most popular first order
methods for deep learning are:

• Stochastic Gradient Descent (SGD), which is the simplest algorithm . It uses fixed
step size or a simple pre-defined step size decay schedule, and thus is not adaptive.

• Adaptivemomentum (ADAM), which is themost popular and successful first order
method. It includes information about gradient mean and variance to scale the step.
This is usually the standard optimisation algorithm in Deep Learning.

• AMSGrad, which is variant of ADAM, introduced because ADAM does not always
converge in practice. This algorithm performs more cautious steps, and thus is
slower in general, but very effective in situations where ADAM fails.

First order methods
are generally very
sensitive to their step
size.

Second order methods re-scale the step size using curvature information and thus they
naturally adapt to the local landscape. A larger curvature means a greater change in
the slope and thus the slope value at the current location is a good estimate in a smaller
neighbourhood of the current location. In this situation, the step should be small to avoid
arriving at an unpredictable, and possibly bad, location. For this reason, in the simplest,
one dimensional, case the effective step is inversely proportional to the curvature.

In figure 2, we see that the first order method performs well in the left hand case, but
when we double the curvature, as in the right hand case, we find that the solution does
not converge when using the same initial guess and step size.

Figure 2 –Graphs illustrating the benefit of second ordermethods (scale invariance). Starting
from the same initial guess (orange disk), the second order method (green triangle) finds the
solution (red diamond) in one iteration for both cases.

Although superior, in very high dimensional cases, second order methods become very
expensive. This is because for a d dimensional space, we need to evaluate d2 curvatures.
Since in deep learning d is in the order of millions or larger, storing or computing d2

curvatures is infeasible. Moreover, traditionally, these curvatures need to be computed for
every data point (there are n of them), which further complicates the problem. A subset
of m � n points can be chosen, but this can be detrimental since the curvature is more
susceptible to noise.

3

The computationally infeasible dependence on n is usually addressed by sub-sampling m
points at random for each iteration. However, further cost reduction is required. Thus far,
there are two types of ideas that result in successful methods:

• Block diagonal approximations try to retain and use most of the curvature
information by using the network’s layer structure. Curvatures are computed
either by considering the parameters in isolated layers or in groups of three
consecutive layers. The intuition is that parameters in a layer depend mainly on the
other parameters in the same layer. Two recent methods use this approximation for
the Fisher Information Matrix and are known as KFAC and EKFAC, whilst KFRA
uses the same ideas for the Gauss-Newton Matrix.

• Using computational tricks for the Gauss Newtonmethod can linearise the d2 cost
and thus make the computations feasible. To perform this computational trick, a
further requirement that the step should be small, is introduced. This algorithm
is known as Gram Gauss-Newton (GGN) and its practical use is regression problems
with a small number of outputs.

3 Comparison of Methods
In the previous section we introduced first- and second-order optimisation methods for
deep learning. We restrict our attention to the ones we found to be most successful, which
are:

• First order methods: SGD, ADAM (denoted in Tables as A) and AMSGrad,

• Second order methods: KFAC (denoted in Tables as K), EKFAC (denoted in Tables
as E) and GGN,

• Second order method used as preconditioner for first order: KFAC + ADAM
(denoted in Tables as K+A), EKFAC + ADAM (denoted in Tables as E+A).

Testing Framework

The testing data sets
and networks were
chosen to represent
typical small and
medium scale deep
learning applications.

To evaluate these methods, we used 7 test problems. The first six are formed by using the
MNIST, CIFAR10 and FACES datasets on classification and autoencoding problems. This
gave us a range of parameters from d � 4, 712 to d � 10, 222, 326. Unfortunately, running
the current form of the GGN on these problems is infeasible. Thus, the last test problem
is designed for the regime where the GGN algorithm is computationally feasible. We
describe the test problems below:

• Test Problem I - Classification task on the MNIST dataset. The neural network
contains four layers and has a total of dI � 4, 712 parameters to be optimised.

• Test Problems II and III - Classification task on CIFAR10 and FACES data sets. The
network comprises of 7 layers which gives a total of dII � 686, 538 and dIII � 703, 001
parameters for the two data sets, respectively;

• Test Problems IV, V and VI - Autoencoding task on the MNIST, CIFAR10 and
FACES data sets. The network consists of 10 fully connected layers, which gives
dIV � 8, 173, 814, dV � 9, 134, 054 and dVI � 10, 222, 326 parameters for the three
data sets, respectively.

• Test Problem VII - 1D Regression task on the MNIST data set. The network has 8
layers and the total number of parameters to be optimised is dVII � 713, 251.

Further, for each of the problems I to VI, we test themethods for a small batch size (m � 64)
and a large one (m � 1000). We introduce four metrics in order to provide a framework
for drawing conclusions about the performance of the algorithms. These are:

Four performance
metrics are chosen for
systematic method
comparison.

• convergence speed with respect to time (ST),

• convergence speed with respect to number of iterations (SI),

• generalisation ability, which is given by the best value obtained on the test set (G),

• best (minimum) objective function value achieved (MV).

4

For each of these test problems, we rank each method for each performance metric, with
1 being the best. Methods that perform virtually the same are given the same rank. Due
to the stochastic nature of the algorithms, we performed a small number of runs of the
algorithms for each case. However, we only present results for one instance. Nevertheless,
our results seemed to be robust with respect to changing the random computational seed.

Performance of the methods
We illustrate our results in Table 1 by presenting the average rankings over the four
performance metrics for each of the methods. We observe that KFAC + ADAM seems to
perform best, whilst KFAC and EKFAC could outperform ADAM, for large enough batch
size. We summarise the most important results in Section 4. As an example, we show the
convergence plot for two problems in figure 3.

In general,
KFAC + ADAM
outperforms all the
other methods.

GGN generally
achieves best
progress per iteration
and objective function
value.

A K E K+A E+A
ST 2.66 3.4 3 1.33 2.5
SI 2.9 3.66 2.4 1.33 2.5
G 2 3.6 2.33 1 2
MV 2.5 3.13 2.4 1.16 2

A K E K+A E+A
ST 2.4 2.1 3.2 1.6 -
SI 2.7 2.1 3.2 1.6 -
G 2.6 1.9 3.2 1.4 -
MV 2.7 1.9 3 1.6 -

Table 1 – Averaged rankings over the first six problems for batch size of 64 (left) and 1000
(right)

Figure 3 – ProblemVIwith batch size 1000 (left) and ProblemVIIwith batch size 4096 (right).
Different hyper-parameter values are shown to illustrate algorithms’ dependence on these.

We see a strong dependence of KFAC and EKFAC on their hyper-parameters. Moreover,
for Problem VI, we could not find hyper-parameter values that would result in these
methods outperforming ADAM. In contrast KFAC + ADAM and ADAM perform well
with standard hyper-parameter values. We observe that GGN is somewhat sensitive to
its hyper-parameters, although finding good values seems much easier, and the method
outperforms all the others.

4 Discussion, conclusions, & recommendations
We have considered various optimisation routines for problems arising in Deep Learning.
In particular we assessed the performance of these routines on seven test problems. We
summarise the key points for each algorithm:

KFAC+ADAM is generally the best algorithm choice if good performance is desired with
little parameter tuning and relatively low computational cost. The method seems very
reliable for standard parameters and the most robust to data sets or network architecture
changes. KFAC + ADAM generally outperforms ADAM, which was previously
considered to be state of the art. Moreover, due to its robustness, it generally
outperforms KFAC and EKFAC, at least when not much parameter tuning is performed.

KFAC and EKFAC seem to be able to achieve the best objective function value with
sufficient hyper-parameter tuning. Moreover, these methods can outperform ADAM
even in terms of convergence speed, at least for large d and batch size. However, the
methods’ performances are observed to be sensitive to parameter changes. Thus finding

5

the right hyper-parameters can be challenging, especially since their number is relatively
large. Moreover, sometimes, the methods can blow up. Whilst EKFAC seems to
outperform KFAC in certain situations, finding the right hyper-parameters seems more
challenging. KFAC and EKFAC are thus most appropriate (i) for large d, (ii) when
sufficient computational power, and (iii) time is available for fine tuning, and a very
accurate solution is desired.

KFAC and EKFAC
might perform best
with enough fine
tuning.

ADAM and AMSGrad seem to be the most versatile first order methods. They perform
very well in most situations when using standard hyper-parameters. ADAM is a good
choice if a fast solution with little tuning is required, since it is generally faster than
KFAC + ADAM. However, it can stall sometimes, but in those situations we observe
AMSGrad performs really well. Nevertheless, if ADAM does not stall, then it generally
performs better than AMSGrad, and so the methods could be run in parallel. However,
from our numerical experiments, there does not seem to be a clear scenario where these
methods would be preferred over their second order counterparts.

GGN seems to outperform all the othermethods in the settingwhere it is computationally
efficient. This is expected, since it captures the most curvature information and does not
make any curvature approximations. Increasing the batch size gives larger function
decrease per iteration but increases the computational cost. The method is observed to be
somewhat sensitive to its damping parameter, which offers a trade-off between noise level
and convergence speed.

We conclude that second order methods can outperform first order ones even in stochastic
settings, although finding good hyper-parameters seems more challenging, at least for
KFAC and EKFAC. This is because the accuracy of the approximation depends on the
values of the hyper-parameters and the optimisation problem being solved. Nevertheless,
using KFAC as a preconditioner for ADAM seems very robust and constantly achieves
the best results with standard parameter choices.

Finally, GGN seems to perform best even when compared to KFAC + ADAM. However,
the method does not scale up well for high dimensional output and thus its use is rather
limited. Nevertheless, the potential of the Gauss Newtonmethod is clear, and our analysis
suggests that much is to be gained if we develop a computationally efficient method that
retains the core strengths for a large number of output.

5 Potential Impact
For NAG, it is important to understand many different types of optimisation problems
and their characteristics in order to be able to choose the best solution for their customers.
Machine learning is a rich source of optimisation problems, however, the size of the
data combined with the structure of the optimisation problem prevents the application
of any classical optimisation methods. Our overview and assessment of the latest
optimisation methods suitable for training deep neural networks, as a representative of
hard optimisation problems within machine learning, will help NAG to improve their
machine learning services.

Jan Fiala, a senior technical consultant at NAG, said: "We always try to explore new areas
either to understand how to advance our mathematical software, the NAG Library, or to support
our services offering. Machine learning is a very active field where new ideas and publications
appear almost on weekly basis. Alex’s mini-project gives us a current snapshot and assessment of
the trends in higher order methods used in training of neural networks and we will be able to build
further on top of the insight gained."

6

	Introduction
	Glossary of terms

	Optimisation Methods for Deep Learning
	First and second order order optimisation methods

	Comparison of Methods
	Testing Framework
	Performance of the methods

	Discussion, conclusions, & recommendations
	Potential Impact

